1 /* bnx2x_main.c: Broadcom Everest network driver.
3 * Copyright (c) 2007-2011 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
68 #define FW_FILE_VERSION \
69 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
70 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
71 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
72 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT (5*HZ)
80 static char version
[] __devinitdata
=
81 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 DRV_MODULE_NAME
" " DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 "BCM57710/57711/57711E/"
87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION
);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1
);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H
);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2
);
95 static int multi_mode
= 1;
96 module_param(multi_mode
, int, 0);
97 MODULE_PARM_DESC(multi_mode
, " Multi queue mode "
98 "(0 Disable; 1 Enable (default))");
101 module_param(num_queues
, int, 0);
102 MODULE_PARM_DESC(num_queues
, " Number of queues for multi_mode=1"
103 " (default is as a number of CPUs)");
105 static int disable_tpa
;
106 module_param(disable_tpa
, int, 0);
107 MODULE_PARM_DESC(disable_tpa
, " Disable the TPA (LRO) feature");
109 #define INT_MODE_INTx 1
110 #define INT_MODE_MSI 2
112 module_param(int_mode
, int, 0);
113 MODULE_PARM_DESC(int_mode
, " Force interrupt mode other than MSI-X "
116 static int dropless_fc
;
117 module_param(dropless_fc
, int, 0);
118 MODULE_PARM_DESC(dropless_fc
, " Pause on exhausted host ring");
120 static int mrrs
= -1;
121 module_param(mrrs
, int, 0);
122 MODULE_PARM_DESC(mrrs
, " Force Max Read Req Size (0..3) (for debug)");
125 module_param(debug
, int, 0);
126 MODULE_PARM_DESC(debug
, " Default debug msglevel");
130 struct workqueue_struct
*bnx2x_wq
;
132 enum bnx2x_board_type
{
146 /* indexed by board_type, above */
149 } board_info
[] __devinitdata
= {
150 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
151 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
152 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
153 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
154 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
155 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
156 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
157 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
158 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
159 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
160 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
161 "Ethernet Multi Function"}
164 #ifndef PCI_DEVICE_ID_NX2_57710
165 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
167 #ifndef PCI_DEVICE_ID_NX2_57711
168 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
170 #ifndef PCI_DEVICE_ID_NX2_57711E
171 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
173 #ifndef PCI_DEVICE_ID_NX2_57712
174 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
176 #ifndef PCI_DEVICE_ID_NX2_57712_MF
177 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
179 #ifndef PCI_DEVICE_ID_NX2_57800
180 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
182 #ifndef PCI_DEVICE_ID_NX2_57800_MF
183 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
185 #ifndef PCI_DEVICE_ID_NX2_57810
186 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
188 #ifndef PCI_DEVICE_ID_NX2_57810_MF
189 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
191 #ifndef PCI_DEVICE_ID_NX2_57840
192 #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
194 #ifndef PCI_DEVICE_ID_NX2_57840_MF
195 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
197 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl
) = {
198 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57710
), BCM57710
},
199 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57711
), BCM57711
},
200 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57711E
), BCM57711E
},
201 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57712
), BCM57712
},
202 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57712_MF
), BCM57712_MF
},
203 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57800
), BCM57800
},
204 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57800_MF
), BCM57800_MF
},
205 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57810
), BCM57810
},
206 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57810_MF
), BCM57810_MF
},
207 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840
), BCM57840
},
208 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_MF
), BCM57840_MF
},
212 MODULE_DEVICE_TABLE(pci
, bnx2x_pci_tbl
);
214 /****************************************************************************
215 * General service functions
216 ****************************************************************************/
218 static inline void __storm_memset_dma_mapping(struct bnx2x
*bp
,
219 u32 addr
, dma_addr_t mapping
)
221 REG_WR(bp
, addr
, U64_LO(mapping
));
222 REG_WR(bp
, addr
+ 4, U64_HI(mapping
));
225 static inline void storm_memset_spq_addr(struct bnx2x
*bp
,
226 dma_addr_t mapping
, u16 abs_fid
)
228 u32 addr
= XSEM_REG_FAST_MEMORY
+
229 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid
);
231 __storm_memset_dma_mapping(bp
, addr
, mapping
);
234 static inline void storm_memset_vf_to_pf(struct bnx2x
*bp
, u16 abs_fid
,
237 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_VF_TO_PF_OFFSET(abs_fid
),
239 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_VF_TO_PF_OFFSET(abs_fid
),
241 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_VF_TO_PF_OFFSET(abs_fid
),
243 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_VF_TO_PF_OFFSET(abs_fid
),
247 static inline void storm_memset_func_en(struct bnx2x
*bp
, u16 abs_fid
,
250 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(abs_fid
),
252 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(abs_fid
),
254 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(abs_fid
),
256 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(abs_fid
