2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/wait.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/module.h>
32 MODULE_LICENSE("GPL");
34 /* We define a module parameter that allows the user to override
35 * the hardware and decide what timing mode should be used.
37 #define NAND_DEFAULT_TIMINGS -1
39 static int onfi_timing_mode
= NAND_DEFAULT_TIMINGS
;
40 module_param(onfi_timing_mode
, int, S_IRUGO
);
41 MODULE_PARM_DESC(onfi_timing_mode
, "Overrides default ONFI setting."
42 " -1 indicates use default timings");
44 #define DENALI_NAND_NAME "denali-nand"
46 /* We define a macro here that combines all interrupts this driver uses into
47 * a single constant value, for convenience. */
48 #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
49 INTR_STATUS__ECC_TRANSACTION_DONE | \
50 INTR_STATUS__ECC_ERR | \
51 INTR_STATUS__PROGRAM_FAIL | \
52 INTR_STATUS__LOAD_COMP | \
53 INTR_STATUS__PROGRAM_COMP | \
54 INTR_STATUS__TIME_OUT | \
55 INTR_STATUS__ERASE_FAIL | \
56 INTR_STATUS__RST_COMP | \
57 INTR_STATUS__ERASE_COMP)
59 /* indicates whether or not the internal value for the flash bank is
61 #define CHIP_SELECT_INVALID -1
63 #define SUPPORT_8BITECC 1
65 /* This macro divides two integers and rounds fractional values up
66 * to the nearest integer value. */
67 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
69 /* this macro allows us to convert from an MTD structure to our own
70 * device context (denali) structure.
72 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
74 /* These constants are defined by the driver to enable common driver
75 * configuration options. */
76 #define SPARE_ACCESS 0x41
77 #define MAIN_ACCESS 0x42
78 #define MAIN_SPARE_ACCESS 0x43
81 #define DENALI_WRITE 0x100
83 /* types of device accesses. We can issue commands and get status */
84 #define COMMAND_CYCLE 0
86 #define STATUS_CYCLE 2
88 /* this is a helper macro that allows us to
89 * format the bank into the proper bits for the controller */
90 #define BANK(x) ((x) << 24)
92 /* List of platforms this NAND controller has be integrated into */
93 static const struct pci_device_id denali_pci_ids
[] = {
94 { PCI_VDEVICE(INTEL
, 0x0701), INTEL_CE4100
},
95 { PCI_VDEVICE(INTEL
, 0x0809), INTEL_MRST
},
96 { /* end: all zeroes */ }
99 /* forward declarations */
100 static void clear_interrupts(struct denali_nand_info
*denali
);
101 static uint32_t wait_for_irq(struct denali_nand_info
*denali
,
103 static void denali_irq_enable(struct denali_nand_info
*denali
,
105 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
);
107 /* Certain operations for the denali NAND controller use
108 * an indexed mode to read/write data. The operation is
109 * performed by writing the address value of the command
110 * to the device memory followed by the data. This function
111 * abstracts this common operation.
113 static void index_addr(struct denali_nand_info
*denali
,
114 uint32_t address
, uint32_t data
)
116 iowrite32(address
, denali
->flash_mem
);
117 iowrite32(data
, denali
->flash_mem
+ 0x10);
120 /* Perform an indexed read of the device */
121 static void index_addr_read_data(struct denali_nand_info
*denali
,
122 uint32_t address
, uint32_t *pdata
)
124 iowrite32(address
, denali
->flash_mem
);
125 *pdata
= ioread32(denali
->flash_mem
+ 0x10);
128 /* We need to buffer some data for some of the NAND core routines.
129 * The operations manage buffering that data. */
130 static void reset_buf(struct denali_nand_info
*denali
)
132 denali
->buf
.head
= denali
->buf
.tail
= 0;
135 static void write_byte_to_buf(struct denali_nand_info
*denali
, uint8_t byte
)
137 BUG_ON(denali
->buf
.tail
>= sizeof(denali
->buf
.buf
));
138 denali
->buf
.buf
[denali
->buf
.tail
++] = byte
;
141 /* reads the status of the device */
142 static void read_status(struct denali_nand_info
*denali
)
146 /* initialize the data buffer to store status */
149 cmd
= ioread32(denali
->flash_reg
+ WRITE_PROTECT
);
151 write_byte_to_buf(denali
, NAND_STATUS_WP
);
153 write_byte_to_buf(denali
, 0);
156 /* resets a specific device connected to the core */
157 static void reset_bank(struct denali_nand_info
*denali
)
159 uint32_t irq_status
= 0;
160 uint32_t irq_mask
= INTR_STATUS__RST_COMP
|
161 INTR_STATUS__TIME_OUT
;
163 clear_interrupts(denali
);
165 iowrite32(1 << denali
->flash_bank
, denali
->flash_reg
+ DEVICE_RESET
);
167 irq_status
= wait_for_irq(denali
, irq_mask
);
169 if (irq_status
& INTR_STATUS__TIME_OUT
)
170 dev_err(denali
->dev
, "reset bank failed.\n");
173 /* Reset the flash controller */
174 static uint16_t denali_nand_reset(struct denali_nand_info
*denali
)
178 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
179 __FILE__
, __LINE__
, __func__
);
181 for (i
= 0 ; i
< denali
->max_banks
; i
++)
182 iowrite32(INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
,
183 denali
->flash_reg
+ INTR_STATUS(i
));
185 for (i
= 0 ; i
< denali
->max_banks
; i
++) {
186 iowrite32(1 << i
, denali
->flash_reg
+ DEVICE_RESET
);
187 while (!(ioread32(denali
->flash_reg
+
189 (INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
)))
191 if (ioread32(denali
->flash_reg
+ INTR_STATUS(i
)) &
192 INTR_STATUS__TIME_OUT
)
194 "NAND Reset operation timed out on bank %d\n", i
);
197 for (i
= 0; i
< denali
->max_banks
; i
++)
198 iowrite32(INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
,
199 denali
->flash_reg
+ INTR_STATUS(i
));
204 /* this routine calculates the ONFI timing values for a given mode and
205 * programs the clocking register accordingly. The mode is determined by
206 * the get_onfi_nand_para routine.
