Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / mtd / nand / s3c2410.c
blob868685db6712fa3c18b593b4e9a171707f68f228
1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
25 #define DEBUG
26 #endif
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/ioport.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/err.h>
37 #include <linux/slab.h>
38 #include <linux/clk.h>
39 #include <linux/cpufreq.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/partitions.h>
46 #include <asm/io.h>
48 #include <plat/regs-nand.h>
49 #include <plat/nand.h>
51 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
52 static int hardware_ecc = 1;
53 #else
54 static int hardware_ecc = 0;
55 #endif
57 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
58 static const int clock_stop = 1;
59 #else
60 static const int clock_stop = 0;
61 #endif
64 /* new oob placement block for use with hardware ecc generation
67 static struct nand_ecclayout nand_hw_eccoob = {
68 .eccbytes = 3,
69 .eccpos = {0, 1, 2},
70 .oobfree = {{8, 8}}
73 /* controller and mtd information */
75 struct s3c2410_nand_info;
77 /**
78 * struct s3c2410_nand_mtd - driver MTD structure
79 * @mtd: The MTD instance to pass to the MTD layer.
80 * @chip: The NAND chip information.
81 * @set: The platform information supplied for this set of NAND chips.
82 * @info: Link back to the hardware information.
83 * @scan_res: The result from calling nand_scan_ident().
85 struct s3c2410_nand_mtd {
86 struct mtd_info mtd;
87 struct nand_chip chip;
88 struct s3c2410_nand_set *set;
89 struct s3c2410_nand_info *info;
90 int scan_res;
93 enum s3c_cpu_type {
94 TYPE_S3C2410,
95 TYPE_S3C2412,
96 TYPE_S3C2440,
99 enum s3c_nand_clk_state {
100 CLOCK_DISABLE = 0,
101 CLOCK_ENABLE,
102 CLOCK_SUSPEND,
105 /* overview of the s3c2410 nand state */
108 * struct s3c2410_nand_info - NAND controller state.
109 * @mtds: An array of MTD instances on this controoler.
110 * @platform: The platform data for this board.
111 * @device: The platform device we bound to.
112 * @area: The IO area resource that came from request_mem_region().
113 * @clk: The clock resource for this controller.
114 * @regs: The area mapped for the hardware registers described by @area.
115 * @sel_reg: Pointer to the register controlling the NAND selection.
116 * @sel_bit: The bit in @sel_reg to select the NAND chip.
117 * @mtd_count: The number of MTDs created from this controller.
118 * @save_sel: The contents of @sel_reg to be saved over suspend.
119 * @clk_rate: The clock rate from @clk.
120 * @clk_state: The current clock state.
121 * @cpu_type: The exact type of this controller.
123 struct s3c2410_nand_info {
124 /* mtd info */
125 struct nand_hw_control controller;
126 struct s3c2410_nand_mtd *mtds;
127 struct s3c2410_platform_nand *platform;
129 /* device info */
130 struct device *device;
131 struct resource *area;
132 struct clk *clk;
133 void __iomem *regs;
134 void __iomem *sel_reg;
135 int sel_bit;
136 int mtd_count;
137 unsigned long save_sel;
138 unsigned long clk_rate;
139 enum s3c_nand_clk_state clk_state;
141 enum s3c_cpu_type cpu_type;
143 #ifdef CONFIG_CPU_FREQ
144 struct notifier_block freq_transition;
145 #endif
148 /* conversion functions */
150 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
152 return container_of(mtd, struct s3c2410_nand_mtd, mtd);
155 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
157 return s3c2410_nand_mtd_toours(mtd)->info;
160 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
162 return platform_get_drvdata(dev);
165 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
167 return dev->dev.platform_data;
170 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
172 return clock_stop;
176 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
177 * @info: The controller instance.
178 * @new_state: State to which clock should be set.
180 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
181 enum s3c_nand_clk_state new_state)
183 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
184 return;
186 if (info->clk_state == CLOCK_ENABLE) {
187 if (new_state != CLOCK_ENABLE)
188 clk_disable(info->clk);
189 } else {
190 if (new_state == CLOCK_ENABLE)
191 clk_enable(info->clk);
194 info->clk_state = new_state;
197 /* timing calculations */
199 #define NS_IN_KHZ 1000000
202 * s3c_nand_calc_rate - calculate timing data.
203 * @wanted: The cycle time in nanoseconds.
204 * @clk: The clock rate in kHz.
205 * @max: The maximum divider value.
