Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / media / dvb / frontends / drxd_hard.c
blob7bf39cda83c55ef8305a72e5ca9a571db9d86e8b
1 /*
2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4 * Copyright (C) 2003-2007 Micronas
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 only, as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA
21 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/firmware.h>
30 #include <linux/i2c.h>
31 #include <asm/div64.h>
33 #include "dvb_frontend.h"
34 #include "drxd.h"
35 #include "drxd_firm.h"
37 #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
38 #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
40 #define CHUNK_SIZE 48
42 #define DRX_I2C_RMW 0x10
43 #define DRX_I2C_BROADCAST 0x20
44 #define DRX_I2C_CLEARCRC 0x80
45 #define DRX_I2C_SINGLE_MASTER 0xC0
46 #define DRX_I2C_MODEFLAGS 0xC0
47 #define DRX_I2C_FLAGS 0xF0
49 #ifndef SIZEOF_ARRAY
50 #define SIZEOF_ARRAY(array) (sizeof((array))/sizeof((array)[0]))
51 #endif
53 #define DEFAULT_LOCK_TIMEOUT 1100
55 #define DRX_CHANNEL_AUTO 0
56 #define DRX_CHANNEL_HIGH 1
57 #define DRX_CHANNEL_LOW 2
59 #define DRX_LOCK_MPEG 1
60 #define DRX_LOCK_FEC 2
61 #define DRX_LOCK_DEMOD 4
63 /****************************************************************************/
65 enum CSCDState {
66 CSCD_INIT = 0,
67 CSCD_SET,
68 CSCD_SAVED
71 enum CDrxdState {
72 DRXD_UNINITIALIZED = 0,
73 DRXD_STOPPED,
74 DRXD_STARTED
77 enum AGC_CTRL_MODE {
78 AGC_CTRL_AUTO = 0,
79 AGC_CTRL_USER,
80 AGC_CTRL_OFF
83 enum OperationMode {
84 OM_Default,
85 OM_DVBT_Diversity_Front,
86 OM_DVBT_Diversity_End
89 struct SCfgAgc {
90 enum AGC_CTRL_MODE ctrlMode;
91 u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
92 u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */
93 u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
94 u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
95 u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */
97 u16 R1;
98 u16 R2;
99 u16 R3;
102 struct SNoiseCal {
103 int cpOpt;
104 u16 cpNexpOfs;
105 u16 tdCal2k;
106 u16 tdCal8k;
109 enum app_env {
110 APPENV_STATIC = 0,
111 APPENV_PORTABLE = 1,
112 APPENV_MOBILE = 2
115 enum EIFFilter {
116 IFFILTER_SAW = 0,
117 IFFILTER_DISCRETE = 1
120 struct drxd_state {
121 struct dvb_frontend frontend;
122 struct dvb_frontend_ops ops;
123 struct dtv_frontend_properties props;
125 const struct firmware *fw;
126 struct device *dev;
128 struct i2c_adapter *i2c;
129 void *priv;
130 struct drxd_config config;
132 int i2c_access;
133 int init_done;
134 struct mutex mutex;
136 u8 chip_adr;
137 u16 hi_cfg_timing_div;
138 u16 hi_cfg_bridge_delay;
139 u16 hi_cfg_wakeup_key;
140 u16 hi_cfg_ctrl;
142 u16 intermediate_freq;
143 u16 osc_clock_freq;
145 enum CSCDState cscd_state;
146 enum CDrxdState drxd_state;
148 u16 sys_clock_freq;
149 s16 osc_clock_deviation;
150 u16 expected_sys_clock_freq;
152 u16 insert_rs_byte;
153 u16 enable_parallel;
155 int operation_mode;
157 struct SCfgAgc if_agc_cfg;
158 struct SCfgAgc rf_agc_cfg;
160 struct SNoiseCal noise_cal;
162 u32 fe_fs_add_incr;
163 u32 org_fe_fs_add_incr;
164 u16 current_fe_if_incr;
166 u16 m_FeAgRegAgPwd;
167 u16 m_FeAgRegAgAgcSio;
169 u16 m_EcOcRegOcModeLop;
170 u16 m_EcOcRegSncSncLvl;
171 u8 *m_InitAtomicRead;
172 u8 *m_HiI2cPatch;
174 u8 *m_ResetCEFR;
175 u8 *m_InitFE_1;
176 u8 *m_InitFE_2;
177 u8 *m_InitCP;
178 u8 *m_InitCE;
179 u8 *m_InitEQ;
180 u8 *m_InitSC;
181 u8 *m_InitEC;
182 u8 *m_ResetECRAM;
183 u8 *m_InitDiversityFront;
184 u8 *m_InitDiversityEnd;
185 u8 *m_DisableDiversity;
186 u8 *m_StartDiversityFront;
187 u8 *m_StartDiversityEnd;
189 u8 *m_DiversityDelay8MHZ;
190 u8 *m_DiversityDelay6MHZ;
192 u8 *microcode;
193 u32 microcode_length;
195 int type_A;
196 int PGA;
197 int diversity;
198 int tuner_mirrors;
200 enum app_env app_env_default;
201 enum app_env app_env_diversity;
205 /****************************************************************************/
206 /* I2C **********************************************************************/
207 /****************************************************************************/
209 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
211 struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
213 if (i2c_transfer(adap, &msg, 1) != 1)
214 return -1;
215 return 0;
218 static int i2c_read(struct i2c_adapter *adap,
219 u8 adr, u8 *msg, int len, u8 *answ, int alen)
221 struct i2c_msg msgs[2] = {
223 .addr = adr, .flags = 0,
224 .buf = msg, .len = len
225 }, {
226 .addr = adr, .flags = I2C_M_RD,
227 .buf = answ, .len = alen
230 if (i2c_transfer(adap, msgs, 2) != 2)
231 return -1;
232 return 0;
235 static inline u32 MulDiv32(u32 a, u32 b, u32 c)
237 u64 tmp64;
239 tmp64 = (u64)a * (u64)b;
240 do_div(tmp64, c);
242 return (u32) tmp64;
245 static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
247 u8 adr = state->config.demod_address;
248 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
249 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
251 u8 mm2[2];
252 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
253 return -1;
254 if (data)
255 *data = mm2[0] | (mm2[1] << 8);
256 return mm2[0] | (mm2[1] << 8);
259 static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
261 u8 adr = state->config.demod_address;
262 u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
263 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
265 u8 mm2[4];
267 if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
268 return -1;
269 if (data)
270 *data =
271 mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
272 return 0;
275 static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
277 u8 adr = state->config.demod_address;
278 u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
279 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
280 data & 0xff, (data >> 8) & 0xff
283 if (i2c_write(state->i2c, adr, mm, 6) < 0)
284 return -1;
285 return 0;
288 static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
290 u8 adr = state->config.demod_address;
291 u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
292 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
293 data & 0xff, (data >> 8) & 0xff,
294 (data >> 16) & 0xff, (data >> 24) & 0xff
297 if (i2c_write(state->i2c, adr, mm, 8) < 0)
298 return -1;
299 return 0;
302 static int write_chunk(struct drxd_state *state,
303 u32 reg, u8 *data, u32 len, u8 flags)
305 u8 adr = state->config.demod_address;
306 u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
307 flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
309 int i;
311 for (i = 0; i < len; i++)
312 mm[4 + i] = data[i];
313 if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
314 printk(KERN_ERR "error in write_chunk\n");
315 return -1;
317 return 0;
320 static int WriteBlock(struct drxd_state *state,
321 u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
323 while (BlockSize > 0) {
324 u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
326 if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
327 return -1;
328 pBlock += Chunk;
329 Address += (Chunk >> 1);
330 BlockSize -= Chunk;
332 return 0;
335 static int WriteTable(struct drxd_state *state, u8 * pTable)
337 int status = 0;
339 if (pTable == NULL)
340 return 0;
342 while (!status) {
343 u16 Length;
344 u32 Address = pTable[0] | (pTable[1] << 8) |
345 (pTable[2] << 16) | (pTable[3] << 24);
347 if (Address == 0xFFFFFFFF)
348 break;
349 pTable += sizeof(u32);
351 Length = pTable[0] | (pTable[1] << 8);
352 pTable += sizeof(u16);
353 if (!Length)
354 break;
355 status = WriteBlock(state, Address, Length * 2, pTable, 0);
356 pTable += (Length * 2);
358 return status;
361 /****************************************************************************/
362 /****************************************************************************/
363 /****************************************************************************/
365 static int ResetCEFR(struct drxd_state *state)
367 return WriteTable(state, state->m_ResetCEFR);
370 static int InitCP(struct drxd_state *state)
372 return WriteTable(state, state->m_InitCP);
375 static int InitCE(struct drxd_state *state)
377 int status;
378 enum app_env AppEnv = state->app_env_default;
380 do {
381 status = WriteTable(state, state->m_InitCE);
382 if (status < 0)
383 break;
385 if (state->operation_mode == OM_DVBT_Diversity_Front ||
386 state->operation_mode == OM_DVBT_Diversity_End) {
387 AppEnv = state->app_env_diversity;
389 if (AppEnv == APPENV_STATIC) {
390 status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
391 if (status < 0)
392 break;
393 } else if (AppEnv == APPENV_PORTABLE) {
394 status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
395 if (status < 0)
396 break;
397 } else if (AppEnv == APPENV_MOBILE && state->type_A) {
398 status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
399 if (status < 0)
400 break;
401 } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
402 status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
403 if (status < 0)
404 break;
407 /* start ce */
408 status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
409 if (status < 0)
410 break;
411 } while (0);
412 return status;
415 static int StopOC(struct drxd_state *state)
417 int status = 0;
418 u16 ocSyncLvl = 0;
419 u16 ocModeLop = state->m_EcOcRegOcModeLop;
420 u16 dtoIncLop = 0;
421 u16 dtoIncHip = 0;
423 do {
