1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 * Jack Lan <jack.lan@freescale.com>
8 * Roy Zang <tie-fei.zang@freescale.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
42 #include <asm/fsl_lbc.h>
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
48 /* mtd information per set */
52 struct nand_chip chip
;
53 struct fsl_lbc_ctrl
*ctrl
;
56 int bank
; /* Chip select bank number */
57 u8 __iomem
*vbase
; /* Chip select base virtual address */
58 int page_size
; /* NAND page size (0=512, 1=2048) */
59 unsigned int fmr
; /* FCM Flash Mode Register value */
62 /* Freescale eLBC FCM controller information */
64 struct fsl_elbc_fcm_ctrl
{
65 struct nand_hw_control controller
;
66 struct fsl_elbc_mtd
*chips
[MAX_BANKS
];
68 u8 __iomem
*addr
; /* Address of assigned FCM buffer */
69 unsigned int page
; /* Last page written to / read from */
70 unsigned int read_bytes
; /* Number of bytes read during command */
71 unsigned int column
; /* Saved column from SEQIN */
72 unsigned int index
; /* Pointer to next byte to 'read' */
73 unsigned int status
; /* status read from LTESR after last op */
74 unsigned int mdr
; /* UPM/FCM Data Register value */
75 unsigned int use_mdr
; /* Non zero if the MDR is to be set */
76 unsigned int oob
; /* Non zero if operating on OOB data */
77 unsigned int counter
; /* counter for the initializations */
80 /* These map to the positions used by the FCM hardware ECC generator */
82 /* Small Page FLASH with FMR[ECCM] = 0 */
83 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0
= {
86 .oobfree
= { {0, 5}, {9, 7} },
89 /* Small Page FLASH with FMR[ECCM] = 1 */
90 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1
= {
93 .oobfree
= { {0, 5}, {6, 2}, {11, 5} },
96 /* Large Page FLASH with FMR[ECCM] = 0 */
97 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0
= {
99 .eccpos
= {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
100 .oobfree
= { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
103 /* Large Page FLASH with FMR[ECCM] = 1 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1
= {
106 .eccpos
= {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
107 .oobfree
= { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
111 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
112 * 1, so we have to adjust bad block pattern. This pattern should be used for
113 * x8 chips only. So far hardware does not support x16 chips anyway.
115 static u8 scan_ff_pattern
[] = { 0xff, };
117 static struct nand_bbt_descr largepage_memorybased
= {
121 .pattern
= scan_ff_pattern
,
125 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
126 * interfere with ECC positions, that's why we implement our own descriptors.
127 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
129 static u8 bbt_pattern
[] = {'B', 'b', 't', '0' };
130 static u8 mirror_pattern
[] = {'1', 't', 'b', 'B' };
132 static struct nand_bbt_descr bbt_main_descr
= {
133 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
|
134 NAND_BBT_2BIT
| NAND_BBT_VERSION
,
139 .pattern
= bbt_pattern
,
142 static struct nand_bbt_descr bbt_mirror_descr
= {
143 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
|
144 NAND_BBT_2BIT
| NAND_BBT_VERSION
,
149 .pattern
= mirror_pattern
,
152 /*=================================*/
155 * Set up the FCM hardware block and page address fields, and the fcm
156 * structure addr field to point to the correct FCM buffer in memory
158 static void set_addr(struct mtd_info
*mtd
, int column
, int page_addr
, int oob
)
160 struct nand_chip
*chip
= mtd
->priv
;
161 struct fsl_elbc_mtd
*priv
= chip
->priv
;
162 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
163 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
164 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
167 elbc_fcm_ctrl
->page
= page_addr
;
169 if (priv
->page_size
) {
171 * large page size chip : FPAR[PI] save the lowest 6 bits,
172 * FBAR[BLK] save the other bits.
174 out_be32(&lbc
->fbar
, page_addr
>> 6);
176 ((page_addr
<< FPAR_LP_PI_SHIFT
) & FPAR_LP_PI
) |
177 (oob
? FPAR_LP_MS
: 0) | column
);
178 buf_num
= (page_addr
& 1) << 2;
181 * small page size chip : FPAR[PI] save the lowest 5 bits,
182 * FBAR[BLK] save the other bits.
