1 /*****************************************************************************
2 * Copyright 2004 - 2009 Broadcom Corporation. All rights reserved.
4 * Unless you and Broadcom execute a separate written software license
5 * agreement governing use of this software, this software is licensed to you
6 * under the terms of the GNU General Public License version 2, available at
7 * http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
9 * Notwithstanding the above, under no circumstances may you combine this
10 * software in any way with any other Broadcom software provided under a
11 * license other than the GPL, without Broadcom's express prior written
13 *****************************************************************************/
15 /* ---- Include Files ---------------------------------------------------- */
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/string.h>
22 #include <linux/ioport.h>
23 #include <linux/device.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
27 #include <linux/platform_device.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/nand.h>
30 #include <linux/mtd/nand_ecc.h>
31 #include <linux/mtd/partitions.h>
33 #include <asm/mach-types.h>
34 #include <asm/system.h>
36 #include <mach/reg_nand.h>
37 #include <mach/reg_umi.h>
39 #include "nand_bcm_umi.h"
41 #include <mach/memory_settings.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/completion.h>
48 /* ---- External Variable Declarations ----------------------------------- */
49 /* ---- External Function Prototypes ------------------------------------- */
50 /* ---- Public Variables ------------------------------------------------- */
51 /* ---- Private Constants and Types -------------------------------------- */
52 static const __devinitconst
char gBanner
[] = KERN_INFO \
53 "BCM UMI MTD NAND Driver: 1.00\n";
56 static uint8_t scan_ff_pattern
[] = { 0xff };
58 static struct nand_bbt_descr largepage_bbt
= {
62 .pattern
= scan_ff_pattern
67 ** Preallocate a buffer to avoid having to do this every dma operation.
68 ** This is the size of the preallocated coherent DMA buffer.
71 #define DMA_MIN_BUFLEN 512
72 #define DMA_MAX_BUFLEN PAGE_SIZE
73 #define USE_DIRECT_IO(len) (((len) < DMA_MIN_BUFLEN) || \
74 ((len) > DMA_MAX_BUFLEN))
77 * The current NAND data space goes from 0x80001900 to 0x80001FFF,
78 * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
79 * size NAND flash. Need to break the DMA down to multiple 1Ks.
81 * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
83 #define DMA_MAX_LEN 1024
86 #define DMA_MIN_BUFLEN 0
87 #define DMA_MAX_BUFLEN 0
88 #define USE_DIRECT_IO(len) 1
90 /* ---- Private Function Prototypes -------------------------------------- */
91 static void bcm_umi_nand_read_buf(struct mtd_info
*mtd
, u_char
* buf
, int len
);
92 static void bcm_umi_nand_write_buf(struct mtd_info
*mtd
, const u_char
* buf
,
95 /* ---- Private Variables ------------------------------------------------ */
96 static struct mtd_info
*board_mtd
;
97 static void __iomem
*bcm_umi_io_base
;
99 static dma_addr_t physPtr
;
100 static struct completion nand_comp
;
102 /* ---- Private Functions ------------------------------------------------ */
104 #include "bcm_umi_bch.c"
106 #include "bcm_umi_hamming.c"
111 /* Handler called when the DMA finishes. */
112 static void nand_dma_handler(DMA_Device_t dev
, int reason
, void *userData
)
114 complete(&nand_comp
);
117 static int nand_dma_init(void)
121 rc
= dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM
,
122 nand_dma_handler
, NULL
);
124 printk(KERN_ERR
"dma_set_device_handler failed: %d\n", rc
);
129 dma_alloc_coherent(NULL
, DMA_MAX_BUFLEN
, &physPtr
, GFP_KERNEL
);
130 if (virtPtr
== NULL
) {
131 printk(KERN_ERR
"NAND - Failed to allocate memory for DMA buffer\n");
138 static void nand_dma_term(void)
141 dma_free_coherent(NULL
, DMA_MAX_BUFLEN
, virtPtr
, physPtr
);
144 static void nand_dma_read(void *buf
, int len
)
152 panic("nand_dma_read: virtPtr == NULL\n");
154 if ((void *)physPtr
== NULL
)
155 panic("nand_dma_read: physPtr == NULL\n");
157 hndl
= dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM
);
160 "nand_dma_read: unable to allocate dma channel: %d\n",
165 while (len_left
> 0) {
166 if (len_left
> DMA_MAX_LEN
) {
167 tmp_len
= DMA_MAX_LEN
;
168 len_left
-= DMA_MAX_LEN
;
174 init_completion(&nand_comp
);
175 dma_transfer_mem_to_mem(hndl
, REG_NAND_DATA_PADDR
,
176 physPtr
+ offset
, tmp_len
);
177 wait_for_completion(&nand_comp
);
182 dma_free_channel(hndl
);
185 memcpy(buf
, virtPtr
, len
);
188 static void nand_dma_write(const void *buf
, int len
)
196 panic("nand_dma_write: buf == NULL\n");
199 panic("nand_dma_write: virtPtr == NULL\n");
201 if ((void *)physPtr
== NULL
)
202 panic("nand_dma_write: physPtr == NULL\n");
204 memcpy(virtPtr
, buf
, len
);
207 hndl
= dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM
);
210 "nand_dma_write: unable to allocate dma channel: %d\n",
215 while (len_left
> 0) {
216 if (len_left
> DMA_MAX_LEN
) {
217 tmp_len
= DMA_MAX_LEN
;
218 len_left
-= DMA_MAX_LEN
;
224 init_completion(&nand_comp
);
225 dma_transfer_mem_to_mem(hndl
, physPtr
+ offset
,
226 REG_NAND_DATA_PADDR
, tmp_len
);
227 wait_for_completion(&nand_comp
);
232 dma_free_channel(hndl
);
237 static int nand_dev_ready(struct mtd_info
*mtd
)
239 return nand_bcm_umi_dev_ready();
242 /****************************************************************************
244 * bcm_umi_nand_inithw
246 * This routine does the necessary hardware (board-specific)
247 * initializations. This includes setting up the timings, etc.