208 static void nand_onfi_timing_set(struct denali_nand_info
*denali
,
211 uint16_t Trea
[6] = {40, 30, 25, 20, 20, 16};
212 uint16_t Trp
[6] = {50, 25, 17, 15, 12, 10};
213 uint16_t Treh
[6] = {30, 15, 15, 10, 10, 7};
214 uint16_t Trc
[6] = {100, 50, 35, 30, 25, 20};
215 uint16_t Trhoh
[6] = {0, 15, 15, 15, 15, 15};
216 uint16_t Trloh
[6] = {0, 0, 0, 0, 5, 5};
217 uint16_t Tcea
[6] = {100, 45, 30, 25, 25, 25};
218 uint16_t Tadl
[6] = {200, 100, 100, 100, 70, 70};
219 uint16_t Trhw
[6] = {200, 100, 100, 100, 100, 100};
220 uint16_t Trhz
[6] = {200, 100, 100, 100, 100, 100};
221 uint16_t Twhr
[6] = {120, 80, 80, 60, 60, 60};
222 uint16_t Tcs
[6] = {70, 35, 25, 25, 20, 15};
224 uint16_t TclsRising
= 1;
225 uint16_t data_invalid_rhoh
, data_invalid_rloh
, data_invalid
;
226 uint16_t dv_window
= 0;
227 uint16_t en_lo
, en_hi
;
229 uint16_t addr_2_data
, re_2_we
, re_2_re
, we_2_re
, cs_cnt
;
231 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
232 __FILE__
, __LINE__
, __func__
);
234 en_lo
= CEIL_DIV(Trp
[mode
], CLK_X
);
235 en_hi
= CEIL_DIV(Treh
[mode
], CLK_X
);
237 if ((en_hi
* CLK_X
) < (Treh
[mode
] + 2))
241 if ((en_lo
+ en_hi
) * CLK_X
< Trc
[mode
])
242 en_lo
+= CEIL_DIV((Trc
[mode
] - (en_lo
+ en_hi
) * CLK_X
), CLK_X
);
244 if ((en_lo
+ en_hi
) < CLK_MULTI
)
245 en_lo
+= CLK_MULTI
- en_lo
- en_hi
;
247 while (dv_window
< 8) {
248 data_invalid_rhoh
= en_lo
* CLK_X
+ Trhoh
[mode
];
250 data_invalid_rloh
= (en_lo
+ en_hi
) * CLK_X
+ Trloh
[mode
];
254 data_invalid_rloh
? data_invalid_rhoh
: data_invalid_rloh
;
256 dv_window
= data_invalid
- Trea
[mode
];
262 acc_clks
= CEIL_DIV(Trea
[mode
], CLK_X
);
264 while (((acc_clks
* CLK_X
) - Trea
[mode
]) < 3)
267 if ((data_invalid
- acc_clks
* CLK_X
) < 2)
268 dev_warn(denali
->dev
, "%s, Line %d: Warning!\n",
271 addr_2_data
= CEIL_DIV(Tadl
[mode
], CLK_X
);
272 re_2_we
= CEIL_DIV(Trhw
[mode
], CLK_X
);
273 re_2_re
= CEIL_DIV(Trhz
[mode
], CLK_X
);
274 we_2_re
= CEIL_DIV(Twhr
[mode
], CLK_X
);
275 cs_cnt
= CEIL_DIV((Tcs
[mode
] - Trp
[mode
]), CLK_X
);
277 cs_cnt
= CEIL_DIV(Tcs
[mode
], CLK_X
);
282 while (((cs_cnt
* CLK_X
) + Trea
[mode
]) < Tcea
[mode
])
291 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
292 if ((ioread32(denali
->flash_reg
+ MANUFACTURER_ID
) == 0) &&
293 (ioread32(denali
->flash_reg
+ DEVICE_ID
) == 0x88))
296 iowrite32(acc_clks
, denali
->flash_reg
+ ACC_CLKS
);
297 iowrite32(re_2_we
, denali
->flash_reg
+ RE_2_WE
);
298 iowrite32(re_2_re
, denali
->flash_reg
+ RE_2_RE
);
299 iowrite32(we_2_re
, denali
->flash_reg
+ WE_2_RE
);
300 iowrite32(addr_2_data
, denali
->flash_reg
+ ADDR_2_DATA
);
301 iowrite32(en_lo
, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
302 iowrite32(en_hi
, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
303 iowrite32(cs_cnt
, denali
->flash_reg
+ CS_SETUP_CNT
);
306 /* queries the NAND device to see what ONFI modes it supports. */
307 static uint16_t get_onfi_nand_para(struct denali_nand_info
*denali
)
310 /* we needn't to do a reset here because driver has already
311 * reset all the banks before
313 if (!(ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
314 ONFI_TIMING_MODE__VALUE
))
317 for (i
= 5; i
> 0; i
--) {
318 if (ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
323 nand_onfi_timing_set(denali
, i
);
325 /* By now, all the ONFI devices we know support the page cache */
326 /* rw feature. So here we enable the pipeline_rw_ahead feature */
327 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
328 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
333 static void get_samsung_nand_para(struct denali_nand_info
*denali
,
336 if (device_id
== 0xd3) { /* Samsung K9WAG08U1A */
337 /* Set timing register values according to datasheet */
338 iowrite32(5, denali
->flash_reg
+ ACC_CLKS
);
339 iowrite32(20, denali
->flash_reg
+ RE_2_WE
);
340 iowrite32(12, denali
->flash_reg
+ WE_2_RE
);
341 iowrite32(14, denali
->flash_reg
+ ADDR_2_DATA
);
342 iowrite32(3, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
343 iowrite32(2, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
344 iowrite32(2, denali
->flash_reg
+ CS_SETUP_CNT
);
348 static void get_toshiba_nand_para(struct denali_nand_info
*denali
)
352 /* Workaround to fix a controller bug which reports a wrong */
353 /* spare area size for some kind of Toshiba NAND device */
354 if ((ioread32(denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
) == 4096) &&
355 (ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
) == 64)) {
356 iowrite32(216, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
357 tmp
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
) *
358 ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
360 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
362 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
363 #elif SUPPORT_8BITECC
364 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
369 static void get_hynix_nand_para(struct denali_nand_info
*denali
,
372 uint32_t main_size
, spare_size
;
375 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
376 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
377 iowrite32(128, denali
->flash_reg
+ PAGES_PER_BLOCK
);
378 iowrite32(4096, denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
);
379 iowrite32(224, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
381 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
383 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
385 denali
->flash_reg
+ LOGICAL_PAGE_DATA_SIZE
);
386 iowrite32(spare_size
,
387 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
388 iowrite32(0, denali
->flash_reg
+ DEVICE_WIDTH
);
390 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
391 #elif SUPPORT_8BITECC
392 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
396 dev_warn(denali
->dev
,
397 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
398 "Will use default parameter values instead.\n",
403 /* determines how many NAND chips are connected to the controller. Note for
404 * Intel CE4100 devices we don't support more than one device.
406 static void find_valid_banks(struct denali_nand_info
*denali
)
408 uint32_t id
[denali
->max_banks
];
411 denali
->total_used_banks
= 1;
412 for (i
= 0; i
< denali
->max_banks
; i
++) {
413 index_addr(denali
, (uint32_t)(MODE_11
| (i
<< 24) | 0), 0x90);
414 index_addr(denali
, (uint32_t)(MODE_11
| (i
<< 24) | 1), 0);
415 index_addr_read_data(denali
,
416 (uint32_t)(MODE_11
| (i
<< 24) | 2), &id
[i
]);
419 "Return 1st ID for bank[%d]: %x\n", i
, id
[i
]);
422 if (!(id
[i
] & 0x0ff))
425 if ((id
[i
] & 0x0ff) == (id
[0] & 0x0ff))
426 denali
->total_used_banks
++;
432 if (denali
->platform
== INTEL_CE4100
) {
433 /* Platform limitations of the CE4100 device limit
434 * users to a single chip solution for NAND.
435 * Multichip support is not enabled.
