Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / media / video / omap / omap_vout_vrfb.c
blob4be26abf6cea7a323ef0b15e7e1cedf3177ab916
1 /*
2 * omap_vout_vrfb.c
4 * Copyright (C) 2010 Texas Instruments.
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/videodev2.h>
16 #include <media/videobuf-dma-contig.h>
17 #include <media/v4l2-device.h>
19 #include <plat/dma.h>
20 #include <plat/vrfb.h>
22 #include "omap_voutdef.h"
23 #include "omap_voutlib.h"
26 * Function for allocating video buffers
28 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
29 unsigned int *count, int startindex)
31 int i, j;
33 for (i = 0; i < *count; i++) {
34 if (!vout->smsshado_virt_addr[i]) {
35 vout->smsshado_virt_addr[i] =
36 omap_vout_alloc_buffer(vout->smsshado_size,
37 &vout->smsshado_phy_addr[i]);
39 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
40 if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
41 break;
43 if (!vout->smsshado_virt_addr[i]) {
44 for (j = 0; j < i; j++) {
45 omap_vout_free_buffer(
46 vout->smsshado_virt_addr[j],
47 vout->smsshado_size);
48 vout->smsshado_virt_addr[j] = 0;
49 vout->smsshado_phy_addr[j] = 0;
51 *count = 0;
52 return -ENOMEM;
54 memset((void *) vout->smsshado_virt_addr[i], 0,
55 vout->smsshado_size);
57 return 0;
61 * Wakes up the application once the DMA transfer to VRFB space is completed.
63 static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
65 struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
67 t->tx_status = 1;
68 wake_up_interruptible(&t->wait);
72 * Free VRFB buffers
74 void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
76 int j;
78 for (j = 0; j < VRFB_NUM_BUFS; j++) {
79 omap_vout_free_buffer(vout->smsshado_virt_addr[j],
80 vout->smsshado_size);
81 vout->smsshado_virt_addr[j] = 0;
82 vout->smsshado_phy_addr[j] = 0;
86 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
87 bool static_vrfb_allocation)
89 int ret = 0, i, j;
90 struct omap_vout_device *vout;
91 struct video_device *vfd;
92 int image_width, image_height;
93 int vrfb_num_bufs = VRFB_NUM_BUFS;
94 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
95 struct omap2video_device *vid_dev =
96 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
98 vout = vid_dev->vouts[vid_num];
99 vfd = vout->vfd;
101 for (i = 0; i < VRFB_NUM_BUFS; i++) {
102 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
103 dev_info(&pdev->dev, ": VRFB allocation failed\n");
104 for (j = 0; j < i; j++)
105 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
106 ret = -ENOMEM;
107 goto free_buffers;
111 /* Calculate VRFB memory size */
112 /* allocate for worst case size */
113 image_width = VID_MAX_WIDTH / TILE_SIZE;
114 if (VID_MAX_WIDTH % TILE_SIZE)
115 image_width++;
117 image_width = image_width * TILE_SIZE;
118 image_height = VID_MAX_HEIGHT / TILE_SIZE;
120 if (VID_MAX_HEIGHT % TILE_SIZE)
121 image_height++;
123 image_height = image_height * TILE_SIZE;
124 vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
127 * Request and Initialize DMA, for DMA based VRFB transfer
129 vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
130 vout->vrfb_dma_tx.dma_ch = -1;
131 vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
132 ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
133 omap_vout_vrfb_dma_tx_callback,
134 (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
135 if (ret < 0) {
136 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
137 dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
138 " video%d\n", vfd->minor);
140 init_waitqueue_head(&vout->vrfb_dma_tx.wait);
142 /* statically allocated the VRFB buffer is done through
143 commands line aruments */
144 if (static_vrfb_allocation) {
145 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
146 ret = -ENOMEM;
147 goto release_vrfb_ctx;
149 vout->vrfb_static_allocation = 1;
151 return 0;
153 release_vrfb_ctx:
154 for (j = 0; j < VRFB_NUM_BUFS; j++)
155 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
156 free_buffers:
157 omap_vout_free_buffers(vout);
159 return ret;
163 * Release the VRFB context once the module exits
165 void omap_vout_release_vrfb(struct omap_vout_device *vout)
167 int i;
169 for (i = 0; i < VRFB_NUM_BUFS; i++)
170 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
172 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
173 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
174 omap_free_dma(vout->vrfb_dma_tx.dma_ch);
179 * Allocate the buffers for the VRFB space. Data is copied from V4L2
180 * buffers to the VRFB buffers using the DMA engine.
182 int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
183 unsigned int *count, unsigned int startindex)
185 int i;
186 bool yuv_mode;
188 if (!is_rotation_enabled(vout))
189 return 0;
191 /* If rotation is enabled, allocate memory for VRFB space also */
192 *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
194 /* Allocate the VRFB buffers only if the buffers are not
195 * allocated during init time.
