1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2011 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
40 #include <linux/if_vlan.h>
43 #include <net/checksum.h>
44 #include <linux/workqueue.h>
45 #include <linux/crc32.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/firmware.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
52 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
59 #define DRV_MODULE_NAME "bnx2"
60 #define DRV_MODULE_VERSION "2.2.1"
61 #define DRV_MODULE_RELDATE "Dec 18, 2011"
62 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
63 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
64 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
65 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
66 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
68 #define RUN_AT(x) (jiffies + (x))
70 /* Time in jiffies before concluding the transmitter is hung. */
71 #define TX_TIMEOUT (5*HZ)
73 static char version
[] __devinitdata
=
74 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
76 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
77 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
78 MODULE_LICENSE("GPL");
79 MODULE_VERSION(DRV_MODULE_VERSION
);
80 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
81 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
82 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
86 static int disable_msi
= 0;
88 module_param(disable_msi
, int, 0);
89 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
105 /* indexed by board_t, above */
108 } board_info
[] __devinitdata
= {
109 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
110 { "HP NC370T Multifunction Gigabit Server Adapter" },
111 { "HP NC370i Multifunction Gigabit Server Adapter" },
112 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
113 { "HP NC370F Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
122 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
123 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
124 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
126 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
129 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
131 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
132 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
133 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
134 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
135 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
136 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
137 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
138 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
139 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
140 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
141 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
142 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
143 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
144 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
148 static const struct flash_spec flash_table
[] =
150 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
151 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
153 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
154 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
155 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
157 /* Expansion entry 0001 */
158 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
159 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
160 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
162 /* Saifun SA25F010 (non-buffered flash) */
163 /* strap, cfg1, & write1 need updates */
164 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
165 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
166 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
167 "Non-buffered flash (128kB)"},
168 /* Saifun SA25F020 (non-buffered flash) */
169 /* strap, cfg1, & write1 need updates */
170 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
172 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
173 "Non-buffered flash (256kB)"},
174 /* Expansion entry 0100 */
175 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
177 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
179 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
180 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
181 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
182 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
183 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
184 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
185 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
186 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
187 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
188 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
189 /* Saifun SA25F005 (non-buffered flash) */
190 /* strap, cfg1, & write1 need updates */
191 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
193 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
194 "Non-buffered flash (64kB)"},
196 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
197 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
198 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
200 /* Expansion entry 1001 */
201 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
202 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
203 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
205 /* Expansion entry 1010 */
206 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
208 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
210 /* ATMEL AT45DB011B (buffered flash) */
211 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
212 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
213 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
214 "Buffered flash (128kB)"},
215 /* Expansion entry 1100 */
216 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
218 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
220 /* Expansion entry 1101 */
221 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
223 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
225 /* Ateml Expansion entry 1110 */
226 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
227 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
228 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
229 "Entry 1110 (Atmel)"},
230 /* ATMEL AT45DB021B (buffered flash) */
231 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
232 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
233 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
234 "Buffered flash (256kB)"},
237 static const struct flash_spec flash_5709
= {
238 .flags
= BNX2_NV_BUFFERED
,
239 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
240 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
241 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
242 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
243 .name
= "5709 Buffered flash (256kB)",
246 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
248 static void bnx2_init_napi(struct bnx2
*bp
);
249 static void bnx2_del_napi(struct bnx2
*bp
);
251 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
255 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
258 /* The ring uses 256 indices for 255 entries, one of them
259 * needs to be skipped.
261 diff
= txr
->tx_prod
- txr
->tx_cons
;
262 if (unlikely(diff
>= TX_DESC_CNT
)) {
264 if (diff
== TX_DESC_CNT
)
265 diff
= MAX_TX_DESC_CNT
;
267 return bp
->tx_ring_size
- diff
;
271 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
275 spin_lock_bh(&bp
->indirect_lock
);
276 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
277 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
278 spin_unlock_bh(&bp
->indirect_lock
);
283 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
285 spin_lock_bh(&bp
->indirect_lock
);
286 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
287 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
288 spin_unlock_bh(&bp
->indirect_lock
);
292 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
294 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
298 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
300 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
304 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
307 spin_lock_bh(&bp
->indirect_lock
);
308 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
311 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
312 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
313 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
314 for (i
= 0; i
< 5; i
++) {
315 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
316 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
321 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
322 REG_WR(bp
, BNX2_CTX_DATA
, val
);
324 spin_unlock_bh(&bp
->indirect_lock
);
329 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
331 struct bnx2
*bp
= netdev_priv(dev
);
332 struct drv_ctl_io
*io
= &info
->data
.io
;
335 case DRV_CTL_IO_WR_CMD
:
336 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
338 case DRV_CTL_IO_RD_CMD
:
339 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
341 case DRV_CTL_CTX_WR_CMD
:
342 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
350 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
352 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
353 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
356 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
357 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
358 bnapi
->cnic_present
= 0;
359 sb_id
= bp
->irq_nvecs
;
360 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
362 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
363 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
364 bnapi
->cnic_present
= 1;
366 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
369 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
370 cp
->irq_arr
[0].status_blk
= (void *)
371 ((unsigned long) bnapi
->status_blk
.msi
+
372 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
373 cp
->irq_arr
[0].status_blk_num
= sb_id
;
377 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
380 struct bnx2
*bp
= netdev_priv(dev
);
381 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
386 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
389 if (!bnx2_reg_rd_ind(bp
, BNX2_FW_MAX_ISCSI_CONN
))
392 bp
->cnic_data
= data
;
393 rcu_assign_pointer(bp
->cnic_ops
, ops
);
396 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
398 bnx2_setup_cnic_irq_info(bp
);
403 static int bnx2_unregister_cnic(struct net_device
*dev
)
405 struct bnx2
*bp
= netdev_priv(dev
);
406 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
407 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
409 mutex_lock(&bp
->cnic_lock
);
411 bnapi
->cnic_present
= 0;
412 RCU_INIT_POINTER(bp
->cnic_ops
, NULL
);
413 mutex_unlock(&bp
->cnic_lock
);
418 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
420 struct bnx2
*bp
= netdev_priv(dev
);
421 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
423 if (!cp
->max_iscsi_conn
)
426 cp
->drv_owner
= THIS_MODULE
;
427 cp
->chip_id
= bp
->chip_id
;
429 cp
->io_base
= bp
->regview
;
430 cp
->drv_ctl
= bnx2_drv_ctl
;
431 cp
->drv_register_cnic
= bnx2_register_cnic
;
432 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
436 EXPORT_SYMBOL(bnx2_cnic_probe
);
439 bnx2_cnic_stop(struct bnx2
*bp
)
441 struct cnic_ops
*c_ops
;
442 struct cnic_ctl_info info
;
444 mutex_lock(&bp
->cnic_lock
);
445 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
446 lockdep_is_held(&bp
->cnic_lock
));
448 info
.cmd
= CNIC_CTL_STOP_CMD
;
449 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
451 mutex_unlock(&bp
->cnic_lock
);
455 bnx2_cnic_start(struct bnx2
*bp
)
457 struct cnic_ops
*c_ops
;
458 struct cnic_ctl_info info
;
460 mutex_lock(&bp
->cnic_lock
);
461 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
462 lockdep_is_held(&bp
->cnic_lock
));
464 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
465 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
467 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
469 info
.cmd
= CNIC_CTL_START_CMD
;
470 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
472 mutex_unlock(&bp
->cnic_lock
);
478 bnx2_cnic_stop(struct bnx2
*bp
)
483 bnx2_cnic_start(struct bnx2
*bp
)
490 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
495 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
496 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
497 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
499 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
500 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
505 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
506 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
507 BNX2_EMAC_MDIO_COMM_START_BUSY
;
508 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
510 for (i
= 0; i
< 50; i
++) {
513 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
514 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
517 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
518 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
524 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
533 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
534 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
535 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
537 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
538 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
547 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
552 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
553 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
554 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
556 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
557 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
562 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
563 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
564 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
565 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
567 for (i
= 0; i
< 50; i
++) {
570 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
571 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
577 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
582 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
583 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
584 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
586 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
587 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
596 bnx2_disable_int(struct bnx2
*bp
)
599 struct bnx2_napi
*bnapi
;
601 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
602 bnapi
= &bp
->bnx2_napi
[i
];
603 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
604 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
606 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
610 bnx2_enable_int(struct bnx2
*bp
)
613 struct bnx2_napi
*bnapi
;
615 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
616 bnapi
= &bp
->bnx2_napi
[i
];
618 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
619 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
620 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
621 bnapi
->last_status_idx
);
623 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
624 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
625 bnapi
->last_status_idx
);
627 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
631 bnx2_disable_int_sync(struct bnx2
*bp
)
635 atomic_inc(&bp
->intr_sem
);
636 if (!netif_running(bp
->dev
))
639 bnx2_disable_int(bp
);
640 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
641 synchronize_irq(bp
->irq_tbl
[i
].vector
);
645 bnx2_napi_disable(struct bnx2
*bp
)
649 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
650 napi_disable(&bp
->bnx2_napi
[i
].napi
);
654 bnx2_napi_enable(struct bnx2
*bp
)
658 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
659 napi_enable(&bp
->bnx2_napi
[i
].napi
);
663 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
667 if (netif_running(bp
->dev
)) {
668 bnx2_napi_disable(bp
);
669 netif_tx_disable(bp
->dev
);
671 bnx2_disable_int_sync(bp
);
672 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
676 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
678 if (atomic_dec_and_test(&bp
->intr_sem
)) {
679 if (netif_running(bp
->dev
)) {
680 netif_tx_wake_all_queues(bp
->dev
);
681 spin_lock_bh(&bp
->phy_lock
);
683 netif_carrier_on(bp
->dev
);
684 spin_unlock_bh(&bp
->phy_lock
);
685 bnx2_napi_enable(bp
);
694 bnx2_free_tx_mem(struct bnx2
*bp
)
698 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
699 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
700 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
702 if (txr
->tx_desc_ring
) {
703 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
705 txr
->tx_desc_mapping
);
706 txr
->tx_desc_ring
= NULL
;
708 kfree(txr
->tx_buf_ring
);
709 txr
->tx_buf_ring
= NULL
;
714 bnx2_free_rx_mem(struct bnx2
*bp
)
718 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
719 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
720 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
723 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
724 if (rxr
->rx_desc_ring
[j
])
725 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
726 rxr
->rx_desc_ring
[j
],
727 rxr
->rx_desc_mapping
[j
]);
728 rxr
->rx_desc_ring
[j
] = NULL
;
730 vfree(rxr
->rx_buf_ring
);
731 rxr
->rx_buf_ring
= NULL
;
733 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
734 if (rxr
->rx_pg_desc_ring
[j
])
735 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
736 rxr
->rx_pg_desc_ring
[j
],
737 rxr
->rx_pg_desc_mapping
[j
]);
738 rxr
->rx_pg_desc_ring
[j
] = NULL
;
740 vfree(rxr
->rx_pg_ring
);
741 rxr
->rx_pg_ring
= NULL
;
746 bnx2_alloc_tx_mem(struct bnx2
*bp
)
750 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
751 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
752 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
754 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
755 if (txr
->tx_buf_ring
== NULL
)
759 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
760 &txr
->tx_desc_mapping
, GFP_KERNEL
);
761 if (txr
->tx_desc_ring
== NULL
)
768 bnx2_alloc_rx_mem(struct bnx2
*bp
)
772 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
773 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
774 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
778 vzalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
779 if (rxr
->rx_buf_ring
== NULL
)
782 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
783 rxr
->rx_desc_ring
[j
] =
784 dma_alloc_coherent(&bp
->pdev
->dev
,
786 &rxr
->rx_desc_mapping
[j
],
788 if (rxr
->rx_desc_ring
[j
] == NULL
)
793 if (bp
->rx_pg_ring_size
) {
794 rxr
->rx_pg_ring
= vzalloc(SW_RXPG_RING_SIZE
*
796 if (rxr
->rx_pg_ring
== NULL
)
801 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
802 rxr
->rx_pg_desc_ring
[j
] =
803 dma_alloc_coherent(&bp
->pdev
->dev
,
805 &rxr
->rx_pg_desc_mapping
[j
],
807 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
816 bnx2_free_mem(struct bnx2
*bp
)
819 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
821 bnx2_free_tx_mem(bp
);
822 bnx2_free_rx_mem(bp
);
824 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
825 if (bp
->ctx_blk
[i
]) {
826 dma_free_coherent(&bp
->pdev
->dev
, BCM_PAGE_SIZE
,
828 bp
->ctx_blk_mapping
[i
]);
829 bp
->ctx_blk
[i
] = NULL
;
832 if (bnapi
->status_blk
.msi
) {
833 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
834 bnapi
->status_blk
.msi
,
835 bp
->status_blk_mapping
);
836 bnapi
->status_blk
.msi
= NULL
;
837 bp
->stats_blk
= NULL
;
842 bnx2_alloc_mem(struct bnx2
*bp
)
844 int i
, status_blk_size
, err
;
845 struct bnx2_napi
*bnapi
;
848 /* Combine status and statistics blocks into one allocation. */
849 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
850 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
851 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
852 BNX2_SBLK_MSIX_ALIGN_SIZE
);
853 bp
->status_stats_size
= status_blk_size
+
854 sizeof(struct statistics_block
);
856 status_blk
= dma_alloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
857 &bp
->status_blk_mapping
, GFP_KERNEL
);
858 if (status_blk
== NULL
)
861 memset(status_blk
, 0, bp
->status_stats_size
);
863 bnapi
= &bp
->bnx2_napi
[0];
864 bnapi
->status_blk
.msi
= status_blk
;
865 bnapi
->hw_tx_cons_ptr
=
866 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
867 bnapi
->hw_rx_cons_ptr
=
868 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
869 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
870 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
871 struct status_block_msix
*sblk
;
873 bnapi
= &bp
->bnx2_napi
[i
];
875 sblk
= (void *) (status_blk
+
876 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
877 bnapi
->status_blk
.msix
= sblk
;
878 bnapi
->hw_tx_cons_ptr
=
879 &sblk
->status_tx_quick_consumer_index
;
880 bnapi
->hw_rx_cons_ptr
=
881 &sblk
->status_rx_quick_consumer_index
;
882 bnapi
->int_num
= i
<< 24;
886 bp
->stats_blk
= status_blk
+ status_blk_size
;
888 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
890 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
891 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
892 if (bp
->ctx_pages
== 0)
894 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
895 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
897 &bp
->ctx_blk_mapping
[i
],
899 if (bp
->ctx_blk
[i
] == NULL
)
904 err
= bnx2_alloc_rx_mem(bp
);
908 err
= bnx2_alloc_tx_mem(bp
);
920 bnx2_report_fw_link(struct bnx2
*bp
)
922 u32 fw_link_status
= 0;
924 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
930 switch (bp
->line_speed
) {
932 if (bp
->duplex
== DUPLEX_HALF
)
933 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
935 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
938 if (bp
->duplex
== DUPLEX_HALF
)
939 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
941 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
944 if (bp
->duplex
== DUPLEX_HALF
)
945 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
947 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
950 if (bp
->duplex
== DUPLEX_HALF
)
951 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
953 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
957 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
960 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
962 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
963 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
965 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
966 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
967 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
969 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
973 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
975 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
979 bnx2_xceiver_str(struct bnx2
*bp
)
981 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
982 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
987 bnx2_report_link(struct bnx2
*bp
)
990 netif_carrier_on(bp
->dev
);
991 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
992 bnx2_xceiver_str(bp
),
994 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
997 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
998 pr_cont(", receive ");
999 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1000 pr_cont("& transmit ");
1003 pr_cont(", transmit ");
1005 pr_cont("flow control ON");
1009 netif_carrier_off(bp
->dev
);
1010 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1011 bnx2_xceiver_str(bp
));
1014 bnx2_report_fw_link(bp
);
1018 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1020 u32 local_adv
, remote_adv
;
1023 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1024 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1026 if (bp
->duplex
== DUPLEX_FULL
) {
1027 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1032 if (bp
->duplex
!= DUPLEX_FULL
) {
1036 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1037 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1040 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1041 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1042 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1043 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1044 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1048 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1049 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1051 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1052 u32 new_local_adv
= 0;
1053 u32 new_remote_adv
= 0;
1055 if (local_adv
& ADVERTISE_1000XPAUSE
)
1056 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1057 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1058 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1059 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1060 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1061 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1062 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1064 local_adv
= new_local_adv
;
1065 remote_adv
= new_remote_adv
;
1068 /* See Table 28B-3 of 802.3ab-1999 spec. */
1069 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1070 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1071 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1072 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1074 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1075 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1079 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1080 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1084 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1085 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1086 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1088 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1094 bnx2_5709s_linkup(struct bnx2
*bp
)