437 if (denali
->total_used_banks
!= 1) {
439 "Sorry, Intel CE4100 only supports "
440 "a single NAND device.\n");
445 "denali->total_used_banks: %d\n", denali
->total_used_banks
);
449 * Use the configuration feature register to determine the maximum number of
450 * banks that the hardware supports.
452 static void detect_max_banks(struct denali_nand_info
*denali
)
454 uint32_t features
= ioread32(denali
->flash_reg
+ FEATURES
);
456 denali
->max_banks
= 2 << (features
& FEATURES__N_BANKS
);
459 static void detect_partition_feature(struct denali_nand_info
*denali
)
461 /* For MRST platform, denali->fwblks represent the
462 * number of blocks firmware is taken,
463 * FW is in protect partition and MTD driver has no
464 * permission to access it. So let driver know how many
465 * blocks it can't touch.
467 if (ioread32(denali
->flash_reg
+ FEATURES
) & FEATURES__PARTITION
) {
468 if ((ioread32(denali
->flash_reg
+ PERM_SRC_ID(1)) &
469 PERM_SRC_ID__SRCID
) == SPECTRA_PARTITION_ID
) {
471 ((ioread32(denali
->flash_reg
+ MIN_MAX_BANK(1)) &
472 MIN_MAX_BANK__MIN_VALUE
) *
475 (ioread32(denali
->flash_reg
+ MIN_BLK_ADDR(1)) &
476 MIN_BLK_ADDR__VALUE
);
478 denali
->fwblks
= SPECTRA_START_BLOCK
;
480 denali
->fwblks
= SPECTRA_START_BLOCK
;
483 static uint16_t denali_nand_timing_set(struct denali_nand_info
*denali
)
485 uint16_t status
= PASS
;
486 uint32_t id_bytes
[5], addr
;
487 uint8_t i
, maf_id
, device_id
;
490 "%s, Line %d, Function: %s\n",
491 __FILE__
, __LINE__
, __func__
);
493 /* Use read id method to get device ID and other
494 * params. For some NAND chips, controller can't
495 * report the correct device ID by reading from
498 addr
= (uint32_t)MODE_11
| BANK(denali
->flash_bank
);
499 index_addr(denali
, (uint32_t)addr
| 0, 0x90);
500 index_addr(denali
, (uint32_t)addr
| 1, 0);
501 for (i
= 0; i
< 5; i
++)
502 index_addr_read_data(denali
, addr
| 2, &id_bytes
[i
]);
503 maf_id
= id_bytes
[0];
504 device_id
= id_bytes
[1];
506 if (ioread32(denali
->flash_reg
+ ONFI_DEVICE_NO_OF_LUNS
) &
507 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE
) { /* ONFI 1.0 NAND */
508 if (FAIL
== get_onfi_nand_para(denali
))
510 } else if (maf_id
== 0xEC) { /* Samsung NAND */
511 get_samsung_nand_para(denali
, device_id
);
512 } else if (maf_id
== 0x98) { /* Toshiba NAND */
513 get_toshiba_nand_para(denali
);
514 } else if (maf_id
== 0xAD) { /* Hynix NAND */
515 get_hynix_nand_para(denali
, device_id
);
518 dev_info(denali
->dev
,
519 "Dump timing register values:"
520 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
521 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
522 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
523 ioread32(denali
->flash_reg
+ ACC_CLKS
),
524 ioread32(denali
->flash_reg
+ RE_2_WE
),
525 ioread32(denali
->flash_reg
+ RE_2_RE
),
526 ioread32(denali
->flash_reg
+ WE_2_RE
),
527 ioread32(denali
->flash_reg
+ ADDR_2_DATA
),
528 ioread32(denali
->flash_reg
+ RDWR_EN_LO_CNT
),
529 ioread32(denali
->flash_reg
+ RDWR_EN_HI_CNT
),
530 ioread32(denali
->flash_reg
+ CS_SETUP_CNT
));
532 find_valid_banks(denali
);
534 detect_partition_feature(denali
);
536 /* If the user specified to override the default timings
537 * with a specific ONFI mode, we apply those changes here.
539 if (onfi_timing_mode
!= NAND_DEFAULT_TIMINGS
)
540 nand_onfi_timing_set(denali
, onfi_timing_mode
);
545 static void denali_set_intr_modes(struct denali_nand_info
*denali
,
548 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
549 __FILE__
, __LINE__
, __func__
);
552 iowrite32(1, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
554 iowrite32(0, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
557 /* validation function to verify that the controlling software is making
560 static inline bool is_flash_bank_valid(int flash_bank
)
562 return (flash_bank
>= 0 && flash_bank
< 4);
565 static void denali_irq_init(struct denali_nand_info
*denali
)
567 uint32_t int_mask
= 0;
570 /* Disable global interrupts */
571 denali_set_intr_modes(denali
, false);
573 int_mask
= DENALI_IRQ_ALL
;
575 /* Clear all status bits */
576 for (i
= 0; i
< denali
->max_banks
; ++i
)
577 iowrite32(0xFFFF, denali
->flash_reg
+ INTR_STATUS(i
));
579 denali_irq_enable(denali
, int_mask
);
582 static void denali_irq_cleanup(int irqnum
, struct denali_nand_info
*denali
)
584 denali_set_intr_modes(denali
, false);
585 free_irq(irqnum
, denali
);
588 static void denali_irq_enable(struct denali_nand_info
*denali
,
593 for (i
= 0; i
< denali
->max_banks
; ++i
)
594 iowrite32(int_mask
, denali
->flash_reg
+ INTR_EN(i
));
597 /* This function only returns when an interrupt that this driver cares about
598 * occurs. This is to reduce the overhead of servicing interrupts
600 static inline uint32_t denali_irq_detected(struct denali_nand_info
*denali
)
602 return read_interrupt_status(denali
) & DENALI_IRQ_ALL
;
605 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
606 static inline void clear_interrupt(struct denali_nand_info
*denali
,
609 uint32_t intr_status_reg
= 0;
611 intr_status_reg
= INTR_STATUS(denali
->flash_bank
);
613 iowrite32(irq_mask
, denali
->flash_reg
+ intr_status_reg
);
616 static void clear_interrupts(struct denali_nand_info
*denali
)
618 uint32_t status
= 0x0;
619 spin_lock_irq(&denali
->irq_lock
);
621 status
= read_interrupt_status(denali
);
622 clear_interrupt(denali
, status
);
624 denali
->irq_status
= 0x0;
625 spin_unlock_irq(&denali
->irq_lock
);
628 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
)
630 uint32_t intr_status_reg
= 0;
632 intr_status_reg
= INTR_STATUS(denali
->flash_bank
);
634 return ioread32(denali
->flash_reg
+ intr_status_reg
);
637 /* This is the interrupt service routine. It handles all interrupts
638 * sent to this device. Note that on CE4100, this is a shared
641 static irqreturn_t
denali_isr(int irq
, void *dev_id
)
643 struct denali_nand_info
*denali
= dev_id
;
644 uint32_t irq_status
= 0x0;
645 irqreturn_t result
= IRQ_NONE
;
647 spin_lock(&denali
->irq_lock
);
649 /* check to see if a valid NAND chip has
652 if (is_flash_bank_valid(denali
->flash_bank
)) {
653 /* check to see if controller generated
654 * the interrupt, since this is a shared interrupt */
655 irq_status
= denali_irq_detected(denali
);
656 if (irq_status
!= 0) {
657 /* handle interrupt */
658 /* first acknowledge it */
659 clear_interrupt(denali