184 out_be32(&lbc
->fbar
, page_addr
>> 5);
186 ((page_addr
<< FPAR_SP_PI_SHIFT
) & FPAR_SP_PI
) |
187 (oob
? FPAR_SP_MS
: 0) | column
);
188 buf_num
= page_addr
& 7;
191 elbc_fcm_ctrl
->addr
= priv
->vbase
+ buf_num
* 1024;
192 elbc_fcm_ctrl
->index
= column
;
194 /* for OOB data point to the second half of the buffer */
196 elbc_fcm_ctrl
->index
+= priv
->page_size
? 2048 : 512;
198 dev_vdbg(priv
->dev
, "set_addr: bank=%d, "
199 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
200 "index %x, pes %d ps %d\n",
201 buf_num
, elbc_fcm_ctrl
->addr
, priv
->vbase
,
202 elbc_fcm_ctrl
->index
,
203 chip
->phys_erase_shift
, chip
->page_shift
);
207 * execute FCM command and wait for it to complete
209 static int fsl_elbc_run_command(struct mtd_info
*mtd
)
211 struct nand_chip
*chip
= mtd
->priv
;
212 struct fsl_elbc_mtd
*priv
= chip
->priv
;
213 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
214 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
215 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
217 /* Setup the FMR[OP] to execute without write protection */
218 out_be32(&lbc
->fmr
, priv
->fmr
| 3);
219 if (elbc_fcm_ctrl
->use_mdr
)
220 out_be32(&lbc
->mdr
, elbc_fcm_ctrl
->mdr
);
223 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
224 in_be32(&lbc
->fmr
), in_be32(&lbc
->fir
), in_be32(&lbc
->fcr
));
226 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
227 "fbcr=%08x bank=%d\n",
228 in_be32(&lbc
->fbar
), in_be32(&lbc
->fpar
),
229 in_be32(&lbc
->fbcr
), priv
->bank
);
231 ctrl
->irq_status
= 0;
232 /* execute special operation */
233 out_be32(&lbc
->lsor
, priv
->bank
);
235 /* wait for FCM complete flag or timeout */
236 wait_event_timeout(ctrl
->irq_wait
, ctrl
->irq_status
,
237 FCM_TIMEOUT_MSECS
* HZ
/1000);
238 elbc_fcm_ctrl
->status
= ctrl
->irq_status
;
239 /* store mdr value in case it was needed */
240 if (elbc_fcm_ctrl
->use_mdr
)
241 elbc_fcm_ctrl
->mdr
= in_be32(&lbc
->mdr
);
243 elbc_fcm_ctrl
->use_mdr
= 0;
245 if (elbc_fcm_ctrl
->status
!= LTESR_CC
) {
247 "command failed: fir %x fcr %x status %x mdr %x\n",
248 in_be32(&lbc
->fir
), in_be32(&lbc
->fcr
),
249 elbc_fcm_ctrl
->status
, elbc_fcm_ctrl
->mdr
);
253 if (chip
->ecc
.mode
!= NAND_ECC_HW
)
256 if (elbc_fcm_ctrl
->read_bytes
== mtd
->writesize
+ mtd
->oobsize
) {
257 uint32_t lteccr
= in_be32(&lbc
->lteccr
);
259 * if command was a full page read and the ELBC
260 * has the LTECCR register, then bits 12-15 (ppc order) of
261 * LTECCR indicates which 512 byte sub-pages had fixed errors.
262 * bits 28-31 are uncorrectable errors, marked elsewhere.
263 * for small page nand only 1 bit is used.