1100 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1101 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1102 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1104 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1105 bp
->line_speed
= bp
->req_line_speed
;
1106 bp
->duplex
= bp
->req_duplex
;
1109 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1111 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1112 bp
->line_speed
= SPEED_10
;
1114 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1115 bp
->line_speed
= SPEED_100
;
1117 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1118 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1119 bp
->line_speed
= SPEED_1000
;
1121 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1122 bp
->line_speed
= SPEED_2500
;
1125 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1126 bp
->duplex
= DUPLEX_FULL
;
1128 bp
->duplex
= DUPLEX_HALF
;
1133 bnx2_5708s_linkup(struct bnx2
*bp
)
1138 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1139 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1140 case BCM5708S_1000X_STAT1_SPEED_10
:
1141 bp
->line_speed
= SPEED_10
;
1143 case BCM5708S_1000X_STAT1_SPEED_100
:
1144 bp
->line_speed
= SPEED_100
;
1146 case BCM5708S_1000X_STAT1_SPEED_1G
:
1147 bp
->line_speed
= SPEED_1000
;
1149 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1150 bp
->line_speed
= SPEED_2500
;
1153 if (val
& BCM5708S_1000X_STAT1_FD
)
1154 bp
->duplex
= DUPLEX_FULL
;
1156 bp
->duplex
= DUPLEX_HALF
;
1162 bnx2_5706s_linkup(struct bnx2
*bp
)
1164 u32 bmcr
, local_adv
, remote_adv
, common
;
1167 bp
->line_speed
= SPEED_1000
;
1169 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1170 if (bmcr
& BMCR_FULLDPLX
) {
1171 bp
->duplex
= DUPLEX_FULL
;
1174 bp
->duplex
= DUPLEX_HALF
;
1177 if (!(bmcr
& BMCR_ANENABLE
)) {
1181 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1182 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1184 common
= local_adv
& remote_adv
;
1185 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1187 if (common
& ADVERTISE_1000XFULL
) {
1188 bp
->duplex
= DUPLEX_FULL
;
1191 bp
->duplex
= DUPLEX_HALF
;
1199 bnx2_copper_linkup(struct bnx2
*bp
)
1203 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1204 if (bmcr
& BMCR_ANENABLE
) {
1205 u32 local_adv
, remote_adv
, common
;
1207 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1208 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1210 common
= local_adv
& (remote_adv
>> 2);
1211 if (common
& ADVERTISE_1000FULL
) {
1212 bp
->line_speed
= SPEED_1000
;
1213 bp
->duplex
= DUPLEX_FULL
;
1215 else if (common
& ADVERTISE_1000HALF
) {
1216 bp
->line_speed
= SPEED_1000
;
1217 bp
->duplex
= DUPLEX_HALF
;
1220 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1221 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1223 common
= local_adv
& remote_adv
;
1224 if (common
& ADVERTISE_100FULL
) {
1225 bp
->line_speed
= SPEED_100
;
1226 bp
->duplex
= DUPLEX_FULL
;
1228 else if (common
& ADVERTISE_100HALF
) {
1229 bp
->line_speed
= SPEED_100
;
1230 bp
->duplex
= DUPLEX_HALF
;
1232 else if (common
& ADVERTISE_10FULL
) {
1233 bp
->line_speed
= SPEED_10
;
1234 bp
->duplex
= DUPLEX_FULL
;
1236 else if (common
& ADVERTISE_10HALF
) {
1237 bp
->line_speed
= SPEED_10
;
1238 bp
->duplex
= DUPLEX_HALF
;
1247 if (bmcr
& BMCR_SPEED100
) {
1248 bp
->line_speed
= SPEED_100
;
1251 bp
->line_speed
= SPEED_10
;
1253 if (bmcr
& BMCR_FULLDPLX
) {
1254 bp
->duplex
= DUPLEX_FULL
;
1257 bp
->duplex
= DUPLEX_HALF
;
1265 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1267 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1269 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1270 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1273 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1274 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1276 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1280 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1285 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1288 bnx2_init_rx_context(bp
, cid
);
1293 bnx2_set_mac_link(struct bnx2
*bp
)
1297 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1298 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1299 (bp
->duplex
== DUPLEX_HALF
)) {
1300 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1303 /* Configure the EMAC mode register. */
1304 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1306 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1307 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1308 BNX2_EMAC_MODE_25G_MODE
);
1311 switch (bp
->line_speed
) {
1313 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1314 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1319 val
|= BNX2_EMAC_MODE_PORT_MII
;
1322 val
|= BNX2_EMAC_MODE_25G_MODE
;
1325 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1330 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1333 /* Set the MAC to operate in the appropriate duplex mode. */
1334 if (bp
->duplex
== DUPLEX_HALF
)
1335 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1336 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1338 /* Enable/disable rx PAUSE. */
1339 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1341 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1342 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1343 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1345 /* Enable/disable tx PAUSE. */
1346 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1347 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1349 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1350 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1351 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1353 /* Acknowledge the interrupt. */
1354 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1356 bnx2_init_all_rx_contexts(bp
);
1360 bnx2_enable_bmsr1(struct bnx2
*bp
)
1362 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1363 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1364 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1365 MII_BNX2_BLK_ADDR_GP_STATUS
);
1369 bnx2_disable_bmsr1(struct bnx2
*bp
)
1371 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1372 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1373 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1374 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1378 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1383 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1386 if (bp
->autoneg
& AUTONEG_SPEED
)
1387 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1389 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1390 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1392 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1393 if (!(up1
& BCM5708S_UP1_2G5
)) {
1394 up1
|= BCM5708S_UP1_2G5
;
1395 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1399 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1400 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1401 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1407 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1412 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1415 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1416 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1418 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1419 if (up1
& BCM5708S_UP1_2G5
) {
1420 up1
&= ~BCM5708S_UP1_2G5
;
1421 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1425 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1426 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1427 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1433 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1435 u32
uninitialized_var(bmcr
);
1438 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1441 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1444 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1445 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1446 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1447 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1448 val
|= MII_BNX2_SD_MISC1_FORCE
|
1449 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1450 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1453 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1454 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1455 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1457 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1458 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1460 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1468 if (bp
->autoneg
& AUTONEG_SPEED
) {
1469 bmcr
&= ~BMCR_ANENABLE
;
1470 if (bp
->req_duplex
== DUPLEX_FULL
)
1471 bmcr
|= BMCR_FULLDPLX
;
1473 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1477 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1479 u32
uninitialized_var(bmcr
);
1482 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1485 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1488 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1489 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1490 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1491 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1492 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1495 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1496 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1497 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1499 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1500 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1502 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1510 if (bp
->autoneg
& AUTONEG_SPEED
)
1511 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1512 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1516 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1520 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1521 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1523 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1525 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1529 bnx2_set_link(struct bnx2
*bp
)
1534 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1539 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1542 link_up
= bp
->link_up
;
1544 bnx2_enable_bmsr1(bp
);
1545 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1546 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1547 bnx2_disable_bmsr1(bp
);
1549 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1550 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1553 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1554 bnx2_5706s_force_link_dn(bp
, 0);
1555 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1557 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1559 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1560 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1561 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1563 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1564 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1565 bmsr
|= BMSR_LSTATUS
;
1567 bmsr
&= ~BMSR_LSTATUS
;
1570 if (bmsr
& BMSR_LSTATUS
) {
1573 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1574 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1575 bnx2_5706s_linkup(bp
);
1576 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1577 bnx2_5708s_linkup(bp
);
1578 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1579 bnx2_5709s_linkup(bp
);
1582 bnx2_copper_linkup(bp
);
1584 bnx2_resolve_flow_ctrl(bp
);
1587 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1588 (bp
->autoneg
& AUTONEG_SPEED
))
1589 bnx2_disable_forced_2g5(bp
);
1591 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1594 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1595 bmcr
|= BMCR_ANENABLE
;
1596 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1598 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1603 if (bp
->link_up
!= link_up
) {
1604 bnx2_report_link(bp
);
1607 bnx2_set_mac_link(bp
);
1613 bnx2_reset_phy(struct bnx2
*bp
)
1618 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1620 #define PHY_RESET_MAX_WAIT 100
1621 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1624 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1625 if (!(reg
& BMCR_RESET
)) {
1630 if (i
== PHY_RESET_MAX_WAIT
) {
1637 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1641 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1642 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1644 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1645 adv
= ADVERTISE_1000XPAUSE
;
1648 adv
= ADVERTISE_PAUSE_CAP
;
1651 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1652 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1653 adv
= ADVERTISE_1000XPSE_ASYM
;
1656 adv
= ADVERTISE_PAUSE_ASYM
;
1659 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1660 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1661 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1664 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1670 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1673 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1674 __releases(&bp
->phy_lock
)
1675 __acquires(&bp
->phy_lock
)
1677 u32 speed_arg
= 0, pause_adv
;
1679 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1681 if (bp
->autoneg
& AUTONEG_SPEED
) {
1682 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1683 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1684 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1685 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1686 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1687 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1688 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1689 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1690 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1691 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1692 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1693 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1694 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1696 if (bp
->req_line_speed
== SPEED_2500
)
1697 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1698 else if (bp
->req_line_speed
== SPEED_1000
)
1699 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1700 else if (bp
->req_line_speed
== SPEED_100
) {
1701 if (bp
->req_duplex
== DUPLEX_FULL
)
1702 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1704 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1705 } else if (bp
->req_line_speed
== SPEED_10
) {
1706 if (bp
->req_duplex
== DUPLEX_FULL
)
1707 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1709 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1713 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1714 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1715 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1716 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1718 if (port
== PORT_TP
)
1719 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1720 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1722 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1724 spin_unlock_bh(&bp
->phy_lock
);
1725 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1726 spin_lock_bh(&bp
->phy_lock
);
1732 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1733 __releases(&bp
->phy_lock
)
1734 __acquires(&bp
->phy_lock
)
1739 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1740 return bnx2_setup_remote_phy(bp
, port
);
1742 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1744 int force_link_down
= 0;
1746 if (bp
->req_line_speed
== SPEED_2500
) {
1747 if (!bnx2_test_and_enable_2g5(bp
))
1748 force_link_down
= 1;
1749 } else if (bp
->req_line_speed
== SPEED_1000
) {
1750 if (bnx2_test_and_disable_2g5(bp
))
1751 force_link_down
= 1;
1753 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1754 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1756 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1757 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1758 new_bmcr
|= BMCR_SPEED1000
;
1760 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1761 if (bp
->req_line_speed
== SPEED_2500
)
1762 bnx2_enable_forced_2g5(bp
);
1763 else if (bp
->req_line_speed
== SPEED_1000
) {
1764 bnx2_disable_forced_2g5(bp
);
1765 new_bmcr
&= ~0x2000;
1768 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1769 if (bp
->req_line_speed
== SPEED_2500
)
1770 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1772 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1775 if (bp
->req_duplex
== DUPLEX_FULL
) {
1776 adv
|= ADVERTISE_1000XFULL
;
1777 new_bmcr
|= BMCR_FULLDPLX
;
1780 adv
|= ADVERTISE_1000XHALF
;
1781 new_bmcr
&= ~BMCR_FULLDPLX
;
1783 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1784 /* Force a link down visible on the other side */
1786 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1787 ~(ADVERTISE_1000XFULL
|
1788 ADVERTISE_1000XHALF
));
1789 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1790 BMCR_ANRESTART
| BMCR_ANENABLE
);
1793 netif_carrier_off(bp
->dev
);
1794 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1795 bnx2_report_link(bp
);
1797 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1798 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1800 bnx2_resolve_flow_ctrl(bp
);
1801 bnx2_set_mac_link(bp
);
1806 bnx2_test_and_enable_2g5(bp
);
1808 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1809 new_adv
|= ADVERTISE_1000XFULL
;
1811 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1813 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1814 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1816 bp
->serdes_an_pending
= 0;
1817 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1818 /* Force a link down visible on the other side */
1820 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1821 spin_unlock_bh(&bp
->phy_lock
);
1823 spin_lock_bh(&bp
->phy_lock
);
1826 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1827 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1829 /* Speed up link-up time when the link partner
1830 * does not autonegotiate which is very common
1831 * in blade servers. Some blade servers use
1832 * IPMI for kerboard input and it's important
1833 * to minimize link disruptions. Autoneg. involves
1834 * exchanging base pages plus 3 next pages and
1835 * normally completes in about 120 msec.
1837 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1838 bp
->serdes_an_pending
= 1;
1839 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1841 bnx2_resolve_flow_ctrl(bp
);
1842 bnx2_set_mac_link(bp
);
1848 #define ETHTOOL_ALL_FIBRE_SPEED \
1849 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1850 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1851 (ADVERTISED_1000baseT_Full)
1853 #define ETHTOOL_ALL_COPPER_SPEED \
1854 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1855 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1856 ADVERTISED_1000baseT_Full)
1858 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1859 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1861 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1864 bnx2_set_default_remote_link(struct bnx2
*bp
)
1868 if (bp
->phy_port
== PORT_TP
)
1869 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1871 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1873 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1874 bp
->req_line_speed
= 0;
1875 bp
->autoneg
|= AUTONEG_SPEED
;
1876 bp
->advertising
= ADVERTISED_Autoneg
;
1877 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1878 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1879 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1880 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1881 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1882 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1883 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1884 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1885 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1886 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1887 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1888 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1891 bp
->advertising
= 0;
1892 bp
->req_duplex
= DUPLEX_FULL
;
1893 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1894 bp
->req_line_speed
= SPEED_10
;
1895 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1896 bp
->req_duplex
= DUPLEX_HALF
;
1898 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1899 bp
->req_line_speed
= SPEED_100
;
1900 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1901 bp
->req_duplex
= DUPLEX_HALF
;
1903 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1904 bp
->req_line_speed
= SPEED_1000
;
1905 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1906 bp
->req_line_speed
= SPEED_2500
;
1911 bnx2_set_default_link(struct bnx2
*bp
)
1913 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1914 bnx2_set_default_remote_link(bp
);
1918 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1919 bp
->req_line_speed
= 0;
1920 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1923 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1925 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1926 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1927 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1929 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1930 bp
->req_duplex
= DUPLEX_FULL
;
1933 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1937 bnx2_send_heart_beat(struct bnx2
*bp
)
1942 spin_lock(&bp
->indirect_lock
);
1943 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1944 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1945 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1946 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1947 spin_unlock(&bp
->indirect_lock
);
1951 bnx2_remote_phy_event(struct bnx2
*bp
)
1954 u8 link_up
= bp
->link_up
;
1957 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1959 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1960 bnx2_send_heart_beat(bp
);
1962 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1964 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1970 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1971 bp
->duplex
= DUPLEX_FULL
;
1973 case BNX2_LINK_STATUS_10HALF
:
1974 bp
->duplex
= DUPLEX_HALF
;
1975 case BNX2_LINK_STATUS_10FULL
:
1976 bp
->line_speed
= SPEED_10
;
1978 case BNX2_LINK_STATUS_100HALF
:
1979 bp
->duplex
= DUPLEX_HALF
;
1980 case BNX2_LINK_STATUS_100BASE_T4
:
1981 case BNX2_LINK_STATUS_100FULL
:
1982 bp
->line_speed
= SPEED_100
;
1984 case BNX2_LINK_STATUS_1000HALF
:
1985 bp
->duplex
= DUPLEX_HALF
;
1986 case BNX2_LINK_STATUS_1000FULL
:
1987 bp
->line_speed
= SPEED_1000
;
1989 case BNX2_LINK_STATUS_2500HALF
:
1990 bp
->duplex
= DUPLEX_HALF
;
1991 case BNX2_LINK_STATUS_2500FULL
:
1992 bp
->line_speed
= SPEED_2500
;
2000 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2001 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2002 if (bp
->duplex
== DUPLEX_FULL
)
2003 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2005 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2006 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2007 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2008 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2011 old_port
= bp
->phy_port
;
2012 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2013 bp
->phy_port
= PORT_FIBRE
;
2015 bp
->phy_port
= PORT_TP
;
2017 if (old_port
!= bp
->phy_port
)
2018 bnx2_set_default_link(bp
);
2021 if (bp
->link_up
!= link_up
)
2022 bnx2_report_link(bp
);
2024 bnx2_set_mac_link(bp
);
2028 bnx2_set_remote_link(struct bnx2
*bp
)
2032 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2034 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2035 bnx2_remote_phy_event(bp
);
2037 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2039 bnx2_send_heart_beat(bp
);
2046 bnx2_setup_copper_phy(struct bnx2
*bp
)
2047 __releases(&bp
->phy_lock
)
2048 __acquires(&bp
->phy_lock
)
2053 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2055 if (bp
->autoneg
& AUTONEG_SPEED
) {
2056 u32 adv_reg
, adv1000_reg
;
2058 u32 new_adv1000
= 0;
2060 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2061 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2062 ADVERTISE_PAUSE_ASYM
);
2064 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2065 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2067 new_adv
= ethtool_adv_to_mii_adv_t(bp
->advertising
);
2068 new_adv
|= ADVERTISE_CSMA
;
2069 new_adv
|= bnx2_phy_get_pause_adv(bp
);
2071 new_adv1000
|= ethtool_adv_to_mii_ctrl1000_t(bp
->advertising
);
2073 if ((adv1000_reg
!= new_adv1000
) ||
2074 (adv_reg
!= new_adv
) ||
2075 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2077 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2078 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000
);
2079 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2082 else if (bp
->link_up
) {
2083 /* Flow ctrl may have changed from auto to forced */
2084 /* or vice-versa. */
2086 bnx2_resolve_flow_ctrl(bp
);
2087 bnx2_set_mac_link(bp
);
2093 if (bp
->req_line_speed
== SPEED_100
) {
2094 new_bmcr
|= BMCR_SPEED100
;
2096 if (bp
->req_duplex
== DUPLEX_FULL
) {
2097 new_bmcr
|= BMCR_FULLDPLX
;
2099 if (new_bmcr
!= bmcr
) {
2102 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2103 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2105 if (bmsr
& BMSR_LSTATUS
) {
2106 /* Force link down */
2107 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2108 spin_unlock_bh(&bp
->phy_lock
);
2110 spin_lock_bh(&bp
->phy_lock
);
2112 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2113 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2116 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2118 /* Normally, the new speed is setup after the link has
2119 * gone down and up again. In some cases, link will not go
2120 * down so we need to set up the new speed here.