, irq_status
);
660 /* store the status in the device context for someone
662 denali
->irq_status
|= irq_status
;
663 /* notify anyone who cares that it happened */
664 complete(&denali
->complete
);
665 /* tell the OS that we've handled this */
666 result
= IRQ_HANDLED
;
669 spin_unlock(&denali
->irq_lock
);
672 #define BANK(x) ((x) << 24)
674 static uint32_t wait_for_irq(struct denali_nand_info
*denali
, uint32_t irq_mask
)
676 unsigned long comp_res
= 0;
677 uint32_t intr_status
= 0;
679 unsigned long timeout
= msecs_to_jiffies(1000);
683 wait_for_completion_timeout(&denali
->complete
, timeout
);
684 spin_lock_irq(&denali
->irq_lock
);
685 intr_status
= denali
->irq_status
;
687 if (intr_status
& irq_mask
) {
688 denali
->irq_status
&= ~irq_mask
;
689 spin_unlock_irq(&denali
->irq_lock
);
690 /* our interrupt was detected */
693 /* these are not the interrupts you are looking for -
694 * need to wait again */
695 spin_unlock_irq(&denali
->irq_lock
);
698 } while (comp_res
!= 0);
702 printk(KERN_ERR
"timeout occurred, status = 0x%x, mask = 0x%x\n",
703 intr_status
, irq_mask
);
710 /* This helper function setups the registers for ECC and whether or not
711 * the spare area will be transferred. */
712 static void setup_ecc_for_xfer(struct denali_nand_info
*denali
, bool ecc_en
,
715 int ecc_en_flag
= 0, transfer_spare_flag
= 0;
717 /* set ECC, transfer spare bits if needed */
718 ecc_en_flag
= ecc_en
? ECC_ENABLE__FLAG
: 0;
719 transfer_spare_flag
= transfer_spare
? TRANSFER_SPARE_REG__FLAG
: 0;
721 /* Enable spare area/ECC per user's request. */
722 iowrite32(ecc_en_flag
, denali
->flash_reg
+ ECC_ENABLE
);
723 iowrite32(transfer_spare_flag
,
724 denali
->flash_reg
+ TRANSFER_SPARE_REG
);
727 /* sends a pipeline command operation to the controller. See the Denali NAND
728 * controller's user guide for more information (section 4.2.3.6).
730 static int denali_send_pipeline_cmd(struct denali_nand_info
*denali
,
737 uint32_t addr
= 0x0, cmd
= 0x0, page_count
= 1, irq_status
= 0,
740 if (op
== DENALI_READ
)
741 irq_mask
= INTR_STATUS__LOAD_COMP
;
742 else if (op
== DENALI_WRITE
)
747 setup_ecc_for_xfer(denali
, ecc_en
, transfer_spare
);
749 /* clear interrupts */
750 clear_interrupts(denali
);
752 addr
= BANK(denali
->flash_bank
) | denali
->page
;
754 if (op
== DENALI_WRITE
&& access_type
!= SPARE_ACCESS
) {
755 cmd
= MODE_01
| addr
;
756 iowrite32(cmd
, denali
->flash_mem
);
757 } else if (op
== DENALI_WRITE
&& access_type
== SPARE_ACCESS
) {
758 /* read spare area */
759 cmd
= MODE_10
| addr
;
760 index_addr(denali
, (uint32_t)cmd
, access_type
);
762 cmd
= MODE_01
| addr
;
763 iowrite32(cmd
, denali
->flash_mem
);
764 } else if (op
== DENALI_READ
) {
765 /* setup page read request for access type */
766 cmd
= MODE_10
| addr
;
767 index_addr(denali
, (uint32_t)cmd
, access_type
);
769 /* page 33 of the NAND controller spec indicates we should not
770 use the pipeline commands in Spare area only mode. So we
773 if (access_type
== SPARE_ACCESS
) {
774 cmd
= MODE_01
| addr
;
775 iowrite32(cmd
, denali
->flash_mem
);
777 index_addr(denali
, (uint32_t)cmd
,
778 0x2000 | op
| page_count
);
780 /* wait for command to be accepted
781 * can always use status0 bit as the
782 * mask is identical for each
784 irq_status
= wait_for_irq(denali
, irq_mask
);
786 if (irq_status
== 0) {
788 "cmd, page, addr on timeout "
789 "(0x%x, 0x%x, 0x%x)\n",
790 cmd
, denali
->page
, addr
);
793 cmd
= MODE_01
| addr
;
794 iowrite32(cmd
, denali
->flash_mem
);
801 /* helper function that simply writes a buffer to the flash */
802 static int write_data_to_flash_mem(struct denali_nand_info
*denali
,
806 uint32_t i
= 0, *buf32
;
808 /* verify that the len is a multiple of 4. see comment in
809 * read_data_from_flash_mem() */
810 BUG_ON((len
% 4) != 0);
812 /* write the data to the flash memory */
813 buf32
= (uint32_t *)buf
;
814 for (i
= 0; i
< len
/ 4; i
++)
815 iowrite32(*buf32
++, denali
->flash_mem
+ 0x10);
816 return i
*4; /* intent is to return the number of bytes read */
819 /* helper function that simply reads a buffer from the flash */
820 static int read_data_from_flash_mem(struct denali_nand_info
*denali
,
824 uint32_t i
= 0, *buf32
;
826 /* we assume that len will be a multiple of 4, if not
827 * it would be nice to know about it ASAP rather than
828 * have random failures...
829 * This assumption is based on the fact that this
830 * function is designed to be used to read flash pages,
831 * which are typically multiples of 4...
834 BUG_ON((len
% 4) != 0);
836 /* transfer the data from the flash */
837 buf32
= (uint32_t *)buf
;
838 for (i
= 0; i
< len
/ 4; i
++)
839 *buf32
++ = ioread32(denali
->flash_mem
+ 0x10);
840 return i
*4; /* intent is to return the number of bytes read */
843 /* writes OOB data to the device */
844 static int write_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
846 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
847 uint32_t irq_status
= 0;
848 uint32_t irq_mask
= INTR_STATUS__PROGRAM_COMP
|
849 INTR_STATUS__PROGRAM_FAIL
;
854 if (denali_send_pipeline_cmd(denali
, false, false, SPARE_ACCESS
,
855 DENALI_WRITE
) == PASS
) {
856 write_data_to_flash_mem(denali
, buf
, mtd
->oobsize
);
858 /* wait for operation to complete */
859 irq_status
= wait_for_irq(denali
, irq_mask
);
861 if (irq_status
== 0) {
862 dev_err(denali
->dev
, "OOB write failed\n");
866 dev_err(denali
->dev
, "unable to send pipeline command\n");
872 /* reads OOB data from the device */
873 static void read_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
875 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
876 uint32_t irq_mask
= INTR_STATUS__LOAD_COMP
,
877 irq_status
= 0, addr
= 0x0, cmd
= 0x0;
881 if (denali_send_pipeline_cmd(denali
, false, true, SPARE_ACCESS
,
882 DENALI_READ
) == PASS
) {
883 read_data_from_flash_mem(denali
, buf
, mtd
->oobsize
);
885 /* wait for command to be accepted
886 * can always use status0 bit as the mask is identical for each
888 irq_status
= wait_for_irq(denali
, irq_mask
);
891 dev_err(denali
->dev
, "page on OOB timeout %d\n",
894 /* We set the device back to MAIN_ACCESS here as I observed
895 * instability with the controller if you do a block erase
896 * and the last transaction was a SPARE_ACCESS. Block erase
897 * is reliable (according to the MTD test infrastructure)
898 * if you are in MAIN_ACCESS.