264 * if the ELBC doesn't have the lteccr register it reads 0
266 if (lteccr
& 0x000F000F)
267 out_be32(&lbc
->lteccr
, 0x000F000F); /* clear lteccr */
268 if (lteccr
& 0x000F0000)
269 mtd
->ecc_stats
.corrected
++;
275 static void fsl_elbc_do_read(struct nand_chip
*chip
, int oob
)
277 struct fsl_elbc_mtd
*priv
= chip
->priv
;
278 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
279 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
281 if (priv
->page_size
) {
283 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
284 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
285 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
286 (FIR_OP_CM1
<< FIR_OP3_SHIFT
) |
287 (FIR_OP_RBW
<< FIR_OP4_SHIFT
));
289 out_be32(&lbc
->fcr
, (NAND_CMD_READ0
<< FCR_CMD0_SHIFT
) |
290 (NAND_CMD_READSTART
<< FCR_CMD1_SHIFT
));
293 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
294 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
295 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
296 (FIR_OP_RBW
<< FIR_OP3_SHIFT
));
299 out_be32(&lbc
->fcr
, NAND_CMD_READOOB
<< FCR_CMD0_SHIFT
);
301 out_be32(&lbc
->fcr
, NAND_CMD_READ0
<< FCR_CMD0_SHIFT
);
305 /* cmdfunc send commands to the FCM */
306 static void fsl_elbc_cmdfunc(struct mtd_info
*mtd
, unsigned int command
,
307 int column
, int page_addr
)
309 struct nand_chip
*chip
= mtd
->priv
;
310 struct fsl_elbc_mtd
*priv
= chip
->priv
;
311 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
312 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
313 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
315 elbc_fcm_ctrl
->use_mdr
= 0;
317 /* clear the read buffer */
318 elbc_fcm_ctrl
->read_bytes
= 0;
319 if (command
!= NAND_CMD_PAGEPROG
)
320 elbc_fcm_ctrl
->index
= 0;
323 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
330 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
331 " 0x%x, column: 0x%x.\n", page_addr
, column
);
334 out_be32(&lbc
->fbcr
, 0); /* read entire page to enable ECC */
335 set_addr(mtd
, 0, page_addr
, 0);
337 elbc_fcm_ctrl
->read_bytes
= mtd
->writesize
+ mtd
->oobsize
;
338 elbc_fcm_ctrl
->index
+= column
;
340 fsl_elbc_do_read(chip
, 0);
341 fsl_elbc_run_command(mtd
);
344 /* READOOB reads only the OOB because no ECC is performed. */
345 case NAND_CMD_READOOB
:
347 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
348 " 0x%x, column: 0x%x.\n", page_addr
, column
);
350 out_be32(&lbc
->fbcr
, mtd
->oobsize
- column
);
351 set_addr(mtd
, column
, page_addr
, 1);
353 elbc_fcm_ctrl
->read_bytes
= mtd
->writesize
+ mtd
->oobsize
;
355 fsl_elbc_do_read(chip
, 1);
356 fsl_elbc_run_command(mtd
);
359 case NAND_CMD_READID
:
361 dev_vdbg(priv
->dev
, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command
);
363 out_be32(&lbc
->fir
, (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
364 (FIR_OP_UA
<< FIR_OP1_SHIFT
) |
365 (FIR_OP_RBW
<< FIR_OP2_SHIFT
));
366 out_be32(&lbc
->fcr
, command
<< FCR_CMD0_SHIFT
);
368 * although currently it's 8 bytes for READID, we always read
369 * the maximum 256 bytes(for PARAM)
371 out_be32(&lbc
->fbcr
, 256);
372 elbc_fcm_ctrl
->read_bytes
= 256;
373 elbc_fcm_ctrl
->use_mdr
= 1;
374 elbc_fcm_ctrl
->mdr
= column
;
375 set_addr(mtd
, 0, 0, 0);
376 fsl_elbc_run_command(mtd
);
379 /* ERASE1 stores the block and page address */
380 case NAND_CMD_ERASE1