),
260 static inline void storm_memset_eq_data(struct bnx2x
*bp
,
261 struct event_ring_data
*eq_data
,
264 size_t size
= sizeof(struct event_ring_data
);
266 u32 addr
= BAR_CSTRORM_INTMEM
+ CSTORM_EVENT_RING_DATA_OFFSET(pfid
);
268 __storm_memset_struct(bp
, addr
, size
, (u32
*)eq_data
);
271 static inline void storm_memset_eq_prod(struct bnx2x
*bp
, u16 eq_prod
,
274 u32 addr
= BAR_CSTRORM_INTMEM
+ CSTORM_EVENT_RING_PROD_OFFSET(pfid
);
275 REG_WR16(bp
, addr
, eq_prod
);
279 * locking is done by mcp
281 static void bnx2x_reg_wr_ind(struct bnx2x
*bp
, u32 addr
, u32 val
)
283 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
, addr
);
284 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_DATA
, val
);
285 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
286 PCICFG_VENDOR_ID_OFFSET
);
289 static u32
bnx2x_reg_rd_ind(struct bnx2x
*bp
, u32 addr
)
293 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
, addr
);
294 pci_read_config_dword(bp
->pdev
, PCICFG_GRC_DATA
, &val
);
295 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
296 PCICFG_VENDOR_ID_OFFSET
);
301 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
302 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
303 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
304 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
305 #define DMAE_DP_DST_NONE "dst_addr [none]"
307 static void bnx2x_dp_dmae(struct bnx2x
*bp
, struct dmae_command
*dmae
,
310 u32 src_type
= dmae
->opcode
& DMAE_COMMAND_SRC
;
312 switch (dmae
->opcode
& DMAE_COMMAND_DST
) {
313 case DMAE_CMD_DST_PCI
:
314 if (src_type
== DMAE_CMD_SRC_PCI
)
315 DP(msglvl
, "DMAE: opcode 0x%08x\n"
316 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
317 "comp_addr [%x:%08x], comp_val 0x%08x\n",
318 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
319 dmae
->len
, dmae
->dst_addr_hi
, dmae
->dst_addr_lo
,
320 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
323 DP(msglvl
, "DMAE: opcode 0x%08x\n"
324 "src [%08x], len [%d*4], dst [%x:%08x]\n"
325 "comp_addr [%x:%08x], comp_val 0x%08x\n",
326 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
327 dmae
->len
, dmae
->dst_addr_hi
, dmae
->dst_addr_lo
,
328 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
331 case DMAE_CMD_DST_GRC
:
332 if (src_type
== DMAE_CMD_SRC_PCI
)
333 DP(msglvl
, "DMAE: opcode 0x%08x\n"
334 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
335 "comp_addr [%x:%08x], comp_val 0x%08x\n",
336 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
337 dmae
->len
, dmae
->dst_addr_lo
>> 2,
338 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
341 DP(msglvl
, "DMAE: opcode 0x%08x\n"
342 "src [%08x], len [%d*4], dst [%08x]\n"
343 "comp_addr [%x:%08x], comp_val 0x%08x\n",
344 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
345 dmae
->len
, dmae
->dst_addr_lo
>> 2,
346 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
350 if (src_type
== DMAE_CMD_SRC_PCI
)
351 DP(msglvl
, "DMAE: opcode 0x%08x\n"
352 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
353 "comp_addr [%x:%08x] comp_val 0x%08x\n",
354 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
355 dmae
->len
, dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
358 DP(msglvl
, "DMAE: opcode 0x%08x\n"
359 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
360 "comp_addr [%x:%08x] comp_val 0x%08x\n",
361 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
362 dmae
->len
, dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
369 /* copy command into DMAE command memory and set DMAE command go */
370 void bnx2x_post_dmae(struct bnx2x
*bp
, struct dmae_command
*dmae
, int idx
)
375 cmd_offset
= (DMAE_REG_CMD_MEM
+ sizeof(struct dmae_command
) * idx
);
376 for (i
= 0; i
< (sizeof(struct dmae_command
)/4); i
++) {
377 REG_WR(bp
, cmd_offset
+ i
*4, *(((u32
*)dmae
) + i
));
379 DP(BNX2X_MSG_OFF
, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
380 idx
, i
, cmd_offset
+ i
*4, *(((u32
*)dmae
) + i
));
382 REG_WR(bp
, dmae_reg_go_c
[idx
], 1);
385 u32
bnx2x_dmae_opcode_add_comp(u32 opcode
, u8 comp_type
)
387 return opcode
| ((comp_type
<< DMAE_COMMAND_C_DST_SHIFT
) |
391 u32
bnx2x_dmae_opcode_clr_src_reset(u32 opcode
)
393 return opcode
& ~DMAE_CMD_SRC_RESET
;
396 u32
bnx2x_dmae_opcode(struct bnx2x
*bp
, u8 src_type
, u8 dst_type
,
397 bool with_comp
, u8 comp_type
)
401 opcode
|= ((src_type
<< DMAE_COMMAND_SRC_SHIFT
) |
402 (dst_type
<< DMAE_COMMAND_DST_SHIFT
));
404 opcode
|= (DMAE_CMD_SRC_RESET
| DMAE_CMD_DST_RESET
);
406 opcode
|= (BP_PORT(bp
) ? DMAE_CMD_PORT_1
: DMAE_CMD_PORT_0
);
407 opcode
|= ((BP_VN(bp
) << DMAE_CMD_E1HVN_SHIFT
) |
408 (BP_VN(bp
) << DMAE_COMMAND_DST_VN_SHIFT
));
409 opcode
|= (DMAE_COM_SET_ERR
<< DMAE_COMMAND_ERR_POLICY_SHIFT
);
412 opcode
|= DMAE_CMD_ENDIANITY_B_DW_SWAP
;
414 opcode
|= DMAE_CMD_ENDIANITY_DW_SWAP
;
417 opcode
= bnx2x_dmae_opcode_add_comp(opcode
, comp_type
);
421 static void bnx2x_prep_dmae_with_comp(struct bnx2x
*bp
,
422 struct dmae_command
*dmae
,
423 u8 src_type
, u8 dst_type
)
425 memset(dmae
, 0, sizeof(struct dmae_command
));
428 dmae
->opcode
= bnx2x_dmae_opcode(bp
, src_type
, dst_type
,
429 true, DMAE_COMP_PCI
);
431 /* fill in the completion parameters */
432 dmae
->comp_addr_lo
= U64_LO(bnx2x_sp_mapping(bp
, wb_comp
));
433 dmae
->comp_addr_hi
= U64_HI(bnx2x_sp_mapping(bp
, wb_comp
));
434 dmae
->comp_val
= DMAE_COMP_VAL
;
437 /* issue a dmae command over the init-channel and wailt for completion */
438 static int bnx2x_issue_dmae_with_comp(struct bnx2x
*bp
,
439 struct dmae_command
*dmae
)
441 u32
*wb_comp
= bnx2x_sp(bp
, wb_comp
);
442 int cnt
= CHIP_REV_IS_SLOW(bp
) ? (400000) : 4000;
445 DP(BNX2X_MSG_OFF
, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
446 bp
->slowpath
->wb_data
[0], bp
->slowpath
->wb_data
[1],
447 bp
->slowpath
->wb_data
[2], bp
->slowpath
->wb_data
[3]);
450 * Lock the dmae channel. Disable BHs to prevent a dead-lock
451 * as long as this code is called both from syscall context and
452 * from ndo_set_rx_mode() flow that may be called from BH.