900 addr
= BANK(denali
->flash_bank
) | denali
->page
;
901 cmd
= MODE_10
| addr
;
902 index_addr(denali
, (uint32_t)cmd
, MAIN_ACCESS
);
906 /* this function examines buffers to see if they contain data that
907 * indicate that the buffer is part of an erased region of flash.
909 bool is_erased(uint8_t *buf
, int len
)
912 for (i
= 0; i
< len
; i
++)
917 #define ECC_SECTOR_SIZE 512
919 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
920 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
921 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
922 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
923 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
924 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
926 static bool handle_ecc(struct denali_nand_info
*denali
, uint8_t *buf
,
929 bool check_erased_page
= false;
931 if (irq_status
& INTR_STATUS__ECC_ERR
) {
932 /* read the ECC errors. we'll ignore them for now */
933 uint32_t err_address
= 0, err_correction_info
= 0;
934 uint32_t err_byte
= 0, err_sector
= 0, err_device
= 0;
935 uint32_t err_correction_value
= 0;
936 denali_set_intr_modes(denali
, false);
939 err_address
= ioread32(denali
->flash_reg
+
941 err_sector
= ECC_SECTOR(err_address
);
942 err_byte
= ECC_BYTE(err_address
);
944 err_correction_info
= ioread32(denali
->flash_reg
+
945 ERR_CORRECTION_INFO
);
946 err_correction_value
=
947 ECC_CORRECTION_VALUE(err_correction_info
);
948 err_device
= ECC_ERR_DEVICE(err_correction_info
);
950 if (ECC_ERROR_CORRECTABLE(err_correction_info
)) {
951 /* If err_byte is larger than ECC_SECTOR_SIZE,
952 * means error happened in OOB, so we ignore
953 * it. It's no need for us to correct it
954 * err_device is represented the NAND error
955 * bits are happened in if there are more
956 * than one NAND connected.
958 if (err_byte
< ECC_SECTOR_SIZE
) {
960 offset
= (err_sector
*
965 /* correct the ECC error */
966 buf
[offset
] ^= err_correction_value
;
967 denali
->mtd
.ecc_stats
.corrected
++;
970 /* if the error is not correctable, need to
971 * look at the page to see if it is an erased
972 * page. if so, then it's not a real ECC error
974 check_erased_page
= true;
976 } while (!ECC_LAST_ERR(err_correction_info
));
977 /* Once handle all ecc errors, controller will triger
978 * a ECC_TRANSACTION_DONE interrupt, so here just wait
979 * for a while for this interrupt
981 while (!(read_interrupt_status(denali
) &
982 INTR_STATUS__ECC_TRANSACTION_DONE
))
984 clear_interrupts(denali
);
985 denali_set_intr_modes(denali
, true);
987 return check_erased_page
;
990 /* programs the controller to either enable/disable DMA transfers */
991 static void denali_enable_dma(struct denali_nand_info
*denali
, bool en
)
993 uint32_t reg_val
= 0x0;
996 reg_val
= DMA_ENABLE__FLAG
;
998 iowrite32(reg_val
, denali
->flash_reg
+ DMA_ENABLE
);
999 ioread32(denali
->flash_reg
+ DMA_ENABLE
);
1002 /* setups the HW to perform the data DMA */
1003 static void denali_setup_dma(struct denali_nand_info
*denali
, int op
)
1005 uint32_t mode
= 0x0;
1006 const int page_count
= 1;
1007 dma_addr_t addr
= denali
->buf
.dma_buf
;
1009 mode
= MODE_10
| BANK(denali
->flash_bank
);
1011 /* DMA is a four step process */
1013 /* 1. setup transfer type and # of pages */
1014 index_addr(denali
, mode
| denali
->page
, 0x2000 | op
| page_count
);
1016 /* 2. set memory high address bits 23:8 */
1017 index_addr(denali
, mode
| ((uint16_t)(addr
>> 16) << 8), 0x2200);
1019 /* 3. set memory low address bits 23:8 */
1020 index_addr(denali
, mode
| ((uint16_t)addr
<< 8), 0x2300);
1022 /* 4. interrupt when complete, burst len = 64 bytes*/
1023 index_addr(denali
, mode
| 0x14000, 0x2400);
1026 /* writes a page. user specifies type, and this function handles the
1027 * configuration details. */
1028 static void write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1029 const uint8_t *buf
, bool raw_xfer
)
1031 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1033 dma_addr_t addr
= denali
->buf
.dma_buf
;
1034 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1036 uint32_t irq_status
= 0;
1037 uint32_t irq_mask
= INTR_STATUS__DMA_CMD_COMP
|
1038 INTR_STATUS__PROGRAM_FAIL
;
1040 /* if it is a raw xfer, we want to disable ecc, and send
1042 * !raw_xfer - enable ecc
1043 * raw_xfer - transfer spare
1045 setup_ecc_for_xfer(denali
, !raw_xfer
, raw_xfer
);
1047 /* copy buffer into DMA buffer */
1048 memcpy(denali
->buf
.buf
, buf
, mtd
->writesize
);
1051 /* transfer the data to the spare area */
1052 memcpy(denali
->buf
.buf
+ mtd
->writesize
,
1057 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_TO_DEVICE
);
1059 clear_interrupts(denali
);
1060 denali_enable_dma(denali
, true);
1062 denali_setup_dma(denali
, DENALI_WRITE
);
1064 /* wait for operation to complete */
1065 irq_status
= wait_for_irq(denali
, irq_mask
);
1067 if (irq_status
== 0) {
1068 dev_err(denali
->dev
,
1069 "timeout on write_page (type = %d)\n",
1072 (irq_status
& INTR_STATUS__PROGRAM_FAIL
) ?
1073 NAND_STATUS_FAIL
: PASS
;
1076 denali_enable_dma(denali
, false);
1077 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_TO_DEVICE
);
1080 /* NAND core entry points */
1082 /* this is the callback that the NAND core calls to write a page. Since
1083 * writing a page with ECC or without is similar, all the work is done
1084 * by write_page above.
1086 static void denali_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1089 /* for regular page writes, we let HW handle all the ECC
1090 * data written to the device. */
1091 write_page(mtd
, chip
, buf
, false);
1094 /* This is the callback that the NAND core calls to write a page without ECC.
1095 * raw access is similar to ECC page writes, so all the work is done in the
1096 * write_page() function above.