:
382 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
383 "page_addr: 0x%x.\n", page_addr
);
384 set_addr(mtd
, 0, page_addr
, 0);
387 /* ERASE2 uses the block and page address from ERASE1 */
388 case NAND_CMD_ERASE2
:
389 dev_vdbg(priv
->dev
, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
392 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
393 (FIR_OP_PA
<< FIR_OP1_SHIFT
) |
394 (FIR_OP_CM2
<< FIR_OP2_SHIFT
) |
395 (FIR_OP_CW1
<< FIR_OP3_SHIFT
) |
396 (FIR_OP_RS
<< FIR_OP4_SHIFT
));
399 (NAND_CMD_ERASE1
<< FCR_CMD0_SHIFT
) |
400 (NAND_CMD_STATUS
<< FCR_CMD1_SHIFT
) |
401 (NAND_CMD_ERASE2
<< FCR_CMD2_SHIFT
));
403 out_be32(&lbc
->fbcr
, 0);
404 elbc_fcm_ctrl
->read_bytes
= 0;
405 elbc_fcm_ctrl
->use_mdr
= 1;
407 fsl_elbc_run_command(mtd
);
410 /* SEQIN sets up the addr buffer and all registers except the length */
411 case NAND_CMD_SEQIN
: {
414 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
415 "page_addr: 0x%x, column: 0x%x.\n",
418 elbc_fcm_ctrl
->column
= column
;
419 elbc_fcm_ctrl
->use_mdr
= 1;
421 if (column
>= mtd
->writesize
) {
423 column
-= mtd
->writesize
;
424 elbc_fcm_ctrl
->oob
= 1;
426 WARN_ON(column
!= 0);
427 elbc_fcm_ctrl
->oob
= 0;
430 fcr
= (NAND_CMD_STATUS
<< FCR_CMD1_SHIFT
) |
431 (NAND_CMD_SEQIN
<< FCR_CMD2_SHIFT
) |
432 (NAND_CMD_PAGEPROG
<< FCR_CMD3_SHIFT
);
434 if (priv
->page_size
) {
436 (FIR_OP_CM2
<< FIR_OP0_SHIFT
) |
437 (FIR_OP_CA
<< FIR_OP1_SHIFT
) |
438 (FIR_OP_PA
<< FIR_OP2_SHIFT
) |
439 (FIR_OP_WB
<< FIR_OP3_SHIFT
) |
440 (FIR_OP_CM3
<< FIR_OP4_SHIFT
) |
441 (FIR_OP_CW1
<< FIR_OP5_SHIFT
) |
442 (FIR_OP_RS
<< FIR_OP6_SHIFT
));
445 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
446 (FIR_OP_CM2
<< FIR_OP1_SHIFT
) |
447 (FIR_OP_CA
<< FIR_OP2_SHIFT
) |
448 (FIR_OP_PA
<< FIR_OP3_SHIFT
) |
449 (FIR_OP_WB
<< FIR_OP4_SHIFT
) |
450 (FIR_OP_CM3
<< FIR_OP5_SHIFT
) |
451 (FIR_OP_CW1
<< FIR_OP6_SHIFT
) |
452 (FIR_OP_RS
<< FIR_OP7_SHIFT
));
454 if (elbc_fcm_ctrl
->oob
)
455 /* OOB area --> READOOB */
456 fcr
|= NAND_CMD_READOOB
<< FCR_CMD0_SHIFT
;
458 /* First 256 bytes --> READ0 */
459 fcr
|= NAND_CMD_READ0
<< FCR_CMD0_SHIFT
;
462 out_be32(&lbc
->fcr
, fcr
);
463 set_addr(mtd
, column
, page_addr
, elbc_fcm_ctrl
->oob
);
467 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
468 case NAND_CMD_PAGEPROG
: {
470 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
471 "writing %d bytes.\n", elbc_fcm_ctrl
->index
);
473 /* if the write did not start at 0 or is not a full page
474 * then set the exact length, otherwise use a full page
475 * write so the HW generates the ECC.
477 if (elbc_fcm_ctrl
->oob
|| elbc_fcm_ctrl
->column
!= 0 ||
478 elbc_fcm_ctrl
->index
!= mtd
->writesize
+ mtd
->oobsize
)
480 elbc_fcm_ctrl
->index
- elbc_fcm_ctrl
->column
);
482 out_be32(&lbc
->fbcr
, 0);
484 fsl_elbc_run_command(mtd
);
488 /* CMD_STATUS must read the status byte while CEB is active */
489 /* Note - it does not wait for the ready line */
490 case NAND_CMD_STATUS
:
492 (FIR_OP_CM0
<< FIR_OP0_SHIFT
) |
493 (FIR_OP_RBW
<< FIR_OP1_SHIFT
));
494 out_be32(&lbc
->fcr
, NAND_CMD_STATUS
<< FCR_CMD0_SHIFT
);
495 out_be32(&lbc
->fbcr
, 1);
496 set_addr(mtd
, 0, 0, 0);
497 elbc_fcm_ctrl
->read_bytes
= 1;
499 fsl_elbc_run_command(mtd
);
501 /* The chip always seems to report that it is
502 * write-protected, even when it is not.