207 * Calculate the timing value from the given parameters.
209 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
211 int result;
213 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
215 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
217 if (result > max) {
218 printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
219 return -1;
222 if (result < 1)
223 result = 1;
225 return result;
228 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
230 /* controller setup */
233 * s3c2410_nand_setrate - setup controller timing information.
234 * @info: The controller instance.
236 * Given the information supplied by the platform, calculate and set
237 * the necessary timing registers in the hardware to generate the
238 * necessary timing cycles to the hardware.
240 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
242 struct s3c2410_platform_nand *plat = info->platform;
243 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
244 int tacls, twrph0, twrph1;
245 unsigned long clkrate = clk_get_rate(info->clk);
246 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
247 unsigned long flags;
249 /* calculate the timing information for the controller */
251 info->clk_rate = clkrate;
252 clkrate /= 1000; /* turn clock into kHz for ease of use */
254 if (plat != NULL) {
255 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
256 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
257 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
258 } else {
259 /* default timings */
260 tacls = tacls_max;
261 twrph0 = 8;
262 twrph1 = 8;
265 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
266 dev_err(info->device, "cannot get suitable timings\n");
267 return -EINVAL;
270 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
271 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
273 switch (info->cpu_type) {
274 case TYPE_S3C2410:
275 mask = (S3C2410_NFCONF_TACLS(3) |
276 S3C2410_NFCONF_TWRPH0(7) |
277 S3C2410_NFCONF_TWRPH1(7));
278 set = S3C2410_NFCONF_EN;
279 set |= S3C2410_NFCONF_TACLS(tacls - 1);
280 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
281 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
282 break;
284 case TYPE_S3C2440:
285 case TYPE_S3C2412:
286 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
287 S3C2440_NFCONF_TWRPH0(7) |
288 S3C2440_NFCONF_TWRPH1(7));
290 set = S3C2440_NFCONF_TACLS(tacls - 1);
291 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
292 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
293 break;
295 default:
296 BUG();
299 local_irq_save(flags);
301 cfg = readl(info->regs + S3C2410_NFCONF);
302 cfg &= ~mask;
303 cfg |= set;
304 writel(cfg, info->regs + S3C2410_NFCONF);
306 local_irq_restore(flags);
308 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
310 return 0;
314 * s3c2410_nand_inithw - basic hardware initialisation
315 * @info: The hardware state.
317 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
318 * to setup the hardware access speeds and set the controller to be enabled.
320 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
322 int ret;
324 ret = s3c2410_nand_setrate(info);
325 if (ret < 0)
326 return ret;
328 switch (info->cpu_type) {
329 case TYPE_S3C2410:
330 default:
331 break;
333 case TYPE_S3C2440:
334 case TYPE_S3C2412:
335 /* enable the controller and de-assert nFCE */
337 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
340 return 0;
344 * s3c2410_nand_select_chip - select the given nand chip
345 * @mtd: The MTD instance for this chip.
346 * @chip: The chip number.
348 * This is called by the MTD layer to either select a given chip for the
349 * @mtd instance, or to indicate that the access has finished and the
350 * chip can be de-selected.
352 * The routine ensures that the nFCE line is correctly setup, and any
353 * platform specific selection code is called to route nFCE to the specific
354 * chip.