2122 if (bmsr
& BMSR_LSTATUS
) {
2123 bp
->line_speed
= bp
->req_line_speed
;
2124 bp
->duplex
= bp
->req_duplex
;
2125 bnx2_resolve_flow_ctrl(bp
);
2126 bnx2_set_mac_link(bp
);
2129 bnx2_resolve_flow_ctrl(bp
);
2130 bnx2_set_mac_link(bp
);
2136 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2137 __releases(&bp
->phy_lock
)
2138 __acquires(&bp
->phy_lock
)
2140 if (bp
->loopback
== MAC_LOOPBACK
)
2143 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2144 return bnx2_setup_serdes_phy(bp
, port
);
2147 return bnx2_setup_copper_phy(bp
);
2152 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2156 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2157 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2158 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2159 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2160 bp
->mii_lpa
= MII_LPA
+ 0x10;
2161 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2163 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2164 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2166 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2170 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2172 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2173 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2174 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2175 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2177 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2178 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2179 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2180 val
|= BCM5708S_UP1_2G5
;
2182 val
&= ~BCM5708S_UP1_2G5
;
2183 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2185 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2186 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2187 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2188 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2190 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2192 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2193 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2194 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2196 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2202 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2209 bp
->mii_up1
= BCM5708S_UP1
;
2211 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2212 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2213 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2215 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2216 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2217 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2219 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2220 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2221 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2223 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2224 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2225 val
|= BCM5708S_UP1_2G5
;
2226 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2229 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2230 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2231 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2232 /* increase tx signal amplitude */
2233 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2234 BCM5708S_BLK_ADDR_TX_MISC
);
2235 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2236 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2237 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2238 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2241 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2242 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2247 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2248 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2249 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2250 BCM5708S_BLK_ADDR_TX_MISC
);
2251 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2252 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2253 BCM5708S_BLK_ADDR_DIG
);
2260 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2265 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2267 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2268 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2270 if (bp
->dev
->mtu
> 1500) {
2273 /* Set extended packet length bit */
2274 bnx2_write_phy(bp
, 0x18, 0x7);
2275 bnx2_read_phy(bp
, 0x18, &val
);
2276 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2278 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2279 bnx2_read_phy(bp
, 0x1c, &val
);
2280 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2285 bnx2_write_phy(bp
, 0x18, 0x7);
2286 bnx2_read_phy(bp
, 0x18, &val
);
2287 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2289 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2290 bnx2_read_phy(bp
, 0x1c, &val
);
2291 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2298 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2305 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2306 bnx2_write_phy(bp
, 0x18, 0x0c00);
2307 bnx2_write_phy(bp
, 0x17, 0x000a);
2308 bnx2_write_phy(bp
, 0x15, 0x310b);
2309 bnx2_write_phy(bp
, 0x17, 0x201f);
2310 bnx2_write_phy(bp
, 0x15, 0x9506);
2311 bnx2_write_phy(bp
, 0x17, 0x401f);
2312 bnx2_write_phy(bp
, 0x15, 0x14e2);
2313 bnx2_write_phy(bp
, 0x18, 0x0400);
2316 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2317 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2318 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2319 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2321 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2324 if (bp
->dev
->mtu
> 1500) {
2325 /* Set extended packet length bit */
2326 bnx2_write_phy(bp
, 0x18, 0x7);
2327 bnx2_read_phy(bp
, 0x18, &val
);
2328 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2330 bnx2_read_phy(bp
, 0x10, &val
);
2331 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2334 bnx2_write_phy(bp
, 0x18, 0x7);
2335 bnx2_read_phy(bp
, 0x18, &val
);
2336 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2338 bnx2_read_phy(bp
, 0x10, &val
);
2339 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2342 /* ethernet@wirespeed */
2343 bnx2_write_phy(bp
, 0x18, 0x7007);
2344 bnx2_read_phy(bp
, 0x18, &val
);
2345 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2351 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2352 __releases(&bp
->phy_lock
)
2353 __acquires(&bp
->phy_lock
)
2358 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2359 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2361 bp
->mii_bmcr
= MII_BMCR
;
2362 bp
->mii_bmsr
= MII_BMSR
;
2363 bp
->mii_bmsr1
= MII_BMSR
;
2364 bp
->mii_adv
= MII_ADVERTISE
;
2365 bp
->mii_lpa
= MII_LPA
;
2367 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2369 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2372 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2373 bp
->phy_id
= val
<< 16;
2374 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2375 bp
->phy_id
|= val
& 0xffff;
2377 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2378 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2379 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2380 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2381 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2382 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2383 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2386 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2391 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2397 bnx2_set_mac_loopback(struct bnx2
*bp
)
2401 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2402 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2403 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2404 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2409 static int bnx2_test_link(struct bnx2
*);
2412 bnx2_set_phy_loopback(struct bnx2
*bp
)
2417 spin_lock_bh(&bp
->phy_lock
);
2418 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2420 spin_unlock_bh(&bp
->phy_lock
);
2424 for (i
= 0; i
< 10; i
++) {
2425 if (bnx2_test_link(bp
) == 0)
2430 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2431 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2432 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2433 BNX2_EMAC_MODE_25G_MODE
);
2435 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2436 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2442 bnx2_dump_mcp_state(struct bnx2
*bp
)
2444 struct net_device
*dev
= bp
->dev
;
2447 netdev_err(dev
, "<--- start MCP states dump --->\n");
2448 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
2449 mcp_p0
= BNX2_MCP_STATE_P0
;
2450 mcp_p1
= BNX2_MCP_STATE_P1
;
2452 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
2453 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
2455 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2456 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
2457 netdev_err(dev
, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2458 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_MODE
),
2459 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_STATE
),
2460 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_EVENT_MASK
));
2461 netdev_err(dev
, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2462 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2463 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2464 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_INSTRUCTION
));
2465 netdev_err(dev
, "DEBUG: shmem states:\n");
2466 netdev_err(dev
, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2467 bnx2_shmem_rd(bp
, BNX2_DRV_MB
),
2468 bnx2_shmem_rd(bp
, BNX2_FW_MB
),
2469 bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
));
2470 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp
, BNX2_DRV_PULSE_MB
));
2471 netdev_err(dev
, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2472 bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
),
2473 bnx2_shmem_rd(bp
, BNX2_BC_STATE_RESET_TYPE
));
2474 pr_cont(" condition[%08x]\n",
2475 bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
));
2476 DP_SHMEM_LINE(bp
, 0x3cc);
2477 DP_SHMEM_LINE(bp
, 0x3dc);
2478 DP_SHMEM_LINE(bp
, 0x3ec);
2479 netdev_err(dev
, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp
, 0x3fc));
2480 netdev_err(dev
, "<--- end MCP states dump --->\n");
2484 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2490 msg_data
|= bp
->fw_wr_seq
;
2492 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2497 /* wait for an acknowledgement. */
2498 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2501 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2503 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2506 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2509 /* If we timed out, inform the firmware that this is the case. */
2510 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2511 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2512 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2514 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2516 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2517 bnx2_dump_mcp_state(bp
);
2523 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2530 bnx2_init_5709_context(struct bnx2
*bp
)
2535 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2536 val
|= (BCM_PAGE_BITS
- 8) << 16;
2537 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2538 for (i
= 0; i
< 10; i
++) {
2539 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2540 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2544 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2547 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2551 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2555 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2556 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2557 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2558 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2559 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2560 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2561 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2562 for (j
= 0; j
< 10; j
++) {
2564 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2565 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2569 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2578 bnx2_init_context(struct bnx2
*bp
)
2584 u32 vcid_addr
, pcid_addr
, offset
;
2589 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2592 vcid_addr
= GET_PCID_ADDR(vcid
);
2594 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2599 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2602 vcid_addr
= GET_CID_ADDR(vcid
);
2603 pcid_addr
= vcid_addr
;
2606 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2607 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2608 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2610 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2611 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2613 /* Zero out the context. */
2614 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2615 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2621 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2627 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2628 if (good_mbuf
== NULL
) {
2629 pr_err("Failed to allocate memory in %s\n", __func__
);
2633 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2634 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2638 /* Allocate a bunch of mbufs and save the good ones in an array. */
2639 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2640 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2641 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2642 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2644 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2646 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2648 /* The addresses with Bit 9 set are bad memory blocks. */
2649 if (!(val
& (1 << 9))) {
2650 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2654 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2657 /* Free the good ones back to the mbuf pool thus discarding
2658 * all the bad ones. */
2659 while (good_mbuf_cnt
) {
2662 val
= good_mbuf
[good_mbuf_cnt
];
2663 val
= (val
<< 9) | val
| 1;
2665 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2672 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2676 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2678 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2680 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2681 (mac_addr
[4] << 8) | mac_addr
[5];
2683 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2687 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2690 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2691 struct rx_bd
*rxbd
=
2692 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2693 struct page
*page
= alloc_page(gfp
);
2697 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2698 PCI_DMA_FROMDEVICE
);
2699 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2705 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2706 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2707 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2712 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2714 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2715 struct page
*page
= rx_pg
->page
;
2720 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2721 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2728 bnx2_alloc_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2731 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2733 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2735 data
= kmalloc(bp
->rx_buf_size
, gfp
);
2739 mapping
= dma_map_single(&bp
->pdev
->dev
,
2741 bp
->rx_buf_use_size
,
2742 PCI_DMA_FROMDEVICE
);
2743 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2748 rx_buf
->data
= data
;
2749 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2751 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2752 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2754 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2760 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2762 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2763 u32 new_link_state
, old_link_state
;
2766 new_link_state
= sblk
->status_attn_bits
& event
;
2767 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2768 if (new_link_state
!= old_link_state
) {
2770 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2772 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2780 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2782 spin_lock(&bp
->phy_lock
);
2784 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2786 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2787 bnx2_set_remote_link(bp
);
2789 spin_unlock(&bp
->phy_lock
);
2794 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2798 /* Tell compiler that status block fields can change. */
2800 cons
= *bnapi
->hw_tx_cons_ptr
;
2802 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2808 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2810 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2811 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2812 int tx_pkt
= 0, index
;
2813 unsigned int tx_bytes
= 0;
2814 struct netdev_queue
*txq
;
2816 index
= (bnapi
- bp
->bnx2_napi
);
2817 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2819 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2820 sw_cons
= txr
->tx_cons
;
2822 while (sw_cons
!= hw_cons
) {
2823 struct sw_tx_bd
*tx_buf
;
2824 struct sk_buff
*skb
;
2827 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2829 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2832 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2833 prefetch(&skb
->end
);
2835 /* partial BD completions possible with TSO packets */
2836 if (tx_buf
->is_gso
) {
2837 u16 last_idx
, last_ring_idx
;
2839 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2840 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2841 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2844 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2849 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2850 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2853 last
= tx_buf
->nr_frags
;
2855 for (i
= 0; i
< last
; i
++) {
2856 sw_cons
= NEXT_TX_BD(sw_cons
);
2858 dma_unmap_page(&bp
->pdev
->dev
,
2860 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2862 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
2866 sw_cons
= NEXT_TX_BD(sw_cons
);
2868 tx_bytes
+= skb
->len
;
2871 if (tx_pkt
== budget
)
2874 if (hw_cons
== sw_cons
)
2875 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2878 netdev_tx_completed_queue(txq
, tx_pkt
, tx_bytes
);
2879 txr
->hw_tx_cons
= hw_cons
;
2880 txr
->tx_cons
= sw_cons
;
2882 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2883 * before checking for netif_tx_queue_stopped(). Without the
2884 * memory barrier, there is a small possibility that bnx2_start_xmit()
2885 * will miss it and cause the queue to be stopped forever.
2889 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2890 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2891 __netif_tx_lock(txq
, smp_processor_id());
2892 if ((netif_tx_queue_stopped(txq
)) &&
2893 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2894 netif_tx_wake_queue(txq
);
2895 __netif_tx_unlock(txq
);
2902 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2903 struct sk_buff
*skb
, int count
)
2905 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2906 struct rx_bd
*cons_bd
, *prod_bd
;
2909 u16 cons
= rxr
->rx_pg_cons
;
2911 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2913 /* The caller was unable to allocate a new page to replace the
2914 * last one in the frags array, so we need to recycle that page
2915 * and then free the skb.
2919 struct skb_shared_info
*shinfo
;
2921 shinfo
= skb_shinfo(skb
);
2923 page
= skb_frag_page(&shinfo
->frags
[shinfo
->nr_frags
]);
2924 __skb_frag_set_page(&shinfo
->frags
[shinfo
->nr_frags
], NULL
);
2926 cons_rx_pg
->page
= page
;
2930 hw_prod
= rxr
->rx_pg_prod
;
2932 for (i
= 0; i
< count
; i
++) {
2933 prod
= RX_PG_RING_IDX(hw_prod
);
2935 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2936 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2937 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2938 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2941 prod_rx_pg
->page
= cons_rx_pg
->page
;
2942 cons_rx_pg
->page
= NULL
;
2943 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2944 dma_unmap_addr(cons_rx_pg
, mapping
));
2946 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2947 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2950 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2951 hw_prod
= NEXT_RX_BD(hw_prod
);
2953 rxr
->rx_pg_prod
= hw_prod
;
2954 rxr
->rx_pg_cons
= cons
;
2958 bnx2_reuse_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2959 u8
*data
, u16 cons
, u16 prod
)
2961 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2962 struct rx_bd
*cons_bd
, *prod_bd
;
2964 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2965 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2967 dma_sync_single_for_device(&bp
->pdev
->dev
,
2968 dma_unmap_addr(cons_rx_buf
, mapping
),
2969 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2971 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2973 prod_rx_buf
->data
= data
;
2978 dma_unmap_addr_set(prod_rx_buf
, mapping
,
2979 dma_unmap_addr(cons_rx_buf
, mapping
));
2981 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2982 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2983 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2984 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2987 static struct sk_buff
*
2988 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u8
*data
,
2989 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2993 u16 prod
= ring_idx
& 0xffff;
2994 struct sk_buff
*skb
;
2996 err
= bnx2_alloc_rx_data(bp
, rxr
, prod
, GFP_ATOMIC
);
2997 if (unlikely(err
)) {
2998 bnx2_reuse_rx_data(bp
, rxr
, data
, (u16
) (ring_idx
>> 16), prod
);
3001 unsigned int raw_len
= len
+ 4;
3002 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
3004 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3009 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
3010 PCI_DMA_FROMDEVICE
);
3011 skb
= build_skb(data
);
3016 skb_reserve(skb
, ((u8
*)get_l2_fhdr(data
) - data
) + BNX2_RX_OFFSET
);
3021 unsigned int i
, frag_len
, frag_size
, pages
;
3022 struct sw_pg
*rx_pg
;
3023 u16 pg_cons
= rxr
->rx_pg_cons
;
3024 u16 pg_prod
= rxr
->rx_pg_prod
;
3026 frag_size
= len
+ 4 - hdr_len
;
3027 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
3028 skb_put(skb
, hdr_len
);
3030 for (i
= 0; i
< pages
; i
++) {
3031 dma_addr_t mapping_old
;
3033 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
3034 if (unlikely(frag_len
<= 4)) {
3035 unsigned int tail
= 4 - frag_len
;
3037 rxr
->rx_pg_cons
= pg_cons
;
3038 rxr
->rx_pg_prod
= pg_prod
;
3039 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3046 &skb_shinfo(skb
)->frags
[i
- 1];
3047 skb_frag_size_sub(frag
, tail
);
3048 skb
->data_len
-= tail
;
3052 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3054 /* Don't unmap yet. If we're unable to allocate a new
3055 * page, we need to recycle the page and the DMA addr.
3057 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3061 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3064 err
= bnx2_alloc_rx_page(bp
, rxr
,
3065 RX_PG_RING_IDX(pg_prod
),
3067 if (unlikely(err
)) {
3068 rxr
->rx_pg_cons
= pg_cons
;
3069 rxr
->rx_pg_prod
= pg_prod
;
3070 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3075 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3076 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3078 frag_size
-= frag_len
;
3079 skb
->data_len
+= frag_len
;
3080 skb
->truesize
+= PAGE_SIZE
;
3081 skb
->len
+= frag_len
;
3083 pg_prod
= NEXT_RX_BD(pg_prod
);
3084 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3086 rxr
->rx_pg_prod
= pg_prod
;
3087 rxr
->rx_pg_cons
= pg_cons
;
3093 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3097 /* Tell compiler that status block fields can change. */
3099 cons
= *bnapi
->hw_rx_cons_ptr
;
3101 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3107 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3109 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3110 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3111 struct l2_fhdr
*rx_hdr
;
3112 int rx_pkt
= 0, pg_ring_used
= 0;
3114 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3115 sw_cons
= rxr
->rx_cons
;
3116 sw_prod
= rxr
->rx_prod
;
3118 /* Memory barrier necessary as speculative reads of the rx
3119 * buffer can be ahead of the index in the status block
3122 while (sw_cons
!= hw_cons
) {
3123 unsigned int len
, hdr_len
;
3125 struct sw_bd
*rx_buf
, *next_rx_buf
;
3126 struct sk_buff
*skb
;
3127 dma_addr_t dma_addr
;
3130 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3131 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3133 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3134 data
= rx_buf
->data
;
3135 rx_buf
->data
= NULL
;
3137 rx_hdr
= get_l2_fhdr(data
);
3140 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3142 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3143 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3144 PCI_DMA_FROMDEVICE
);
3147 &rxr
->rx_buf_ring
[RX_RING_IDX(NEXT_RX_BD(sw_cons
))];
3148 prefetch(get_l2_fhdr(next_rx_buf
->data
));
3150 len
= rx_hdr
->l2_fhdr_pkt_len
;
3151 status
= rx_hdr
->l2_fhdr_status
;
3154 if (status
& L2_FHDR_STATUS_SPLIT
) {
3155 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3157 } else if (len
> bp
->rx_jumbo_thresh
) {
3158 hdr_len
= bp
->rx_jumbo_thresh
;
3162 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3163 L2_FHDR_ERRORS_PHY_DECODE
|
3164 L2_FHDR_ERRORS_ALIGNMENT
|
3165 L2_FHDR_ERRORS_TOO_SHORT
|
3166 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3168 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3173 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3175 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3182 if (len
<= bp
->rx_copy_thresh
) {
3183 skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3185 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3192 (u8
*)rx_hdr
+ BNX2_RX_OFFSET
- 6,
3194 skb_reserve(skb
, 6);
3197 bnx2_reuse_rx_data(bp
, rxr
, data
,
3198 sw_ring_cons
, sw_ring_prod
);
3201 skb
= bnx2_rx_skb(bp
, rxr
, data
, len
, hdr_len
, dma_addr
,
3202 (sw_ring_cons
<< 16) | sw_ring_prod
);
3206 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3207 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3208 __vlan_hwaccel_put_tag(skb
, rx_hdr
->l2_fhdr_vlan_tag
);
3210 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3212 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3213 (ntohs(skb
->protocol
) != 0x8100)) {
3220 skb_checksum_none_assert(skb
);
3221 if ((bp
->dev
->features
& NETIF_F_RXCSUM
) &&
3222 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3223 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3225 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3226 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3227 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3229 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3230 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3231 L2_FHDR_STATUS_USE_RXHASH
))
3232 skb
->rxhash
= rx_hdr
->l2_fhdr_hash
;
3234 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3235 napi_gro_receive(&bnapi
->napi
, skb
);
3239 sw_cons
= NEXT_RX_BD(sw_cons
);
3240 sw_prod
= NEXT_RX_BD(sw_prod
);
3242 if ((rx_pkt
== budget
))
3245 /* Refresh hw_cons to see if there is new work */
3246 if (sw_cons
== hw_cons
) {
3247 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3251 rxr
->rx_cons
= sw_cons
;
3252 rxr
->rx_prod
= sw_prod
;
3255 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3257 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3259 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3267 /* MSI ISR - The only difference between this and the INTx ISR
3268 * is that the MSI interrupt is always serviced.
3271 bnx2_msi(int irq
, void *dev_instance
)
3273 struct bnx2_napi
*bnapi
= dev_instance
;
3274 struct bnx2
*bp
= bnapi
->bp
;
3276 prefetch(bnapi
->status_blk
.msi
);
3277 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3278 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3279 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3281 /* Return here if interrupt is disabled. */
3282 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3285 napi_schedule(&bnapi
->napi
);
3291 bnx2_msi_1shot(int irq
, void *dev_instance
)
3293 struct bnx2_napi
*bnapi
= dev_instance
;
3294 struct bnx2
*bp
= bnapi
->bp
;
3296 prefetch(bnapi
->status_blk
.msi
);
3298 /* Return here if interrupt is disabled. */
3299 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3302 napi_schedule(&bnapi
->napi
);
3308 bnx2_interrupt(int irq
, void *dev_instance
)
3310 struct bnx2_napi
*bnapi
= dev_instance
;
3311 struct bnx2
*bp
= bnapi
->bp
;
3312 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3314 /* When using INTx, it is possible for the interrupt to arrive
3315 * at the CPU before the status block posted prior to the
3316 * interrupt. Reading a register will flush the status block.
3317 * When using MSI, the MSI message will always complete after
3318 * the status block write.
3320 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3321 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3322 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3325 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3326 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3327 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3329 /* Read back to deassert IRQ immediately to avoid too many
3330 * spurious interrupts.
3332 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3334 /* Return here if interrupt is shared and is disabled. */
3335 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3338 if (napi_schedule_prep(&bnapi
->napi
)) {
3339 bnapi
->last_status_idx
= sblk
->status_idx
;
3340 __napi_schedule(&bnapi
->napi
);
3347 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3349 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3350 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3352 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3353 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3358 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3359 STATUS_ATTN_BITS_TIMER_ABORT)
3362 bnx2_has_work(struct bnx2_napi
*bnapi
)
3364 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3366 if (bnx2_has_fast_work(bnapi
))
3370 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3374 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3375 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3382 bnx2_chk_missed_msi(struct bnx2
*bp
)
3384 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3387 if (bnx2_has_work(bnapi
)) {
3388 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3389 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3392 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3393 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3394 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3395 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3396 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3400 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3404 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3406 struct cnic_ops
*c_ops
;
3408 if (!bnapi
->cnic_present
)
3412 c_ops
= rcu_dereference(bp
->cnic_ops
);
3414 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3415 bnapi
->status_blk
.msi
);
3420 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3422 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3423 u32 status_attn_bits
= sblk
->status_attn_bits
;
3424 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3426 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3427 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3429 bnx2_phy_int(bp
, bnapi
);
3431 /* This is needed to take care of transient status
3432 * during link changes.