504 setbits8(elbc_fcm_ctrl
->addr
, NAND_STATUS_WP
);
507 /* RESET without waiting for the ready line */
509 dev_dbg(priv
->dev
, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
510 out_be32(&lbc
->fir
, FIR_OP_CM0
<< FIR_OP0_SHIFT
);
511 out_be32(&lbc
->fcr
, NAND_CMD_RESET
<< FCR_CMD0_SHIFT
);
512 fsl_elbc_run_command(mtd
);
517 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
522 static void fsl_elbc_select_chip(struct mtd_info
*mtd
, int chip
)
524 /* The hardware does not seem to support multiple
530 * Write buf to the FCM Controller Data Buffer
532 static void fsl_elbc_write_buf(struct mtd_info
*mtd
, const u8
*buf
, int len
)
534 struct nand_chip
*chip
= mtd
->priv
;
535 struct fsl_elbc_mtd
*priv
= chip
->priv
;
536 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
537 unsigned int bufsize
= mtd
->writesize
+ mtd
->oobsize
;
540 dev_err(priv
->dev
, "write_buf of %d bytes", len
);
541 elbc_fcm_ctrl
->status
= 0;
545 if ((unsigned int)len
> bufsize
- elbc_fcm_ctrl
->index
) {
547 "write_buf beyond end of buffer "
548 "(%d requested, %u available)\n",
549 len
, bufsize
- elbc_fcm_ctrl
->index
);
550 len
= bufsize
- elbc_fcm_ctrl
->index
;
553 memcpy_toio(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
], buf
, len
);
555 * This is workaround for the weird elbc hangs during nand write,
556 * Scott Wood says: "...perhaps difference in how long it takes a
557 * write to make it through the localbus compared to a write to IMMR
558 * is causing problems, and sync isn't helping for some reason."
559 * Reading back the last byte helps though.
561 in_8(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
] + len
- 1);
563 elbc_fcm_ctrl
->index
+= len
;
567 * read a byte from either the FCM hardware buffer if it has any data left
568 * otherwise issue a command to read a single byte.
570 static u8
fsl_elbc_read_byte(struct mtd_info
*mtd
)
572 struct nand_chip
*chip
= mtd
->priv
;
573 struct fsl_elbc_mtd
*priv
= chip
->priv
;
574 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
576 /* If there are still bytes in the FCM, then use the next byte. */
577 if (elbc_fcm_ctrl
->index
< elbc_fcm_ctrl
->read_bytes
)
578 return in_8(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
++]);
580 dev_err(priv
->dev
, "read_byte beyond end of buffer\n");
585 * Read from the FCM Controller Data Buffer
587 static void fsl_elbc_read_buf(struct mtd_info
*mtd
, u8
*buf
, int len
)
589 struct nand_chip
*chip
= mtd
->priv
;
590 struct fsl_elbc_mtd
*priv
= chip
->priv
;
591 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
597 avail
= min((unsigned int)len
,
598 elbc_fcm_ctrl
->read_bytes
- elbc_fcm_ctrl
->index
);
599 memcpy_fromio(buf
, &elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
], avail
);
600 elbc_fcm_ctrl
->index
+= avail
;
604 "read_buf beyond end of buffer "
605 "(%d requested, %d available)\n",
610 * Verify buffer against the FCM Controller Data Buffer
612 static int fsl_elbc_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
614 struct nand_chip
*chip
= mtd
->priv
;
615 struct fsl_elbc_mtd
*priv
= chip
->priv
;
616 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
620 dev_err(priv
->dev
, "write_buf of %d bytes", len
);
624 if ((unsigned int)len
>
625 elbc_fcm_ctrl
->read_bytes
- elbc_fcm_ctrl
->index
) {
627 "verify_buf beyond end of buffer "
628 "(%d requested, %u available)\n",
629 len
, elbc_fcm_ctrl
->read_bytes
- elbc_fcm_ctrl
->index
);
631 elbc_fcm_ctrl
->index
= elbc_fcm_ctrl
->read_bytes
;
635 for (i
= 0; i
< len
; i
++)
636 if (in_8(&elbc_fcm_ctrl
->addr
[elbc_fcm_ctrl
->index
+ i
])
640 elbc_fcm_ctrl
->index
+= len
;
641 return i
== len
&& elbc_fcm_ctrl
->status
== LTESR_CC
? 0 : -EIO
;
644 /* This function is called after Program and Erase Operations to
645 * check for success or failure.