424 /* Store output configuration */
425 status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
426 if (status < 0)
427 break;
428 /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
429 state->m_EcOcRegSncSncLvl = ocSyncLvl;
430 /* m_EcOcRegOcModeLop = ocModeLop; */
432 /* Flush FIFO (byte-boundary) at fixed rate */
433 status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
434 if (status < 0)
435 break;
436 status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
437 if (status < 0)
438 break;
439 status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
440 if (status < 0)
441 break;
442 status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
443 if (status < 0)
444 break;
445 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
446 ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
447 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
448 if (status < 0)
449 break;
450 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
451 if (status < 0)
452 break;
454 msleep(1);
455 /* Output pins to '0' */
456 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
457 if (status < 0)
458 break;
460 /* Force the OC out of sync */
461 ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
462 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
463 if (status < 0)
464 break;
465 ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
466 ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
467 ocModeLop |= 0x2; /* Magically-out-of-sync */
468 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
469 if (status < 0)
470 break;
471 status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
472 if (status < 0)
473 break;
474 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
475 if (status < 0)
476 break;
477 } while (0);
479 return status;
482 static int StartOC(struct drxd_state *state)
484 int status = 0;
486 do {
487 /* Stop OC */
488 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
489 if (status < 0)
490 break;
492 /* Restore output configuration */
493 status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
494 if (status < 0)
495 break;
496 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
497 if (status < 0)
498 break;
500 /* Output pins active again */
501 status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
502 if (status < 0)
503 break;
505 /* Start OC */
506 status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
507 if (status < 0)
508 break;
509 } while (0);
510 return status;
513 static int InitEQ(struct drxd_state *state)
515 return WriteTable(state, state->m_InitEQ);
518 static int InitEC(struct drxd_state *state)
520 return WriteTable(state, state->m_InitEC);
523 static int InitSC(struct drxd_state *state)
525 return WriteTable(state, state->m_InitSC);
528 static int InitAtomicRead(struct drxd_state *state)
530 return WriteTable(state, state->m_InitAtomicRead);
533 static int CorrectSysClockDeviation(struct drxd_state *state);
535 static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
537 u16 ScRaRamLock = 0;
538 const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
539 SC_RA_RAM_LOCK_FEC__M |
540 SC_RA_RAM_LOCK_DEMOD__M);
541 const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
542 SC_RA_RAM_LOCK_DEMOD__M);
543 const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
545 int status;
547 *pLockStatus = 0;
549 status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
550 if (status < 0) {
551 printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
552 return status;
555 if (state->drxd_state != DRXD_STARTED)
556 return 0;
558 if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
559 *pLockStatus |= DRX_LOCK_MPEG;
560 CorrectSysClockDeviation(state);
563 if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
564 *pLockStatus |= DRX_LOCK_FEC;
566 if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
567 *pLockStatus |= DRX_LOCK_DEMOD;
568 return 0;
571 /****************************************************************************/
573 static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
575 int status;
577 if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
578 return -1;
580 if (cfg->ctrlMode == AGC_CTRL_USER) {
581 do {
582 u16 FeAgRegPm1AgcWri;
583 u16 FeAgRegAgModeLop;
585 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
586 if (status < 0)
587 break;
588 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
589 FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
590 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
591 if (status < 0)
592 break;
594 FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
595 FE_AG_REG_PM1_AGC_WRI__M);
596 status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
597 if (status < 0)
598 break;
599 } while (0);
600 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
601 if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
602 ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
603 ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
604 ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
606 return -1;
607 do {
608 u16 FeAgRegAgModeLop;
609 u16 FeAgRegEgcSetLvl;
610 u16 slope, offset;
612 /* == Mode == */
614 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
615 if (status < 0)
616 break;
617 FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
618 FeAgRegAgModeLop |=
619 FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
620 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
621 if (status < 0)
622 break;
624 /* == Settle level == */
626 FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
627 FE_AG_REG_EGC_SET_LVL__M);
628 status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
629 if (status < 0)
630 break;
632 /* == Min/Max == */
634 slope = (u16) ((cfg->maxOutputLevel -
635 cfg->minOutputLevel) / 2);
636 offset = (u16) ((cfg->maxOutputLevel +
637 cfg->minOutputLevel) / 2 - 511);
639 status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
640 if (status < 0)
641 break;
642 status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
643 if (status < 0)
644 break;
646 /* == Speed == */
648 const u16 maxRur = 8;
649 const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
650 const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
651 17, 18, 18, 19,
652 20, 21, 22, 23,
653 24, 26, 27, 28,
654 29, 31
657 u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
658 (maxRur + 1);
659 u16 fineSpeed = (u16) (cfg->speed -
660 ((cfg->speed /
661 fineSteps) *
662 fineSteps));
663 u16 invRurCount = (u16) (cfg->speed /
664 fineSteps);
665 u16 rurCount;
666 if (invRurCount > maxRur) {
667 rurCount = 0;
668 fineSpeed += fineSteps;
669 } else {
670 rurCount = maxRur - invRurCount;
674 fastInc = default *
675 (2^(fineSpeed/fineSteps))
676 => range[default...2*default>
677 slowInc = default *
678 (2^(fineSpeed/fineSteps))
681 u16 fastIncrDec =
682 fastIncrDecLUT[fineSpeed /
683 ((fineSteps /
684 (14 + 1)) + 1)];
685 u16 slowIncrDec =
686 slowIncrDecLUT[fineSpeed /
687 (fineSteps /
688 (3 + 1))];
690 status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
691 if (status < 0)
692 break;
693 status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
694 if (status < 0)
695 break;
696 status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
697 if (status < 0)
698 break;
699 status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
700 if (status < 0)
701 break;
702 status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
703 if (status < 0)
704 break;
707 } while (0);
709 } else {
710 /* No OFF mode for IF control */
711 return -1;
713 return status;
716 static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
718 int status = 0;
720 if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
721 return -1;
723 if (cfg->ctrlMode == AGC_CTRL_USER) {
724 do {
725 u16 AgModeLop = 0;
726 u16 level = (cfg->outputLevel);
728 if (level == DRXD_FE_CTRL_MAX)
729 level++;
731 status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
732 if (status < 0)
733 break;
735 /*==== Mode ====*/
737 /* Powerdown PD2, WRI source */
738 state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
739 state->m_FeAgRegAgPwd |=
740 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
741 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
742 if (status < 0)
743 break;
745 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
746 if (status < 0)
747 break;
748 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
749 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
750 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
751 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
752 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
753 if (status < 0)
754 break;
756 /* enable AGC2 pin */
758 u16 FeAgRegAgAgcSio = 0;
759 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
760 if (status < 0)
761 break;
762 FeAgRegAgAgcSio &=
763 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
764 FeAgRegAgAgcSio |=
765 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
766 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
767 if (status < 0)
768 break;
771 } while (0);
772 } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
773 u16 AgModeLop = 0;
775 do {
776 u16 level;
777 /* Automatic control */
778 /* Powerup PD2, AGC2 as output, TGC source */
779 (state->m_FeAgRegAgPwd) &=