3434 REG_WR(bp
, BNX2_HC_COMMAND
,
3435 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3436 REG_RD(bp
, BNX2_HC_COMMAND
);
3440 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3441 int work_done
, int budget
)
3443 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3444 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3446 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3447 bnx2_tx_int(bp
, bnapi
, 0);
3449 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3450 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3455 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3457 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3458 struct bnx2
*bp
= bnapi
->bp
;
3460 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3463 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3464 if (unlikely(work_done
>= budget
))
3467 bnapi
->last_status_idx
= sblk
->status_idx
;
3468 /* status idx must be read before checking for more work. */
3470 if (likely(!bnx2_has_fast_work(bnapi
))) {
3472 napi_complete(napi
);
3473 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3474 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3475 bnapi
->last_status_idx
);
3482 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3484 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3485 struct bnx2
*bp
= bnapi
->bp
;
3487 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3490 bnx2_poll_link(bp
, bnapi
);
3492 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3495 bnx2_poll_cnic(bp
, bnapi
);
3498 /* bnapi->last_status_idx is used below to tell the hw how
3499 * much work has been processed, so we must read it before
3500 * checking for more work.
3502 bnapi
->last_status_idx
= sblk
->status_idx
;
3504 if (unlikely(work_done
>= budget
))
3508 if (likely(!bnx2_has_work(bnapi
))) {
3509 napi_complete(napi
);
3510 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3511 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3512 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3513 bnapi
->last_status_idx
);
3516 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3517 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3518 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3519 bnapi
->last_status_idx
);
3521 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3522 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3523 bnapi
->last_status_idx
);
3531 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3532 * from set_multicast.
3535 bnx2_set_rx_mode(struct net_device
*dev
)
3537 struct bnx2
*bp
= netdev_priv(dev
);
3538 u32 rx_mode
, sort_mode
;
3539 struct netdev_hw_addr
*ha
;
3542 if (!netif_running(dev
))
3545 spin_lock_bh(&bp
->phy_lock
);
3547 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3548 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3549 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3550 if (!(dev
->features
& NETIF_F_HW_VLAN_RX
) &&
3551 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3552 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3553 if (dev
->flags
& IFF_PROMISC
) {
3554 /* Promiscuous mode. */
3555 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3556 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3557 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3559 else if (dev
->flags
& IFF_ALLMULTI
) {
3560 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3561 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3564 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3567 /* Accept one or more multicast(s). */
3568 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3573 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3575 netdev_for_each_mc_addr(ha
, dev
) {
3576 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3578 regidx
= (bit
& 0xe0) >> 5;
3580 mc_filter
[regidx
] |= (1 << bit
);
3583 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3584 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3588 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3591 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3592 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3593 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3594 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3595 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3596 /* Add all entries into to the match filter list */
3598 netdev_for_each_uc_addr(ha
, dev
) {
3599 bnx2_set_mac_addr(bp
, ha
->addr
,
3600 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3602 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3608 if (rx_mode
!= bp
->rx_mode
) {
3609 bp
->rx_mode
= rx_mode
;
3610 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3613 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3614 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3615 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3617 spin_unlock_bh(&bp
->phy_lock
);
3621 check_fw_section(const struct firmware
*fw
,
3622 const struct bnx2_fw_file_section
*section
,
3623 u32 alignment
, bool non_empty
)
3625 u32 offset
= be32_to_cpu(section
->offset
);
3626 u32 len
= be32_to_cpu(section
->len
);
3628 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3630 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3631 len
& (alignment
- 1))
3637 check_mips_fw_entry(const struct firmware
*fw
,
3638 const struct bnx2_mips_fw_file_entry
*entry
)
3640 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3641 check_fw_section(fw
, &entry
->data
, 4, false) ||
3642 check_fw_section(fw
, &entry
->rodata
, 4, false))
3647 static void bnx2_release_firmware(struct bnx2
*bp
)
3649 if (bp
->rv2p_firmware
) {
3650 release_firmware(bp
->mips_firmware
);
3651 release_firmware(bp
->rv2p_firmware
);
3652 bp
->rv2p_firmware
= NULL
;
3656 static int bnx2_request_uncached_firmware(struct bnx2
*bp
)
3658 const char *mips_fw_file
, *rv2p_fw_file
;
3659 const struct bnx2_mips_fw_file
*mips_fw
;
3660 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3663 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3664 mips_fw_file
= FW_MIPS_FILE_09
;
3665 if ((CHIP_ID(bp
) == CHIP_ID_5709_A0
) ||
3666 (CHIP_ID(bp
) == CHIP_ID_5709_A1
))
3667 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3669 rv2p_fw_file
= FW_RV2P_FILE_09
;
3671 mips_fw_file
= FW_MIPS_FILE_06
;
3672 rv2p_fw_file
= FW_RV2P_FILE_06
;
3675 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3677 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3681 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3683 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3684 goto err_release_mips_firmware
;
3686 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3687 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3688 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3689 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3690 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3691 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3692 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3693 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3694 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3696 goto err_release_firmware
;
3698 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3699 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3700 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3701 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3703 goto err_release_firmware
;
3708 err_release_firmware
:
3709 release_firmware(bp
->rv2p_firmware
);
3710 bp
->rv2p_firmware
= NULL
;
3711 err_release_mips_firmware
:
3712 release_firmware(bp
->mips_firmware
);
3716 static int bnx2_request_firmware(struct bnx2
*bp
)
3718 return bp
->rv2p_firmware
? 0 : bnx2_request_uncached_firmware(bp
);
3722 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3725 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3726 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3727 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3734 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3735 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3737 u32 rv2p_code_len
, file_offset
;
3742 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3743 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3745 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3747 if (rv2p_proc
== RV2P_PROC1
) {
3748 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3749 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3751 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3752 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3755 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3756 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3758 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3761 val
= (i
/ 8) | cmd
;
3762 REG_WR(bp
, addr
, val
);
3765 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3766 for (i
= 0; i
< 8; i
++) {
3769 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3770 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3771 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3772 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3773 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3774 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3775 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3777 val
= (loc
/ 2) | cmd
;
3778 REG_WR(bp
, addr
, val
);
3782 /* Reset the processor, un-stall is done later. */
3783 if (rv2p_proc
== RV2P_PROC1
) {
3784 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3787 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3794 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3795 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3797 u32 addr
, len
, file_offset
;
3803 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3804 val
|= cpu_reg
->mode_value_halt
;
3805 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3806 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3808 /* Load the Text area. */
3809 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3810 len
= be32_to_cpu(fw_entry
->text
.len
);
3811 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3812 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3814 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3818 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3819 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3822 /* Load the Data area. */
3823 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3824 len
= be32_to_cpu(fw_entry
->data
.len
);
3825 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3826 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3828 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3832 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3833 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3836 /* Load the Read-Only area. */
3837 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3838 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3839 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3840 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3842 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3846 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3847 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3850 /* Clear the pre-fetch instruction. */
3851 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3853 val
= be32_to_cpu(fw_entry
->start_addr
);
3854 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3856 /* Start the CPU. */
3857 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3858 val
&= ~cpu_reg
->mode_value_halt
;
3859 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3860 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3866 bnx2_init_cpus(struct bnx2
*bp
)
3868 const struct bnx2_mips_fw_file
*mips_fw
=
3869 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3870 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3871 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3874 /* Initialize the RV2P processor. */
3875 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3876 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3878 /* Initialize the RX Processor. */
3879 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3883 /* Initialize the TX Processor. */
3884 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3888 /* Initialize the TX Patch-up Processor. */
3889 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3893 /* Initialize the Completion Processor. */
3894 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3898 /* Initialize the Command Processor. */
3899 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3906 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3910 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3916 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3917 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3918 PCI_PM_CTRL_PME_STATUS
);
3920 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3921 /* delay required during transition out of D3hot */
3924 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3925 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3926 val
&= ~BNX2_EMAC_MODE_MPKT
;
3927 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3929 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3930 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3931 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3942 autoneg
= bp
->autoneg
;
3943 advertising
= bp
->advertising
;
3945 if (bp
->phy_port
== PORT_TP
) {
3946 bp
->autoneg
= AUTONEG_SPEED
;
3947 bp
->advertising
= ADVERTISED_10baseT_Half
|
3948 ADVERTISED_10baseT_Full
|
3949 ADVERTISED_100baseT_Half
|
3950 ADVERTISED_100baseT_Full
|
3954 spin_lock_bh(&bp
->phy_lock
);
3955 bnx2_setup_phy(bp
, bp
->phy_port
);
3956 spin_unlock_bh(&bp
->phy_lock
);
3958 bp
->autoneg
= autoneg
;
3959 bp
->advertising
= advertising
;
3961 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3963 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3965 /* Enable port mode. */
3966 val
&= ~BNX2_EMAC_MODE_PORT
;
3967 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3968 BNX2_EMAC_MODE_ACPI_RCVD
|
3969 BNX2_EMAC_MODE_MPKT
;
3970 if (bp
->phy_port
== PORT_TP
)
3971 val
|= BNX2_EMAC_MODE_PORT_MII
;
3973 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3974 if (bp
->line_speed
== SPEED_2500
)
3975 val
|= BNX2_EMAC_MODE_25G_MODE
;
3978 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3980 /* receive all multicast */
3981 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3982 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3985 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3986 BNX2_EMAC_RX_MODE_SORT_MODE
);
3988 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3989 BNX2_RPM_SORT_USER0_MC_EN
;
3990 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3991 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3992 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3993 BNX2_RPM_SORT_USER0_ENA
);
3995 /* Need to enable EMAC and RPM for WOL. */
3996 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3997 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3998 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3999 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
4001 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
4002 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4003 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
4005 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4008 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4011 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
4012 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
4015 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4016 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4017 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
4026 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
4028 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
4031 /* No more memory access after this point until
4032 * device is brought back to D0.
4044 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4049 /* Request access to the flash interface. */
4050 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4051 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4052 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4053 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4059 if (j
>= NVRAM_TIMEOUT_COUNT
)
4066 bnx2_release_nvram_lock(struct bnx2
*bp
)
4071 /* Relinquish nvram interface. */
4072 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4074 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4075 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4076 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4082 if (j
>= NVRAM_TIMEOUT_COUNT
)
4090 bnx2_enable_nvram_write(struct bnx2
*bp
)
4094 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4095 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4097 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4100 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4101 REG_WR(bp
, BNX2_NVM_COMMAND
,
4102 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4104 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4107 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4108 if (val
& BNX2_NVM_COMMAND_DONE
)
4112 if (j
>= NVRAM_TIMEOUT_COUNT
)
4119 bnx2_disable_nvram_write(struct bnx2
*bp
)
4123 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4124 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4129 bnx2_enable_nvram_access(struct bnx2
*bp
)
4133 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4134 /* Enable both bits, even on read. */
4135 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4136 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4140 bnx2_disable_nvram_access(struct bnx2
*bp
)
4144 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4145 /* Disable both bits, even after read. */
4146 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4147 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4148 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4152 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4157 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4158 /* Buffered flash, no erase needed */
4161 /* Build an erase command */
4162 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4163 BNX2_NVM_COMMAND_DOIT
;
4165 /* Need to clear DONE bit separately. */
4166 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4168 /* Address of the NVRAM to read from. */
4169 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4171 /* Issue an erase command. */
4172 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4174 /* Wait for completion. */
4175 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4180 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4181 if (val
& BNX2_NVM_COMMAND_DONE
)
4185 if (j
>= NVRAM_TIMEOUT_COUNT
)
4192 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4197 /* Build the command word. */
4198 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4200 /* Calculate an offset of a buffered flash, not needed for 5709. */
4201 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4202 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4203 bp
->flash_info
->page_bits
) +
4204 (offset
% bp
->flash_info
->page_size
);
4207 /* Need to clear DONE bit separately. */
4208 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4210 /* Address of the NVRAM to read from. */
4211 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4213 /* Issue a read command. */
4214 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4216 /* Wait for completion. */
4217 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4222 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4223 if (val
& BNX2_NVM_COMMAND_DONE
) {
4224 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4225 memcpy(ret_val
, &v
, 4);
4229 if (j
>= NVRAM_TIMEOUT_COUNT
)
4237 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4243 /* Build the command word. */
4244 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4246 /* Calculate an offset of a buffered flash, not needed for 5709. */
4247 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4248 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4249 bp
->flash_info
->page_bits
) +
4250 (offset
% bp
->flash_info
->page_size
);
4253 /* Need to clear DONE bit separately. */
4254 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4256 memcpy(&val32
, val
, 4);
4258 /* Write the data. */
4259 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4261 /* Address of the NVRAM to write to. */
4262 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4264 /* Issue the write command. */
4265 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4267 /* Wait for completion. */
4268 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4271 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4274 if (j
>= NVRAM_TIMEOUT_COUNT
)
4281 bnx2_init_nvram(struct bnx2
*bp
)
4284 int j
, entry_count
, rc
= 0;
4285 const struct flash_spec
*flash
;
4287 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4288 bp
->flash_info
= &flash_5709
;
4289 goto get_flash_size
;
4292 /* Determine the selected interface. */
4293 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4295 entry_count
= ARRAY_SIZE(flash_table
);
4297 if (val
& 0x40000000) {
4299 /* Flash interface has been reconfigured */
4300 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4302 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4303 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4304 bp
->flash_info
= flash
;
4311 /* Not yet been reconfigured */
4313 if (val
& (1 << 23))
4314 mask
= FLASH_BACKUP_STRAP_MASK
;
4316 mask
= FLASH_STRAP_MASK
;
4318 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4321 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4322 bp
->flash_info
= flash
;
4324 /* Request access to the flash interface. */
4325 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4328 /* Enable access to flash interface */
4329 bnx2_enable_nvram_access(bp
);
4331 /* Reconfigure the flash interface */
4332 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4333 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4334 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4335 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4337 /* Disable access to flash interface */
4338 bnx2_disable_nvram_access(bp
);
4339 bnx2_release_nvram_lock(bp
);
4344 } /* if (val & 0x40000000) */
4346 if (j
== entry_count
) {
4347 bp
->flash_info
= NULL
;
4348 pr_alert("Unknown flash/EEPROM type\n");
4353 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4354 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4356 bp
->flash_size
= val
;
4358 bp
->flash_size
= bp
->flash_info
->total_size
;
4364 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4368 u32 cmd_flags
, offset32
, len32
, extra
;
4373 /* Request access to the flash interface. */
4374 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4377 /* Enable access to flash interface */
4378 bnx2_enable_nvram_access(bp
);
4391 pre_len
= 4 - (offset
& 3);
4393 if (pre_len
>= len32
) {
4395 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4396 BNX2_NVM_COMMAND_LAST
;
4399 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4402 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4407 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4414 extra
= 4 - (len32
& 3);
4415 len32
= (len32
+ 4) & ~3;
4422 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4424 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4425 BNX2_NVM_COMMAND_LAST
;
4427 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4429 memcpy(ret_buf
, buf
, 4 - extra
);
4431 else if (len32
> 0) {
4434 /* Read the first word. */
4438 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4440 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4442 /* Advance to the next dword. */
4447 while (len32
> 4 && rc
== 0) {
4448 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4450 /* Advance to the next dword. */
4459 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4460 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4462 memcpy(ret_buf
, buf
, 4 - extra
);
4465 /* Disable access to flash interface */
4466 bnx2_disable_nvram_access(bp
);
4468 bnx2_release_nvram_lock(bp
);
4474 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4477 u32 written
, offset32
, len32
;
4478 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4480 int align_start
, align_end
;
4485 align_start
= align_end
= 0;
4487 if ((align_start
= (offset32
& 3))) {
4489 len32
+= align_start
;
4492 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4497 align_end
= 4 - (len32
& 3);
4499 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4503 if (align_start
|| align_end
) {
4504 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4505 if (align_buf
== NULL
)
4508 memcpy(align_buf
, start
, 4);
4511 memcpy(align_buf
+ len32
- 4, end
, 4);
4513 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4517 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4518 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4519 if (flash_buffer
== NULL
) {
4521 goto nvram_write_end
;
4526 while ((written
< len32
) && (rc
== 0)) {
4527 u32 page_start
, page_end
, data_start
, data_end
;
4528 u32 addr
, cmd_flags
;
4531 /* Find the page_start addr */
4532 page_start
= offset32
+ written
;
4533 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4534 /* Find the page_end addr */
4535 page_end
= page_start
+ bp
->flash_info
->page_size
;
4536 /* Find the data_start addr */
4537 data_start
= (written
== 0) ? offset32
: page_start
;
4538 /* Find the data_end addr */
4539 data_end
= (page_end
> offset32
+ len32
) ?
4540 (offset32
+ len32
) : page_end
;
4542 /* Request access to the flash interface. */
4543 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4544 goto nvram_write_end
;
4546 /* Enable access to flash interface */
4547 bnx2_enable_nvram_access(bp
);
4549 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4550 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4553 /* Read the whole page into the buffer
4554 * (non-buffer flash only) */
4555 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4556 if (j
== (bp
->flash_info
->page_size
- 4)) {
4557 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4559 rc
= bnx2_nvram_read_dword(bp
,
4565 goto nvram_write_end
;
4571 /* Enable writes to flash interface (unlock write-protect) */
4572 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4573 goto nvram_write_end
;
4575 /* Loop to write back the buffer data from page_start to
4578 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4579 /* Erase the page */
4580 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4581 goto nvram_write_end
;
4583 /* Re-enable the write again for the actual write */
4584 bnx2_enable_nvram_write(bp
);
4586 for (addr
= page_start
; addr
< data_start
;
4587 addr
+= 4, i
+= 4) {
4589 rc
= bnx2_nvram_write_dword(bp
, addr
,
4590 &flash_buffer
[i
], cmd_flags
);
4593 goto nvram_write_end
;
4599 /* Loop to write the new data from data_start to data_end */
4600 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4601 if ((addr
== page_end
- 4) ||
4602 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4603 (addr
== data_end
- 4))) {
4605 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4607 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4611 goto nvram_write_end
;
4617 /* Loop to write back the buffer data from data_end
4619 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4620 for (addr
= data_end
; addr
< page_end
;
4621 addr
+= 4, i
+= 4) {
4623 if (addr
== page_end
-4) {
4624 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4626 rc
= bnx2_nvram_write_dword(bp
, addr
,
4627 &flash_buffer
[i
], cmd_flags
);
4630 goto nvram_write_end
;
4636 /* Disable writes to flash interface (lock write-protect) */
4637 bnx2_disable_nvram_write(bp
);
4639 /* Disable access to flash interface */
4640 bnx2_disable_nvram_access(bp
);
4641 bnx2_release_nvram_lock(bp
);
4643 /* Increment written */
4644 written
+= data_end
- data_start
;
4648 kfree(flash_buffer
);
4654 bnx2_init_fw_cap(struct bnx2
*bp
)
4658 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4659 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4661 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4662 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4664 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4665 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4668 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4669 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4670 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4673 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4674 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4677 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4679 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4680 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4681 bp
->phy_port
= PORT_FIBRE
;
4683 bp
->phy_port
= PORT_TP
;
4685 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4686 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4689 if (netif_running(bp
->dev
) && sig
)
4690 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4694 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4696 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4698 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4699 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4703 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4709 /* Wait for the current PCI transaction to complete before
4710 * issuing a reset. */
4711 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
4712 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
4713 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4714 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4715 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4716 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4717 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4718 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4721 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4722 val
&= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4723 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4724 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4726 for (i
= 0; i
< 100; i
++) {
4728 val
= REG_RD(bp
, BNX2_PCICFG_DEVICE_CONTROL
);
4729 if (!(val
& BNX2_PCICFG_DEVICE_STATUS_NO_PEND
))
4734 /* Wait for the firmware to tell us it is ok to issue a reset. */
4735 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4737 /* Deposit a driver reset signature so the firmware knows that
4738 * this is a soft reset. */
4739 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4740 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4742 /* Do a dummy read to force the chip to complete all current transaction
4743 * before we issue a reset. */
4744 val
= REG_RD(bp
, BNX2_MISC_ID
);
4746 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4747 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4748 REG_RD(bp
, BNX2_MISC_COMMAND
);
4751 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4752 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4754 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4757 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4758 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4759 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4762 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4764 /* Reading back any register after chip reset will hang the
4765 * bus on 5706 A0 and A1. The msleep below provides plenty
4766 * of margin for write posting.