647 static int fsl_elbc_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
649 struct fsl_elbc_mtd
*priv
= chip
->priv
;
650 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
652 if (elbc_fcm_ctrl
->status
!= LTESR_CC
)
653 return NAND_STATUS_FAIL
;
655 /* The chip always seems to report that it is
656 * write-protected, even when it is not.
658 return (elbc_fcm_ctrl
->mdr
& 0xff) | NAND_STATUS_WP
;
661 static int fsl_elbc_chip_init_tail(struct mtd_info
*mtd
)
663 struct nand_chip
*chip
= mtd
->priv
;
664 struct fsl_elbc_mtd
*priv
= chip
->priv
;
665 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
666 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
669 /* calculate FMR Address Length field */
671 if (chip
->pagemask
& 0xffff0000)
673 if (chip
->pagemask
& 0xff000000)
676 priv
->fmr
|= al
<< FMR_AL_SHIFT
;
678 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->numchips = %d\n",
680 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->chipsize = %lld\n",
682 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->pagemask = %8x\n",
684 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->chip_delay = %d\n",
686 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->badblockpos = %d\n",
688 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->chip_shift = %d\n",
690 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->page_shift = %d\n",
692 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
693 chip
->phys_erase_shift
);
694 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecclayout = %p\n",
696 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.mode = %d\n",
698 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.steps = %d\n",
700 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.bytes = %d\n",
702 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.total = %d\n",
704 dev_dbg(priv
->dev
, "fsl_elbc_init: nand->ecc.layout = %p\n",
706 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->flags = %08x\n", mtd
->flags
);
707 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->size = %lld\n", mtd
->size
);
708 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->erasesize = %d\n",
710 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->writesize = %d\n",
712 dev_dbg(priv
->dev
, "fsl_elbc_init: mtd->oobsize = %d\n",
715 /* adjust Option Register and ECC to match Flash page size */
716 if (mtd
->writesize
== 512) {
718 clrbits32(&lbc
->bank
[priv
->bank
].or, OR_FCM_PGS
);
719 } else if (mtd
->writesize
== 2048) {
721 setbits32(&lbc
->bank
[priv
->bank
].or, OR_FCM_PGS
);
722 /* adjust ecc setup if needed */
723 if ((in_be32(&lbc
->bank
[priv
->bank
].br
) & BR_DECC
) ==
725 chip
->ecc
.size
= 512;
726 chip
->ecc
.layout
= (priv
->fmr
& FMR_ECCM
) ?