454 spin_lock_bh(&bp
->dmae_lock
);
456 /* reset completion */
459 /* post the command on the channel used for initializations */
460 bnx2x_post_dmae(bp
, dmae
, INIT_DMAE_C(bp
));
462 /* wait for completion */
464 while ((*wb_comp
& ~DMAE_PCI_ERR_FLAG
) != DMAE_COMP_VAL
) {
465 DP(BNX2X_MSG_OFF
, "wb_comp 0x%08x\n", *wb_comp
);
468 BNX2X_ERR("DMAE timeout!\n");
475 if (*wb_comp
& DMAE_PCI_ERR_FLAG
) {
476 BNX2X_ERR("DMAE PCI error!\n");
480 DP(BNX2X_MSG_OFF
, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
481 bp
->slowpath
->wb_data
[0], bp
->slowpath
->wb_data
[1],
482 bp
->slowpath
->wb_data
[2], bp
->slowpath
->wb_data
[3]);
485 spin_unlock_bh(&bp
->dmae_lock
);
489 void bnx2x_write_dmae(struct bnx2x
*bp
, dma_addr_t dma_addr
, u32 dst_addr
,
492 struct dmae_command dmae
;
494 if (!bp
->dmae_ready
) {
495 u32
*data
= bnx2x_sp(bp
, wb_data
[0]);
497 DP(BNX2X_MSG_OFF
, "DMAE is not ready (dst_addr %08x len32 %d)"
498 " using indirect\n", dst_addr
, len32
);
499 bnx2x_init_ind_wr(bp
, dst_addr
, data
, len32
);
503 /* set opcode and fixed command fields */
504 bnx2x_prep_dmae_with_comp(bp
, &dmae
, DMAE_SRC_PCI
, DMAE_DST_GRC
);
506 /* fill in addresses and len */
507 dmae
.src_addr_lo
= U64_LO(dma_addr
);
508 dmae
.src_addr_hi
= U64_HI(dma_addr
);
509 dmae
.dst_addr_lo
= dst_addr
>> 2;
510 dmae
.dst_addr_hi
= 0;
513 bnx2x_dp_dmae(bp
, &dmae
, BNX2X_MSG_OFF
);
515 /* issue the command and wait for completion */
516 bnx2x_issue_dmae_with_comp(bp
, &dmae
);
519 void bnx2x_read_dmae(struct bnx2x
*bp
, u32 src_addr
, u32 len32
)
521 struct dmae_command dmae
;
523 if (!bp
->dmae_ready
) {
524 u32
*data
= bnx2x_sp(bp
, wb_data
[0]);
527 DP(BNX2X_MSG_OFF
, "DMAE is not ready (src_addr %08x len32 %d)"
528 " using indirect\n", src_addr
, len32
);
529 for (i
= 0; i
< len32
; i
++)
530 data
[i
] = bnx2x_reg_rd_ind(bp
, src_addr
+ i
*4);
534 /* set opcode and fixed command fields */
535 bnx2x_prep_dmae_with_comp(bp
, &dmae
, DMAE_SRC_GRC
, DMAE_DST_PCI
);
537 /* fill in addresses and len */
538 dmae
.src_addr_lo
= src_addr
>> 2;
539 dmae
.src_addr_hi
= 0;
540 dmae
.dst_addr_lo
= U64_LO(bnx2x_sp_mapping(bp
, wb_data
));
541 dmae
.dst_addr_hi
= U64_HI(bnx2x_sp_mapping(bp
, wb_data
));
544 bnx2x_dp_dmae(bp
, &dmae
, BNX2X_MSG_OFF
);
546 /* issue the command and wait for completion */
547 bnx2x_issue_dmae_with_comp(bp
, &dmae
);
550 static void bnx2x_write_dmae_phys_len(struct bnx2x
*bp
, dma_addr_t phys_addr
,
553 int dmae_wr_max
= DMAE_LEN32_WR_MAX(bp
);
556 while (len
> dmae_wr_max
) {
557 bnx2x_write_dmae(bp
, phys_addr
+ offset
,
558 addr
+ offset
, dmae_wr_max
);
559 offset
+= dmae_wr_max
* 4;
563 bnx2x_write_dmae(bp
, phys_addr
+ offset
, addr
+ offset
, len
);
566 /* used only for slowpath so not inlined */
567 static void bnx2x_wb_wr(struct bnx2x
*bp
, int reg
, u32 val_hi
, u32 val_lo
)
571 wb_write
[0] = val_hi
;
572 wb_write
[1] = val_lo
;
573 REG_WR_DMAE(bp
, reg
, wb_write
, 2);
577 static u64
bnx2x_wb_rd(struct bnx2x
*bp
, int reg
)
581 REG_RD_DMAE(bp
, reg
, wb_data
, 2);
583 return HILO_U64(wb_data
[0], wb_data
[1]);
587 static int bnx2x_mc_assert(struct bnx2x
*bp
)
591 u32 row0
, row1
, row2
, row3
;
594 last_idx
= REG_RD8(bp
, BAR_XSTRORM_INTMEM
+
595 XSTORM_ASSERT_LIST_INDEX_OFFSET
);
597 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
599 /* print the asserts */
600 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
602 row0
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
603 XSTORM_ASSERT_LIST_OFFSET(i
));
604 row1
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
605 XSTORM_ASSERT_LIST_OFFSET(i
) + 4);
606 row2
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
607 XSTORM_ASSERT_LIST_OFFSET(i
) + 8);
608 row3
= REG_RD(bp
, BAR_XSTRORM_INTMEM
+
609 XSTORM_ASSERT_LIST_OFFSET(i
) + 12);
611 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
612 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
613 " 0x%08x 0x%08x 0x%08x\n",
614 i
, row3
, row2
, row1
, row0
);
622 last_idx
= REG_RD8(bp
, BAR_TSTRORM_INTMEM
+
623 TSTORM_ASSERT_LIST_INDEX_OFFSET
);
625 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
627 /* print the asserts */
628 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
630 row0
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
631 TSTORM_ASSERT_LIST_OFFSET(i
));
632 row1
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
633 TSTORM_ASSERT_LIST_OFFSET(i
) + 4);
634 row2
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
635 TSTORM_ASSERT_LIST_OFFSET(i
) + 8);
636 row3
= REG_RD(bp
, BAR_TSTRORM_INTMEM
+
637 TSTORM_ASSERT_LIST_OFFSET(i
) + 12);
639 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
640 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
641 " 0x%08x 0x%08x 0x%08x\n",
642 i
, row3
, row2
, row1
, row0
);
650 last_idx
= REG_RD8(bp
, BAR_CSTRORM_INTMEM
+
651 CSTORM_ASSERT_LIST_INDEX_OFFSET
);
653 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
655 /* print the asserts */
656 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
658 row0
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
659 CSTORM_ASSERT_LIST_OFFSET(i
));
660 row1
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
661 CSTORM_ASSERT_LIST_OFFSET(i
) + 4);
662 row2