1098 static void denali_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1101 /* for raw page writes, we want to disable ECC and simply write
1102 whatever data is in the buffer. */
1103 write_page(mtd
, chip
, buf
, true);
1106 static int denali_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1109 return write_oob_data(mtd
, chip
->oob_poi
, page
);
1112 static int denali_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1113 int page
, int sndcmd
)
1115 read_oob_data(mtd
, chip
->oob_poi
, page
);
1117 return 0; /* notify NAND core to send command to
1121 static int denali_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1122 uint8_t *buf
, int page
)
1124 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1126 dma_addr_t addr
= denali
->buf
.dma_buf
;
1127 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1129 uint32_t irq_status
= 0;
1130 uint32_t irq_mask
= INTR_STATUS__ECC_TRANSACTION_DONE
|
1131 INTR_STATUS__ECC_ERR
;
1132 bool check_erased_page
= false;
1134 if (page
!= denali
->page
) {
1135 dev_err(denali
->dev
, "IN %s: page %d is not"
1136 " equal to denali->page %d, investigate!!",
1137 __func__
, page
, denali
->page
);
1141 setup_ecc_for_xfer(denali
, true, false);
1143 denali_enable_dma(denali
, true);
1144 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1146 clear_interrupts(denali
);
1147 denali_setup_dma(denali
, DENALI_READ
);
1149 /* wait for operation to complete */
1150 irq_status
= wait_for_irq(denali
, irq_mask
);
1152 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1154 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1156 check_erased_page
= handle_ecc(denali
, buf
, irq_status
);
1157 denali_enable_dma(denali
, false);
1159 if (check_erased_page
) {
1160 read_oob_data(&denali
->mtd
, chip
->oob_poi
, denali
->page
);
1162 /* check ECC failures that may have occurred on erased pages */
1163 if (check_erased_page
) {
1164 if (!is_erased(buf
, denali
->mtd
.writesize
))
1165 denali
->mtd
.ecc_stats
.failed
++;
1166 if (!is_erased(buf
, denali
->mtd
.oobsize
))
1167 denali
->mtd
.ecc_stats
.failed
++;
1173 static int denali_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1174 uint8_t *buf
, int page
)
1176 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1178 dma_addr_t addr
= denali
->buf
.dma_buf
;
1179 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1181 uint32_t irq_status
= 0;
1182 uint32_t irq_mask
= INTR_STATUS__DMA_CMD_COMP
;
1184 if (page
!= denali
->page
) {
1185 dev_err(denali
->dev
, "IN %s: page %d is not"
1186 " equal to denali->page %d, investigate!!",
1187 __func__
, page
, denali
->page
);
1191 setup_ecc_for_xfer(denali
, false, true);
1192 denali_enable_dma(denali
, true);
1194 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1196 clear_interrupts(denali
);
1197 denali_setup_dma(denali
, DENALI_READ
);
1199 /* wait for operation to complete */
1200 irq_status
= wait_for_irq(denali
, irq_mask
);
1202 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1204 denali_enable_dma(denali
, false);
1206 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1207 memcpy(chip
->oob_poi
, denali
->buf
.buf
+ mtd
->writesize
, mtd
->oobsize
);
1212 static uint8_t denali_read_byte(struct mtd_info
*mtd
)
1214 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1215 uint8_t result
= 0xff;
1217 if (denali
->buf
.head
< denali
->buf
.tail
)
1218 result
= denali
->buf
.buf
[denali
->buf
.head
++];
1223 static void denali_select_chip(struct mtd_info
*mtd
, int chip
)
1225 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1227 spin_lock_irq(&denali
->irq_lock
);
1228 denali
->flash_bank
= chip
;
1229 spin_unlock_irq(&denali
->irq_lock
);
1232 static int denali_waitfunc(struct mtd_info
*mtd
, struct nand_chip
*chip
)
1234 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1235 int status
= denali
->status
;
1241 static void denali_erase(struct mtd_info
*mtd
, int page
)
1243 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1245 uint32_t cmd
= 0x0, irq_status
= 0;
1247 /* clear interrupts */
1248 clear_interrupts(denali
);
1250 /* setup page read request for access type */
1251 cmd
= MODE_10
| BANK(denali
->flash_bank
) | page
;
1252 index_addr(denali
, (uint32_t)cmd
, 0x1);
1254 /* wait for erase to complete or failure to occur */
1255 irq_status
= wait_for_irq(denali
, INTR_STATUS__ERASE_COMP
|
1256 INTR_STATUS__ERASE_FAIL
);
1258 denali
->status
= (irq_status
& INTR_STATUS__ERASE_FAIL
) ?
1259 NAND_STATUS_FAIL
: PASS
;
1262 static void denali_cmdfunc(struct mtd_info
*mtd
, unsigned int cmd
, int col
,
1265 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1270 case NAND_CMD_PAGEPROG
:
1272 case NAND_CMD_STATUS
:
1273 read_status(denali
);
1275 case NAND_CMD_READID
:
1276 case NAND_CMD_PARAM
:
1278 /*sometimes ManufactureId read from register is not right
1279 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1280 * So here we send READID cmd to NAND insteand
1282 addr
= (uint32_t)MODE_11
| BANK(denali
->flash_bank
);
1283 index_addr(denali
, (uint32_t)addr
| 0, 0x90);
1284 index_addr(denali
, (uint32_t)addr
| 1, 0);
1285 for (i
= 0; i
< 5; i
++) {
1286 index_addr_read_data(denali
,
1289 write_byte_to_buf(denali
, id
);
1292 case NAND_CMD_READ0
:
1293 case NAND_CMD_SEQIN
:
1294 denali
->page
= page
;
1296 case NAND_CMD_RESET
:
1299 case NAND_CMD_READOOB
:
1300 /* TODO: Read OOB data */
1303 printk(KERN_ERR
": unsupported command"
1304 " received 0x%x\n", cmd
);
1309 /* stubs for ECC functions not used by the NAND core */
1310 static int denali_ecc_calculate(struct mtd_info
*mtd
, const uint8_t *data
,
1313 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1314 dev_err(denali
->dev
,
1315 "denali_ecc_calculate called unexpectedly\n");
1320 static int denali_ecc_correct(struct mtd_info
*mtd
, uint8_t *data
,
1321 uint8_t *read_ecc
, uint8_t *calc_ecc
)
1323 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1324 dev_err(denali
->dev
,
1325 "denali_ecc_correct called unexpectedly\n");
1330 static void denali_ecc_hwctl(struct mtd_info
*mtd
, int mode
)
1332 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1333 dev_err(denali
->dev
,
1334 "denali_ecc_hwctl called unexpectedly\n");
1337 /* end NAND core entry points */
1339 /* Initialization code to bring the device up to a known good state */
1340 static void denali_hw_init(struct denali_nand_info
*denali
)
1342 /* tell driver how many bit controller will skip before
1343 * writing ECC code in OOB, this register may be already
1344 * set by firmware. So we read this value out.
1345 * if this value is 0, just let it be.