727 &fsl_elbc_oob_lp_eccm1
:
728 &fsl_elbc_oob_lp_eccm0
;
729 chip
->badblock_pattern
= &largepage_memorybased
;
733 "fsl_elbc_init: page size %d is not supported\n",
741 static int fsl_elbc_read_page(struct mtd_info
*mtd
,
742 struct nand_chip
*chip
,
746 fsl_elbc_read_buf(mtd
, buf
, mtd
->writesize
);
747 fsl_elbc_read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
749 if (fsl_elbc_wait(mtd
, chip
) & NAND_STATUS_FAIL
)
750 mtd
->ecc_stats
.failed
++;
755 /* ECC will be calculated automatically, and errors will be detected in
758 static void fsl_elbc_write_page(struct mtd_info
*mtd
,
759 struct nand_chip
*chip
,
762 fsl_elbc_write_buf(mtd
, buf
, mtd
->writesize
);
763 fsl_elbc_write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
766 static int fsl_elbc_chip_init(struct fsl_elbc_mtd
*priv
)
768 struct fsl_lbc_ctrl
*ctrl
= priv
->ctrl
;
769 struct fsl_lbc_regs __iomem
*lbc
= ctrl
->regs
;
770 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= ctrl
->nand
;
771 struct nand_chip
*chip
= &priv
->chip
;
773 dev_dbg(priv
->dev
, "eLBC Set Information for bank %d\n", priv
->bank
);
775 /* Fill in fsl_elbc_mtd structure */
776 priv
->mtd
.priv
= chip
;
777 priv
->mtd
.owner
= THIS_MODULE
;
779 /* set timeout to maximum */
780 priv
->fmr
= 15 << FMR_CWTO_SHIFT
;
781 if (in_be32(&lbc
->bank
[priv
->bank
].or) & OR_FCM_PGS
)
782 priv
->fmr
|= FMR_ECCM
;
784 /* fill in nand_chip structure */
785 /* set up function call table */
786 chip
->read_byte
= fsl_elbc_read_byte
;
787 chip
->write_buf
= fsl_elbc_write_buf
;
788 chip
->read_buf
= fsl_elbc_read_buf
;
789 chip
->verify_buf
= fsl_elbc_verify_buf
;
790 chip
->select_chip
= fsl_elbc_select_chip
;
791 chip
->cmdfunc
= fsl_elbc_cmdfunc
;
792 chip
->waitfunc
= fsl_elbc_wait
;
794 chip
->bbt_td
= &bbt_main_descr
;
795 chip
->bbt_md
= &bbt_mirror_descr
;
797 /* set up nand options */
798 chip
->options
= NAND_NO_READRDY
| NAND_NO_AUTOINCR
;
799 chip
->bbt_options
= NAND_BBT_USE_FLASH
;
801 chip
->controller
= &elbc_fcm_ctrl
->controller
;
804 chip
->ecc
.read_page
= fsl_elbc_read_page
;
805 chip
->ecc
.write_page
= fsl_elbc_write_page
;
807 /* If CS Base Register selects full hardware ECC then use it */
808 if ((in_be32(&lbc
->bank
[priv
->bank
].br
) & BR_DECC
) ==
810 chip
->ecc
.mode
= NAND_ECC_HW
;
811 /* put in small page settings and adjust later if needed */
812 chip
->ecc
.layout
= (priv
->fmr
& FMR_ECCM
) ?
813 &fsl_elbc_oob_sp_eccm1
: &fsl_elbc_oob_sp_eccm0
;
814 chip
->ecc
.size
= 512;
817 /* otherwise fall back to default software ECC */
818 chip
->ecc
.mode
= NAND_ECC_SOFT
;
824 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd
*priv
)
826 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= priv
->ctrl
->nand
;
827 nand_release(&priv
->mtd
);
829 kfree(priv
->mtd
.name
);
832 iounmap(priv
->vbase
);
834 elbc_fcm_ctrl
->chips
[priv
->bank
] = NULL
;
839 static DEFINE_MUTEX(fsl_elbc_nand_mutex
);
841 static int __devinit
fsl_elbc_nand_probe(struct platform_device
*pdev
)
843 struct fsl_lbc_regs __iomem
*lbc
;
844 struct fsl_elbc_mtd
*priv
;
846 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
;
847 static const char *part_probe_types
[]
848 = { "cmdlinepart", "RedBoot", "ofpart", NULL
};
852 struct device_node