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
663 CSTORM_ASSERT_LIST_OFFSET(i
) + 8);
664 row3
= REG_RD(bp
, BAR_CSTRORM_INTMEM
+
665 CSTORM_ASSERT_LIST_OFFSET(i
) + 12);
667 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
668 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
669 " 0x%08x 0x%08x 0x%08x\n",
670 i
, row3
, row2
, row1
, row0
);
678 last_idx
= REG_RD8(bp
, BAR_USTRORM_INTMEM
+
679 USTORM_ASSERT_LIST_INDEX_OFFSET
);
681 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx
);
683 /* print the asserts */
684 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
686 row0
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
687 USTORM_ASSERT_LIST_OFFSET(i
));
688 row1
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
689 USTORM_ASSERT_LIST_OFFSET(i
) + 4);
690 row2
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
691 USTORM_ASSERT_LIST_OFFSET(i
) + 8);
692 row3
= REG_RD(bp
, BAR_USTRORM_INTMEM
+
693 USTORM_ASSERT_LIST_OFFSET(i
) + 12);
695 if (row0
!= COMMON_ASM_INVALID_ASSERT_OPCODE
) {
696 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
697 " 0x%08x 0x%08x 0x%08x\n",
698 i
, row3
, row2
, row1
, row0
);
708 void bnx2x_fw_dump_lvl(struct bnx2x
*bp
, const char *lvl
)
714 u32 trace_shmem_base
;
716 BNX2X_ERR("NO MCP - can not dump\n");
719 netdev_printk(lvl
, bp
->dev
, "bc %d.%d.%d\n",
720 (bp
->common
.bc_ver
& 0xff0000) >> 16,
721 (bp
->common
.bc_ver
& 0xff00) >> 8,
722 (bp
->common
.bc_ver
& 0xff));
724 val
= REG_RD(bp
, MCP_REG_MCPR_CPU_PROGRAM_COUNTER
);
725 if (val
== REG_RD(bp
, MCP_REG_MCPR_CPU_PROGRAM_COUNTER
))
726 printk("%s" "MCP PC at 0x%x\n", lvl
, val
);
728 if (BP_PATH(bp
) == 0)
729 trace_shmem_base
= bp
->common
.shmem_base
;
731 trace_shmem_base
= SHMEM2_RD(bp
, other_shmem_base_addr
);
732 addr
= trace_shmem_base
- 0x0800 + 4;
733 mark
= REG_RD(bp
, addr
);
734 mark
= (CHIP_IS_E1x(bp
) ? MCP_REG_MCPR_SCRATCH
: MCP_A_REG_MCPR_SCRATCH
)
735 + ((mark
+ 0x3) & ~0x3) - 0x08000000;
736 printk("%s" "begin fw dump (mark 0x%x)\n", lvl
, mark
);
739 for (offset
= mark
; offset
<= trace_shmem_base
; offset
+= 0x8*4) {
740 for (word
= 0; word
< 8; word
++)
741 data
[word
] = htonl(REG_RD(bp
, offset
+ 4*word
));
743 pr_cont("%s", (char *)data
);
745 for (offset
= addr
+ 4; offset
<= mark
; offset
+= 0x8*4) {
746 for (word
= 0; word
< 8; word
++)
747 data
[word
] = htonl(REG_RD(bp
, offset
+ 4*word
));
749 pr_cont("%s", (char *)data
);
751 printk("%s" "end of fw dump\n", lvl
);
754 static inline void bnx2x_fw_dump(struct bnx2x
*bp
)
756 bnx2x_fw_dump_lvl(bp
, KERN_ERR
);
759 void bnx2x_panic_dump(struct bnx2x
*bp
)
763 struct hc_sp_status_block_data sp_sb_data
;
764 int func
= BP_FUNC(bp
);
765 #ifdef BNX2X_STOP_ON_ERROR
766 u16 start
= 0, end
= 0;
770 bp
->stats_state
= STATS_STATE_DISABLED
;
771 DP(BNX2X_MSG_STATS
, "stats_state - DISABLED\n");
773 BNX2X_ERR("begin crash dump -----------------\n");
777 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
778 " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
779 bp
->def_idx
, bp
->def_att_idx
, bp
->attn_state
,
780 bp
->spq_prod_idx
, bp
->stats_counter
);
781 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
782 bp
->def_status_blk
->atten_status_block
.attn_bits
,
783 bp
->def_status_blk
->atten_status_block
.attn_bits_ack
,
784 bp
->def_status_blk
->atten_status_block
.status_block_id
,
785 bp
->def_status_blk
->atten_status_block
.attn_bits_index
);
787 for (i
= 0; i
< HC_SP_SB_MAX_INDICES
; i
++)
789 bp
->def_status_blk
->sp_sb
.index_values
[i
],
790 (i
== HC_SP_SB_MAX_INDICES
- 1) ? ") " : " ");
792 for (i
= 0; i
< sizeof(struct hc_sp_status_block_data
)/sizeof(u32
); i
++)
793 *((u32
*)&sp_sb_data
+ i
) = REG_RD(bp
, BAR_CSTRORM_INTMEM
+
794 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func
) +
797 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
798 sp_sb_data
.igu_sb_id
,
799 sp_sb_data
.igu_seg_id
,
800 sp_sb_data
.p_func
.pf_id
,
801 sp_sb_data
.p_func
.vnic_id
,
802 sp_sb_data
.p_func
.vf_id
,
803 sp_sb_data
.p_func
.vf_valid
,
807 for_each_eth_queue(bp
, i
) {
808 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
810 struct hc_status_block_data_e2 sb_data_e2
;
811 struct hc_status_block_data_e1x sb_data_e1x
;
812 struct hc_status_block_sm
*hc_sm_p
=
814 sb_data_e1x
.common
.state_machine
:
815 sb_data_e2
.common
.state_machine
;
816 struct hc_index_data
*hc_index_p
=
818 sb_data_e1x
.index_data
:
819 sb_data_e2
.index_data
;
822 struct bnx2x_fp_txdata txdata
;
825 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
826 " rx_comp_prod(0x%x)"
827 " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
828 i
, fp
->rx_bd_prod
, fp
->rx_bd_cons
,
830 fp
->rx_comp_cons
, le16_to_cpu(*fp
->rx_cons_sb
));
831 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
832 " fp_hc_idx(0x%x)\n",
833 fp
->rx_sge_prod
, fp
->last_max_sge
,
834 le16_to_cpu(fp
->fp_hc_idx
));
837 for_each_cos_in_tx_queue(fp
, cos
)
839 txdata
= fp
->txdata
[cos
];
840 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
841 " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
842 " *tx_cons_sb(0x%x)\n",
843 i
, txdata
.tx_pkt_prod
,
844 txdata
.tx_pkt_cons
, txdata
.tx_bd_prod
,
846 le16_to_cpu(*txdata
.tx_cons_sb
));
849 loop
= CHIP_IS_E1x(bp
) ?