249 ***************************************************************************/
250 int bcm_umi_nand_inithw(void)
252 /* Configure nand timing parameters */
253 REG_UMI_NAND_TCR
&= ~0x7ffff;
254 REG_UMI_NAND_TCR
|= HW_CFG_NAND_TCR
;
256 #if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
257 /* enable software control of CS */
258 REG_UMI_NAND_TCR
|= REG_UMI_NAND_TCR_CS_SWCTRL
;
261 /* keep NAND chip select asserted */
262 REG_UMI_NAND_RCSR
|= REG_UMI_NAND_RCSR_CS_ASSERTED
;
264 REG_UMI_NAND_TCR
&= ~REG_UMI_NAND_TCR_WORD16
;
265 /* enable writes to flash */
266 REG_UMI_MMD_ICR
|= REG_UMI_MMD_ICR_FLASH_WP
;
268 writel(NAND_CMD_RESET
, bcm_umi_io_base
+ REG_NAND_CMD_OFFSET
);
269 nand_bcm_umi_wait_till_ready();
272 nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES
);
278 /* Used to turn latch the proper register for access. */
279 static void bcm_umi_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
282 /* send command to hardware */
283 struct nand_chip
*chip
= mtd
->priv
;
284 if (ctrl
& NAND_CTRL_CHANGE
) {
285 if (ctrl
& NAND_CLE
) {
286 chip
->IO_ADDR_W
= bcm_umi_io_base
+ REG_NAND_CMD_OFFSET
;
289 if (ctrl
& NAND_ALE
) {
291 bcm_umi_io_base
+ REG_NAND_ADDR_OFFSET
;
294 chip
->IO_ADDR_W
= bcm_umi_io_base
+ REG_NAND_DATA8_OFFSET
;
298 /* Send command to chip directly */
299 if (cmd
!= NAND_CMD_NONE
)
300 writeb(cmd
, chip
->IO_ADDR_W
);
303 static void bcm_umi_nand_write_buf(struct mtd_info
*mtd
, const u_char
* buf
,
306 if (USE_DIRECT_IO(len
)) {
307 /* Do it the old way if the buffer is small or too large.
308 * Probably quicker than starting and checking dma. */
310 struct nand_chip
*this = mtd
->priv
;
312 for (i
= 0; i
< len
; i
++)
313 writeb(buf
[i
], this->IO_ADDR_W
);
317 nand_dma_write(buf
, len
);
321 static void bcm_umi_nand_read_buf(struct mtd_info
*mtd
, u_char
* buf
, int len
)
323 if (USE_DIRECT_IO(len
)) {
325 struct nand_chip
*this = mtd
->priv
;
327 for (i
= 0; i
< len
; i
++)
328 buf
[i
] = readb(this->IO_ADDR_R
);
332 nand_dma_read(buf
, len
);
336 static uint8_t readbackbuf
[NAND_MAX_PAGESIZE
];
337 static int bcm_umi_nand_verify_buf(struct mtd_info
*mtd
, const u_char
* buf
,
341 * Try to readback page with ECC correction. This is necessary
342 * for MLC parts which may have permanently stuck bits.