*node
= pdev
->dev
.of_node
;
853 struct mtd_part_parser_data ppdata
;
855 ppdata
.of_node
= pdev
->dev
.of_node
;
856 if (!fsl_lbc_ctrl_dev
|| !fsl_lbc_ctrl_dev
->regs
)
858 lbc
= fsl_lbc_ctrl_dev
->regs
;
859 dev
= fsl_lbc_ctrl_dev
->dev
;
861 /* get, allocate and map the memory resource */
862 ret
= of_address_to_resource(node
, 0, &res
);
864 dev_err(dev
, "failed to get resource\n");
868 /* find which chip select it is connected to */
869 for (bank
= 0; bank
< MAX_BANKS
; bank
++)
870 if ((in_be32(&lbc
->bank
[bank
].br
) & BR_V
) &&
871 (in_be32(&lbc
->bank
[bank
].br
) & BR_MSEL
) == BR_MS_FCM
&&
872 (in_be32(&lbc
->bank
[bank
].br
) &
873 in_be32(&lbc
->bank
[bank
].or) & BR_BA
)
874 == fsl_lbc_addr(res
.start
))
877 if (bank
>= MAX_BANKS
) {
878 dev_err(dev
, "address did not match any chip selects\n");
882 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
886 mutex_lock(&fsl_elbc_nand_mutex
);
887 if (!fsl_lbc_ctrl_dev
->nand
) {
888 elbc_fcm_ctrl
= kzalloc(sizeof(*elbc_fcm_ctrl
), GFP_KERNEL
);
889 if (!elbc_fcm_ctrl
) {
890 dev_err(dev
, "failed to allocate memory\n");
891 mutex_unlock(&fsl_elbc_nand_mutex
);
895 elbc_fcm_ctrl
->counter
++;
897 spin_lock_init(&elbc_fcm_ctrl
->controller
.lock
);
898 init_waitqueue_head(&elbc_fcm_ctrl
->controller
.wq
);
899 fsl_lbc_ctrl_dev
->nand
= elbc_fcm_ctrl
;
901 elbc_fcm_ctrl
= fsl_lbc_ctrl_dev
->nand
;
903 mutex_unlock(&fsl_elbc_nand_mutex
);
905 elbc_fcm_ctrl
->chips
[bank
] = priv
;
907 priv
->ctrl
= fsl_lbc_ctrl_dev
;
910 priv
->vbase
= ioremap(res
.start
, resource_size(&res
));
912 dev_err(dev
, "failed to map chip region\n");
917 priv
->mtd
.name
= kasprintf(GFP_KERNEL
, "%x.flash", (unsigned)res
.start
);
918 if (!priv
->mtd
.name
) {
923 ret
= fsl_elbc_chip_init(priv
);
927 ret
= nand_scan_ident(&priv
->mtd
, 1, NULL
);
931 ret
= fsl_elbc_chip_init_tail(&priv
->mtd
);
935 ret
= nand_scan_tail(&priv
->mtd
);
939 /* First look for RedBoot table or partitions on the command
940 * line, these take precedence over device tree information */
941 mtd_device_parse_register(&priv
->mtd
, part_probe_types
, &ppdata
,
944 printk(KERN_INFO
"eLBC NAND device at 0x%llx, bank %d\n",
945 (unsigned long long)res
.start
, priv
->bank
);
949 fsl_elbc_chip_remove(priv
);
953 static int fsl_elbc_nand_remove(struct platform_device
*pdev
)
956 struct fsl_elbc_fcm_ctrl
*elbc_fcm_ctrl
= fsl_lbc_ctrl_dev
->nand
;
957 for (i
= 0; i
< MAX_BANKS
; i
++)
958 if (elbc_fcm_ctrl
->chips
[i
])
959 fsl_elbc_chip_remove(elbc_fcm_ctrl
->chips
[i
]);
961 mutex_lock(&fsl_elbc_nand_mutex
);
962 elbc_fcm_ctrl
->counter
--;
963 if (!elbc_fcm_ctrl
->counter
) {
964 fsl_lbc_ctrl_dev
->nand
= NULL
;
965 kfree(elbc_fcm_ctrl
);
967 mutex_unlock(&fsl_elbc_nand_mutex
);
973 static const struct of_device_id fsl_elbc_nand_match
[] = {
974 { .compatible
= "fsl,elbc-fcm-nand", },
978 static struct platform_driver fsl_elbc_nand_driver
= {
980 .name
= "fsl,elbc-fcm-nand",
981 .owner
= THIS_MODULE
,
982 .of_match_table
= fsl_elbc_nand_match
,
984 .probe
= fsl_elbc_nand_probe
,
985 .remove
= fsl_elbc_nand_remove
,
988 module_platform_driver(fsl_elbc_nand_driver
);
990 MODULE_LICENSE("GPL");
991 MODULE_AUTHOR("Freescale");
992 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");