1347 denali
->bbtskipbytes
= ioread32(denali
->flash_reg
+
1348 SPARE_AREA_SKIP_BYTES
);
1349 detect_max_banks(denali
);
1350 denali_nand_reset(denali
);
1351 iowrite32(0x0F, denali
->flash_reg
+ RB_PIN_ENABLED
);
1352 iowrite32(CHIP_EN_DONT_CARE__FLAG
,
1353 denali
->flash_reg
+ CHIP_ENABLE_DONT_CARE
);
1355 iowrite32(0xffff, denali
->flash_reg
+ SPARE_AREA_MARKER
);
1357 /* Should set value for these registers when init */
1358 iowrite32(0, denali
->flash_reg
+ TWO_ROW_ADDR_CYCLES
);
1359 iowrite32(1, denali
->flash_reg
+ ECC_ENABLE
);
1360 denali_nand_timing_set(denali
);
1361 denali_irq_init(denali
);
1364 /* Althogh controller spec said SLC ECC is forceb to be 4bit,
1365 * but denali controller in MRST only support 15bit and 8bit ECC
1368 #define ECC_8BITS 14
1369 static struct nand_ecclayout nand_8bit_oob
= {
1373 #define ECC_15BITS 26
1374 static struct nand_ecclayout nand_15bit_oob
= {
1378 static uint8_t bbt_pattern
[] = {'B', 'b', 't', '0' };
1379 static uint8_t mirror_pattern
[] = {'1', 't', 'b', 'B' };
1381 static struct nand_bbt_descr bbt_main_descr
= {
1382 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1383 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1388 .pattern
= bbt_pattern
,
1391 static struct nand_bbt_descr bbt_mirror_descr
= {
1392 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1393 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1398 .pattern
= mirror_pattern
,
1401 /* initialize driver data structures */
1402 void denali_drv_init(struct denali_nand_info
*denali
)
1406 /* setup interrupt handler */
1407 /* the completion object will be used to notify
1408 * the callee that the interrupt is done */
1409 init_completion(&denali
->complete
);
1411 /* the spinlock will be used to synchronize the ISR
1412 * with any element that might be access shared
1413 * data (interrupt status) */
1414 spin_lock_init(&denali
->irq_lock
);
1416 /* indicate that MTD has not selected a valid bank yet */
1417 denali
->flash_bank
= CHIP_SELECT_INVALID
;
1419 /* initialize our irq_status variable to indicate no interrupts */
1420 denali
->irq_status
= 0;
1423 /* driver entry point */
1424 static int denali_pci_probe(struct pci_dev
*dev
, const struct pci_device_id
*id
)
1427 resource_size_t csr_base
, mem_base
;
1428 unsigned long csr_len
, mem_len
;
1429 struct denali_nand_info
*denali
;
1431 denali
= kzalloc(sizeof(*denali
), GFP_KERNEL
);
1435 ret
= pci_enable_device(dev
);
1437 printk(KERN_ERR
"Spectra: pci_enable_device failed.\n");
1438 goto failed_alloc_memery
;
1441 if (id
->driver_data
== INTEL_CE4100
) {
1442 /* Due to a silicon limitation, we can only support
1443 * ONFI timing mode 1 and below.
1445 if (onfi_timing_mode
< -1 || onfi_timing_mode
> 1) {
1446 printk(KERN_ERR
"Intel CE4100 only supports"
1447 " ONFI timing mode 1 or below\n");
1449 goto failed_enable_dev
;
1451 denali
->platform
= INTEL_CE4100
;
1452 mem_base
= pci_resource_start(dev
, 0);
1453 mem_len
= pci_resource_len(dev
, 1);
1454 csr_base
= pci_resource_start(dev
, 1);
1455 csr_len
= pci_resource_len(dev
, 1);
1457 denali
->platform
= INTEL_MRST
;
1458 csr_base
= pci_resource_start(dev
, 0);
1459 csr_len
= pci_resource_len(dev
, 0);
1460 mem_base
= pci_resource_start(dev
, 1);
1461 mem_len
= pci_resource_len(dev
, 1);
1463 mem_base
= csr_base
+ csr_len
;
1468 /* Is 32-bit DMA supported? */
1469 ret
= dma_set_mask(&dev
->dev
, DMA_BIT_MASK(32));
1471 printk(KERN_ERR
"Spectra: no usable DMA configuration\n");
1472 goto failed_enable_dev
;
1474 denali
->buf
.dma_buf
= dma_map_single(&dev
->dev
, denali
->buf
.buf
,
1478 if (dma_mapping_error(&dev
->dev
, denali
->buf
.dma_buf
)) {
1479 dev_err(&dev
->dev
, "Spectra: failed to map DMA buffer\n");
1480 goto failed_enable_dev
;
1483 pci_set_master(dev
);
1484 denali
->dev
= &dev
->dev
;
1485 denali
->mtd
.dev
.parent
= &dev
->dev
;
1487 ret
= pci_request_regions(dev
, DENALI_NAND_NAME
);
1489 printk(KERN_ERR
"Spectra: Unable to request memory regions\n");
1490 goto failed_dma_map
;
1493 denali
->flash_reg
= ioremap_nocache(csr_base
, csr_len
);
1494 if (!denali
->flash_reg
) {
1495 printk(KERN_ERR
"Spectra: Unable to remap memory region\n");
1497 goto failed_req_regions
;
1500 denali
->flash_mem
= ioremap_nocache(mem_base
, mem_len
);
1501 if (!denali
->flash_mem
) {
1502 printk(KERN_ERR
"Spectra: ioremap_nocache failed!");
1504 goto failed_remap_reg
;
1507 denali_hw_init(denali
);
1508 denali_drv_init(denali
);
1510 /* denali_isr register is done after all the hardware
1511 * initilization is finished*/
1512 if (request_irq(dev
->irq
, denali_isr
, IRQF_SHARED
,
1513 DENALI_NAND_NAME
, denali
)) {
1514 printk(KERN_ERR
"Spectra: Unable to allocate IRQ\n");
1516 goto failed_remap_mem
;
1519 /* now that our ISR is registered, we can enable interrupts */
1520 denali_set_intr_modes(denali
, true);
1522 pci_set_drvdata(dev
, denali
);
1524 denali
->mtd
.name
= "denali-nand";
1525 denali
->mtd
.owner
= THIS_MODULE
;
1526 denali
->mtd
.priv
= &denali
->nand
;
1528 /* register the driver with the NAND core subsystem */
1529 denali
->nand
.select_chip
= denali_select_chip
;
1530 denali
->nand
.cmdfunc
= denali_cmdfunc
;
1531 denali
->nand
.read_byte
= denali_read_byte
;
1532 denali
->nand
.waitfunc
= denali_waitfunc
;
1534 /* scan for NAND devices attached to the controller
1535 * this is the first stage in a two step process to register
1536 * with the nand subsystem */
1537 if (nand_scan_ident(&denali
->mtd
, denali
->max_banks
, NULL
)) {
1539 goto failed_req_irq
;
1542 /* MTD supported page sizes vary by kernel. We validate our
1543 * kernel supports the device here.