850 HC_SB_MAX_INDICES_E1X
: HC_SB_MAX_INDICES_E2
;
858 BNX2X_ERR(" run indexes (");
859 for (j
= 0; j
< HC_SB_MAX_SM
; j
++)
861 fp
->sb_running_index
[j
],
862 (j
== HC_SB_MAX_SM
- 1) ? ")" : " ");
864 BNX2X_ERR(" indexes (");
865 for (j
= 0; j
< loop
; j
++)
867 fp
->sb_index_values
[j
],
868 (j
== loop
- 1) ? ")" : " ");
870 data_size
= CHIP_IS_E1x(bp
) ?
871 sizeof(struct hc_status_block_data_e1x
) :
872 sizeof(struct hc_status_block_data_e2
);
873 data_size
/= sizeof(u32
);
874 sb_data_p
= CHIP_IS_E1x(bp
) ?
875 (u32
*)&sb_data_e1x
:
877 /* copy sb data in here */
878 for (j
= 0; j
< data_size
; j
++)
879 *(sb_data_p
+ j
) = REG_RD(bp
, BAR_CSTRORM_INTMEM
+
880 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp
->fw_sb_id
) +
883 if (!CHIP_IS_E1x(bp
)) {
884 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
885 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
887 sb_data_e2
.common
.p_func
.pf_id
,
888 sb_data_e2
.common
.p_func
.vf_id
,
889 sb_data_e2
.common
.p_func
.vf_valid
,
890 sb_data_e2
.common
.p_func
.vnic_id
,
891 sb_data_e2
.common
.same_igu_sb_1b
,
892 sb_data_e2
.common
.state
);
894 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
895 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
897 sb_data_e1x
.common
.p_func
.pf_id
,
898 sb_data_e1x
.common
.p_func
.vf_id
,
899 sb_data_e1x
.common
.p_func
.vf_valid
,
900 sb_data_e1x
.common
.p_func
.vnic_id
,
901 sb_data_e1x
.common
.same_igu_sb_1b
,
902 sb_data_e1x
.common
.state
);
906 for (j
= 0; j
< HC_SB_MAX_SM
; j
++) {
907 pr_cont("SM[%d] __flags (0x%x) "
908 "igu_sb_id (0x%x) igu_seg_id(0x%x) "
909 "time_to_expire (0x%x) "
910 "timer_value(0x%x)\n", j
,
912 hc_sm_p
[j
].igu_sb_id
,
913 hc_sm_p
[j
].igu_seg_id
,
914 hc_sm_p
[j
].time_to_expire
,
915 hc_sm_p
[j
].timer_value
);
919 for (j
= 0; j
< loop
; j
++) {
920 pr_cont("INDEX[%d] flags (0x%x) "
921 "timeout (0x%x)\n", j
,
923 hc_index_p
[j
].timeout
);
927 #ifdef BNX2X_STOP_ON_ERROR
930 for_each_rx_queue(bp
, i
) {
931 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
933 start
= RX_BD(le16_to_cpu(*fp
->rx_cons_sb
) - 10);
934 end
= RX_BD(le16_to_cpu(*fp
->rx_cons_sb
) + 503);
935 for (j
= start
; j
!= end
; j
= RX_BD(j
+ 1)) {
936 u32
*rx_bd
= (u32
*)&fp
->rx_desc_ring
[j
];
937 struct sw_rx_bd
*sw_bd
= &fp
->rx_buf_ring
[j
];
939 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
940 i
, j
, rx_bd
[1], rx_bd
[0], sw_bd
->data
);
943 start
= RX_SGE(fp
->rx_sge_prod
);
944 end
= RX_SGE(fp
->last_max_sge
);
945 for (j
= start
; j
!= end
; j
= RX_SGE(j
+ 1)) {
946 u32
*rx_sge
= (u32
*)&fp
->rx_sge_ring
[j
];
947 struct sw_rx_page
*sw_page
= &fp
->rx_page_ring
[j
];
949 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
950 i
, j
, rx_sge
[1], rx_sge
[0], sw_page
->page
);
953 start
= RCQ_BD(fp
->rx_comp_cons
- 10);
954 end
= RCQ_BD(fp
->rx_comp_cons
+ 503);
955 for (j
= start
; j
!= end
; j
= RCQ_BD(j
+ 1)) {
956 u32
*cqe
= (u32
*)&fp
->rx_comp_ring
[j
];
958 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
959 i
, j
, cqe
[0], cqe
[1], cqe
[2], cqe
[3]);
964 for_each_tx_queue(bp
, i
) {
965 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
966 for_each_cos_in_tx_queue(fp
, cos
) {
967 struct bnx2x_fp_txdata
*txdata
= &fp
->txdata
[cos
];
969 start
= TX_BD(le16_to_cpu(*txdata
->tx_cons_sb
) - 10);
970 end
= TX_BD(le16_to_cpu(*txdata
->tx_cons_sb
) + 245);
971 for (j
= start
; j
!= end
; j
= TX_BD(j
+ 1)) {
972 struct sw_tx_bd
*sw_bd
=
973 &txdata
->tx_buf_ring
[j
];
975 BNX2X_ERR("fp%d: txdata %d, "
976 "packet[%x]=[%p,%x]\n",
977 i
, cos
, j
, sw_bd
->skb
,
981 start
= TX_BD(txdata
->tx_bd_cons
- 10);
982 end
= TX_BD(txdata
->tx_bd_cons
+ 254);
983 for (j
= start
; j
!= end
; j
= TX_BD(j
+ 1)) {
984 u32
*tx_bd
= (u32
*)&txdata
->tx_desc_ring
[j
];
986 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
988 i
, cos
, j
, tx_bd
[0], tx_bd
[1],
996 BNX2X_ERR("end crash dump -----------------\n");
1000 * FLR Support for E2
1002 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1005 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