4768 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4769 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4772 /* Reset takes approximate 30 usec */
4773 for (i
= 0; i
< 10; i
++) {
4774 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4775 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4776 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4781 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4782 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4783 pr_err("Chip reset did not complete\n");
4788 /* Make sure byte swapping is properly configured. */
4789 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4790 if (val
!= 0x01020304) {
4791 pr_err("Chip not in correct endian mode\n");
4795 /* Wait for the firmware to finish its initialization. */
4796 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4800 spin_lock_bh(&bp
->phy_lock
);
4801 old_port
= bp
->phy_port
;
4802 bnx2_init_fw_cap(bp
);
4803 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4804 old_port
!= bp
->phy_port
)
4805 bnx2_set_default_remote_link(bp
);
4806 spin_unlock_bh(&bp
->phy_lock
);
4808 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4809 /* Adjust the voltage regular to two steps lower. The default
4810 * of this register is 0x0000000e. */
4811 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4813 /* Remove bad rbuf memory from the free pool. */
4814 rc
= bnx2_alloc_bad_rbuf(bp
);
4817 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4818 bnx2_setup_msix_tbl(bp
);
4819 /* Prevent MSIX table reads and write from timing out */
4820 REG_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4821 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4828 bnx2_init_chip(struct bnx2
*bp
)
4833 /* Make sure the interrupt is not active. */
4834 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4836 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4837 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4839 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4841 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4842 DMA_READ_CHANS
<< 12 |
4843 DMA_WRITE_CHANS
<< 16;
4845 val
|= (0x2 << 20) | (1 << 11);
4847 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4850 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4851 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4852 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4854 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4856 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4857 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4858 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4859 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4862 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4865 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4867 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4868 val16
& ~PCI_X_CMD_ERO
);
4871 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4872 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4873 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4874 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4876 /* Initialize context mapping and zero out the quick contexts. The
4877 * context block must have already been enabled. */
4878 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4879 rc
= bnx2_init_5709_context(bp
);
4883 bnx2_init_context(bp
);
4885 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4888 bnx2_init_nvram(bp
);
4890 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4892 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4893 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4894 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4895 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4896 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4897 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4898 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4901 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4903 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4904 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4905 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4907 val
= (BCM_PAGE_BITS
- 8) << 24;
4908 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4910 /* Configure page size. */
4911 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4912 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4913 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4914 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4916 val
= bp
->mac_addr
[0] +
4917 (bp
->mac_addr
[1] << 8) +
4918 (bp
->mac_addr
[2] << 16) +
4920 (bp
->mac_addr
[4] << 8) +
4921 (bp
->mac_addr
[5] << 16);
4922 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4924 /* Program the MTU. Also include 4 bytes for CRC32. */
4926 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4927 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4928 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4929 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4934 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4935 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4936 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4938 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4939 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4940 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4942 bp
->idle_chk_status_idx
= 0xffff;
4944 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4946 /* Set up how to generate a link change interrupt. */
4947 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4949 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4950 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4951 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4953 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4954 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4955 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4956 (u64
) bp
->stats_blk_mapping
>> 32);
4958 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4959 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4961 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4962 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4964 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4965 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4967 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4969 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4971 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4972 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4974 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4975 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4977 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4978 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4980 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4981 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4983 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4984 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4986 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4987 BNX2_HC_CONFIG_COLLECT_STATS
;
4990 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4991 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4992 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4994 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4997 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4998 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
5000 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
5002 if (bp
->rx_ticks
< 25)
5003 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
5005 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
5007 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
5008 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
5009 BNX2_HC_SB_CONFIG_1
;
5012 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
5013 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
5014 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
5016 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
5017 (bp
->tx_quick_cons_trip_int
<< 16) |
5018 bp
->tx_quick_cons_trip
);
5020 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
5021 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5023 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
5024 (bp
->rx_quick_cons_trip_int
<< 16) |
5025 bp
->rx_quick_cons_trip
);
5027 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
5028 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5031 /* Clear internal stats counters. */
5032 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
5034 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
5036 /* Initialize the receive filter. */
5037 bnx2_set_rx_mode(bp
->dev
);
5039 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5040 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
5041 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
5042 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
5044 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
5047 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
5048 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
5052 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
5058 bnx2_clear_ring_states(struct bnx2
*bp
)
5060 struct bnx2_napi
*bnapi
;
5061 struct bnx2_tx_ring_info
*txr
;
5062 struct bnx2_rx_ring_info
*rxr
;
5065 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5066 bnapi
= &bp
->bnx2_napi
[i
];
5067 txr
= &bnapi
->tx_ring
;
5068 rxr
= &bnapi
->rx_ring
;
5071 txr
->hw_tx_cons
= 0;
5072 rxr
->rx_prod_bseq
= 0;
5075 rxr
->rx_pg_prod
= 0;
5076 rxr
->rx_pg_cons
= 0;
5081 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5083 u32 val
, offset0
, offset1
, offset2
, offset3
;
5084 u32 cid_addr
= GET_CID_ADDR(cid
);
5086 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5087 offset0
= BNX2_L2CTX_TYPE_XI
;
5088 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5089 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5090 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5092 offset0
= BNX2_L2CTX_TYPE
;
5093 offset1
= BNX2_L2CTX_CMD_TYPE
;
5094 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5095 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5097 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5098 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5100 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5101 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5103 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5104 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5106 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5107 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5111 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5115 struct bnx2_napi
*bnapi
;
5116 struct bnx2_tx_ring_info
*txr
;
5118 bnapi
= &bp
->bnx2_napi
[ring_num
];
5119 txr
= &bnapi
->tx_ring
;
5124 cid
= TX_TSS_CID
+ ring_num
- 1;
5126 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5128 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5130 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5131 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5134 txr
->tx_prod_bseq
= 0;
5136 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5137 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5139 bnx2_init_tx_context(bp
, cid
, txr
);
5143 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5149 for (i
= 0; i
< num_rings
; i
++) {
5152 rxbd
= &rx_ring
[i
][0];
5153 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5154 rxbd
->rx_bd_len
= buf_size
;
5155 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5157 if (i
== (num_rings
- 1))
5161 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5162 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5167 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5170 u16 prod
, ring_prod
;
5171 u32 cid
, rx_cid_addr
, val
;
5172 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5173 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5178 cid
= RX_RSS_CID
+ ring_num
- 1;
5180 rx_cid_addr
= GET_CID_ADDR(cid
);
5182 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5183 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5185 bnx2_init_rx_context(bp
, cid
);
5187 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5188 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5189 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5192 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5193 if (bp
->rx_pg_ring_size
) {
5194 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5195 rxr
->rx_pg_desc_mapping
,
5196 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5197 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5198 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5199 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5200 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5202 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5203 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5205 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5206 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5208 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5209 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5212 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5213 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5215 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5216 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5218 ring_prod
= prod
= rxr
->rx_pg_prod
;
5219 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5220 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5221 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5222 ring_num
, i
, bp
->rx_pg_ring_size
);
5225 prod
= NEXT_RX_BD(prod
);
5226 ring_prod
= RX_PG_RING_IDX(prod
);
5228 rxr
->rx_pg_prod
= prod
;
5230 ring_prod
= prod
= rxr
->rx_prod
;
5231 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5232 if (bnx2_alloc_rx_data(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5233 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5234 ring_num
, i
, bp
->rx_ring_size
);
5237 prod
= NEXT_RX_BD(prod
);
5238 ring_prod
= RX_RING_IDX(prod
);
5240 rxr
->rx_prod
= prod
;
5242 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5243 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5244 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5246 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5247 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5249 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5253 bnx2_init_all_rings(struct bnx2
*bp
)
5258 bnx2_clear_ring_states(bp
);
5260 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5261 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5262 bnx2_init_tx_ring(bp
, i
);
5264 if (bp
->num_tx_rings
> 1)
5265 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5268 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5269 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5271 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5272 bnx2_init_rx_ring(bp
, i
);
5274 if (bp
->num_rx_rings
> 1) {
5277 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5278 int shift
= (i
% 8) << 2;
5280 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5282 REG_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5283 REG_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5284 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5285 BNX2_RLUP_RSS_COMMAND_WRITE
|
5286 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5291 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5292 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5294 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5299 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5301 u32 max
, num_rings
= 1;
5303 while (ring_size
> MAX_RX_DESC_CNT
) {
5304 ring_size
-= MAX_RX_DESC_CNT
;
5307 /* round to next power of 2 */
5309 while ((max
& num_rings
) == 0)
5312 if (num_rings
!= max
)
5319 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5321 u32 rx_size
, rx_space
, jumbo_size
;
5323 /* 8 for CRC and VLAN */
5324 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5326 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5327 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5329 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5330 bp
->rx_pg_ring_size
= 0;
5331 bp
->rx_max_pg_ring
= 0;
5332 bp
->rx_max_pg_ring_idx
= 0;
5333 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5334 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5336 jumbo_size
= size
* pages
;
5337 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5338 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5340 bp
->rx_pg_ring_size
= jumbo_size
;
5341 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5343 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5344 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5345 bp
->rx_copy_thresh
= 0;
5348 bp
->rx_buf_use_size
= rx_size
;
5349 /* hw alignment + build_skb() overhead*/
5350 bp
->rx_buf_size
= SKB_DATA_ALIGN(bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
) +
5351 NET_SKB_PAD
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5352 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5353 bp
->rx_ring_size
= size
;
5354 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5355 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5359 bnx2_free_tx_skbs(struct bnx2
*bp
)
5363 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5364 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5365 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5368 if (txr
->tx_buf_ring
== NULL
)
5371 for (j
= 0; j
< TX_DESC_CNT
; ) {
5372 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5373 struct sk_buff
*skb
= tx_buf
->skb
;
5381 dma_unmap_single(&bp
->pdev
->dev
,
5382 dma_unmap_addr(tx_buf
, mapping
),
5388 last
= tx_buf
->nr_frags
;
5390 for (k
= 0; k
< last
; k
++, j
++) {
5391 tx_buf
= &txr
->tx_buf_ring
[TX_RING_IDX(j
)];
5392 dma_unmap_page(&bp
->pdev
->dev
,
5393 dma_unmap_addr(tx_buf
, mapping
),
5394 skb_frag_size(&skb_shinfo(skb
)->frags
[k
]),
5399 netdev_tx_reset_queue(netdev_get_tx_queue(bp
->dev
, i
));
5404 bnx2_free_rx_skbs(struct bnx2
*bp
)
5408 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5409 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5410 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5413 if (rxr
->rx_buf_ring
== NULL
)
5416 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5417 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5418 u8
*data
= rx_buf
->data
;
5423 dma_unmap_single(&bp
->pdev
->dev
,
5424 dma_unmap_addr(rx_buf
, mapping
),
5425 bp
->rx_buf_use_size
,
5426 PCI_DMA_FROMDEVICE
);
5428 rx_buf
->data
= NULL
;
5432 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5433 bnx2_free_rx_page(bp
, rxr
, j
);
5438 bnx2_free_skbs(struct bnx2
*bp
)
5440 bnx2_free_tx_skbs(bp
);
5441 bnx2_free_rx_skbs(bp
);
5445 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5449 rc
= bnx2_reset_chip(bp
, reset_code
);
5454 if ((rc
= bnx2_init_chip(bp
)) != 0)
5457 bnx2_init_all_rings(bp
);
5462 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5466 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5469 spin_lock_bh(&bp
->phy_lock
);
5470 bnx2_init_phy(bp
, reset_phy
);
5472 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5473 bnx2_remote_phy_event(bp
);
5474 spin_unlock_bh(&bp
->phy_lock
);
5479 bnx2_shutdown_chip(struct bnx2
*bp
)
5483 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5484 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5486 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5488 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5490 return bnx2_reset_chip(bp
, reset_code
);
5494 bnx2_test_registers(struct bnx2
*bp
)
5498 static const struct {
5501 #define BNX2_FL_NOT_5709 1
5505 { 0x006c, 0, 0x00000000, 0x0000003f },
5506 { 0x0090, 0, 0xffffffff, 0x00000000 },
5507 { 0x0094, 0, 0x00000000, 0x00000000 },
5509 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5510 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5511 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5512 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5513 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5514 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5515 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5516 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5517 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5519 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5520 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5521 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5522 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5523 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5524 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5526 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5527 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5528 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5530 { 0x1000, 0, 0x00000000, 0x00000001 },
5531 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5533 { 0x1408, 0, 0x01c00800, 0x00000000 },
5534 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5535 { 0x14a8, 0, 0x00000000, 0x000001ff },
5536 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5537 { 0x14b0, 0, 0x00000002, 0x00000001 },
5538 { 0x14b8, 0, 0x00000000, 0x00000000 },
5539 { 0x14c0, 0, 0x00000000, 0x00000009 },
5540 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5541 { 0x14cc, 0, 0x00000000, 0x00000001 },
5542 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5544 { 0x1800, 0, 0x00000000, 0x00000001 },
5545 { 0x1804, 0, 0x00000000, 0x00000003 },
5547 { 0x2800, 0, 0x00000000, 0x00000001 },
5548 { 0x2804, 0, 0x00000000, 0x00003f01 },
5549 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5550 { 0x2810, 0, 0xffff0000, 0x00000000 },
5551 { 0x2814, 0, 0xffff0000, 0x00000000 },
5552 { 0x2818, 0, 0xffff0000, 0x00000000 },
5553 { 0x281c, 0, 0xffff0000, 0x00000000 },
5554 { 0x2834, 0, 0xffffffff, 0x00000000 },
5555 { 0x2840, 0, 0x00000000, 0xffffffff },
5556 { 0x2844, 0, 0x00000000, 0xffffffff },
5557 { 0x2848, 0, 0xffffffff, 0x00000000 },
5558 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5560 { 0x2c00, 0, 0x00000000, 0x00000011 },
5561 { 0x2c04, 0, 0x00000000, 0x00030007 },
5563 { 0x3c00, 0, 0x00000000, 0x00000001 },
5564 { 0x3c04, 0, 0x00000000, 0x00070000 },
5565 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5566 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5567 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5568 { 0x3c14, 0, 0x00000000, 0xffffffff },
5569 { 0x3c18, 0, 0x00000000, 0xffffffff },
5570 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5571 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5573 { 0x5004, 0, 0x00000000, 0x0000007f },
5574 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5576 { 0x5c00, 0, 0x00000000, 0x00000001 },
5577 { 0x5c04, 0, 0x00000000, 0x0003000f },
5578 { 0x5c08, 0, 0x00000003, 0x00000000 },
5579 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5580 { 0x5c10, 0, 0x00000000, 0xffffffff },
5581 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5582 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5583 { 0x5c88, 0, 0x00000000, 0x00077373 },
5584 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5586 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5587 { 0x680c, 0, 0xffffffff, 0x00000000 },
5588 { 0x6810, 0, 0xffffffff, 0x00000000 },
5589 { 0x6814, 0, 0xffffffff, 0x00000000 },
5590 { 0x6818, 0, 0xffffffff, 0x00000000 },
5591 { 0x681c, 0, 0xffffffff, 0x00000000 },
5592 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5593 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5594 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5595 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5596 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5597 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5598 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5599 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5600 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5601 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5602 { 0x684c, 0, 0xffffffff, 0x00000000 },
5603 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5604 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5605 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5606 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5607 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5608 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5610 { 0xffff, 0, 0x00000000, 0x00000000 },
5615 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5618 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5619 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5620 u16 flags
= reg_tbl
[i
].flags
;
5622 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5625 offset
= (u32
) reg_tbl
[i
].offset
;
5626 rw_mask
= reg_tbl
[i
].rw_mask
;
5627 ro_mask
= reg_tbl
[i
].ro_mask
;
5629 save_val
= readl(bp
->regview
+ offset
);
5631 writel(0, bp
->regview
+ offset
);
5633 val
= readl(bp
->regview
+ offset
);
5634 if ((val
& rw_mask
) != 0) {
5638 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5642 writel(0xffffffff, bp
->regview
+ offset
);
5644 val
= readl(bp
->regview
+ offset
);
5645 if ((val
& rw_mask
) != rw_mask
) {
5649 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5653 writel(save_val
, bp
->regview
+ offset
);
5657 writel(save_val
, bp
->regview
+ offset
);
5665 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5667 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5668 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5671 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5674 for (offset
= 0; offset
< size
; offset
+= 4) {
5676 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5678 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5688 bnx2_test_memory(struct bnx2
*bp
)
5692 static struct mem_entry
{
5695 } mem_tbl_5706
[] = {
5696 { 0x60000, 0x4000 },
5697 { 0xa0000, 0x3000 },
5698 { 0xe0000, 0x4000 },
5699 { 0x120000, 0x4000 },
5700 { 0x1a0000, 0x4000 },
5701 { 0x160000, 0x4000 },