780 ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
781 (state->m_FeAgRegAgPwd) |=
782 FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
783 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
784 if (status < 0)
785 break;
787 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
788 if (status < 0)
789 break;
790 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
791 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
792 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
793 FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
794 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
795 if (status < 0)
796 break;
797 /* Settle level */
798 level = (((cfg->settleLevel) >> 4) &
799 FE_AG_REG_TGC_SET_LVL__M);
800 status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
801 if (status < 0)
802 break;
804 /* Min/max: don't care */
806 /* Speed: TODO */
808 /* enable AGC2 pin */
810 u16 FeAgRegAgAgcSio = 0;
811 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
812 if (status < 0)
813 break;
814 FeAgRegAgAgcSio &=
815 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
816 FeAgRegAgAgcSio |=
817 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
818 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
819 if (status < 0)
820 break;
823 } while (0);
824 } else {
825 u16 AgModeLop = 0;
827 do {
828 /* No RF AGC control */
829 /* Powerdown PD2, AGC2 as output, WRI source */
830 (state->m_FeAgRegAgPwd) &=
831 ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
832 (state->m_FeAgRegAgPwd) |=
833 FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
834 status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
835 if (status < 0)
836 break;
838 status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
839 if (status < 0)
840 break;
841 AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
842 FE_AG_REG_AG_MODE_LOP_MODE_E__M));
843 AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
844 FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
845 status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
846 if (status < 0)
847 break;
849 /* set FeAgRegAgAgcSio AGC2 (RF) as input */
851 u16 FeAgRegAgAgcSio = 0;
852 status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
853 if (status < 0)
854 break;
855 FeAgRegAgAgcSio &=
856 ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
857 FeAgRegAgAgcSio |=
858 FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
859 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
860 if (status < 0)
861 break;
863 } while (0);
865 return status;
868 static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
870 int status = 0;
872 *pValue = 0;
873 if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
874 u16 Value;
875 status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
876 Value &= FE_AG_REG_GC1_AGC_DAT__M;
877 if (status >= 0) {
878 /* 3.3V
882 Vin - R3 - * -- Vout
888 u32 R1 = state->if_agc_cfg.R1;
889 u32 R2 = state->if_agc_cfg.R2;
890 u32 R3 = state->if_agc_cfg.R3;
892 u32 Vmax, Rpar, Vmin, Vout;
894 if (R2 == 0 && (R1 == 0 || R3 == 0))
895 return 0;
897 Vmax = (3300 * R2) / (R1 + R2);
898 Rpar = (R2 * R3) / (R3 + R2);
899 Vmin = (3300 * Rpar) / (R1 + Rpar);
900 Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
902 *pValue = Vout;
905 return status;
908 static int load_firmware(struct drxd_state *state, const char *fw_name)
910 const struct firmware *fw;
912 if (request_firmware(&fw, fw_name, state->dev) < 0) {
913 printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
914 return -EIO;
917 state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
918 if (state->microcode == NULL) {
919 release_firmware(fw);
920 printk(KERN_ERR "drxd: firmware load failure: no memory\n");
921 return -ENOMEM;
924 state->microcode_length = fw->size;
925 release_firmware(fw);
926 return 0;
929 static int DownloadMicrocode(struct drxd_state *state,
930 const u8 *pMCImage, u32 Length)
932 u8 *pSrc;
933 u32 Address;
934 u16 nBlocks;
935 u16 BlockSize;
936 u32 offset = 0;
937 int i, status = 0;
939 pSrc = (u8 *) pMCImage;
940 /* We're not using Flags */
941 /* Flags = (pSrc[0] << 8) | pSrc[1]; */
942 pSrc += sizeof(u16);
943 offset += sizeof(u16);
944 nBlocks = (pSrc[0] << 8) | pSrc[1];
945 pSrc += sizeof(u16);
946 offset += sizeof(u16);
948 for (i = 0; i < nBlocks; i++) {
949 Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
950 (pSrc[2] << 8) | pSrc[3];
951 pSrc += sizeof(u32);
952 offset += sizeof(u32);
954 BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
955 pSrc += sizeof(u16);
956 offset += sizeof(u16);
958 /* We're not using Flags */
959 /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
960 pSrc += sizeof(u16);
961 offset += sizeof(u16);
963 /* We're not using BlockCRC */
964 /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
965 pSrc += sizeof(u16);
966 offset += sizeof(u16);
968 status = WriteBlock(state, Address, BlockSize,
969 pSrc, DRX_I2C_CLEARCRC);
970 if (status < 0)
971 break;
972 pSrc += BlockSize;
973 offset += BlockSize;
976 return status;
979 static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
981 u32 nrRetries = 0;
982 u16 waitCmd;
983 int status;
985 status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
986 if (status < 0)
987 return status;
989 do {
990 nrRetries += 1;
991 if (nrRetries > DRXD_MAX_RETRIES) {
992 status = -1;
993 break;
995 status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
996 } while (waitCmd != 0);
998 if (status >= 0)
999 status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
1000 return status;
1003 static int HI_CfgCommand(struct drxd_state *state)
1005 int status = 0;
1007 mutex_lock(&state->mutex);
1008 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1009 Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1010 Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1011 Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1012 Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1014 Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1016 if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1017 HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1018 status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1019 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1020 else
1021 status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, 0);
1022 mutex_unlock(&state->mutex);
1023 return status;
1026 static int InitHI(struct drxd_state *state)
1028 state->hi_cfg_wakeup_key = (state->chip_adr);
1029 /* port/bridge/power down ctrl */
1030 state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1031 return HI_CfgCommand(state);
1034 static int HI_ResetCommand(struct drxd_state *state)
1036 int status;
1038 mutex_lock(&state->mutex);
1039 status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1040 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1041 if (status == 0)
1042 status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, 0);
1043 mutex_unlock(&state->mutex);
1044 msleep(1);
1045 return status;
1048 static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1050 state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1051 if (bEnableBridge)
1052 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1053 else
1054 state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1056 return HI_CfgCommand(state);
1059 #define HI_TR_WRITE 0x9
1060 #define HI_TR_READ 0xA
1061 #define HI_TR_READ_WRITE 0xB
1062 #define HI_TR_BROADCAST 0x4
1064 #if 0
1065 static int AtomicReadBlock(struct drxd_state *state,
1066 u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1068 int status;
1069 int i = 0;
1071 /* Parameter check */
1072 if ((!pData) || ((DataSize & 1) != 0))
1073 return -1;
1075 mutex_lock(&state->mutex);
1077 do {
1078 /* Instruct HI to read n bytes */
1079 /* TODO use proper names forthese egisters */
1080 status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1081 if (status < 0)
1082 break;
1083 status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1084 if (status < 0)
1085 break;
1086 status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1087 if (status < 0)
1088 break;
1089 status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1090 if (status < 0)
1091 break;
1092 status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1093 if (status < 0)
1094 break;
1096 status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1097 if (status < 0)
1098 break;
1100 } while (0);
1102 if (status >= 0) {
1103 for (i = 0; i < (DataSize / 2); i += 1) {
1104 u16 word;
1106 status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1107 &word, 0);
1108 if (status < 0)
1109 break;
1110 pData[2 * i] = (u8) (word & 0xFF);
1111 pData[(2 * i) + 1] = (u8) (word >> 8);
1114 mutex_unlock(&state->mutex);
1115 return status;
1118 static int AtomicReadReg32(struct drxd_state *state,
1119 u32 Addr, u32 *pData, u8 Flags)
1121 u8 buf[sizeof(u32)];
1122 int status;
1124 if (!pData)
1125 return -1;
1126 status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1127 *pData = (((u32) buf[0]) << 0) +
1128 (((u32) buf[1]) << 8) +
1129 (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1130 return status;
1132 #endif
1134 static int StopAllProcessors(struct drxd_state *state)
1136 return Write16(state, HI_COMM_EXEC__A,
1137 SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1140 static int EnableAndResetMB(struct drxd_state *state)