1006 #define FLR_WAIT_INTERAVAL 50 /* usec */
1007 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERAVAL) /* 200 */
1009 struct pbf_pN_buf_regs
{
1016 struct pbf_pN_cmd_regs
{
1022 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x
*bp
,
1023 struct pbf_pN_buf_regs
*regs
,
1026 u32 init_crd
, crd
, crd_start
, crd_freed
, crd_freed_start
;
1027 u32 cur_cnt
= poll_count
;
1029 crd_freed
= crd_freed_start
= REG_RD(bp
, regs
->crd_freed
);
1030 crd
= crd_start
= REG_RD(bp
, regs
->crd
);
1031 init_crd
= REG_RD(bp
, regs
->init_crd
);
1033 DP(BNX2X_MSG_SP
, "INIT CREDIT[%d] : %x\n", regs
->pN
, init_crd
);
1034 DP(BNX2X_MSG_SP
, "CREDIT[%d] : s:%x\n", regs
->pN
, crd
);
1035 DP(BNX2X_MSG_SP
, "CREDIT_FREED[%d]: s:%x\n", regs
->pN
, crd_freed
);
1037 while ((crd
!= init_crd
) && ((u32
)SUB_S32(crd_freed
, crd_freed_start
) <
1038 (init_crd
- crd_start
))) {
1040 udelay(FLR_WAIT_INTERAVAL
);
1041 crd
= REG_RD(bp
, regs
->crd
);
1042 crd_freed
= REG_RD(bp
, regs
->crd_freed
);
1044 DP(BNX2X_MSG_SP
, "PBF tx buffer[%d] timed out\n",
1046 DP(BNX2X_MSG_SP
, "CREDIT[%d] : c:%x\n",
1048 DP(BNX2X_MSG_SP
, "CREDIT_FREED[%d]: c:%x\n",
1049 regs
->pN
, crd_freed
);
1053 DP(BNX2X_MSG_SP
, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1054 poll_count
-cur_cnt
, FLR_WAIT_INTERAVAL
, regs
->pN
);
1057 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x
*bp
,
1058 struct pbf_pN_cmd_regs
*regs
,
1061 u32 occup
, to_free
, freed
, freed_start
;
1062 u32 cur_cnt
= poll_count
;
1064 occup
= to_free
= REG_RD(bp
, regs
->lines_occup
);
1065 freed
= freed_start
= REG_RD(bp
, regs
->lines_freed
);
1067 DP(BNX2X_MSG_SP
, "OCCUPANCY[%d] : s:%x\n", regs
->pN
, occup
);
1068 DP(BNX2X_MSG_SP
, "LINES_FREED[%d] : s:%x\n", regs
->pN
, freed
);
1070 while (occup
&& ((u32
)SUB_S32(freed
, freed_start
) < to_free
)) {
1072 udelay(FLR_WAIT_INTERAVAL
);
1073 occup
= REG_RD(bp
, regs
->lines_occup
);
1074 freed
= REG_RD(bp
, regs
->lines_freed
);
1076 DP(BNX2X_MSG_SP
, "PBF cmd queue[%d] timed out\n",
1078 DP(BNX2X_MSG_SP
, "OCCUPANCY[%d] : s:%x\n",
1080 DP(BNX2X_MSG_SP
, "LINES_FREED[%d] : s:%x\n",
1085 DP(BNX2X_MSG_SP
, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1086 poll_count
-cur_cnt
, FLR_WAIT_INTERAVAL
, regs
->pN
);
1089 static inline u32
bnx2x_flr_clnup_reg_poll(struct bnx2x
*bp
, u32 reg
,
1090 u32 expected
, u32 poll_count
)
1092 u32 cur_cnt
= poll_count
;
1095 while ((val
= REG_RD(bp
, reg
)) != expected
&& cur_cnt
--)
1096 udelay(FLR_WAIT_INTERAVAL
);
1101 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x
*bp
, u32 reg
,
1102 char *msg
, u32 poll_cnt
)
1104 u32 val
= bnx2x_flr_clnup_reg_poll(bp
, reg
, 0, poll_cnt
);
1106 BNX2X_ERR("%s usage count=%d\n", msg
, val
);
1112 static u32
bnx2x_flr_clnup_poll_count(struct bnx2x
*bp
)
1114 /* adjust polling timeout */
1115 if (CHIP_REV_IS_EMUL(bp
))
1116 return FLR_POLL_CNT
* 2000;
1118 if (CHIP_REV_IS_FPGA(bp
))
1119 return FLR_POLL_CNT
* 120;
1121 return FLR_POLL_CNT
;
1124 static void bnx2x_tx_hw_flushed(struct bnx2x
*bp
, u32 poll_count
)
1126 struct pbf_pN_cmd_regs cmd_regs
[] = {
1127 {0, (CHIP_IS_E3B0(bp
)) ?
1128 PBF_REG_TQ_OCCUPANCY_Q0
:
1129 PBF_REG_P0_TQ_OCCUPANCY
,
1130 (CHIP_IS_E3B0(bp
)) ?
1131 PBF_REG_TQ_LINES_FREED_CNT_Q0
:
1132 PBF_REG_P0_TQ_LINES_FREED_CNT
},
1133 {1, (CHIP_IS_E3B0(bp
)) ?
1134 PBF_REG_TQ_OCCUPANCY_Q1
:
1135 PBF_REG_P1_TQ_OCCUPANCY
,
1136 (CHIP_IS_E3B0(bp
)) ?
1137 PBF_REG_TQ_LINES_FREED_CNT_Q1
:
1138 PBF_REG_P1_TQ_LINES_FREED_CNT
},
1139 {4, (CHIP_IS_E3B0(bp
)) ?
1140 PBF_REG_TQ_OCCUPANCY_LB_Q
:
1141 PBF_REG_P4_TQ_OCCUPANCY
,
1142 (CHIP_IS_E3B0(bp
)) ?
1143 PBF_REG_TQ_LINES_FREED_CNT_LB_Q
:
1144 PBF_REG_P4_TQ_LINES_FREED_CNT
}
1147 struct pbf_pN_buf_regs buf_regs
[] = {
1148 {0, (CHIP_IS_E3B0(bp
)) ?
1149 PBF_REG_INIT_CRD_Q0
:
1150 PBF_REG_P0_INIT_CRD
,
1151 (CHIP_IS_E3B0(bp
)) ?
1154 (CHIP_IS_E3B0(bp
)) ?
1155 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0
:
1156 PBF_REG_P0_INTERNAL_CRD_FREED_CNT
},
1157 {1, (CHIP_IS_E3B0(bp
)) ?