5705 { 0x60000, 0x4000 },
5706 { 0xa0000, 0x3000 },
5707 { 0xe0000, 0x4000 },
5708 { 0x120000, 0x4000 },
5709 { 0x1a0000, 0x4000 },
5712 struct mem_entry
*mem_tbl
;
5714 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5715 mem_tbl
= mem_tbl_5709
;
5717 mem_tbl
= mem_tbl_5706
;
5719 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5720 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5721 mem_tbl
[i
].len
)) != 0) {
5729 #define BNX2_MAC_LOOPBACK 0
5730 #define BNX2_PHY_LOOPBACK 1
5733 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5735 unsigned int pkt_size
, num_pkts
, i
;
5736 struct sk_buff
*skb
;
5738 unsigned char *packet
;
5739 u16 rx_start_idx
, rx_idx
;
5742 struct sw_bd
*rx_buf
;
5743 struct l2_fhdr
*rx_hdr
;
5745 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5746 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5747 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5751 txr
= &tx_napi
->tx_ring
;
5752 rxr
= &bnapi
->rx_ring
;
5753 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5754 bp
->loopback
= MAC_LOOPBACK
;
5755 bnx2_set_mac_loopback(bp
);
5757 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5758 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5761 bp
->loopback
= PHY_LOOPBACK
;
5762 bnx2_set_phy_loopback(bp
);
5767 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5768 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5771 packet
= skb_put(skb
, pkt_size
);
5772 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5773 memset(packet
+ 6, 0x0, 8);
5774 for (i
= 14; i
< pkt_size
; i
++)
5775 packet
[i
] = (unsigned char) (i
& 0xff);
5777 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5779 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5784 REG_WR(bp
, BNX2_HC_COMMAND
,
5785 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5787 REG_RD(bp
, BNX2_HC_COMMAND
);
5790 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5794 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5796 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5797 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5798 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5799 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5802 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5803 txr
->tx_prod_bseq
+= pkt_size
;
5805 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5806 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5810 REG_WR(bp
, BNX2_HC_COMMAND
,
5811 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5813 REG_RD(bp
, BNX2_HC_COMMAND
);
5817 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5820 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5821 goto loopback_test_done
;
5823 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5824 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5825 goto loopback_test_done
;
5828 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5829 data
= rx_buf
->data
;
5831 rx_hdr
= get_l2_fhdr(data
);
5832 data
= (u8
*)rx_hdr
+ BNX2_RX_OFFSET
;
5834 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5835 dma_unmap_addr(rx_buf
, mapping
),
5836 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
5838 if (rx_hdr
->l2_fhdr_status
&
5839 (L2_FHDR_ERRORS_BAD_CRC
|
5840 L2_FHDR_ERRORS_PHY_DECODE
|
5841 L2_FHDR_ERRORS_ALIGNMENT
|
5842 L2_FHDR_ERRORS_TOO_SHORT
|
5843 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5845 goto loopback_test_done
;
5848 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5849 goto loopback_test_done
;
5852 for (i
= 14; i
< pkt_size
; i
++) {
5853 if (*(data
+ i
) != (unsigned char) (i
& 0xff)) {
5854 goto loopback_test_done
;
5865 #define BNX2_MAC_LOOPBACK_FAILED 1
5866 #define BNX2_PHY_LOOPBACK_FAILED 2
5867 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5868 BNX2_PHY_LOOPBACK_FAILED)
5871 bnx2_test_loopback(struct bnx2
*bp
)
5875 if (!netif_running(bp
->dev
))
5876 return BNX2_LOOPBACK_FAILED
;
5878 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5879 spin_lock_bh(&bp
->phy_lock
);
5880 bnx2_init_phy(bp
, 1);
5881 spin_unlock_bh(&bp
->phy_lock
);
5882 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5883 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5884 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5885 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5889 #define NVRAM_SIZE 0x200
5890 #define CRC32_RESIDUAL 0xdebb20e3
5893 bnx2_test_nvram(struct bnx2
*bp
)
5895 __be32 buf
[NVRAM_SIZE
/ 4];
5896 u8
*data
= (u8
*) buf
;
5900 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5901 goto test_nvram_done
;
5903 magic
= be32_to_cpu(buf
[0]);
5904 if (magic
!= 0x669955aa) {
5906 goto test_nvram_done
;
5909 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5910 goto test_nvram_done
;
5912 csum
= ether_crc_le(0x100, data
);
5913 if (csum
!= CRC32_RESIDUAL
) {
5915 goto test_nvram_done
;
5918 csum
= ether_crc_le(0x100, data
+ 0x100);
5919 if (csum
!= CRC32_RESIDUAL
) {
5928 bnx2_test_link(struct bnx2
*bp
)
5932 if (!netif_running(bp
->dev
))
5935 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5940 spin_lock_bh(&bp
->phy_lock
);
5941 bnx2_enable_bmsr1(bp
);
5942 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5943 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5944 bnx2_disable_bmsr1(bp
);
5945 spin_unlock_bh(&bp
->phy_lock
);
5947 if (bmsr
& BMSR_LSTATUS
) {
5954 bnx2_test_intr(struct bnx2
*bp
)
5959 if (!netif_running(bp
->dev
))
5962 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5964 /* This register is not touched during run-time. */
5965 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5966 REG_RD(bp
, BNX2_HC_COMMAND
);
5968 for (i
= 0; i
< 10; i
++) {
5969 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5975 msleep_interruptible(10);
5983 /* Determining link for parallel detection. */
5985 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5987 u32 mode_ctl
, an_dbg
, exp
;
5989 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5992 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5993 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5995 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5998 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5999 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6000 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6002 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
6005 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
6006 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6007 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6009 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
6016 bnx2_5706_serdes_timer(struct bnx2
*bp
)
6020 spin_lock(&bp
->phy_lock
);
6021 if (bp
->serdes_an_pending
) {
6022 bp
->serdes_an_pending
--;
6024 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6027 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6029 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6031 if (bmcr
& BMCR_ANENABLE
) {
6032 if (bnx2_5706_serdes_has_link(bp
)) {
6033 bmcr
&= ~BMCR_ANENABLE
;
6034 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
6035 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6036 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
6040 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
6041 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
6044 bnx2_write_phy(bp
, 0x17, 0x0f01);
6045 bnx2_read_phy(bp
, 0x15, &phy2
);
6049 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6050 bmcr
|= BMCR_ANENABLE
;
6051 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6053 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
6056 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6061 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6062 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6063 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6065 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6066 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6067 bnx2_5706s_force_link_dn(bp
, 1);
6068 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6071 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6074 spin_unlock(&bp
->phy_lock
);
6078 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6080 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6083 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6084 bp
->serdes_an_pending
= 0;
6088 spin_lock(&bp
->phy_lock
);
6089 if (bp
->serdes_an_pending
)
6090 bp
->serdes_an_pending
--;
6091 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6094 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6095 if (bmcr
& BMCR_ANENABLE
) {
6096 bnx2_enable_forced_2g5(bp
);
6097 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6099 bnx2_disable_forced_2g5(bp
);
6100 bp
->serdes_an_pending
= 2;
6101 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6105 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6107 spin_unlock(&bp
->phy_lock
);
6111 bnx2_timer(unsigned long data
)
6113 struct bnx2
*bp
= (struct bnx2
*) data
;
6115 if (!netif_running(bp
->dev
))
6118 if (atomic_read(&bp
->intr_sem
) != 0)
6119 goto bnx2_restart_timer
;
6121 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6122 BNX2_FLAG_USING_MSI
)
6123 bnx2_chk_missed_msi(bp
);
6125 bnx2_send_heart_beat(bp
);
6127 bp
->stats_blk
->stat_FwRxDrop
=
6128 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6130 /* workaround occasional corrupted counters */
6131 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6132 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6133 BNX2_HC_COMMAND_STATS_NOW
);
6135 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6136 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6137 bnx2_5706_serdes_timer(bp
);
6139 bnx2_5708_serdes_timer(bp
);
6143 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6147 bnx2_request_irq(struct bnx2
*bp
)
6149 unsigned long flags
;
6150 struct bnx2_irq
*irq
;
6153 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6156 flags
= IRQF_SHARED
;
6158 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6159 irq
= &bp
->irq_tbl
[i
];
6160 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6170 __bnx2_free_irq(struct bnx2
*bp
)
6172 struct bnx2_irq
*irq
;
6175 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6176 irq
= &bp
->irq_tbl
[i
];
6178 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6184 bnx2_free_irq(struct bnx2
*bp
)
6187 __bnx2_free_irq(bp
);
6188 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6189 pci_disable_msi(bp
->pdev
);
6190 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6191 pci_disable_msix(bp
->pdev
);
6193 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6197 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6199 int i
, total_vecs
, rc
;
6200 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6201 struct net_device
*dev
= bp
->dev
;
6202 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6204 bnx2_setup_msix_tbl(bp
);
6205 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6206 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6207 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6209 /* Need to flush the previous three writes to ensure MSI-X
6210 * is setup properly */
6211 REG_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6213 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6214 msix_ent
[i
].entry
= i
;
6215 msix_ent
[i
].vector
= 0;
6218 total_vecs
= msix_vecs
;
6223 while (total_vecs
>= BNX2_MIN_MSIX_VEC
) {
6224 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, total_vecs
);
6234 msix_vecs
= total_vecs
;
6238 bp
->irq_nvecs
= msix_vecs
;
6239 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6240 for (i
= 0; i
< total_vecs
; i
++) {
6241 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6242 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6243 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6248 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6250 int cpus
= num_online_cpus();
6251 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
6253 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6254 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6256 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6258 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6259 bnx2_enable_msix(bp
, msix_vecs
);
6261 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6262 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6263 if (pci_enable_msi(bp
->pdev
) == 0) {
6264 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6265 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6266 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6267 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6269 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6271 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6275 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6276 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6278 bp
->num_rx_rings
= bp
->irq_nvecs
;
6279 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6282 /* Called with rtnl_lock */
6284 bnx2_open(struct net_device
*dev
)
6286 struct bnx2
*bp
= netdev_priv(dev
);
6289 rc
= bnx2_request_firmware(bp
);
6293 netif_carrier_off(dev
);
6295 bnx2_set_power_state(bp
, PCI_D0
);
6296 bnx2_disable_int(bp
);
6298 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6302 bnx2_napi_enable(bp
);
6303 rc
= bnx2_alloc_mem(bp
);
6307 rc
= bnx2_request_irq(bp
);
6311 rc
= bnx2_init_nic(bp
, 1);
6315 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6317 atomic_set(&bp
->intr_sem
, 0);
6319 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6321 bnx2_enable_int(bp
);
6323 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6324 /* Test MSI to make sure it is working
6325 * If MSI test fails, go back to INTx mode
6327 if (bnx2_test_intr(bp
) != 0) {
6328 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6330 bnx2_disable_int(bp
);
6333 bnx2_setup_int_mode(bp
, 1);
6335 rc
= bnx2_init_nic(bp
, 0);
6338 rc
= bnx2_request_irq(bp
);
6341 del_timer_sync(&bp
->timer
);
6344 bnx2_enable_int(bp
);
6347 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6348 netdev_info(dev
, "using MSI\n");
6349 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6350 netdev_info(dev
, "using MSIX\n");
6352 netif_tx_start_all_queues(dev
);
6357 bnx2_napi_disable(bp
);
6362 bnx2_release_firmware(bp
);
6367 bnx2_reset_task(struct work_struct
*work
)
6369 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6373 if (!netif_running(bp
->dev
)) {
6378 bnx2_netif_stop(bp
, true);
6380 rc
= bnx2_init_nic(bp
, 1);
6382 netdev_err(bp
->dev
, "failed to reset NIC, closing\n");
6383 bnx2_napi_enable(bp
);
6389 atomic_set(&bp
->intr_sem
, 1);
6390 bnx2_netif_start(bp
, true);
6395 bnx2_dump_state(struct bnx2
*bp
)
6397 struct net_device
*dev
= bp
->dev
;
6400 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6401 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6402 atomic_read(&bp
->intr_sem
), val1
);
6403 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6404 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6405 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6406 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6407 REG_RD(bp
, BNX2_EMAC_TX_STATUS
),
6408 REG_RD(bp
, BNX2_EMAC_RX_STATUS
));
6409 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6410 REG_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6411 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6412 REG_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6413 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6414 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6415 REG_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6419 bnx2_tx_timeout(struct net_device
*dev
)
6421 struct bnx2
*bp
= netdev_priv(dev
);
6423 bnx2_dump_state(bp
);
6424 bnx2_dump_mcp_state(bp
);
6426 /* This allows the netif to be shutdown gracefully before resetting */
6427 schedule_work(&bp
->reset_task
);
6430 /* Called with netif_tx_lock.
6431 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6432 * netif_wake_queue().
6435 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6437 struct bnx2
*bp
= netdev_priv(dev
);
6440 struct sw_tx_bd
*tx_buf
;
6441 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6442 u16 prod
, ring_prod
;
6444 struct bnx2_napi
*bnapi
;
6445 struct bnx2_tx_ring_info
*txr
;
6446 struct netdev_queue
*txq
;
6448 /* Determine which tx ring we will be placed on */
6449 i
= skb_get_queue_mapping(skb
);
6450 bnapi
= &bp
->bnx2_napi
[i
];
6451 txr
= &bnapi
->tx_ring
;
6452 txq
= netdev_get_tx_queue(dev
, i
);
6454 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6455 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6456 netif_tx_stop_queue(txq
);
6457 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6459 return NETDEV_TX_BUSY
;
6461 len
= skb_headlen(skb
);
6462 prod
= txr
->tx_prod
;
6463 ring_prod
= TX_RING_IDX(prod
);
6466 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6467 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6470 if (vlan_tx_tag_present(skb
)) {
6472 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6475 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6479 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6481 tcp_opt_len
= tcp_optlen(skb
);
6483 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6484 u32 tcp_off
= skb_transport_offset(skb
) -
6485 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6487 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6488 TX_BD_FLAGS_SW_FLAGS
;
6489 if (likely(tcp_off
== 0))
6490 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6493 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6494 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6495 ((tcp_off
& 0x10) <<
6496 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6497 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6501 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6502 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6503 (tcp_opt_len
>> 2)) << 8;
6509 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6510 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6512 return NETDEV_TX_OK
;
6515 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6517 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6519 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6521 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6522 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6523 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6524 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6526 last_frag
= skb_shinfo(skb
)->nr_frags
;
6527 tx_buf
->nr_frags
= last_frag
;
6528 tx_buf
->is_gso
= skb_is_gso(skb
);
6530 for (i
= 0; i
< last_frag
; i
++) {
6531 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6533 prod
= NEXT_TX_BD(prod
);
6534 ring_prod
= TX_RING_IDX(prod
);
6535 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6537 len
= skb_frag_size(frag
);
6538 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0, len
,
6540 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6542 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6545 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6546 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6547 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6548 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6551 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6553 netdev_tx_sent_queue(txq
, skb
->len
);
6555 prod
= NEXT_TX_BD(prod
);
6556 txr
->tx_prod_bseq
+= skb
->len
;
6558 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6559 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6563 txr
->tx_prod
= prod
;
6565 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6566 netif_tx_stop_queue(txq
);
6568 /* netif_tx_stop_queue() must be done before checking
6569 * tx index in bnx2_tx_avail() below, because in
6570 * bnx2_tx_int(), we update tx index before checking for
6571 * netif_tx_queue_stopped().
6574 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6575 netif_tx_wake_queue(txq
);
6578 return NETDEV_TX_OK
;
6580 /* save value of frag that failed */
6583 /* start back at beginning and unmap skb */
6584 prod
= txr
->tx_prod
;
6585 ring_prod
= TX_RING_IDX(prod
);
6586 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6588 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6589 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6591 /* unmap remaining mapped pages */
6592 for (i
= 0; i
< last_frag
; i
++) {
6593 prod
= NEXT_TX_BD(prod
);
6594 ring_prod
= TX_RING_IDX(prod
);
6595 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6596 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6597 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
6602 return NETDEV_TX_OK
;
6605 /* Called with rtnl_lock */
6607 bnx2_close(struct net_device
*dev
)
6609 struct bnx2
*bp
= netdev_priv(dev
);
6611 bnx2_disable_int_sync(bp
);
6612 bnx2_napi_disable(bp
);
6613 del_timer_sync(&bp
->timer
);
6614 bnx2_shutdown_chip(bp
);
6620 netif_carrier_off(bp
->dev
);
6621 bnx2_set_power_state(bp
, PCI_D3hot
);
6626 bnx2_save_stats(struct bnx2
*bp
)
6628 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6629 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6632 /* The 1st 10 counters are 64-bit counters */
6633 for (i
= 0; i
< 20; i
+= 2) {
6637 hi
= temp_stats
[i
] + hw_stats
[i
];
6638 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6639 if (lo
> 0xffffffff)
6642 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6645 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6646 temp_stats
[i
] += hw_stats
[i
];
6649 #define GET_64BIT_NET_STATS64(ctr) \
6650 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6652 #define GET_64BIT_NET_STATS(ctr) \
6653 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6654 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6656 #define GET_32BIT_NET_STATS(ctr) \
6657 (unsigned long) (bp->stats_blk->ctr + \
6658 bp->temp_stats_blk->ctr)
6660 static struct rtnl_link_stats64
*
6661 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6663 struct bnx2
*bp
= netdev_priv(dev
);
6665 if (bp
->stats_blk
== NULL
)
6668 net_stats
->rx_packets
=
6669 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6670 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6671 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6673 net_stats
->tx_packets
=
6674 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6675 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6676 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6678 net_stats
->rx_bytes
=
6679 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6681 net_stats
->tx_bytes
=
6682 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6684 net_stats
->multicast
=
6685 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6687 net_stats
->collisions
=
6688 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6690 net_stats
->rx_length_errors
=
6691 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6692 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6694 net_stats
->rx_over_errors
=
6695 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6696 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6698 net_stats
->rx_frame_errors
=
6699 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6701 net_stats
->rx_crc_errors
=
6702 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6704 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6705 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6706 net_stats
->rx_crc_errors
;
6708 net_stats
->tx_aborted_errors
=
6709 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6710 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6712 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6713 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6714 net_stats
->tx_carrier_errors
= 0;
6716 net_stats
->tx_carrier_errors
=
6717 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6720 net_stats
->tx_errors
=
6721 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6722 net_stats
->tx_aborted_errors
+
6723 net_stats
->tx_carrier_errors
;
6725 net_stats
->rx_missed_errors
=
6726 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6727 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6728 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6733 /* All ethtool functions called with rtnl_lock */
6736 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6738 struct bnx2
*bp
= netdev_priv(dev
);
6739 int support_serdes
= 0, support_copper
= 0;
6741 cmd
->supported
= SUPPORTED_Autoneg
;
6742 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6745 } else if (bp
->phy_port
== PORT_FIBRE
)
6750 if (support_serdes
) {
6751 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6753 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6754 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6757 if (support_copper
) {
6758 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6759 SUPPORTED_10baseT_Full
|
6760 SUPPORTED_100baseT_Half
|
6761 SUPPORTED_100baseT_Full
|
6762 SUPPORTED_1000baseT_Full
|
6767 spin_lock_bh(&bp
->phy_lock
);
6768 cmd
->port
= bp
->phy_port
;
6769 cmd
->advertising
= bp
->advertising
;
6771 if (bp
->autoneg
& AUTONEG_SPEED
) {
6772 cmd
->autoneg
= AUTONEG_ENABLE
;
6774 cmd
->autoneg
= AUTONEG_DISABLE
;
6777 if (netif_carrier_ok(dev
)) {
6778 ethtool_cmd_speed_set(cmd
, bp
->line_speed
);
6779 cmd
->duplex
= bp
->duplex
;
6782 ethtool_cmd_speed_set(cmd
, -1);
6785 spin_unlock_bh(&bp
->phy_lock
);
6787 cmd
->transceiver
= XCVR_INTERNAL
;
6788 cmd
->phy_address
= bp
->phy_addr
;
6794 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6796 struct bnx2
*bp
= netdev_priv(dev
);
6797 u8 autoneg
= bp
->autoneg
;
6798 u8 req_duplex
= bp
->req_duplex
;
6799 u16 req_line_speed
= bp
->req_line_speed
;
6800 u32 advertising
= bp
->advertising
;
6803 spin_lock_bh(&bp
->phy_lock
);
6805 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6806 goto err_out_unlock
;
6808 if (cmd
->port
!= bp
->phy_port
&&
6809 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6810 goto err_out_unlock
;
6812 /* If device is down, we can store the settings only if the user
6813 * is setting the currently active port.