1142 if (state->type_A) {
1143 /* disable? monitor bus observe @ EC_OC */
1144 Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1147 /* do inverse broadcast, followed by explicit write to HI */
1148 Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1149 Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1150 return 0;
1153 static int InitCC(struct drxd_state *state)
1155 if (state->osc_clock_freq == 0 ||
1156 state->osc_clock_freq > 20000 ||
1157 (state->osc_clock_freq % 4000) != 0) {
1158 printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1159 return -1;
1162 Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1163 Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1164 CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1165 Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1166 Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1167 Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1169 return 0;
1172 static int ResetECOD(struct drxd_state *state)
1174 int status = 0;
1176 if (state->type_A)
1177 status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1178 else
1179 status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1181 if (!(status < 0))
1182 status = WriteTable(state, state->m_ResetECRAM);
1183 if (!(status < 0))
1184 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1185 return status;
1188 /* Configure PGA switch */
1190 static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1192 int status;
1193 u16 AgModeLop = 0;
1194 u16 AgModeHip = 0;
1195 do {
1196 if (pgaSwitch) {
1197 /* PGA on */
1198 /* fine gain */
1199 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1200 if (status < 0)
1201 break;
1202 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1203 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1204 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1205 if (status < 0)
1206 break;
1208 /* coarse gain */
1209 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1210 if (status < 0)
1211 break;
1212 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1213 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1214 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1215 if (status < 0)
1216 break;
1218 /* enable fine and coarse gain, enable AAF,
1219 no ext resistor */
1220 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1221 if (status < 0)
1222 break;
1223 } else {
1224 /* PGA off, bypass */
1226 /* fine gain */
1227 status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1228 if (status < 0)
1229 break;
1230 AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1231 AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1232 status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1233 if (status < 0)
1234 break;
1236 /* coarse gain */
1237 status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1238 if (status < 0)
1239 break;
1240 AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1241 AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1242 status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1243 if (status < 0)
1244 break;
1246 /* disable fine and coarse gain, enable AAF,
1247 no ext resistor */
1248 status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1249 if (status < 0)
1250 break;
1252 } while (0);
1253 return status;
1256 static int InitFE(struct drxd_state *state)
1258 int status;
1260 do {
1261 status = WriteTable(state, state->m_InitFE_1);
1262 if (status < 0)
1263 break;
1265 if (state->type_A) {
1266 status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1267 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1269 } else {
1270 if (state->PGA)
1271 status = SetCfgPga(state, 0);
1272 else
1273 status =
1274 Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1275 B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1279 if (status < 0)
1280 break;
1281 status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1282 if (status < 0)
1283 break;
1284 status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1285 if (status < 0)
1286 break;
1288 status = WriteTable(state, state->m_InitFE_2);
1289 if (status < 0)
1290 break;
1292 } while (0);
1294 return status;
1297 static int InitFT(struct drxd_state *state)
1300 norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1301 SC stuff
1303 return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1306 static int SC_WaitForReady(struct drxd_state *state)
1308 u16 curCmd;
1309 int i;
1311 for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1312 int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1313 if (status == 0 || curCmd == 0)
1314 return status;
1316 return -1;
1319 static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1321 int status = 0;
1322 u16 errCode;
1324 Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1325 SC_WaitForReady(state);
1327 Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1329 if (errCode == 0xFFFF) {
1330 printk(KERN_ERR "Command Error\n");
1331 status = -1;
1334 return status;
1337 static int SC_ProcStartCommand(struct drxd_state *state,
1338 u16 subCmd, u16 param0, u16 param1)
1340 int status = 0;
1341 u16 scExec;
1343 mutex_lock(&state->mutex);
1344 do {
1345 Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1346 if (scExec != 1) {
1347 status = -1;
1348 break;
1350 SC_WaitForReady(state);
1351 Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1352 Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1353 Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1355 SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1356 } while (0);
1357 mutex_unlock(&state->mutex);
1358 return status;
1361 static int SC_SetPrefParamCommand(struct drxd_state *state,
1362 u16 subCmd, u16 param0, u16 param1)
1364 int status;
1366 mutex_lock(&state->mutex);
1367 do {
1368 status = SC_WaitForReady(state);
1369 if (status < 0)
1370 break;
1371 status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1372 if (status < 0)
1373 break;
1374 status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1375 if (status < 0)
1376 break;
1377 status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1378 if (status < 0)
1379 break;
1381 status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1382 if (status < 0)
1383 break;
1384 } while (0);
1385 mutex_unlock(&state->mutex);
1386 return status;
1389 #if 0
1390 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1392 int status = 0;
1394 mutex_lock(&state->mutex);
1395 do {
1396 status = SC_WaitForReady(state);
1397 if (status < 0)
1398 break;
1399 status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1400 if (status < 0)
1401 break;
1402 status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1403 if (status < 0)
1404 break;
1405 } while (0);
1406 mutex_unlock(&state->mutex);
1407 return status;
1409 #endif
1411 static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1413 int status;
1415 do {
1416 u16 EcOcRegIprInvMpg = 0;
1417 u16 EcOcRegOcModeLop = 0;
1418 u16 EcOcRegOcModeHip = 0;
1419 u16 EcOcRegOcMpgSio = 0;
1421 /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1423 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1424 if (bEnableOutput) {
1425 EcOcRegOcModeHip |=
1426 B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1427 } else
1428 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1429 EcOcRegOcModeLop |=
1430 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1431 } else {
1432 EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1434 if (bEnableOutput)
1435 EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1436 else
1437 EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1439 /* Don't Insert RS Byte */
1440 if (state->insert_rs_byte) {
1441 EcOcRegOcModeLop &=
1442 (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1443 EcOcRegOcModeHip &=
1444 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1445 EcOcRegOcModeHip |=
1446 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1447 } else {
1448 EcOcRegOcModeLop |=
1449 EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1450 EcOcRegOcModeHip &=
1451 (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1452 EcOcRegOcModeHip |=
1453 EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1456 /* Mode = Parallel */
1457 if (state->enable_parallel)
1458 EcOcRegOcModeLop &=
1459 (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1460 else
1461 EcOcRegOcModeLop |=
1462 EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1464 /* Invert Data */
1465 /* EcOcRegIprInvMpg |= 0x00FF; */
1466 EcOcRegIprInvMpg &= (~(0x00FF));
1468 /* Invert Error ( we don't use the pin ) */
1469 /* EcOcRegIprInvMpg |= 0x0100; */
1470 EcOcRegIprInvMpg &= (~(0x0100));
1472 /* Invert Start ( we don't use the pin ) */
1473 /* EcOcRegIprInvMpg |= 0x0200; */
1474 EcOcRegIprInvMpg &= (~(0x0200));
1476 /* Invert Valid ( we don't use the pin ) */
1477 /* EcOcRegIprInvMpg |= 0x0400; */
1478 EcOcRegIprInvMpg &= (~(0x0400));
1480 /* Invert Clock */
1481 /* EcOcRegIprInvMpg |= 0x0800; */
1482 EcOcRegIprInvMpg &= (~(0x0800));
1484 /* EcOcRegOcModeLop =0x05; */
1485 status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1486 if (status < 0)
1487 break;
1488 status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1489 if (status < 0)
1490 break;
1491 status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1492 if (status < 0)