356 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
358 struct s3c2410_nand_info *info;
359 struct s3c2410_nand_mtd *nmtd;
360 struct nand_chip *this = mtd->priv;
361 unsigned long cur;
363 nmtd = this->priv;
364 info = nmtd->info;
366 if (chip != -1)
367 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
369 cur = readl(info->sel_reg);
371 if (chip == -1) {
372 cur |= info->sel_bit;
373 } else {
374 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
375 dev_err(info->device, "invalid chip %d\n", chip);
376 return;
379 if (info->platform != NULL) {
380 if (info->platform->select_chip != NULL)
381 (info->platform->select_chip) (nmtd->set, chip);
384 cur &= ~info->sel_bit;
387 writel(cur, info->sel_reg);
389 if (chip == -1)
390 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
393 /* s3c2410_nand_hwcontrol
395 * Issue command and address cycles to the chip
398 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
399 unsigned int ctrl)
401 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
403 if (cmd == NAND_CMD_NONE)
404 return;
406 if (ctrl & NAND_CLE)
407 writeb(cmd, info->regs + S3C2410_NFCMD);
408 else
409 writeb(cmd, info->regs + S3C2410_NFADDR);
412 /* command and control functions */
414 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
415 unsigned int ctrl)
417 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
419 if (cmd == NAND_CMD_NONE)
420 return;
422 if (ctrl & NAND_CLE)
423 writeb(cmd, info->regs + S3C2440_NFCMD);
424 else
425 writeb(cmd, info->regs + S3C2440_NFADDR);
428 /* s3c2410_nand_devready()
430 * returns 0 if the nand is busy, 1 if it is ready
433 static int s3c2410_nand_devready(struct mtd_info *mtd)
435 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
436 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
439 static int s3c2440_nand_devready(struct mtd_info *mtd)
441 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
442 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
445 static int s3c2412_nand_devready(struct mtd_info *mtd)
447 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
448 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
451 /* ECC handling functions */
453 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
454 u_char *read_ecc, u_char *calc_ecc)
456 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
457 unsigned int diff0, diff1, diff2;
458 unsigned int bit, byte;
460 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
462 diff0 = read_ecc[0] ^ calc_ecc[0];
463 diff1 = read_ecc[1] ^ calc_ecc[1];
464 diff2 = read_ecc[2] ^ calc_ecc[2];
466 pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
467 __func__,
468 read_ecc[0], read_ecc[1], read_ecc[2],
469 calc_ecc[0], calc_ecc[1], calc_ecc[2],
470 diff0, diff1, diff2);
472 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
473 return 0; /* ECC is ok */
475 /* sometimes people do not think about using the ECC, so check
476 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
477 * the error, on the assumption that this is an un-eccd page.
479 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
480 && info->platform->ignore_unset_ecc)
481 return 0;
483 /* Can we correct this ECC (ie, one row and column change).
484 * Note, this is similar to the 256 error code on smartmedia */
486 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
487 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
488 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
489 /* calculate the bit position of the error */
491 bit = ((diff2 >> 3) & 1) |
492 ((diff2 >> 4) & 2) |
493 ((diff2 >> 5) & 4);
495 /* calculate the byte position of the error */
497 byte = ((diff2 << 7) & 0x100) |
498 ((diff1 << 0) & 0x80) |
499 ((diff1 << 1) & 0x40) |
500 ((diff1 << 2) & 0x20) |
501 ((diff1 << 3) & 0x10) |
502 ((diff0 >> 4) & 0x08) |
503 ((diff0 >> 3) & 0x04) |
504 ((diff0 >> 2) & 0x02) |
505 ((diff0 >> 1) & 0x01);
507 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
508 bit, byte);
510 dat[byte] ^= (1 << bit);
511 return 1;
514 /* if there is only one bit difference in the ECC, then
515 * one of only a row or column parity has changed, which
516 * means the error is most probably in the ECC itself */
518 diff0 |= (diff1 << 8);
519 diff0 |= (diff2 << 16);
521 if ((diff0 & ~(1<<fls(diff0))) == 0)
522 return 1;
524 return -1;
527 /* ECC functions
529 * These allow the s3c2410 and s3c2440 to use the controller's ECC
530 * generator block to ECC the data as it passes through]
533 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
535 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
536 unsigned long ctrl;
538 ctrl = readl(info->regs + S3C2410_NFCONF);
539 ctrl |= S3C2410_NFCONF_INITECC;
540 writel(ctrl, info->regs + S3C2410_NFCONF);
543 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
545 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
546 unsigned long ctrl;
548 ctrl = readl(info->regs + S3C2440_NFCONT);
549 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
552 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