6815 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6816 goto err_out_unlock
;
6818 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6819 autoneg
|= AUTONEG_SPEED
;
6821 advertising
= cmd
->advertising
;
6822 if (cmd
->port
== PORT_TP
) {
6823 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6825 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6827 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6829 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6831 advertising
|= ADVERTISED_Autoneg
;
6834 u32 speed
= ethtool_cmd_speed(cmd
);
6835 if (cmd
->port
== PORT_FIBRE
) {
6836 if ((speed
!= SPEED_1000
&&
6837 speed
!= SPEED_2500
) ||
6838 (cmd
->duplex
!= DUPLEX_FULL
))
6839 goto err_out_unlock
;
6841 if (speed
== SPEED_2500
&&
6842 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6843 goto err_out_unlock
;
6844 } else if (speed
== SPEED_1000
|| speed
== SPEED_2500
)
6845 goto err_out_unlock
;
6847 autoneg
&= ~AUTONEG_SPEED
;
6848 req_line_speed
= speed
;
6849 req_duplex
= cmd
->duplex
;
6853 bp
->autoneg
= autoneg
;
6854 bp
->advertising
= advertising
;
6855 bp
->req_line_speed
= req_line_speed
;
6856 bp
->req_duplex
= req_duplex
;
6859 /* If device is down, the new settings will be picked up when it is
6862 if (netif_running(dev
))
6863 err
= bnx2_setup_phy(bp
, cmd
->port
);
6866 spin_unlock_bh(&bp
->phy_lock
);
6872 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6874 struct bnx2
*bp
= netdev_priv(dev
);
6876 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
6877 strlcpy(info
->version
, DRV_MODULE_VERSION
, sizeof(info
->version
));
6878 strlcpy(info
->bus_info
, pci_name(bp
->pdev
), sizeof(info
->bus_info
));
6879 strlcpy(info
->fw_version
, bp
->fw_version
, sizeof(info
->fw_version
));
6882 #define BNX2_REGDUMP_LEN (32 * 1024)
6885 bnx2_get_regs_len(struct net_device
*dev
)
6887 return BNX2_REGDUMP_LEN
;
6891 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6893 u32
*p
= _p
, i
, offset
;
6895 struct bnx2
*bp
= netdev_priv(dev
);
6896 static const u32 reg_boundaries
[] = {
6897 0x0000, 0x0098, 0x0400, 0x045c,
6898 0x0800, 0x0880, 0x0c00, 0x0c10,
6899 0x0c30, 0x0d08, 0x1000, 0x101c,
6900 0x1040, 0x1048, 0x1080, 0x10a4,
6901 0x1400, 0x1490, 0x1498, 0x14f0,
6902 0x1500, 0x155c, 0x1580, 0x15dc,
6903 0x1600, 0x1658, 0x1680, 0x16d8,
6904 0x1800, 0x1820, 0x1840, 0x1854,
6905 0x1880, 0x1894, 0x1900, 0x1984,
6906 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6907 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6908 0x2000, 0x2030, 0x23c0, 0x2400,
6909 0x2800, 0x2820, 0x2830, 0x2850,
6910 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6911 0x3c00, 0x3c94, 0x4000, 0x4010,
6912 0x4080, 0x4090, 0x43c0, 0x4458,
6913 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6914 0x4fc0, 0x5010, 0x53c0, 0x5444,
6915 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6916 0x5fc0, 0x6000, 0x6400, 0x6428,
6917 0x6800, 0x6848, 0x684c, 0x6860,
6918 0x6888, 0x6910, 0x8000
6923 memset(p
, 0, BNX2_REGDUMP_LEN
);
6925 if (!netif_running(bp
->dev
))
6929 offset
= reg_boundaries
[0];
6931 while (offset
< BNX2_REGDUMP_LEN
) {
6932 *p
++ = REG_RD(bp
, offset
);
6934 if (offset
== reg_boundaries
[i
+ 1]) {
6935 offset
= reg_boundaries
[i
+ 2];
6936 p
= (u32
*) (orig_p
+ offset
);
6943 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6945 struct bnx2
*bp
= netdev_priv(dev
);
6947 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6952 wol
->supported
= WAKE_MAGIC
;
6954 wol
->wolopts
= WAKE_MAGIC
;
6958 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6962 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6964 struct bnx2
*bp
= netdev_priv(dev
);
6966 if (wol
->wolopts
& ~WAKE_MAGIC
)
6969 if (wol
->wolopts
& WAKE_MAGIC
) {
6970 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6982 bnx2_nway_reset(struct net_device
*dev
)
6984 struct bnx2
*bp
= netdev_priv(dev
);
6987 if (!netif_running(dev
))
6990 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6994 spin_lock_bh(&bp
->phy_lock
);
6996 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6999 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
7000 spin_unlock_bh(&bp
->phy_lock
);
7004 /* Force a link down visible on the other side */
7005 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7006 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
7007 spin_unlock_bh(&bp
->phy_lock
);
7011 spin_lock_bh(&bp
->phy_lock
);
7013 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
7014 bp
->serdes_an_pending
= 1;
7015 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
7018 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
7019 bmcr
&= ~BMCR_LOOPBACK
;
7020 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
7022 spin_unlock_bh(&bp
->phy_lock
);
7028 bnx2_get_link(struct net_device
*dev
)
7030 struct bnx2
*bp
= netdev_priv(dev
);
7036 bnx2_get_eeprom_len(struct net_device
*dev
)
7038 struct bnx2
*bp
= netdev_priv(dev
);
7040 if (bp
->flash_info
== NULL
)
7043 return (int) bp
->flash_size
;
7047 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7050 struct bnx2
*bp
= netdev_priv(dev
);
7053 if (!netif_running(dev
))
7056 /* parameters already validated in ethtool_get_eeprom */
7058 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7064 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7067 struct bnx2
*bp
= netdev_priv(dev
);
7070 if (!netif_running(dev
))
7073 /* parameters already validated in ethtool_set_eeprom */
7075 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7081 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7083 struct bnx2
*bp
= netdev_priv(dev
);
7085 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7087 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7088 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7089 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7090 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7092 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7093 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7094 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7095 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7097 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7103 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7105 struct bnx2
*bp
= netdev_priv(dev
);
7107 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7108 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7110 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7111 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7113 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7114 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7116 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7117 if (bp
->rx_quick_cons_trip_int
> 0xff)
7118 bp
->rx_quick_cons_trip_int
= 0xff;
7120 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7121 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7123 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7124 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7126 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7127 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7129 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7130 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7133 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7134 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7135 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7136 bp
->stats_ticks
= USEC_PER_SEC
;
7138 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7139 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7140 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7142 if (netif_running(bp
->dev
)) {
7143 bnx2_netif_stop(bp
, true);
7144 bnx2_init_nic(bp
, 0);
7145 bnx2_netif_start(bp
, true);
7152 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7154 struct bnx2
*bp
= netdev_priv(dev
);
7156 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
7157 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
7159 ering
->rx_pending
= bp
->rx_ring_size
;
7160 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7162 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
7163 ering
->tx_pending
= bp
->tx_ring_size
;
7167 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
7169 if (netif_running(bp
->dev
)) {
7170 /* Reset will erase chipset stats; save them */
7171 bnx2_save_stats(bp
);
7173 bnx2_netif_stop(bp
, true);
7174 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7175 __bnx2_free_irq(bp
);
7180 bnx2_set_rx_ring_size(bp
, rx
);
7181 bp
->tx_ring_size
= tx
;
7183 if (netif_running(bp
->dev
)) {
7186 rc
= bnx2_alloc_mem(bp
);
7188 rc
= bnx2_request_irq(bp
);
7191 rc
= bnx2_init_nic(bp
, 0);
7194 bnx2_napi_enable(bp
);
7199 mutex_lock(&bp
->cnic_lock
);
7200 /* Let cnic know about the new status block. */
7201 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7202 bnx2_setup_cnic_irq_info(bp
);
7203 mutex_unlock(&bp
->cnic_lock
);
7205 bnx2_netif_start(bp
, true);
7211 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7213 struct bnx2
*bp
= netdev_priv(dev
);
7216 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7217 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7218 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7222 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
7227 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7229 struct bnx2
*bp
= netdev_priv(dev
);
7231 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7232 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7233 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7237 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7239 struct bnx2
*bp
= netdev_priv(dev
);
7241 bp
->req_flow_ctrl
= 0;
7242 if (epause
->rx_pause
)
7243 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7244 if (epause
->tx_pause
)
7245 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7247 if (epause
->autoneg
) {
7248 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7251 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7254 if (netif_running(dev
)) {
7255 spin_lock_bh(&bp
->phy_lock
);
7256 bnx2_setup_phy(bp
, bp
->phy_port
);
7257 spin_unlock_bh(&bp
->phy_lock
);
7264 char string
[ETH_GSTRING_LEN
];
7265 } bnx2_stats_str_arr
[] = {
7267 { "rx_error_bytes" },
7269 { "tx_error_bytes" },
7270 { "rx_ucast_packets" },
7271 { "rx_mcast_packets" },
7272 { "rx_bcast_packets" },
7273 { "tx_ucast_packets" },
7274 { "tx_mcast_packets" },
7275 { "tx_bcast_packets" },
7276 { "tx_mac_errors" },
7277 { "tx_carrier_errors" },
7278 { "rx_crc_errors" },
7279 { "rx_align_errors" },
7280 { "tx_single_collisions" },
7281 { "tx_multi_collisions" },
7283 { "tx_excess_collisions" },
7284 { "tx_late_collisions" },
7285 { "tx_total_collisions" },
7288 { "rx_undersize_packets" },
7289 { "rx_oversize_packets" },
7290 { "rx_64_byte_packets" },
7291 { "rx_65_to_127_byte_packets" },
7292 { "rx_128_to_255_byte_packets" },
7293 { "rx_256_to_511_byte_packets" },
7294 { "rx_512_to_1023_byte_packets" },
7295 { "rx_1024_to_1522_byte_packets" },
7296 { "rx_1523_to_9022_byte_packets" },
7297 { "tx_64_byte_packets" },
7298 { "tx_65_to_127_byte_packets" },
7299 { "tx_128_to_255_byte_packets" },
7300 { "tx_256_to_511_byte_packets" },
7301 { "tx_512_to_1023_byte_packets" },
7302 { "tx_1024_to_1522_byte_packets" },
7303 { "tx_1523_to_9022_byte_packets" },
7304 { "rx_xon_frames" },
7305 { "rx_xoff_frames" },
7306 { "tx_xon_frames" },
7307 { "tx_xoff_frames" },
7308 { "rx_mac_ctrl_frames" },
7309 { "rx_filtered_packets" },
7310 { "rx_ftq_discards" },
7312 { "rx_fw_discards" },
7315 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7316 sizeof(bnx2_stats_str_arr[0]))
7318 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7320 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7321 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7322 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7323 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7324 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7325 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7326 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7327 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7328 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7329 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7330 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7331 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7332 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7333 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7334 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7335 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7336 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7337 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7338 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7339 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7340 STATS_OFFSET32(stat_EtherStatsCollisions
),
7341 STATS_OFFSET32(stat_EtherStatsFragments
),
7342 STATS_OFFSET32(stat_EtherStatsJabbers
),
7343 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7344 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7345 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7346 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7347 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7348 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7349 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7350 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7351 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7352 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7353 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7354 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7355 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7356 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7357 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7358 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7359 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7360 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7361 STATS_OFFSET32(stat_OutXonSent
),
7362 STATS_OFFSET32(stat_OutXoffSent
),
7363 STATS_OFFSET32(stat_MacControlFramesReceived
),
7364 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7365 STATS_OFFSET32(stat_IfInFTQDiscards
),
7366 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7367 STATS_OFFSET32(stat_FwRxDrop
),
7370 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7371 * skipped because of errata.
7373 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7374 8,0,8,8,8,8,8,8,8,8,
7375 4,0,4,4,4,4,4,4,4,4,
7376 4,4,4,4,4,4,4,4,4,4,
7377 4,4,4,4,4,4,4,4,4,4,
7381 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7382 8,0,8,8,8,8,8,8,8,8,
7383 4,4,4,4,4,4,4,4,4,4,
7384 4,4,4,4,4,4,4,4,4,4,
7385 4,4,4,4,4,4,4,4,4,4,
7389 #define BNX2_NUM_TESTS 6
7392 char string
[ETH_GSTRING_LEN
];
7393 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7394 { "register_test (offline)" },
7395 { "memory_test (offline)" },
7396 { "loopback_test (offline)" },
7397 { "nvram_test (online)" },
7398 { "interrupt_test (online)" },
7399 { "link_test (online)" },
7403 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7407 return BNX2_NUM_TESTS
;
7409 return BNX2_NUM_STATS
;
7416 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7418 struct bnx2
*bp
= netdev_priv(dev
);
7420 bnx2_set_power_state(bp
, PCI_D0
);
7422 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7423 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7426 bnx2_netif_stop(bp
, true);
7427 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7430 if (bnx2_test_registers(bp
) != 0) {
7432 etest
->flags
|= ETH_TEST_FL_FAILED
;
7434 if (bnx2_test_memory(bp
) != 0) {
7436 etest
->flags
|= ETH_TEST_FL_FAILED
;
7438 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7439 etest
->flags
|= ETH_TEST_FL_FAILED
;
7441 if (!netif_running(bp
->dev
))
7442 bnx2_shutdown_chip(bp
);
7444 bnx2_init_nic(bp
, 1);
7445 bnx2_netif_start(bp
, true);
7448 /* wait for link up */
7449 for (i
= 0; i
< 7; i
++) {
7452 msleep_interruptible(1000);
7456 if (bnx2_test_nvram(bp
) != 0) {
7458 etest
->flags
|= ETH_TEST_FL_FAILED
;
7460 if (bnx2_test_intr(bp
) != 0) {
7462 etest
->flags
|= ETH_TEST_FL_FAILED
;
7465 if (bnx2_test_link(bp
) != 0) {
7467 etest
->flags
|= ETH_TEST_FL_FAILED
;
7470 if (!netif_running(bp
->dev
))
7471 bnx2_set_power_state(bp
, PCI_D3hot
);
7475 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7477 switch (stringset
) {
7479 memcpy(buf
, bnx2_stats_str_arr
,
7480 sizeof(bnx2_stats_str_arr
));
7483 memcpy(buf
, bnx2_tests_str_arr
,
7484 sizeof(bnx2_tests_str_arr
));
7490 bnx2_get_ethtool_stats(struct net_device
*dev
,
7491 struct ethtool_stats
*stats
, u64
*buf
)
7493 struct bnx2
*bp
= netdev_priv(dev
);
7495 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7496 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7497 u8
*stats_len_arr
= NULL
;
7499 if (hw_stats
== NULL
) {
7500 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7504 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7505 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7506 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7507 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7508 stats_len_arr
= bnx2_5706_stats_len_arr
;
7510 stats_len_arr
= bnx2_5708_stats_len_arr
;
7512 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7513 unsigned long offset
;
7515 if (stats_len_arr
[i
] == 0) {
7516 /* skip this counter */
7521 offset
= bnx2_stats_offset_arr
[i
];
7522 if (stats_len_arr
[i
] == 4) {
7523 /* 4-byte counter */
7524 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7525 *(temp_stats
+ offset
);
7528 /* 8-byte counter */
7529 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7530 *(hw_stats
+ offset
+ 1) +
7531 (((u64
) *(temp_stats
+ offset
)) << 32) +
7532 *(temp_stats
+ offset
+ 1);
7537 bnx2_set_phys_id(struct net_device
*dev
, enum ethtool_phys_id_state state
)
7539 struct bnx2
*bp
= netdev_priv(dev
);
7542 case ETHTOOL_ID_ACTIVE
:
7543 bnx2_set_power_state(bp
, PCI_D0
);
7545 bp
->leds_save
= REG_RD(bp
, BNX2_MISC_CFG
);
7546 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7547 return 1; /* cycle on/off once per second */
7550 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7551 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7552 BNX2_EMAC_LED_100MB_OVERRIDE
|
7553 BNX2_EMAC_LED_10MB_OVERRIDE
|
7554 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7555 BNX2_EMAC_LED_TRAFFIC
);
7558 case ETHTOOL_ID_OFF
:
7559 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7562 case ETHTOOL_ID_INACTIVE
:
7563 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7564 REG_WR(bp
, BNX2_MISC_CFG
, bp
->leds_save
);
7566 if (!netif_running(dev
))
7567 bnx2_set_power_state(bp
, PCI_D3hot
);
7574 static netdev_features_t
7575 bnx2_fix_features(struct net_device
*dev
, netdev_features_t features
)
7577 struct bnx2
*bp
= netdev_priv(dev
);
7579 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
7580 features
|= NETIF_F_HW_VLAN_RX
;
7586 bnx2_set_features(struct net_device
*dev
, netdev_features_t features
)
7588 struct bnx2
*bp
= netdev_priv(dev
);
7590 /* TSO with VLAN tag won't work with current firmware */
7591 if (features
& NETIF_F_HW_VLAN_TX
)
7592 dev
->vlan_features
|= (dev
->hw_features
& NETIF_F_ALL_TSO
);
7594 dev
->vlan_features
&= ~NETIF_F_ALL_TSO
;
7596 if ((!!(features
& NETIF_F_HW_VLAN_RX
) !=
7597 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7598 netif_running(dev
)) {
7599 bnx2_netif_stop(bp
, false);
7600 dev
->features
= features
;
7601 bnx2_set_rx_mode(dev
);
7602 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7603 bnx2_netif_start(bp
, false);
7610 static const struct ethtool_ops bnx2_ethtool_ops
= {
7611 .get_settings
= bnx2_get_settings
,
7612 .set_settings
= bnx2_set_settings
,
7613 .get_drvinfo
= bnx2_get_drvinfo
,
7614 .get_regs_len
= bnx2_get_regs_len
,
7615 .get_regs
= bnx2_get_regs
,
7616 .get_wol
= bnx2_get_wol
,
7617 .set_wol
= bnx2_set_wol
,
7618 .nway_reset
= bnx2_nway_reset
,
7619 .get_link
= bnx2_get_link
,
7620 .get_eeprom_len
= bnx2_get_eeprom_len
,
7621 .get_eeprom
= bnx2_get_eeprom
,
7622 .set_eeprom
= bnx2_set_eeprom
,
7623 .get_coalesce
= bnx2_get_coalesce
,
7624 .set_coalesce
= bnx2_set_coalesce
,
7625 .get_ringparam
= bnx2_get_ringparam
,
7626 .set_ringparam
= bnx2_set_ringparam
,
7627 .get_pauseparam
= bnx2_get_pauseparam
,
7628 .set_pauseparam
= bnx2_set_pauseparam
,
7629 .self_test
= bnx2_self_test
,
7630 .get_strings
= bnx2_get_strings
,
7631 .set_phys_id
= bnx2_set_phys_id
,
7632 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7633 .get_sset_count
= bnx2_get_sset_count
,
7636 /* Called with rtnl_lock */
7638 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7640 struct mii_ioctl_data
*data
= if_mii(ifr
);
7641 struct bnx2
*bp
= netdev_priv(dev
);
7646 data
->phy_id
= bp
->phy_addr
;
7652 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7655 if (!netif_running(dev
))
7658 spin_lock_bh(&bp
->phy_lock
);
7659 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7660 spin_unlock_bh(&bp
->phy_lock
);
7662 data
->val_out
= mii_regval
;
7668 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7671 if (!netif_running(dev
))
7674 spin_lock_bh(&bp
->phy_lock
);
7675 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7676 spin_unlock_bh(&bp
->phy_lock
);
7687 /* Called with rtnl_lock */
7689 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7691 struct sockaddr
*addr
= p
;
7692 struct bnx2
*bp
= netdev_priv(dev
);
7694 if (!is_valid_ether_addr(addr
->sa_data
))
7697 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7698 if (netif_running(dev
))
7699 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7704 /* Called with rtnl_lock */
7706 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7708 struct bnx2
*bp
= netdev_priv(dev
);
7710 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7711 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7715 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
);
7718 #ifdef CONFIG_NET_POLL_CONTROLLER
7720 poll_bnx2(struct net_device
*dev
)
7722 struct bnx2
*bp
= netdev_priv(dev
);
7725 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7726 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7728 disable_irq(irq
->vector
);
7729 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7730 enable_irq(irq
->vector
);
7735 static void __devinit
7736 bnx2_get_5709_media(struct bnx2
*bp
)
7738 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7739 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7742 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7744 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7745 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7749 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7750 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7752 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7754 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7759 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7767 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7773 static void __devinit
7774 bnx2_get_pci_speed(struct bnx2
*bp
)
7778 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7779 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7782 bp
->flags
|= BNX2_FLAG_PCIX
;
7784 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7786 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7788 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7789 bp
->bus_speed_mhz
= 133;
7792 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7793 bp
->bus_speed_mhz
= 100;
7796 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7797 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7798 bp
->bus_speed_mhz
= 66;
7801 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7802 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7803 bp
->bus_speed_mhz
= 50;
7806 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7807 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7808 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7809 bp
->bus_speed_mhz
= 33;
7814 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7815 bp
->bus_speed_mhz
= 66;
7817 bp
->bus_speed_mhz
= 33;
7820 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7821 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7825 static void __devinit
7826 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
7830 unsigned int block_end
, rosize
, len
;
7832 #define BNX2_VPD_NVRAM_OFFSET 0x300
7833 #define BNX2_VPD_LEN 128
7834 #define BNX2_MAX_VER_SLEN 30
7836 data
= kmalloc(256, GFP_KERNEL
);
7840 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
7845 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
7846 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
7847 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
7848 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
7849 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
7852 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
7856 rosize
= pci_vpd_lrdt_size(&data
[i
]);
7857 i
+= PCI_VPD_LRDT_TAG_SIZE
;
7858 block_end
= i
+ rosize
;
7860 if (block_end
> BNX2_VPD_LEN
)
7863 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7864 PCI_VPD_RO_KEYWORD_MFR_ID
);
7868 len
= pci_vpd_info_field_size(&data
[j
]);
7870 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7871 if (j
+ len
> block_end
|| len
!= 4 ||
7872 memcmp(&data
[j
], "1028", 4))
7875 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7876 PCI_VPD_RO_KEYWORD_VENDOR0
);
7880 len
= pci_vpd_info_field_size(&data
[j
]);
7882 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7883 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
7886 memcpy(bp
->fw_version
, &data
[j
], len
);
7887 bp
->fw_version
[len
] = ' ';
7893 static int __devinit
7894 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7897 unsigned long mem_len
;
7900 u64 dma_mask
, persist_dma_mask
;
7903 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7904 bp
= netdev_priv(dev
);
7909 bp
->temp_stats_blk
=
7910 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
7912 if (bp
->temp_stats_blk
== NULL
) {
7917 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7918 rc
= pci_enable_device(pdev
);
7920 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
7924 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7926 "Cannot find PCI device base address, aborting\n");
7928 goto err_out_disable
;
7931 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7933 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
7934 goto err_out_disable
;
7937 pci_set_master(pdev
);
7939 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7940 if (bp
->pm_cap
== 0) {
7942 "Cannot find power management capability, aborting\n");
7944 goto err_out_release
;
7950 spin_lock_init(&bp
->phy_lock
);
7951 spin_lock_init(&bp
->indirect_lock
);
7953 mutex_init(&bp
->cnic_lock
);
7955 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7957 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7958 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
+ 1);
7959 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7960 dev
->irq
= pdev
->irq
;
7962 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7965 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
7967 goto err_out_release
;
7970 bnx2_set_power_state(bp
, PCI_D0
);
7972 /* Configure byte swap and enable write to the reg_window registers.