1493 break;
1494 status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1495 if (status < 0)
1496 break;
1497 } while (0);
1498 return status;
1501 static int SetDeviceTypeId(struct drxd_state *state)
1503 int status = 0;
1504 u16 deviceId = 0;
1506 do {
1507 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1508 if (status < 0)
1509 break;
1510 /* TODO: why twice? */
1511 status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1512 if (status < 0)
1513 break;
1514 printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1516 state->type_A = 0;
1517 state->PGA = 0;
1518 state->diversity = 0;
1519 if (deviceId == 0) { /* on A2 only 3975 available */
1520 state->type_A = 1;
1521 printk(KERN_INFO "DRX3975D-A2\n");
1522 } else {
1523 deviceId >>= 12;
1524 printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1525 switch (deviceId) {
1526 case 4:
1527 state->diversity = 1;
1528 case 3:
1529 case 7:
1530 state->PGA = 1;
1531 break;
1532 case 6:
1533 state->diversity = 1;
1534 case 5:
1535 case 8:
1536 break;
1537 default:
1538 status = -1;
1539 break;
1542 } while (0);
1544 if (status < 0)
1545 return status;
1547 /* Init Table selection */
1548 state->m_InitAtomicRead = DRXD_InitAtomicRead;
1549 state->m_InitSC = DRXD_InitSC;
1550 state->m_ResetECRAM = DRXD_ResetECRAM;
1551 if (state->type_A) {
1552 state->m_ResetCEFR = DRXD_ResetCEFR;
1553 state->m_InitFE_1 = DRXD_InitFEA2_1;
1554 state->m_InitFE_2 = DRXD_InitFEA2_2;
1555 state->m_InitCP = DRXD_InitCPA2;
1556 state->m_InitCE = DRXD_InitCEA2;
1557 state->m_InitEQ = DRXD_InitEQA2;
1558 state->m_InitEC = DRXD_InitECA2;
1559 if (load_firmware(state, DRX_FW_FILENAME_A2))
1560 return -EIO;
1561 } else {
1562 state->m_ResetCEFR = NULL;
1563 state->m_InitFE_1 = DRXD_InitFEB1_1;
1564 state->m_InitFE_2 = DRXD_InitFEB1_2;
1565 state->m_InitCP = DRXD_InitCPB1;
1566 state->m_InitCE = DRXD_InitCEB1;
1567 state->m_InitEQ = DRXD_InitEQB1;
1568 state->m_InitEC = DRXD_InitECB1;
1569 if (load_firmware(state, DRX_FW_FILENAME_B1))
1570 return -EIO;
1572 if (state->diversity) {
1573 state->m_InitDiversityFront = DRXD_InitDiversityFront;
1574 state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1575 state->m_DisableDiversity = DRXD_DisableDiversity;
1576 state->m_StartDiversityFront = DRXD_StartDiversityFront;
1577 state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1578 state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1579 state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1580 } else {
1581 state->m_InitDiversityFront = NULL;
1582 state->m_InitDiversityEnd = NULL;
1583 state->m_DisableDiversity = NULL;
1584 state->m_StartDiversityFront = NULL;
1585 state->m_StartDiversityEnd = NULL;
1586 state->m_DiversityDelay8MHZ = NULL;
1587 state->m_DiversityDelay6MHZ = NULL;
1590 return status;
1593 static int CorrectSysClockDeviation(struct drxd_state *state)
1595 int status;
1596 s32 incr = 0;
1597 s32 nomincr = 0;
1598 u32 bandwidth = 0;
1599 u32 sysClockInHz = 0;
1600 u32 sysClockFreq = 0; /* in kHz */
1601 s16 oscClockDeviation;
1602 s16 Diff;
1604 do {
1605 /* Retrieve bandwidth and incr, sanity check */
1607 /* These accesses should be AtomicReadReg32, but that
1608 causes trouble (at least for diversity */
1609 status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1610 if (status < 0)
1611 break;
1612 status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1613 if (status < 0)
1614 break;
1616 if (state->type_A) {
1617 if ((nomincr - incr < -500) || (nomincr - incr > 500))
1618 break;
1619 } else {
1620 if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1621 break;
1624 switch (state->props.bandwidth_hz) {
1625 case 8000000:
1626 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1627 break;
1628 case 7000000:
1629 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1630 break;
1631 case 6000000:
1632 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1633 break;
1634 default:
1635 return -1;
1636 break;
1639 /* Compute new sysclock value
1640 sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1641 incr += (1 << 23);
1642 sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1643 sysClockFreq = (u32) (sysClockInHz / 1000);
1644 /* rounding */
1645 if ((sysClockInHz % 1000) > 500)
1646 sysClockFreq++;
1648 /* Compute clock deviation in ppm */
1649 oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1650 (s32)
1651 (state->expected_sys_clock_freq)) *
1652 1000000L) /
1653 (s32)
1654 (state->expected_sys_clock_freq));
1656 Diff = oscClockDeviation - state->osc_clock_deviation;
1657 /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1658 if (Diff >= -200 && Diff <= 200) {
1659 state->sys_clock_freq = (u16) sysClockFreq;
1660 if (oscClockDeviation != state->osc_clock_deviation) {
1661 if (state->config.osc_deviation) {
1662 state->config.osc_deviation(state->priv,
1663 oscClockDeviation,
1665 state->osc_clock_deviation =
1666 oscClockDeviation;
1669 /* switch OFF SRMM scan in SC */
1670 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1671 if (status < 0)
1672 break;
1673 /* overrule FE_IF internal value for
1674 proper re-locking */
1675 status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1676 if (status < 0)
1677 break;
1678 state->cscd_state = CSCD_SAVED;
1680 } while (0);
1682 return status;
1685 static int DRX_Stop(struct drxd_state *state)
1687 int status;
1689 if (state->drxd_state != DRXD_STARTED)
1690 return 0;
1692 do {
1693 if (state->cscd_state != CSCD_SAVED) {
1694 u32 lock;
1695 status = DRX_GetLockStatus(state, &lock);
1696 if (status < 0)
1697 break;
1700 status = StopOC(state);
1701 if (status < 0)
1702 break;
1704 state->drxd_state = DRXD_STOPPED;
1706 status = ConfigureMPEGOutput(state, 0);
1707 if (status < 0)
1708 break;
1710 if (state->type_A) {
1711 /* Stop relevant processors off the device */
1712 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1713 if (status < 0)
1714 break;
1716 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717 if (status < 0)
1718 break;
1719 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720 if (status < 0)
1721 break;
1722 } else {
1723 /* Stop all processors except HI & CC & FE */
1724 status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1725 if (status < 0)
1726 break;
1727 status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1728 if (status < 0)
1729 break;
1730 status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1731 if (status < 0)
1732 break;
1733 status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1734 if (status < 0)
1735 break;
1736 status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1737 if (status < 0)
1738 break;
1739 status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1740 if (status < 0)
1741 break;
1742 status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1743 if (status < 0)
1744 break;
1747 } while (0);
1748 return status;
1751 int SetOperationMode(struct drxd_state *state, int oMode)
1753 int status;
1755 do {
1756 if (state->drxd_state != DRXD_STOPPED) {
1757 status = -1;
1758 break;
1761 if (oMode == state->operation_mode) {
1762 status = 0;
1763 break;
1766 if (oMode != OM_Default && !state->diversity) {
1767 status = -1;
1768 break;
1771 switch (oMode) {
1772 case OM_DVBT_Diversity_Front:
1773 status = WriteTable(state, state->m_InitDiversityFront);
1774 break;
1775 case OM_DVBT_Diversity_End:
1776 status = WriteTable(state, state->m_InitDiversityEnd);
1777 break;
1778 case OM_Default:
1779 /* We need to check how to
1780 get DRXD out of diversity */
1781 default:
1782 status = WriteTable(state, state->m_DisableDiversity);
1783 break;
1785 } while (0);
1787 if (!status)
1788 state->operation_mode = oMode;
1789 return status;
1792 static int StartDiversity(struct drxd_state *state)
1794 int status = 0;
1795 u16 rcControl;
1797 do {
1798 if (state->operation_mode == OM_DVBT_Diversity_Front) {
1799 status = WriteTable(state, state->m_StartDiversityFront);
1800 if (status < 0)
1801 break;
1802 } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1803 status = WriteTable(state, state->m_StartDiversityEnd);
1804 if (status < 0)
1805 break;
1806 if (state->props.bandwidth_hz == 8000000) {
1807 status = WriteTable(state, state->m_DiversityDelay8MHZ);
1808 if (status < 0)
1809 break;
1810 } else {
1811 status = WriteTable(state, state->m_DiversityDelay6MHZ);
1812 if (status < 0)
1813 break;
1816 status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1817 if (status < 0)
1818 break;
1819 rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1820 rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1821 /* combining enabled */
1822 B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1823 B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1824 B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1825 status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1826 if (status < 0)
1827 break;
1829 } while (0);
1830 return status;
1833 static int SetFrequencyShift(struct drxd_state *state,
1834 u32 offsetFreq, int channelMirrored)
1836 int negativeShift = (state->tuner_mirrors == channelMirrored);
1838 /* Handle all mirroring
1840 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1841 * feFsRegAddInc to 28 bits below
1842 * (if the result before masking is more than 28 bits, this means
1843 * that the ADC is mirroring.