1158 PBF_REG_INIT_CRD_Q1
:
1159 PBF_REG_P1_INIT_CRD
,
1160 (CHIP_IS_E3B0(bp
)) ?
1163 (CHIP_IS_E3B0(bp
)) ?
1164 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1
:
1165 PBF_REG_P1_INTERNAL_CRD_FREED_CNT
},
1166 {4, (CHIP_IS_E3B0(bp
)) ?
1167 PBF_REG_INIT_CRD_LB_Q
:
1168 PBF_REG_P4_INIT_CRD
,
1169 (CHIP_IS_E3B0(bp
)) ?
1170 PBF_REG_CREDIT_LB_Q
:
1172 (CHIP_IS_E3B0(bp
)) ?
1173 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q
:
1174 PBF_REG_P4_INTERNAL_CRD_FREED_CNT
},
1179 /* Verify the command queues are flushed P0, P1, P4 */
1180 for (i
= 0; i
< ARRAY_SIZE(cmd_regs
); i
++)
1181 bnx2x_pbf_pN_cmd_flushed(bp
, &cmd_regs
[i
], poll_count
);
1184 /* Verify the transmission buffers are flushed P0, P1, P4 */
1185 for (i
= 0; i
< ARRAY_SIZE(buf_regs
); i
++)
1186 bnx2x_pbf_pN_buf_flushed(bp
, &buf_regs
[i
], poll_count
);
1189 #define OP_GEN_PARAM(param) \
1190 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1192 #define OP_GEN_TYPE(type) \
1193 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1195 #define OP_GEN_AGG_VECT(index) \
1196 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1199 static inline int bnx2x_send_final_clnup(struct bnx2x
*bp
, u8 clnup_func
,
1202 struct sdm_op_gen op_gen
= {0};
1204 u32 comp_addr
= BAR_CSTRORM_INTMEM
+
1205 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func
);
1208 if (REG_RD(bp
, comp_addr
)) {
1209 BNX2X_ERR("Cleanup complete is not 0\n");
1213 op_gen
.command
|= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX
);
1214 op_gen
.command
|= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE
);
1215 op_gen
.command
|= OP_GEN_AGG_VECT(clnup_func
);
1216 op_gen
.command
|= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT
;
1218 DP(BNX2X_MSG_SP
, "FW Final cleanup\n");
1219 REG_WR(bp
, XSDM_REG_OPERATION_GEN
, op_gen
.command
);
1221 if (bnx2x_flr_clnup_reg_poll(bp
, comp_addr
, 1, poll_cnt
) != 1) {
1222 BNX2X_ERR("FW final cleanup did not succeed\n");
1225 /* Zero completion for nxt FLR */
1226 REG_WR(bp
, comp_addr
, 0);
1231 static inline u8
bnx2x_is_pcie_pending(struct pci_dev
*dev
)
1236 pos
= pci_pcie_cap(dev
);
1240 pci_read_config_word(dev
, pos
+ PCI_EXP_DEVSTA
, &status
);
1241 return status
& PCI_EXP_DEVSTA_TRPND
;
1244 /* PF FLR specific routines
1246 static int bnx2x_poll_hw_usage_counters(struct bnx2x
*bp
, u32 poll_cnt
)
1249 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1250 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1251 CFC_REG_NUM_LCIDS_INSIDE_PF
,
1252 "CFC PF usage counter timed out",
1257 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1258 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1259 DORQ_REG_PF_USAGE_CNT
,
1260 "DQ PF usage counter timed out",
1264 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1265 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1266 QM_REG_PF_USG_CNT_0
+ 4*BP_FUNC(bp
),
1267 "QM PF usage counter timed out",
1271 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1272 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1273 TM_REG_LIN0_VNIC_UC
+ 4*BP_PORT(bp
),
1274 "Timers VNIC usage counter timed out",
1277 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1278 TM_REG_LIN0_NUM_SCANS
+ 4*BP_PORT(bp
),
1279 "Timers NUM_SCANS usage counter timed out",
1283 /* Wait DMAE PF usage counter to zero */
1284 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1285 dmae_reg_go_c
[INIT_DMAE_C(bp
)],
1286 "DMAE dommand register timed out",
1293 static void bnx2x_hw_enable_status(struct bnx2x
*bp
)
1297 val
= REG_RD(bp
, CFC_REG_WEAK_ENABLE_PF
);
1298 DP(BNX2X_MSG_SP
, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val
);
1300 val
= REG_RD(bp
, PBF_REG_DISABLE_PF
);
1301 DP(BNX2X_MSG_SP
, "PBF_REG_DISABLE_PF is 0x%x\n", val
);
1303 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSI_EN
);
1304 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val
);
1306 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSIX_EN
);
1307 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val
);
1309 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSIX_FUNC_MASK
);
1310 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val
);
1312 val
= REG_RD(bp
, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR
);
1313 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val
);
1315 val
= REG_RD(bp
, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR
);
1316 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val
);
1318 val
= REG_RD(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
);
1319 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1323 static int bnx2x_pf_flr_clnup(struct bnx2x
*bp
)
1325 u32 poll_cnt
= bnx2x_flr_clnup_poll_count(bp
);
1327 DP(BNX2X_MSG_SP
, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp
));
1329 /* Re-enable PF target read access */
1330 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ
, 1);
1332 /* Poll HW usage counters */
1333 if (bnx2x_poll_hw_usage_counters(bp
, poll_cnt
))
1336 /* Zero the igu 'trailing edge' and 'leading edge' */
1338 /* Send the FW cleanup command */
1339 if (bnx2x_send_final_clnup(bp
, (u8
)BP_FUNC(bp
), poll_cnt
))
1344 /* Verify TX hw is flushed */
1345 bnx2x_tx_hw_flushed(bp
, poll_cnt
);
1347 /* Wait 100ms (not adjusted according to platform) */
1350 /* Verify no pending pci transactions */
1351 if (bnx2x_is_pcie_pending(bp
->pdev
))
1352 BNX2X_ERR("PCIE Transactions still pending\n");
1355 bnx2x_hw_enable_status(bp
);
1358 * Master enable - Due to WB DMAE writes performed before this
1359 * register is re-initialized as part of the regular function init
1361 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
1366 static void bnx2x_hc_int_enable(struct bnx2x
*bp
)
1368 int port
= BP_PORT(bp
);
1369 u32 addr