554 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
555 unsigned long ctrl;
557 ctrl = readl(info->regs + S3C2440_NFCONT);
558 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
561 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
563 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
565 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
566 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
567 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
569 pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
570 ecc_code[0], ecc_code[1], ecc_code[2]);
572 return 0;
575 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
577 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
578 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
580 ecc_code[0] = ecc;
581 ecc_code[1] = ecc >> 8;
582 ecc_code[2] = ecc >> 16;
584 pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
586 return 0;
589 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
591 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
592 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
594 ecc_code[0] = ecc;
595 ecc_code[1] = ecc >> 8;
596 ecc_code[2] = ecc >> 16;
598 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
600 return 0;
603 /* over-ride the standard functions for a little more speed. We can
604 * use read/write block to move the data buffers to/from the controller
607 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
609 struct nand_chip *this = mtd->priv;
610 readsb(this->IO_ADDR_R, buf, len);
613 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
615 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
617 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
619 /* cleanup if we've got less than a word to do */
620 if (len & 3) {
621 buf += len & ~3;
623 for (; len & 3; len--)
624 *buf++ = readb(info->regs + S3C2440_NFDATA);
628 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
630 struct nand_chip *this = mtd->priv;
631 writesb(this->IO_ADDR_W, buf, len);
634 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
636 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
638 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
640 /* cleanup any fractional write */
641 if (len & 3) {
642 buf += len & ~3;
644 for (; len & 3; len--, buf++)
645 writeb(*buf, info->regs + S3C2440_NFDATA);
649 /* cpufreq driver support */
651 #ifdef CONFIG_CPU_FREQ
653 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
654 unsigned long val, void *data)
656 struct s3c2410_nand_info *info;
657 unsigned long newclk;
659 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
660 newclk = clk_get_rate(info->clk);
662 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
663 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
664 s3c2410_nand_setrate(info);
667 return 0;
670 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
672 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
674 return cpufreq_register_notifier(&info->freq_transition,
675 CPUFREQ_TRANSITION_NOTIFIER);
678 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
680 cpufreq_unregister_notifier(&info->freq_transition,
681 CPUFREQ_TRANSITION_NOTIFIER);
684 #else
685 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
687 return 0;
690 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
693 #endif
695 /* device management functions */
697 static int s3c24xx_nand_remove(struct platform_device *pdev)
699 struct s3c2410_nand_info *info = to_nand_info(pdev);
701 platform_set_drvdata(pdev, NULL);
703 if (info == NULL)
704 return 0;
706 s3c2410_nand_cpufreq_deregister(info);
708 /* Release all our mtds and their partitions, then go through
709 * freeing the resources used
712 if (info->mtds != NULL) {
713 struct s3c2410_nand_mtd *ptr = info->mtds;
714 int mtdno;
716 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
717 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
718 nand_release(&ptr->mtd);
721 kfree(info->mtds);
724 /* free the common resources */
726 if (!IS_ERR(info->clk)) {
727 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
728 clk_put(info->clk);
731 if (info->regs != NULL) {
732 iounmap(info->regs);
733 info->regs = NULL;
736 if (info->area != NULL) {
737 release_resource(info->area);
738 kfree(info->area);
739 info->area = NULL;
742 kfree(info);
744 return 0;
747 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
748 struct s3c2410_nand_mtd *mtd,
749 struct s3c2410_nand_set *set)
751 if (set)
752 mtd->mtd.name = set->name;
754 return mtd_device_parse_register(&mtd->mtd, NULL, 0,
755 set->partitions, set->nr_partitions);
759 * s3c2410_nand_init_chip - initialise a single instance of an chip
760 * @info: The base NAND controller the chip is on.
761 * @nmtd: The new controller MTD instance to fill in.
762 * @set: The information passed from the board specific platform data.
764 * Initialise the given @nmtd from the information in @info and @set. This
765 * readies the structure for use with the MTD layer functions by ensuring