1844 * The masking is in fact the aliasing of the ADC)
1848 /* Compute register value, unsigned computation */
1849 state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1850 offsetFreq,
1851 1 << 28, state->sys_clock_freq);
1852 /* Remove integer part */
1853 state->fe_fs_add_incr &= 0x0FFFFFFFL;
1854 if (negativeShift)
1855 state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1857 /* Save the frequency shift without tunerOffset compensation
1858 for CtrlGetChannel. */
1859 state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1860 1 << 28, state->sys_clock_freq);
1861 /* Remove integer part */
1862 state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1863 if (negativeShift)
1864 state->org_fe_fs_add_incr = ((1L << 28) -
1865 state->org_fe_fs_add_incr);
1867 return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1868 state->fe_fs_add_incr, 0);
1871 static int SetCfgNoiseCalibration(struct drxd_state *state,
1872 struct SNoiseCal *noiseCal)
1874 u16 beOptEna;
1875 int status = 0;
1877 do {
1878 status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1879 if (status < 0)
1880 break;
1881 if (noiseCal->cpOpt) {
1882 beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1883 } else {
1884 beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1885 status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1886 if (status < 0)
1887 break;
1889 status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1890 if (status < 0)
1891 break;
1893 if (!state->type_A) {
1894 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1895 if (status < 0)
1896 break;
1897 status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1898 if (status < 0)
1899 break;
1901 } while (0);
1903 return status;
1906 static int DRX_Start(struct drxd_state *state, s32 off)
1908 struct dtv_frontend_properties *p = &state->props;
1909 int status;
1911 u16 transmissionParams = 0;
1912 u16 operationMode = 0;
1913 u16 qpskTdTpsPwr = 0;
1914 u16 qam16TdTpsPwr = 0;
1915 u16 qam64TdTpsPwr = 0;
1916 u32 feIfIncr = 0;
1917 u32 bandwidth = 0;
1918 int mirrorFreqSpect;
1920 u16 qpskSnCeGain = 0;
1921 u16 qam16SnCeGain = 0;
1922 u16 qam64SnCeGain = 0;
1923 u16 qpskIsGainMan = 0;
1924 u16 qam16IsGainMan = 0;
1925 u16 qam64IsGainMan = 0;
1926 u16 qpskIsGainExp = 0;
1927 u16 qam16IsGainExp = 0;
1928 u16 qam64IsGainExp = 0;
1929 u16 bandwidthParam = 0;
1931 if (off < 0)
1932 off = (off - 500) / 1000;
1933 else
1934 off = (off + 500) / 1000;
1936 do {
1937 if (state->drxd_state != DRXD_STOPPED)
1938 return -1;
1939 status = ResetECOD(state);
1940 if (status < 0)
1941 break;
1942 if (state->type_A) {
1943 status = InitSC(state);
1944 if (status < 0)
1945 break;
1946 } else {
1947 status = InitFT(state);
1948 if (status < 0)
1949 break;
1950 status = InitCP(state);
1951 if (status < 0)
1952 break;
1953 status = InitCE(state);
1954 if (status < 0)
1955 break;
1956 status = InitEQ(state);
1957 if (status < 0)
1958 break;
1959 status = InitSC(state);
1960 if (status < 0)
1961 break;
1964 /* Restore current IF & RF AGC settings */
1966 status = SetCfgIfAgc(state, &state->if_agc_cfg);
1967 if (status < 0)
1968 break;
1969 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1970 if (status < 0)
1971 break;
1973 mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1975 switch (p->transmission_mode) {
1976 default: /* Not set, detect it automatically */
1977 operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1978 /* fall through , try first guess DRX_FFTMODE_8K */
1979 case TRANSMISSION_MODE_8K:
1980 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1981 if (state->type_A) {
1982 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1983 if (status < 0)
1984 break;
1985 qpskSnCeGain = 99;
1986 qam16SnCeGain = 83;
1987 qam64SnCeGain = 67;
1989 break;
1990 case TRANSMISSION_MODE_2K:
1991 transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1992 if (state->type_A) {
1993 status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1994 if (status < 0)
1995 break;
1996 qpskSnCeGain = 97;
1997 qam16SnCeGain = 71;
1998 qam64SnCeGain = 65;
2000 break;
2003 switch (p->guard_interval) {
2004 case GUARD_INTERVAL_1_4:
2005 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2006 break;
2007 case GUARD_INTERVAL_1_8:
2008 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2009 break;
2010 case GUARD_INTERVAL_1_16:
2011 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2012 break;
2013 case GUARD_INTERVAL_1_32:
2014 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2015 break;
2016 default: /* Not set, detect it automatically */
2017 operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2018 /* try first guess 1/4 */
2019 transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2020 break;
2023 switch (p->hierarchy) {
2024 case HIERARCHY_1:
2025 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2026 if (state->type_A) {
2027 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2028 if (status < 0)
2029 break;
2030 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2031 if (status < 0)
2032 break;
2034 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2035 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2036 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2038 qpskIsGainMan =
2039 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2040 qam16IsGainMan =
2041 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2042 qam64IsGainMan =
2043 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2045 qpskIsGainExp =
2046 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2047 qam16IsGainExp =
2048 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2049 qam64IsGainExp =
2050 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2052 break;
2054 case HIERARCHY_2:
2055 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2056 if (state->type_A) {
2057 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2058 if (status < 0)
2059 break;
2060 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2061 if (status < 0)
2062 break;
2064 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2065 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2066 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2068 qpskIsGainMan =
2069 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2070 qam16IsGainMan =
2071 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2072 qam64IsGainMan =
2073 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2075 qpskIsGainExp =
2076 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2077 qam16IsGainExp =
2078 SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2079 qam64IsGainExp =
2080 SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2082 break;
2083 case HIERARCHY_4:
2084 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2085 if (state->type_A) {
2086 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2087 if (status < 0)
2088 break;
2089 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2090 if (status < 0)
2091 break;
2093 qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2094 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2095 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2097 qpskIsGainMan =
2098 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2099 qam16IsGainMan =
2100 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2101 qam64IsGainMan =
2102 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2104 qpskIsGainExp =
2105 SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2106 qam16IsGainExp =
2107 SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2108 qam64IsGainExp =
2109 SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2111 break;
2112 case HIERARCHY_AUTO:
2113 default:
2114 /* Not set, detect it automatically, start with none */
2115 operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2116 transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2117 if (state->type_A) {
2118 status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2119 if (status < 0)
2120 break;
2121 status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2122 if (status < 0)
2123 break;
2125 qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2126 qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2127 qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2129 qpskIsGainMan =
2130 SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2131 qam16IsGainMan =
2132 SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2133 qam64IsGainMan =
2134 SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2136 qpskIsGainExp =
2137 SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2138 qam16IsGainExp =
2139 SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2140 qam64IsGainExp =
2141 SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2143 break;
2145 status = status;
2146 if (status < 0)
2147 break;
2149 switch (p->modulation) {
2150 default:
2151 operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2152 /* fall through , try first guess
2153 DRX_CONSTELLATION_QAM64 */
2154 case QAM_64:
2155 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2156 if (state->type_A) {
2157 status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2158 if (status < 0)
2159 break;
2160 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2161 if (status < 0)
2162 break;
2163 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2164 if (status < 0)
2165 break;
2166 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2167 if (status < 0)
2168 break;
2169 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2170 if (status < 0)
2171 break;
2173 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2174 if (status < 0)
2175 break;
2176 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2177 if (status < 0)
2178 break;
2179 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2180 if (status < 0)
2181 break;
2182 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2183 if (status < 0)
2184 break;
2186 break;
2187 case QPSK:
2188 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2189 if (state->type_A) {
2190 status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2191 if (status < 0)
2192 break;
2193 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2194 if (status < 0)
2195 break;
2196 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2197 if (status < 0)
2198 break;
2199 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2200 if (status < 0)
2201 break;
2202 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2203 if (status < 0)
2204 break;
2206 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2207 if (status < 0)
2208 break;
2209 status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2210 if (status < 0)
2211 break;
2212 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2213 if (status < 0)
2214 break;
2215 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2216 if (status < 0)