7973 * Rely on CPU to do target byte swapping on big endian systems
7974 * The chip's target access swapping will not swap all accesses
7976 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
,
7977 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7978 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7980 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7982 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7983 if (!pci_is_pcie(pdev
)) {
7984 dev_err(&pdev
->dev
, "Not PCIE, aborting\n");
7988 bp
->flags
|= BNX2_FLAG_PCIE
;
7989 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7990 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7992 /* AER (Advanced Error Reporting) hooks */
7993 err
= pci_enable_pcie_error_reporting(pdev
);
7995 bp
->flags
|= BNX2_FLAG_AER_ENABLED
;
7998 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7999 if (bp
->pcix_cap
== 0) {
8001 "Cannot find PCIX capability, aborting\n");
8005 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
8008 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
8009 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
8010 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
8013 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
8014 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
8015 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
8018 /* 5708 cannot support DMA addresses > 40-bit. */
8019 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
8020 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
8022 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
8024 /* Configure DMA attributes. */
8025 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
8026 dev
->features
|= NETIF_F_HIGHDMA
;
8027 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
8030 "pci_set_consistent_dma_mask failed, aborting\n");
8033 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
8034 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8038 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8039 bnx2_get_pci_speed(bp
);
8041 /* 5706A0 may falsely detect SERR and PERR. */
8042 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8043 reg
= REG_RD(bp
, PCI_COMMAND
);
8044 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
8045 REG_WR(bp
, PCI_COMMAND
, reg
);
8047 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
8048 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8051 "5706 A1 can only be used in a PCIX bus, aborting\n");
8055 bnx2_init_nvram(bp
);
8057 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8059 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8060 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8061 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
8063 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8065 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8067 /* Get the permanent MAC address. First we need to make sure the
8068 * firmware is actually running.
8070 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8072 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8073 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8074 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8079 bnx2_read_vpd_fw_ver(bp
);
8081 j
= strlen(bp
->fw_version
);
8082 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8083 for (i
= 0; i
< 3 && j
< 24; i
++) {
8087 bp
->fw_version
[j
++] = 'b';
8088 bp
->fw_version
[j
++] = 'c';
8089 bp
->fw_version
[j
++] = ' ';
8091 num
= (u8
) (reg
>> (24 - (i
* 8)));
8092 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8093 if (num
>= k
|| !skip0
|| k
== 1) {
8094 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8099 bp
->fw_version
[j
++] = '.';
8101 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8102 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8105 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8106 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8108 for (i
= 0; i
< 30; i
++) {
8109 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8110 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8115 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8116 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8117 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8118 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8119 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8122 bp
->fw_version
[j
++] = ' ';
8123 for (i
= 0; i
< 3 && j
< 28; i
++) {
8124 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8125 reg
= be32_to_cpu(reg
);
8126 memcpy(&bp
->fw_version
[j
], ®
, 4);
8131 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8132 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8133 bp
->mac_addr
[1] = (u8
) reg
;
8135 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8136 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8137 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8138 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8139 bp
->mac_addr
[5] = (u8
) reg
;
8141 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
8142 bnx2_set_rx_ring_size(bp
, 255);
8144 bp
->tx_quick_cons_trip_int
= 2;
8145 bp
->tx_quick_cons_trip
= 20;
8146 bp
->tx_ticks_int
= 18;
8149 bp
->rx_quick_cons_trip_int
= 2;
8150 bp
->rx_quick_cons_trip
= 12;
8151 bp
->rx_ticks_int
= 18;
8154 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8156 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8160 /* Disable WOL support if we are running on a SERDES chip. */
8161 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8162 bnx2_get_5709_media(bp
);
8163 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
8164 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8166 bp
->phy_port
= PORT_TP
;
8167 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8168 bp
->phy_port
= PORT_FIBRE
;
8169 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8170 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8171 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8174 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
8175 /* Don't do parallel detect on this board because of
8176 * some board problems. The link will not go down
8177 * if we do parallel detect.
8179 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8180 pdev
->subsystem_device
== 0x310c)
8181 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8184 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8185 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8187 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
8188 CHIP_NUM(bp
) == CHIP_NUM_5708
)
8189 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8190 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
8191 (CHIP_REV(bp
) == CHIP_REV_Ax
||
8192 CHIP_REV(bp
) == CHIP_REV_Bx
))
8193 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8195 bnx2_init_fw_cap(bp
);
8197 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
8198 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
8199 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
8200 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8201 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8205 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8206 bp
->tx_quick_cons_trip_int
=
8207 bp
->tx_quick_cons_trip
;
8208 bp
->tx_ticks_int
= bp
->tx_ticks
;
8209 bp
->rx_quick_cons_trip_int
=
8210 bp
->rx_quick_cons_trip
;
8211 bp
->rx_ticks_int
= bp
->rx_ticks
;
8212 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8213 bp
->com_ticks_int
= bp
->com_ticks
;
8214 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8217 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8219 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8220 * with byte enables disabled on the unused 32-bit word. This is legal
8221 * but causes problems on the AMD 8132 which will eventually stop
8222 * responding after a while.
8224 * AMD believes this incompatibility is unique to the 5706, and
8225 * prefers to locally disable MSI rather than globally disabling it.
8227 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
8228 struct pci_dev
*amd_8132
= NULL
;
8230 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8231 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8234 if (amd_8132
->revision
>= 0x10 &&
8235 amd_8132
->revision
<= 0x13) {
8237 pci_dev_put(amd_8132
);
8243 bnx2_set_default_link(bp
);
8244 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8246 init_timer(&bp
->timer
);
8247 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8248 bp
->timer
.data
= (unsigned long) bp
;
8249 bp
->timer
.function
= bnx2_timer
;
8252 if (bnx2_shmem_rd(bp
, BNX2_ISCSI_INITIATOR
) & BNX2_ISCSI_INITIATOR_EN
)
8253 bp
->cnic_eth_dev
.max_iscsi_conn
=
8254 (bnx2_shmem_rd(bp
, BNX2_ISCSI_MAX_CONN
) &
8255 BNX2_ISCSI_MAX_CONN_MASK
) >> BNX2_ISCSI_MAX_CONN_SHIFT
;
8257 pci_save_state(pdev
);
8262 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8263 pci_disable_pcie_error_reporting(pdev
);
8264 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8268 iounmap(bp
->regview
);
8273 pci_release_regions(pdev
);
8276 pci_disable_device(pdev
);
8277 pci_set_drvdata(pdev
, NULL
);
8283 static char * __devinit
8284 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8288 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8289 s
+= sprintf(s
, "PCI Express");
8291 s
+= sprintf(s
, "PCI");
8292 if (bp
->flags
& BNX2_FLAG_PCIX
)
8293 s
+= sprintf(s
, "-X");
8294 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8295 s
+= sprintf(s
, " 32-bit");
8297 s
+= sprintf(s
, " 64-bit");
8298 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8304 bnx2_del_napi(struct bnx2
*bp
)
8308 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8309 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8313 bnx2_init_napi(struct bnx2
*bp
)
8317 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8318 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8319 int (*poll
)(struct napi_struct
*, int);
8324 poll
= bnx2_poll_msix
;
8326 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8331 static const struct net_device_ops bnx2_netdev_ops
= {
8332 .ndo_open
= bnx2_open
,
8333 .ndo_start_xmit
= bnx2_start_xmit
,
8334 .ndo_stop
= bnx2_close
,
8335 .ndo_get_stats64
= bnx2_get_stats64
,
8336 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8337 .ndo_do_ioctl
= bnx2_ioctl
,
8338 .ndo_validate_addr
= eth_validate_addr
,
8339 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8340 .ndo_change_mtu
= bnx2_change_mtu
,
8341 .ndo_fix_features
= bnx2_fix_features
,
8342 .ndo_set_features
= bnx2_set_features
,
8343 .ndo_tx_timeout
= bnx2_tx_timeout
,
8344 #ifdef CONFIG_NET_POLL_CONTROLLER
8345 .ndo_poll_controller
= poll_bnx2
,
8349 static int __devinit
8350 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8352 static int version_printed
= 0;
8353 struct net_device
*dev
= NULL
;
8358 if (version_printed
++ == 0)
8359 pr_info("%s", version
);
8361 /* dev zeroed in init_etherdev */
8362 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8367 rc
= bnx2_init_board(pdev
, dev
);
8373 dev
->netdev_ops
= &bnx2_netdev_ops
;
8374 dev
->watchdog_timeo
= TX_TIMEOUT
;
8375 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8377 bp
= netdev_priv(dev
);
8379 pci_set_drvdata(pdev
, dev
);
8381 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8382 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8384 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
8385 NETIF_F_TSO
| NETIF_F_TSO_ECN
|
8386 NETIF_F_RXHASH
| NETIF_F_RXCSUM
;
8388 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8389 dev
->hw_features
|= NETIF_F_IPV6_CSUM
| NETIF_F_TSO6
;
8391 dev
->vlan_features
= dev
->hw_features
;
8392 dev
->hw_features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8393 dev
->features
|= dev
->hw_features
;
8394 dev
->priv_flags
|= IFF_UNICAST_FLT
;
8396 if ((rc
= register_netdev(dev
))) {
8397 dev_err(&pdev
->dev
, "Cannot register net device\n");
8401 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8402 board_info
[ent
->driver_data
].name
,
8403 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8404 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8405 bnx2_bus_string(bp
, str
),
8407 bp
->pdev
->irq
, dev
->dev_addr
);
8413 iounmap(bp
->regview
);
8414 pci_release_regions(pdev
);
8415 pci_disable_device(pdev
);
8416 pci_set_drvdata(pdev
, NULL
);
8421 static void __devexit
8422 bnx2_remove_one(struct pci_dev
*pdev
)
8424 struct net_device
*dev
= pci_get_drvdata(pdev
);
8425 struct bnx2
*bp
= netdev_priv(dev
);
8427 unregister_netdev(dev
);
8429 del_timer_sync(&bp
->timer
);
8430 cancel_work_sync(&bp
->reset_task
);
8433 iounmap(bp
->regview
);
8435 kfree(bp
->temp_stats_blk
);
8437 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8438 pci_disable_pcie_error_reporting(pdev
);
8439 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8442 bnx2_release_firmware(bp
);
8446 pci_release_regions(pdev
);
8447 pci_disable_device(pdev
);
8448 pci_set_drvdata(pdev
, NULL
);
8452 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8454 struct net_device
*dev
= pci_get_drvdata(pdev
);
8455 struct bnx2
*bp
= netdev_priv(dev
);
8457 /* PCI register 4 needs to be saved whether netif_running() or not.
8458 * MSI address and data need to be saved if using MSI and
8461 pci_save_state(pdev
);
8462 if (!netif_running(dev
))
8465 cancel_work_sync(&bp
->reset_task
);
8466 bnx2_netif_stop(bp
, true);
8467 netif_device_detach(dev
);
8468 del_timer_sync(&bp
->timer
);
8469 bnx2_shutdown_chip(bp
);
8471 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8476 bnx2_resume(struct pci_dev
*pdev
)
8478 struct net_device
*dev
= pci_get_drvdata(pdev
);
8479 struct bnx2
*bp
= netdev_priv(dev
);
8481 pci_restore_state(pdev
);
8482 if (!netif_running(dev
))
8485 bnx2_set_power_state(bp
, PCI_D0
);
8486 netif_device_attach(dev
);
8487 bnx2_init_nic(bp
, 1);
8488 bnx2_netif_start(bp
, true);
8493 * bnx2_io_error_detected - called when PCI error is detected
8494 * @pdev: Pointer to PCI device
8495 * @state: The current pci connection state
8497 * This function is called after a PCI bus error affecting
8498 * this device has been detected.
8500 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8501 pci_channel_state_t state
)
8503 struct net_device
*dev
= pci_get_drvdata(pdev
);
8504 struct bnx2
*bp
= netdev_priv(dev
);
8507 netif_device_detach(dev
);
8509 if (state
== pci_channel_io_perm_failure
) {
8511 return PCI_ERS_RESULT_DISCONNECT
;
8514 if (netif_running(dev
)) {
8515 bnx2_netif_stop(bp
, true);
8516 del_timer_sync(&bp
->timer
);
8517 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8520 pci_disable_device(pdev
);
8523 /* Request a slot slot reset. */
8524 return PCI_ERS_RESULT_NEED_RESET
;
8528 * bnx2_io_slot_reset - called after the pci bus has been reset.
8529 * @pdev: Pointer to PCI device
8531 * Restart the card from scratch, as if from a cold-boot.
8533 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8535 struct net_device
*dev
= pci_get_drvdata(pdev
);
8536 struct bnx2
*bp
= netdev_priv(dev
);
8537 pci_ers_result_t result
;
8541 if (pci_enable_device(pdev
)) {
8543 "Cannot re-enable PCI device after reset\n");
8544 result
= PCI_ERS_RESULT_DISCONNECT
;
8546 pci_set_master(pdev
);
8547 pci_restore_state(pdev
);
8548 pci_save_state(pdev
);
8550 if (netif_running(dev
)) {
8551 bnx2_set_power_state(bp
, PCI_D0
);
8552 bnx2_init_nic(bp
, 1);
8554 result
= PCI_ERS_RESULT_RECOVERED
;
8558 if (!(bp
->flags
& BNX2_FLAG_AER_ENABLED
))
8561 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
8564 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8565 err
); /* non-fatal, continue */
8572 * bnx2_io_resume - called when traffic can start flowing again.
8573 * @pdev: Pointer to PCI device
8575 * This callback is called when the error recovery driver tells us that
8576 * its OK to resume normal operation.
8578 static void bnx2_io_resume(struct pci_dev
*pdev
)
8580 struct net_device
*dev
= pci_get_drvdata(pdev
);
8581 struct bnx2
*bp
= netdev_priv(dev
);
8584 if (netif_running(dev
))
8585 bnx2_netif_start(bp
, true);
8587 netif_device_attach(dev
);
8591 static struct pci_error_handlers bnx2_err_handler
= {
8592 .error_detected
= bnx2_io_error_detected
,
8593 .slot_reset
= bnx2_io_slot_reset
,
8594 .resume
= bnx2_io_resume
,
8597 static struct pci_driver bnx2_pci_driver
= {
8598 .name
= DRV_MODULE_NAME
,
8599 .id_table
= bnx2_pci_tbl
,
8600 .probe
= bnx2_init_one
,
8601 .remove
= __devexit_p(bnx2_remove_one
),
8602 .suspend
= bnx2_suspend
,
8603 .resume
= bnx2_resume
,
8604 .err_handler
= &bnx2_err_handler
,
8607 static int __init
bnx2_init(void)
8609 return pci_register_driver(&bnx2_pci_driver
);
8612 static void __exit
bnx2_cleanup(void)
8614 pci_unregister_driver(&bnx2_pci_driver
);
8617 module_init(bnx2_init
);
8618 module_exit(bnx2_cleanup
);