197 if (!vout->vrfb_static_allocation)
198 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
199 return -ENOMEM;
201 if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
202 vout->dss_mode == OMAP_DSS_COLOR_UYVY)
203 yuv_mode = true;
204 else
205 yuv_mode = false;
207 for (i = 0; i < *count; i++)
208 omap_vrfb_setup(&vout->vrfb_context[i],
209 vout->smsshado_phy_addr[i], vout->pix.width,
210 vout->pix.height, vout->bpp, yuv_mode);
212 return 0;
215 int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
216 struct videobuf_buffer *vb)
218 dma_addr_t dmabuf;
219 struct vid_vrfb_dma *tx;
220 enum dss_rotation rotation;
221 u32 dest_frame_index = 0, src_element_index = 0;
222 u32 dest_element_index = 0, src_frame_index = 0;
223 u32 elem_count = 0, frame_count = 0, pixsize = 2;
225 if (!is_rotation_enabled(vout))
226 return 0;
228 dmabuf = vout->buf_phy_addr[vb->i];
229 /* If rotation is enabled, copy input buffer into VRFB
230 * memory space using DMA. We are copying input buffer
231 * into VRFB memory space of desired angle and DSS will
232 * read image VRFB memory for 0 degree angle
234 pixsize = vout->bpp * vout->vrfb_bpp;
236 * DMA transfer in double index mode
239 /* Frame index */
240 dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
241 (vout->pix.width * vout->bpp)) + 1;
243 /* Source and destination parameters */
244 src_element_index = 0;
245 src_frame_index = 0;
246 dest_element_index = 1;
247 /* Number of elements per frame */
248 elem_count = vout->pix.width * vout->bpp;
249 frame_count = vout->pix.height;
250 tx = &vout->vrfb_dma_tx;
251 tx->tx_status = 0;
252 omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
253 (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
254 tx->dev_id, 0x0);
255 /* src_port required only for OMAP1 */
256 omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
257 dmabuf, src_element_index, src_frame_index);
258 /*set dma source burst mode for VRFB */
259 omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
260 rotation = calc_rotation(vout);
262 /* dest_port required only for OMAP1 */
263 omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
264 vout->vrfb_context[vb->i].paddr[0], dest_element_index,
265 dest_frame_index);
266 /*set dma dest burst mode for VRFB */
267 omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
268 omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
270 omap_start_dma(tx->dma_ch);
271 interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
273 if (tx->tx_status == 0) {
274 omap_stop_dma(tx->dma_ch);
275 return -EINVAL;
277 /* Store buffers physical address into an array. Addresses
278 * from this array will be used to configure DSS */
279 vout->queued_buf_addr[vb->i] = (u8 *)
280 vout->vrfb_context[vb->i].paddr[rotation];
281 return 0;
285 * Calculate the buffer offsets from which the streaming should
286 * start. This offset calculation is mainly required because of
287 * the VRFB 32 pixels alignment with rotation.
289 void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
291 enum dss_rotation rotation;
292 bool mirroring = vout->mirror;
293 struct v4l2_rect *crop = &vout->crop;
294 struct v4l2_pix_format *pix = &vout->pix;
295 int *cropped_offset = &vout->cropped_offset;
296 int vr_ps = 1, ps = 2, temp_ps = 2;
297 int offset = 0, ctop = 0, cleft = 0, line_length = 0;
299 rotation = calc_rotation(vout);
301 if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
302 V4L2_PIX_FMT_UYVY == pix->pixelformat) {
303 if (is_rotation_enabled(vout)) {
305 * ps - Actual pixel size for YUYV/UYVY for
306 * VRFB/Mirroring is 4 bytes
307 * vr_ps - Virtually pixel size for YUYV/UYVY is
308 * 2 bytes
310 ps = 4;
311 vr_ps = 2;
312 } else {
313 ps = 2; /* otherwise the pixel size is 2 byte */
315 } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
316 ps = 4;
317 } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
318 ps = 3;
320 vout->ps = ps;
321 vout->vr_ps = vr_ps;
323 if (is_rotation_enabled(vout)) {
324 line_length = MAX_PIXELS_PER_LINE;
325 ctop = (pix->height - crop->height) - crop->top;
326 cleft = (pix->width - crop->width) - crop->left;
327 } else {
328 line_length = pix->width;
330 vout->line_length = line_length;
331 switch (rotation) {
332 case dss_rotation_90_degree:
333 offset = vout->vrfb_context[0].yoffset *
334 vout->vrfb_context[0].bytespp;
335 temp_ps = ps / vr_ps;
336 if (mirroring == 0) {
337 *cropped_offset = offset + line_length *
338 temp_ps * cleft + crop->top * temp_ps;
339 } else {
340 *cropped_offset = offset + line_length * temp_ps *
341 cleft + crop->top * temp_ps + (line_length *
342 ((crop->width / (vr_ps)) - 1) * ps);
344 break;
345 case dss_rotation_180_degree:
346 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
347 vout->vrfb_context[0].bytespp) +
348 (vout->vrfb_context[0].xoffset *
349 vout->vrfb_context[0].bytespp));
350 if (mirroring == 0) {
351 *cropped_offset = offset + (line_length * ps * ctop) +
352 (cleft / vr_ps) * ps;
354 } else {
355 *cropped_offset = offset + (line_length * ps * ctop) +
356 (cleft / vr_ps) * ps + (line_length *
357 (crop->height - 1) * ps);
359 break;
360 case dss_rotation_270_degree:
361 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
362 vout->vrfb_context[0].bytespp;
363 temp_ps = ps / vr_ps;
364 if (mirroring == 0) {
365 *cropped_offset = offset + line_length *
366 temp_ps * crop->left + ctop * ps;
367 } else {
368 *cropped_offset = offset + line_length *
369 temp_ps * crop->left + ctop * ps +
370 (line_length * ((crop->width / vr_ps) - 1) *
371 ps);
373 break;
374 case dss_rotation_0_degree:
375 if (mirroring == 0) {
376 *cropped_offset = (line_length * ps) *
377 crop->top + (crop->left / vr_ps) * ps;
378 } else {
379 *cropped_offset = (line_length * ps) *
380 crop->top + (crop->left / vr_ps) * ps +
381 (line_length * (crop->height - 1) * ps);
383 break;
384 default:
385 *cropped_offset = (line_length * ps * crop->top) /
386 vr_ps + (crop->left * ps) / vr_ps +
387 ((crop->width / vr_ps) - 1) * ps;
388 break;