766 * all pointers are setup and the necessary control routines selected.
768 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
769 struct s3c2410_nand_mtd *nmtd,
770 struct s3c2410_nand_set *set)
772 struct nand_chip *chip = &nmtd->chip;
773 void __iomem *regs = info->regs;
775 chip->write_buf = s3c2410_nand_write_buf;
776 chip->read_buf = s3c2410_nand_read_buf;
777 chip->select_chip = s3c2410_nand_select_chip;
778 chip->chip_delay = 50;
779 chip->priv = nmtd;
780 chip->options = set->options;
781 chip->controller = &info->controller;
783 switch (info->cpu_type) {
784 case TYPE_S3C2410:
785 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
786 info->sel_reg = regs + S3C2410_NFCONF;
787 info->sel_bit = S3C2410_NFCONF_nFCE;
788 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
789 chip->dev_ready = s3c2410_nand_devready;
790 break;
792 case TYPE_S3C2440:
793 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
794 info->sel_reg = regs + S3C2440_NFCONT;
795 info->sel_bit = S3C2440_NFCONT_nFCE;
796 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
797 chip->dev_ready = s3c2440_nand_devready;
798 chip->read_buf = s3c2440_nand_read_buf;
799 chip->write_buf = s3c2440_nand_write_buf;
800 break;
802 case TYPE_S3C2412:
803 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
804 info->sel_reg = regs + S3C2440_NFCONT;
805 info->sel_bit = S3C2412_NFCONT_nFCE0;
806 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
807 chip->dev_ready = s3c2412_nand_devready;
809 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
810 dev_info(info->device, "System booted from NAND\n");
812 break;
815 chip->IO_ADDR_R = chip->IO_ADDR_W;
817 nmtd->info = info;
818 nmtd->mtd.priv = chip;
819 nmtd->mtd.owner = THIS_MODULE;
820 nmtd->set = set;
822 if (hardware_ecc) {
823 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
824 chip->ecc.correct = s3c2410_nand_correct_data;
825 chip->ecc.mode = NAND_ECC_HW;
827 switch (info->cpu_type) {
828 case TYPE_S3C2410:
829 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
830 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
831 break;
833 case TYPE_S3C2412:
834 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
835 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
836 break;
838 case TYPE_S3C2440:
839 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
840 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
841 break;
844 } else {
845 chip->ecc.mode = NAND_ECC_SOFT;
848 if (set->ecc_layout != NULL)
849 chip->ecc.layout = set->ecc_layout;
851 if (set->disable_ecc)
852 chip->ecc.mode = NAND_ECC_NONE;
854 switch (chip->ecc.mode) {
855 case NAND_ECC_NONE:
856 dev_info(info->device, "NAND ECC disabled\n");
857 break;
858 case NAND_ECC_SOFT:
859 dev_info(info->device, "NAND soft ECC\n");
860 break;
861 case NAND_ECC_HW:
862 dev_info(info->device, "NAND hardware ECC\n");
863 break;
864 default:
865 dev_info(info->device, "NAND ECC UNKNOWN\n");
866 break;
869 /* If you use u-boot BBT creation code, specifying this flag will
870 * let the kernel fish out the BBT from the NAND, and also skip the
871 * full NAND scan that can take 1/2s or so. Little things... */
872 if (set->flash_bbt) {
873 chip->bbt_options |= NAND_BBT_USE_FLASH;
874 chip->options |= NAND_SKIP_BBTSCAN;
879 * s3c2410_nand_update_chip - post probe update
880 * @info: The controller instance.
881 * @nmtd: The driver version of the MTD instance.
883 * This routine is called after the chip probe has successfully completed
884 * and the relevant per-chip information updated. This call ensure that
885 * we update the internal state accordingly.
887 * The internal state is currently limited to the ECC state information.
889 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
890 struct s3c2410_nand_mtd *nmtd)
892 struct nand_chip *chip = &nmtd->chip;
894 dev_dbg(info->device, "chip %p => page shift %d\n",
895 chip, chip->page_shift);
897 if (chip->ecc.mode != NAND_ECC_HW)
898 return;
900 /* change the behaviour depending on wether we are using
901 * the large or small page nand device */
903 if (chip->page_shift > 10) {
904 chip->ecc.size = 256;
905 chip->ecc.bytes = 3;
906 } else {
907 chip->ecc.size = 512;
908 chip->ecc.bytes = 3;
909 chip->ecc.layout = &nand_hw_eccoob;
913 /* s3c24xx_nand_probe
915 * called by device layer when it finds a device matching
916 * one our driver can handled. This code checks to see if
917 * it can allocate all necessary resources then calls the
918 * nand layer to look for devices
920 static int s3c24xx_nand_probe(struct platform_device *pdev)
922 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
923 enum s3c_cpu_type cpu_type;
924 struct s3c2410_nand_info *info;
925 struct s3c2410_nand_mtd *nmtd;
926 struct s3c2410_nand_set *sets;
927 struct resource *res;
928 int err = 0;
929 int size;
930 int nr_sets;
931 int setno;
933 cpu_type = platform_get_device_id(pdev)->driver_data;
935 pr_debug("s3c2410_nand_probe(%p)\n", pdev);
937 info = kzalloc(sizeof(*info), GFP_KERNEL);
938 if (info == NULL) {
939 dev_err(&pdev->dev, "no memory for flash info\n");