344 struct nand_chip
*chip
= mtd
->priv
;
345 int ret
= chip
->ecc
.read_page(mtd
, chip
, readbackbuf
, 0);
349 if (memcmp(readbackbuf
, buf
, len
) == 0)
357 static int __devinit
bcm_umi_nand_probe(struct platform_device
*pdev
)
359 struct nand_chip
*this;
365 /* Allocate memory for MTD device structure and private data */
367 kmalloc(sizeof(struct mtd_info
) + sizeof(struct nand_chip
),
371 "Unable to allocate NAND MTD device structure.\n");
375 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
382 /* map physical address */
383 bcm_umi_io_base
= ioremap(r
->start
, resource_size(r
));
385 if (!bcm_umi_io_base
) {
386 printk(KERN_ERR
"ioremap to access BCM UMI NAND chip failed\n");
391 /* Get pointer to private data */
392 this = (struct nand_chip
*)(&board_mtd
[1]);
394 /* Initialize structures */
395 memset((char *)board_mtd
, 0, sizeof(struct mtd_info
));
396 memset((char *)this, 0, sizeof(struct nand_chip
));
398 /* Link the private data with the MTD structure */
399 board_mtd
->priv
= this;
401 /* Initialize the NAND hardware. */
402 if (bcm_umi_nand_inithw() < 0) {
403 printk(KERN_ERR
"BCM UMI NAND chip could not be initialized\n");
408 /* Set address of NAND IO lines */
409 this->IO_ADDR_W
= bcm_umi_io_base
+ REG_NAND_DATA8_OFFSET
;
410 this->IO_ADDR_R
= bcm_umi_io_base
+ REG_NAND_DATA8_OFFSET
;
412 /* Set command delay time, see datasheet for correct value */
413 this->chip_delay
= 0;
414 /* Assign the device ready function, if available */
415 this->dev_ready
= nand_dev_ready
;
418 this->write_buf
= bcm_umi_nand_write_buf
;
419 this->read_buf
= bcm_umi_nand_read_buf
;
420 this->verify_buf
= bcm_umi_nand_verify_buf
;
422 this->cmd_ctrl
= bcm_umi_nand_hwcontrol
;
423 this->ecc
.mode
= NAND_ECC_HW
;
424 this->ecc
.size
= 512;
425 this->ecc
.bytes
= NAND_ECC_NUM_BYTES
;
427 this->ecc
.read_page
= bcm_umi_bch_read_page_hwecc
;
428 this->ecc
.write_page
= bcm_umi_bch_write_page_hwecc
;
430 this->ecc
.correct
= nand_correct_data512
;
431 this->ecc
.calculate
= bcm_umi_hamming_get_hw_ecc
;
432 this->ecc
.hwctl
= bcm_umi_hamming_enable_hwecc
;
436 err
= nand_dma_init();
441 /* Figure out the size of the device that we have.
442 * We need to do this to figure out which ECC
443 * layout we'll be using.
446 err
= nand_scan_ident(board_mtd
, 1, NULL
);
448 printk(KERN_ERR
"nand_scan failed: %d\n", err
);
452 /* Now that we know the nand size, we can setup the ECC layout */
454 switch (board_mtd
->writesize
) { /* writesize is the pagesize */
456 this->ecc
.layout
= &nand_hw_eccoob_4096
;
459 this->ecc
.layout
= &nand_hw_eccoob_2048
;
462 this->ecc
.layout
= &nand_hw_eccoob_512
;
466 printk(KERN_ERR
"NAND - Unrecognized pagesize: %d\n",
467 board_mtd
->writesize
);
474 if (board_mtd
->writesize
> 512) {
475 if (this->bbt_options
& NAND_BBT_USE_FLASH
)
476 largepage_bbt
.options
= NAND_BBT_SCAN2NDPAGE
;
477 this->badblock_pattern
= &largepage_bbt
;
481 /* Now finish off the scan, now that ecc.layout has been initialized. */
483 err
= nand_scan_tail(board_mtd
);
485 printk(KERN_ERR
"nand_scan failed: %d\n", err
);
489 /* Register the partitions */
490 board_mtd
->name
= "bcm_umi-nand";
491 mtd_device_parse_register(board_mtd
, NULL
, 0, NULL
, 0);
496 iounmap(bcm_umi_io_base
);
502 static int bcm_umi_nand_remove(struct platform_device
*pdev
)
508 /* Release resources, unregister device */
509 nand_release(board_mtd
);
511 /* unmap physical address */
512 iounmap(bcm_umi_io_base
);
514 /* Free the MTD device structure */
521 static int bcm_umi_nand_suspend(struct platform_device
*pdev
,
524 printk(KERN_ERR
"MTD NAND suspend is being called\n");
528 static int bcm_umi_nand_resume(struct platform_device
*pdev
)
530 printk(KERN_ERR
"MTD NAND resume is being called\n");
534 #define bcm_umi_nand_suspend NULL
535 #define bcm_umi_nand_resume NULL
538 static struct platform_driver nand_driver
= {
541 .owner
= THIS_MODULE
,
543 .probe
= bcm_umi_nand_probe
,
544 .remove
= bcm_umi_nand_remove
,
545 .suspend
= bcm_umi_nand_suspend
,
546 .resume
= bcm_umi_nand_resume
,
549 module_platform_driver(nand_driver
);
551 MODULE_LICENSE("GPL");
552 MODULE_AUTHOR("Broadcom");
553 MODULE_DESCRIPTION("BCM UMI MTD NAND driver");