1545 if (denali
->mtd
.writesize
> NAND_MAX_PAGESIZE
+ NAND_MAX_OOBSIZE
) {
1547 printk(KERN_ERR
"Spectra: device size not supported by this "
1549 goto failed_req_irq
;
1552 /* support for multi nand
1553 * MTD known nothing about multi nand,
1554 * so we should tell it the real pagesize
1555 * and anything necessery
1557 denali
->devnum
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
1558 denali
->nand
.chipsize
<<= (denali
->devnum
- 1);
1559 denali
->nand
.page_shift
+= (denali
->devnum
- 1);
1560 denali
->nand
.pagemask
= (denali
->nand
.chipsize
>>
1561 denali
->nand
.page_shift
) - 1;
1562 denali
->nand
.bbt_erase_shift
+= (denali
->devnum
- 1);
1563 denali
->nand
.phys_erase_shift
= denali
->nand
.bbt_erase_shift
;
1564 denali
->nand
.chip_shift
+= (denali
->devnum
- 1);
1565 denali
->mtd
.writesize
<<= (denali
->devnum
- 1);
1566 denali
->mtd
.oobsize
<<= (denali
->devnum
- 1);
1567 denali
->mtd
.erasesize
<<= (denali
->devnum
- 1);
1568 denali
->mtd
.size
= denali
->nand
.numchips
* denali
->nand
.chipsize
;
1569 denali
->bbtskipbytes
*= denali
->devnum
;
1571 /* second stage of the NAND scan
1572 * this stage requires information regarding ECC and
1573 * bad block management. */
1575 /* Bad block management */
1576 denali
->nand
.bbt_td
= &bbt_main_descr
;
1577 denali
->nand
.bbt_md
= &bbt_mirror_descr
;
1579 /* skip the scan for now until we have OOB read and write support */
1580 denali
->nand
.bbt_options
|= NAND_BBT_USE_FLASH
;
1581 denali
->nand
.options
|= NAND_SKIP_BBTSCAN
;
1582 denali
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1584 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1585 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1588 if (denali
->nand
.cellinfo
& 0xc &&
1589 (denali
->mtd
.oobsize
> (denali
->bbtskipbytes
+
1590 ECC_15BITS
* (denali
->mtd
.writesize
/
1591 ECC_SECTOR_SIZE
)))) {
1592 /* if MLC OOB size is large enough, use 15bit ECC*/
1593 denali
->nand
.ecc
.layout
= &nand_15bit_oob
;
1594 denali
->nand
.ecc
.bytes
= ECC_15BITS
;
1595 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
1596 } else if (denali
->mtd
.oobsize
< (denali
->bbtskipbytes
+
1597 ECC_8BITS
* (denali
->mtd
.writesize
/
1598 ECC_SECTOR_SIZE
))) {
1599 printk(KERN_ERR
"Your NAND chip OOB is not large enough to"
1600 " contain 8bit ECC correction codes");
1601 goto failed_req_irq
;
1603 denali
->nand
.ecc
.layout
= &nand_8bit_oob
;
1604 denali
->nand
.ecc
.bytes
= ECC_8BITS
;
1605 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
1608 denali
->nand
.ecc
.bytes
*= denali
->devnum
;
1609 denali
->nand
.ecc
.layout
->eccbytes
*=
1610 denali
->mtd
.writesize
/ ECC_SECTOR_SIZE
;
1611 denali
->nand
.ecc
.layout
->oobfree
[0].offset
=
1612 denali
->bbtskipbytes
+ denali
->nand
.ecc
.layout
->eccbytes
;
1613 denali
->nand
.ecc
.layout
->oobfree
[0].length
=
1614 denali
->mtd
.oobsize
- denali
->nand
.ecc
.layout
->eccbytes
-
1615 denali
->bbtskipbytes
;
1617 /* Let driver know the total blocks number and
1618 * how many blocks contained by each nand chip.
1619 * blksperchip will help driver to know how many
1620 * blocks is taken by FW.
1622 denali
->totalblks
= denali
->mtd
.size
>>
1623 denali
->nand
.phys_erase_shift
;
1624 denali
->blksperchip
= denali
->totalblks
/ denali
->nand
.numchips
;
1626 /* These functions are required by the NAND core framework, otherwise,
1627 * the NAND core will assert. However, we don't need them, so we'll stub
1629 denali
->nand
.ecc
.calculate
= denali_ecc_calculate
;
1630 denali
->nand
.ecc
.correct
= denali_ecc_correct
;
1631 denali
->nand
.ecc
.hwctl
= denali_ecc_hwctl
;
1633 /* override the default read operations */
1634 denali
->nand
.ecc
.size
= ECC_SECTOR_SIZE
* denali
->devnum
;
1635 denali
->nand
.ecc
.read_page
= denali_read_page
;
1636 denali
->nand
.ecc
.read_page_raw
= denali_read_page_raw
;
1637 denali
->nand
.ecc
.write_page
= denali_write_page
;
1638 denali
->nand
.ecc
.write_page_raw
= denali_write_page_raw
;
1639 denali
->nand
.ecc
.read_oob
= denali_read_oob
;
1640 denali
->nand
.ecc
.write_oob
= denali_write_oob
;
1641 denali
->nand
.erase_cmd
= denali_erase
;
1643 if (nand_scan_tail(&denali
->mtd
)) {
1645 goto failed_req_irq
;
1648 ret
= mtd_device_register(&denali
->mtd
, NULL
, 0);
1650 dev_err(&dev
->dev
, "Spectra: Failed to register MTD: %d\n",
1652 goto failed_req_irq
;
1657 denali_irq_cleanup(dev
->irq
, denali
);
1659 iounmap(denali
->flash_mem
);
1661 iounmap(denali
->flash_reg
);
1663 pci_release_regions(dev
);
1665 dma_unmap_single(&dev
->dev
, denali
->buf
.dma_buf
, DENALI_BUF_SIZE
,
1668 pci_disable_device(dev
);
1669 failed_alloc_memery
:
1674 /* driver exit point */
1675 static void denali_pci_remove(struct pci_dev
*dev
)
1677 struct denali_nand_info
*denali
= pci_get_drvdata(dev
);
1679 nand_release(&denali
->mtd
);
1681 denali_irq_cleanup(dev
->irq
, denali
);
1683 iounmap(denali
->flash_reg
);
1684 iounmap(denali
->flash_mem
);
1685 pci_release_regions(dev
);
1686 pci_disable_device(dev
);
1687 dma_unmap_single(&dev
->dev
, denali
->buf
.dma_buf
, DENALI_BUF_SIZE
,
1689 pci_set_drvdata(dev
, NULL
);
1693 MODULE_DEVICE_TABLE(pci
, denali_pci_ids
);
1695 static struct pci_driver denali_pci_driver
= {
1696 .name
= DENALI_NAND_NAME
,
1697 .id_table
= denali_pci_ids
,
1698 .probe
= denali_pci_probe
,
1699 .remove
= denali_pci_remove
,
1702 static int __devinit
denali_init(void)
1704 printk(KERN_INFO
"Spectra MTD driver\n");
1705 return pci_register_driver(&denali_pci_driver
);
1709 static void __devexit
denali_exit(void)
1711 pci_unregister_driver(&denali_pci_driver
);
1714 module_init(denali_init
);
1715 module_exit(denali_exit
);