940 err = -ENOMEM;
941 goto exit_error;
944 platform_set_drvdata(pdev, info);
946 spin_lock_init(&info->controller.lock);
947 init_waitqueue_head(&info->controller.wq);
949 /* get the clock source and enable it */
951 info->clk = clk_get(&pdev->dev, "nand");
952 if (IS_ERR(info->clk)) {
953 dev_err(&pdev->dev, "failed to get clock\n");
954 err = -ENOENT;
955 goto exit_error;
958 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
960 /* allocate and map the resource */
962 /* currently we assume we have the one resource */
963 res = pdev->resource;
964 size = resource_size(res);
966 info->area = request_mem_region(res->start, size, pdev->name);
968 if (info->area == NULL) {
969 dev_err(&pdev->dev, "cannot reserve register region\n");
970 err = -ENOENT;
971 goto exit_error;
974 info->device = &pdev->dev;
975 info->platform = plat;
976 info->regs = ioremap(res->start, size);
977 info->cpu_type = cpu_type;
979 if (info->regs == NULL) {
980 dev_err(&pdev->dev, "cannot reserve register region\n");
981 err = -EIO;
982 goto exit_error;
985 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
987 /* initialise the hardware */
989 err = s3c2410_nand_inithw(info);
990 if (err != 0)
991 goto exit_error;
993 sets = (plat != NULL) ? plat->sets : NULL;
994 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
996 info->mtd_count = nr_sets;
998 /* allocate our information */
1000 size = nr_sets * sizeof(*info->mtds);
1001 info->mtds = kzalloc(size, GFP_KERNEL);
1002 if (info->mtds == NULL) {
1003 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
1004 err = -ENOMEM;
1005 goto exit_error;
1008 /* initialise all possible chips */
1010 nmtd = info->mtds;
1012 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1013 pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
1015 s3c2410_nand_init_chip(info, nmtd, sets);
1017 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
1018 (sets) ? sets->nr_chips : 1,
1019 NULL);
1021 if (nmtd->scan_res == 0) {
1022 s3c2410_nand_update_chip(info, nmtd);
1023 nand_scan_tail(&nmtd->mtd);
1024 s3c2410_nand_add_partition(info, nmtd, sets);
1027 if (sets != NULL)
1028 sets++;
1031 err = s3c2410_nand_cpufreq_register(info);
1032 if (err < 0) {
1033 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1034 goto exit_error;
1037 if (allow_clk_suspend(info)) {
1038 dev_info(&pdev->dev, "clock idle support enabled\n");
1039 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1042 pr_debug("initialised ok\n");
1043 return 0;
1045 exit_error:
1046 s3c24xx_nand_remove(pdev);
1048 if (err == 0)
1049 err = -EINVAL;
1050 return err;
1053 /* PM Support */
1054 #ifdef CONFIG_PM
1056 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1058 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1060 if (info) {
1061 info->save_sel = readl(info->sel_reg);
1063 /* For the moment, we must ensure nFCE is high during
1064 * the time we are suspended. This really should be
1065 * handled by suspending the MTDs we are using, but
1066 * that is currently not the case. */
1068 writel(info->save_sel | info->sel_bit, info->sel_reg);
1070 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1073 return 0;
1076 static int s3c24xx_nand_resume(struct platform_device *dev)
1078 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1079 unsigned long sel;
1081 if (info) {
1082 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1083 s3c2410_nand_inithw(info);
1085 /* Restore the state of the nFCE line. */
1087 sel = readl(info->sel_reg);
1088 sel &= ~info->sel_bit;
1089 sel |= info->save_sel & info->sel_bit;
1090 writel(sel, info->sel_reg);
1092 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1095 return 0;
1098 #else
1099 #define s3c24xx_nand_suspend NULL
1100 #define s3c24xx_nand_resume NULL
1101 #endif
1103 /* driver device registration */
1105 static struct platform_device_id s3c24xx_driver_ids[] = {
1107 .name = "s3c2410-nand",
1108 .driver_data = TYPE_S3C2410,
1109 }, {
1110 .name = "s3c2440-nand",
1111 .driver_data = TYPE_S3C2440,
1112 }, {
1113 .name = "s3c2412-nand",
1114 .driver_data = TYPE_S3C2412,
1115 }, {
1116 .name = "s3c6400-nand",
1117 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1122 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1124 static struct platform_driver s3c24xx_nand_driver = {
1125 .probe = s3c24xx_nand_probe,
1126 .remove = s3c24xx_nand_remove,
1127 .suspend = s3c24xx_nand_suspend,
1128 .resume = s3c24xx_nand_resume,
1129 .id_table = s3c24xx_driver_ids,
1130 .driver = {
1131 .name = "s3c24xx-nand",
1132 .owner = THIS_MODULE,
1136 static int __init s3c2410_nand_init(void)
1138 printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
1140 return platform_driver_register(&s3c24xx_nand_driver);
1143 static void __exit s3c2410_nand_exit(void)
1145 platform_driver_unregister(&s3c24xx_nand_driver);
1148 module_init(s3c2410_nand_init);
1149 module_exit(s3c2410_nand_exit);
1151 MODULE_LICENSE("GPL");
1152 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1153 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");