2217 break;
2219 break;
2221 case QAM_16:
2222 transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2223 if (state->type_A) {
2224 status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2225 if (status < 0)
2226 break;
2227 status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2228 if (status < 0)
2229 break;
2230 status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2231 if (status < 0)
2232 break;
2233 status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2234 if (status < 0)
2235 break;
2236 status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2237 if (status < 0)
2238 break;
2240 status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2241 if (status < 0)
2242 break;
2243 status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2244 if (status < 0)
2245 break;
2246 status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2247 if (status < 0)
2248 break;
2249 status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2250 if (status < 0)
2251 break;
2253 break;
2256 status = status;
2257 if (status < 0)
2258 break;
2260 switch (DRX_CHANNEL_HIGH) {
2261 default:
2262 case DRX_CHANNEL_AUTO:
2263 case DRX_CHANNEL_LOW:
2264 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2265 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2266 if (status < 0)
2267 break;
2268 break;
2269 case DRX_CHANNEL_HIGH:
2270 transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2271 status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2272 if (status < 0)
2273 break;
2274 break;
2278 switch (p->code_rate_HP) {
2279 case FEC_1_2:
2280 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2281 if (state->type_A) {
2282 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2283 if (status < 0)
2284 break;
2286 break;
2287 default:
2288 operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2289 case FEC_2_3:
2290 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2291 if (state->type_A) {
2292 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2293 if (status < 0)
2294 break;
2296 break;
2297 case FEC_3_4:
2298 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2299 if (state->type_A) {
2300 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2301 if (status < 0)
2302 break;
2304 break;
2305 case FEC_5_6:
2306 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2307 if (state->type_A) {
2308 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2309 if (status < 0)
2310 break;
2312 break;
2313 case FEC_7_8:
2314 transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2315 if (state->type_A) {
2316 status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2317 if (status < 0)
2318 break;
2320 break;
2322 status = status;
2323 if (status < 0)
2324 break;
2326 /* First determine real bandwidth (Hz) */
2327 /* Also set delay for impulse noise cruncher (only A2) */
2328 /* Also set parameters for EC_OC fix, note
2329 EC_OC_REG_TMD_HIL_MAR is changed
2330 by SC for fix for some 8K,1/8 guard but is restored by
2331 InitEC and ResetEC
2332 functions */
2333 switch (p->bandwidth_hz) {
2334 case 0:
2335 p->bandwidth_hz = 8000000;
2336 /* fall through */
2337 case 8000000:
2338 /* (64/7)*(8/8)*1000000 */
2339 bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2341 bandwidthParam = 0;
2342 status = Write16(state,
2343 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2344 break;
2345 case 7000000:
2346 /* (64/7)*(7/8)*1000000 */
2347 bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2348 bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */
2349 status = Write16(state,
2350 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2351 break;
2352 case 6000000:
2353 /* (64/7)*(6/8)*1000000 */
2354 bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2355 bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */
2356 status = Write16(state,
2357 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2358 break;
2359 default:
2360 status = -EINVAL;
2362 if (status < 0)
2363 break;
2365 status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2366 if (status < 0)
2367 break;
2370 u16 sc_config;
2371 status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2372 if (status < 0)
2373 break;
2375 /* enable SLAVE mode in 2k 1/32 to
2376 prevent timing change glitches */
2377 if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2378 (p->guard_interval == GUARD_INTERVAL_1_32)) {
2379 /* enable slave */
2380 sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2381 } else {
2382 /* disable slave */
2383 sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2385 status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2386 if (status < 0)
2387 break;
2390 status = SetCfgNoiseCalibration(state, &state->noise_cal);
2391 if (status < 0)
2392 break;
2394 if (state->cscd_state == CSCD_INIT) {
2395 /* switch on SRMM scan in SC */
2396 status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2397 if (status < 0)
2398 break;
2399 /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2400 state->cscd_state = CSCD_SET;
2403 /* Now compute FE_IF_REG_INCR */
2404 /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2405 ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2406 feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2407 (1ULL << 21), bandwidth) - (1 << 23);
2408 status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2409 if (status < 0)
2410 break;
2411 status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2412 if (status < 0)
2413 break;
2414 /* Bandwidth setting done */
2416 /* Mirror & frequency offset */
2417 SetFrequencyShift(state, off, mirrorFreqSpect);
2419 /* Start SC, write channel settings to SC */
2421 /* Enable SC after setting all other parameters */
2422 status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2423 if (status < 0)
2424 break;
2425 status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2426 if (status < 0)
2427 break;
2429 /* Write SC parameter registers, operation mode */
2430 #if 1
2431 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2432 SC_RA_RAM_OP_AUTO_GUARD__M |
2433 SC_RA_RAM_OP_AUTO_CONST__M |
2434 SC_RA_RAM_OP_AUTO_HIER__M |
2435 SC_RA_RAM_OP_AUTO_RATE__M);
2436 #endif
2437 status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2438 if (status < 0)
2439 break;
2441 /* Start correct processes to get in lock */
2442 status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2443 if (status < 0)
2444 break;
2446 status = StartOC(state);
2447 if (status < 0)
2448 break;
2450 if (state->operation_mode != OM_Default) {
2451 status = StartDiversity(state);
2452 if (status < 0)
2453 break;
2456 state->drxd_state = DRXD_STARTED;
2457 } while (0);
2459 return status;
2462 static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2464 u32 ulRfAgcOutputLevel = 0xffffffff;
2465 u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */
2466 u32 ulRfAgcMinLevel = 0; /* Currently unused */
2467 u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2468 u32 ulRfAgcSpeed = 0; /* Currently unused */
2469 u32 ulRfAgcMode = 0; /*2; Off */
2470 u32 ulRfAgcR1 = 820;
2471 u32 ulRfAgcR2 = 2200;
2472 u32 ulRfAgcR3 = 150;
2473 u32 ulIfAgcMode = 0; /* Auto */
2474 u32 ulIfAgcOutputLevel = 0xffffffff;
2475 u32 ulIfAgcSettleLevel = 0xffffffff;
2476 u32 ulIfAgcMinLevel = 0xffffffff;
2477 u32 ulIfAgcMaxLevel = 0xffffffff;
2478 u32 ulIfAgcSpeed = 0xffffffff;
2479 u32 ulIfAgcR1 = 820;
2480 u32 ulIfAgcR2 = 2200;
2481 u32 ulIfAgcR3 = 150;
2482 u32 ulClock = state->config.clock;
2483 u32 ulSerialMode = 0;
2484 u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */
2485 u32 ulHiI2cDelay = HI_I2C_DELAY;
2486 u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2487 u32 ulHiI2cPatch = 0;
2488 u32 ulEnvironment = APPENV_PORTABLE;
2489 u32 ulEnvironmentDiversity = APPENV_MOBILE;
2490 u32 ulIFFilter = IFFILTER_SAW;
2492 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2493 state->if_agc_cfg.outputLevel = 0;
2494 state->if_agc_cfg.settleLevel = 140;
2495 state->if_agc_cfg.minOutputLevel = 0;
2496 state->if_agc_cfg.maxOutputLevel = 1023;
2497 state->if_agc_cfg.speed = 904;
2499 if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2500 state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2501 state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2504 if (ulIfAgcMode == 0 &&
2505 ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2506 ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2507 ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2508 ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2509 state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2510 state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2511 state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2512 state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2513 state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2516 state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2517 state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2518 state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2520 state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2521 state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2522 state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2524 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2525 /* rest of the RFAgcCfg structure currently unused */
2526 if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2527 state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2528 state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2531 if (ulRfAgcMode == 0 &&
2532 ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2533 ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2534 ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2535 ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2536 state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2537 state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2538 state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2539 state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2540 state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2543 if (ulRfAgcMode == 2)
2544 state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2546 if (ulEnvironment <= 2)
2547 state->app_env_default = (enum app_env)
2548 (ulEnvironment);
2549 if (ulEnvironmentDiversity <= 2)
2550 state->app_env_diversity = (enum app_env)
2551 (ulEnvironmentDiversity);
2553 if (ulIFFilter == IFFILTER_DISCRETE) {
2554 /* discrete filter */
2555 state->noise_cal.cpOpt = 0;
2556 state->noise_cal.cpNexpOfs = 40;
2557 state->noise_cal.tdCal2k = -40;
2558 state->noise_cal.tdCal8k = -24;
2559 } else {
2560 /* SAW filter */
2561 state->noise_cal.cpOpt = 1;
2562 state->noise_cal.cpNexpOfs = 0;
2563 state->noise_cal.tdCal2k = -21;
2564 state->noise_cal.tdCal8k = -24;
2566 state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2568 state->chip_adr = (state->config.demod_address << 1) | 1;
2569 switch (ulHiI2cPatch) {
2570 case 1:
2571 state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2572 break;
2573 case 3:
2574 state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2575 break;
2576 default:
2577 state->m_HiI2cPatch = NULL;
2580 /* modify tuner and clock attributes */
2581 state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2582 /* expected system clock frequency in kHz */
2583 state->expected_sys_clock_freq = 48000;
2584 /* real system clock frequency in kHz */
2585 state->sys_clock_freq = 48000;
2586 state->osc_clock_freq = (u16) ulClock;
2587 state->osc_clock_deviation = 0;
2588 state->cscd_state = CSCD_INIT;
2589 state->drxd_state = DRXD_UNINITIALIZED;
2591 state->PGA = 0;
2592 state->type_A = 0;
2593 state->tuner_mirrors = 0;
2595 /* modify MPEG output attributes */
2596 state->insert_rs_byte = state->config.insert_rs_byte;
2597 state->enable_parallel = (ulSerialMode != 1);
2599 /* Timing div, 250ns/Psys */
2600 /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2602 state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2603 ulHiI2cDelay) / 1000;
2604 /* Bridge delay, uses oscilator clock */
2605 /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2606 state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2607 ulHiI2cBridgeDelay) / 1000;
2609 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2610 /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2611 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2612 return 0;
2615 int DRXD_init(struct drxd_state *state, const u8 * fw, u32 fw_size)
2617 int status = 0;
2618 u32 driverVersion;
2620 if (state->init_done)
2621 return 0;
2623 CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2625 do {
2626 state->operation_mode = OM_Default;
2628 status = SetDeviceTypeId(state);
2629 if (status < 0)
2630 break;
2632 /* Apply I2c address patch to B1 */
2633 if (!state->type_A && state->m_HiI2cPatch != NULL)
2634 status = WriteTable(state, state->m_HiI2cPatch);
2635 if (status < 0)
2636 break;
2638 if (state->type_A) {
2639 /* HI firmware patch for UIO readout,
2640 avoid clearing of result register */
2641 status = Write16(state, 0x43012D, 0x047f, 0);
2642 if (status < 0)
2643 break;
2646 status = HI_ResetCommand(state);
2647 if (status < 0)
2648 break;
2650 status = StopAllProcessors(state);
2651 if (status < 0)
2652 break;
2653 status = InitCC(state);
2654 if (status < 0)
2655 break;
2657 state->osc_clock_deviation = 0;
2659 if (state->config.osc_deviation)
2660 state->osc_clock_deviation =
2661 state->config.osc_deviation(state->priv, 0, 0);
2663 /* Handle clock deviation */
2664 s32 devB;
2665 s32 devA = (s32) (state->osc_clock_deviation) *
2666 (s32) (state->expected_sys_clock_freq);
2667 /* deviation in kHz */
2668 s32 deviation = (devA / (1000000L));
2669 /* rounding, signed */
2670 if (devA > 0)
2671 devB = (2);
2672 else
2673 devB = (-2);
2674 if ((devB * (devA % 1000000L) > 1000000L)) {
2675 /* add +1 or -1 */
2676 deviation += (devB / 2);
2679 state->sys_clock_freq =
2680 (u16) ((state->expected_sys_clock_freq) +
2681 deviation);
2683 status = InitHI(state);
2684 if (status < 0)
2685 break;
2686 status = InitAtomicRead(state);
2687 if (status < 0)
2688 break;
2690 status = EnableAndResetMB(state);
2691 if (status < 0)
2692 break;
2693 if (state->type_A)
2694 status = ResetCEFR(state);
2695 if (status < 0)
2696 break;
2698 if (fw) {
2699 status = DownloadMicrocode(state, fw, fw_size);
2700 if (status < 0)
2701 break;
2702 } else {
2703 status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2704 if (status < 0)
2705 break;
2708 if (state->PGA) {
2709 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2710 SetCfgPga(state, 0); /* PGA = 0 dB */
2711 } else {
2712 state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2715 state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2717 status = InitFE(state);
2718 if (status < 0)
2719 break;
2720 status = InitFT(state);
2721 if (status < 0)
2722 break;
2723 status = InitCP(state);
2724 if (status < 0)
2725 break;
2726 status = InitCE(state);
2727 if (status < 0)
2728 break;
2729 status = InitEQ(state);
2730 if (status < 0)
2731 break;
2732 status = InitEC(state);
2733 if (status < 0)
2734 break;
2735 status = InitSC(state);
2736 if (status < 0)
2737 break;
2739 status = SetCfgIfAgc(state, &state->if_agc_cfg);
2740 if (status < 0)
2741 break;
2742 status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2743 if (status < 0)
2744 break;
2746 state->cscd_state = CSCD_INIT;
2747 status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2748 if (status < 0)
2749 break;
2750 status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2751 if (status < 0)
2752 break;
2754 driverVersion = (((VERSION_MAJOR / 10) << 4) +
2755 (VERSION_MAJOR % 10)) << 24;
2756 driverVersion += (((VERSION_MINOR / 10) << 4) +
2757 (VERSION_MINOR % 10)) << 16;
2758 driverVersion += ((VERSION_PATCH / 1000) << 12) +
2759 ((VERSION_PATCH / 100) << 8) +
2760 ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2762 status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2763 if (status < 0)
2764 break;
2766 status = StopOC(state);
2767 if (status < 0)
2768 break;
2770 state->drxd_state = DRXD_STOPPED;
2771 state->init_done = 1;
2772 status = 0;
2773 } while (0);
2774 return status;
2777 int DRXD_status(struct drxd_state *state, u32 * pLockStatus)
2779 DRX_GetLockStatus(state, pLockStatus);
2781 /*if (*pLockStatus&DRX_LOCK_MPEG) */
2782 if (*pLockStatus & DRX_LOCK_FEC) {
2783 ConfigureMPEGOutput(state, 1);
2784 /* Get status again, in case we have MPEG lock now */
2785 /*DRX_GetLockStatus(state, pLockStatus); */
2788 return 0;
2791 /****************************************************************************/
2792 /****************************************************************************/
2793 /****************************************************************************/
2795 static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2797 struct drxd_state *state = fe->demodulator_priv;
2798 u32 value;
2799 int res;
2801 res = ReadIFAgc(state, &value);
2802 if (res < 0)
2803 *strength = 0;
2804 else
2805 *strength = 0xffff - (value << 4);
2806 return 0;
2809 static int drxd_read_status(struct dvb_frontend *fe, fe_status_t * status)
2811 struct drxd_state *state = fe->demodulator_priv;
2812 u32 lock;
2814 DRXD_status(state, &lock);
2815 *status = 0;
2816 /* No MPEG lock in V255 firmware, bug ? */
2817 #if 1
2818 if (lock & DRX_LOCK_MPEG)
2819 *status |= FE_HAS_LOCK;
2820 #else
2821 if (lock & DRX_LOCK_FEC)
2822 *status |= FE_HAS_LOCK;
2823 #endif
2824 if (lock & DRX_LOCK_FEC)
2825 *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2826 if (lock & DRX_LOCK_DEMOD)
2827 *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2829 return 0;
2832 static int drxd_init(struct dvb_frontend *fe)
2834 struct drxd_state *state = fe->demodulator_priv;
2835 int err = 0;
2837 /* if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
2838 return DRXD_init(state, 0, 0);
2840 err = DRXD_init(state, state->fw->data, state->fw->size);
2841 release_firmware(state->fw);
2842 return err;
2845 int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2847 struct drxd_state *state = fe->demodulator_priv;
2849 if (state->config.disable_i2c_gate_ctrl == 1)
2850 return 0;
2852 return DRX_ConfigureI2CBridge(state, onoff);
2854 EXPORT_SYMBOL(drxd_config_i2c);
2856 static int drxd_get_tune_settings(struct dvb_frontend *fe,
2857 struct dvb_frontend_tune_settings *sets)
2859 sets->min_delay_ms = 10000;
2860 sets->max_drift = 0;
2861 sets->step_size = 0;
2862 return 0;
2865 static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2867 *ber = 0;
2868 return 0;
2871 static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2873 *snr = 0;
2874 return 0;
2877 static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2879 *ucblocks = 0;
2880 return 0;
2883 static int drxd_sleep(struct dvb_frontend *fe)
2885 struct drxd_state *state = fe->demodulator_priv;
2887 ConfigureMPEGOutput(state, 0);
2888 return 0;
2891 static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2893 return drxd_config_i2c(fe, enable);
2896 static int drxd_set_frontend(struct dvb_frontend *fe)
2898 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2899 struct drxd_state *state = fe->demodulator_priv;
2900 s32 off = 0;
2902 state->props = *p;
2903 DRX_Stop(state);
2905 if (fe->ops.tuner_ops.set_params) {
2906 fe->ops.tuner_ops.set_params(fe);
2907 if (fe->ops.i2c_gate_ctrl)
2908 fe->ops.i2c_gate_ctrl(fe, 0);
2911 msleep(200);
2913 return DRX_Start(state, off);
2916 static void drxd_release(struct dvb_frontend *fe)
2918 struct drxd_state *state = fe->demodulator_priv;
2920 kfree(state);
2923 static struct dvb_frontend_ops drxd_ops = {
2924 .delsys = { SYS_DVBT},
2925 .info = {
2926 .name = "Micronas DRXD DVB-T",
2927 .frequency_min = 47125000,
2928 .frequency_max = 855250000,
2929 .frequency_stepsize = 166667,
2930 .frequency_tolerance = 0,
2931 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2932 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2933 FE_CAN_FEC_AUTO |
2934 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2935 FE_CAN_QAM_AUTO |
2936 FE_CAN_TRANSMISSION_MODE_AUTO |
2937 FE_CAN_GUARD_INTERVAL_AUTO |
2938 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2940 .release = drxd_release,
2941 .init = drxd_init,
2942 .sleep = drxd_sleep,
2943 .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2945 .set_frontend = drxd_set_frontend,
2946 .get_tune_settings = drxd_get_tune_settings,
2948 .read_status = drxd_read_status,
2949 .read_ber = drxd_read_ber,
2950 .read_signal_strength = drxd_read_signal_strength,
2951 .read_snr = drxd_read_snr,
2952 .read_ucblocks = drxd_read_ucblocks,
2955 struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2956 void *priv, struct i2c_adapter *i2c,
2957 struct device *dev)
2959 struct drxd_state *state = NULL;
2961 state = kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
2962 if (!state)
2963 return NULL;
2964 memset(state, 0, sizeof(*state));
2966 memcpy(&state->ops, &drxd_ops, sizeof(struct dvb_frontend_ops));
2967 state->dev = dev;
2968 state->config = *config;
2969 state->i2c = i2c;
2970 state->priv = priv;
2972 mutex_init(&state->mutex);
2974 if (Read16(state, 0, 0, 0) < 0)
2975 goto error;
2977 memcpy(&state->frontend.ops, &drxd_ops,
2978 sizeof(struct dvb_frontend_ops));
2979 state->frontend.demodulator_priv = state;
2980 ConfigureMPEGOutput(state, 0);
2981 return &state->frontend;
2983 error:
2984 printk(KERN_ERR "drxd: not found\n");
2985 kfree(state);
2986 return NULL;
2988 EXPORT_SYMBOL(drxd_attach);
2990 MODULE_DESCRIPTION("DRXD driver");
2991 MODULE_AUTHOR("Micronas");
2992 MODULE_LICENSE("GPL");