= port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
;
1370 u32 val
= REG_RD(bp
, addr
);
1371 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
1372 int msi
= (bp
->flags
& USING_MSI_FLAG
) ? 1 : 0;
1375 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1376 HC_CONFIG_0_REG_INT_LINE_EN_0
);
1377 val
|= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1378 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1380 val
&= ~HC_CONFIG_0_REG_INT_LINE_EN_0
;
1381 val
|= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1382 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1383 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1385 val
|= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1386 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1387 HC_CONFIG_0_REG_INT_LINE_EN_0
|
1388 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1390 if (!CHIP_IS_E1(bp
)) {
1391 DP(NETIF_MSG_INTR
, "write %x to HC %d (addr 0x%x)\n",
1394 REG_WR(bp
, addr
, val
);
1396 val
&= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
;
1401 REG_WR(bp
, HC_REG_INT_MASK
+ port
*4, 0x1FFFF);
1403 DP(NETIF_MSG_INTR
, "write %x to HC %d (addr 0x%x) mode %s\n",
1404 val
, port
, addr
, (msix
? "MSI-X" : (msi
? "MSI" : "INTx")));
1406 REG_WR(bp
, addr
, val
);
1408 * Ensure that HC_CONFIG is written before leading/trailing edge config
1413 if (!CHIP_IS_E1(bp
)) {
1414 /* init leading/trailing edge */
1416 val
= (0xee0f | (1 << (BP_VN(bp
) + 4)));
1418 /* enable nig and gpio3 attention */
1423 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, val
);
1424 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, val
);
1427 /* Make sure that interrupts are indeed enabled from here on */
1431 static void bnx2x_igu_int_enable(struct bnx2x
*bp
)
1434 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
1435 int msi
= (bp
->flags
& USING_MSI_FLAG
) ? 1 : 0;
1437 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
1440 val
&= ~(IGU_PF_CONF_INT_LINE_EN
|
1441 IGU_PF_CONF_SINGLE_ISR_EN
);
1442 val
|= (IGU_PF_CONF_FUNC_EN
|
1443 IGU_PF_CONF_MSI_MSIX_EN
|
1444 IGU_PF_CONF_ATTN_BIT_EN
);
1446 val
&= ~IGU_PF_CONF_INT_LINE_EN
;
1447 val
|= (IGU_PF_CONF_FUNC_EN
|
1448 IGU_PF_CONF_MSI_MSIX_EN
|
1449 IGU_PF_CONF_ATTN_BIT_EN
|
1450 IGU_PF_CONF_SINGLE_ISR_EN
);
1452 val
&= ~IGU_PF_CONF_MSI_MSIX_EN
;
1453 val
|= (IGU_PF_CONF_FUNC_EN
|
1454 IGU_PF_CONF_INT_LINE_EN
|
1455 IGU_PF_CONF_ATTN_BIT_EN
|
1456 IGU_PF_CONF_SINGLE_ISR_EN
);
1459 DP(NETIF_MSG_INTR
, "write 0x%x to IGU mode %s\n",
1460 val
, (msix
? "MSI-X" : (msi
? "MSI" : "INTx")));
1462 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
1466 /* init leading/trailing edge */
1468 val
= (0xee0f | (1 << (BP_VN(bp
) + 4)));
1470 /* enable nig and gpio3 attention */
1475 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, val
);
1476 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, val
);
1478 /* Make sure that interrupts are indeed enabled from here on */
1482 void bnx2x_int_enable(struct bnx2x
*bp
)
1484 if (bp
->common
.int_block
== INT_BLOCK_HC
)
1485 bnx2x_hc_int_enable(bp
);
1487 bnx2x_igu_int_enable(bp
);
1490 static void bnx2x_hc_int_disable(struct bnx2x
*bp
)
1492 int port
= BP_PORT(bp
);
1493 u32 addr
= port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
;
1494 u32 val
= REG_RD(bp
, addr
);
1497 * in E1 we must use only PCI configuration space to disable
1498 * MSI/MSIX capablility
1499 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1501 if (CHIP_IS_E1(bp
)) {
1502 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1503 * Use mask register to prevent from HC sending interrupts
1504 * after we exit the function
1506 REG_WR(bp
, HC_REG_INT_MASK
+ port
*4, 0);
1508 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1509 HC_CONFIG_0_REG_INT_LINE_EN_0
|
1510 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1512 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1513 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1514 HC_CONFIG_0_REG_INT_LINE_EN_0
|
1515 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1517 DP(NETIF_MSG_INTR
, "write %x to HC %d (addr 0x%x)\n",
1520 /* flush all outstanding writes */
1523 REG_WR(bp
, addr
, val
);
1524 if (REG_RD(bp
, addr
) != val
)
1525 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1528 static void bnx2x_igu_int_disable(struct bnx2x
*bp
)
1530 u32 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
1532 val
&= ~(IGU_PF_CONF_MSI_MSIX_EN
|
1533 IGU_PF_CONF_INT_LINE_EN
|
1534 IGU_PF_CONF_ATTN_BIT_EN
);
1536 DP(NETIF_MSG_INTR
, "write %x to IGU\n", val
);
1538 /* flush all outstanding writes */
1541 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
1542 if (REG_RD(bp
, IGU_REG_PF_CONFIGURATION
) != val
)
1543 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1546 void bnx2x_int_disable(struct bnx2x
*bp
)
1548 if (bp
->common
.int_block
== INT_BLOCK_HC
)
1549 bnx2x_hc_int_disable(bp
);
1551 bnx2x_igu_int_disable(bp
);
1554 void bnx2x_int_disable_sync(struct bnx2x
*bp
, int disable_hw
)
1556 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
1560 /* prevent the HW from sending interrupts */
1561 bnx2x_int_disable(bp
);
1563 /* make sure all ISRs are done */
1565 synchronize_irq(bp
->msix_table
[0].vector
);
1570 for_each_eth_queue(bp
, i
)
1571 synchronize_irq(bp
->msix_table
[offset
++].vector
);
1573 synchronize_irq(bp
->pdev
->irq
);
1575 /* make sure sp_task is not running */
1576 cancel_delayed_work(&bp
->sp_task
);
1577 cancel_delayed_work(&bp
->period_task
);
1578 flush_workqueue(bnx2x_wq
);
1584 * General service functions
1587 /* Return true if succeeded to acquire the lock */
1588 static bool bnx2x_trylock_hw_lock(struct bnx2x
*bp
, u32 resource
)
1591 u32 resource_bit
= (1 << resource
);
1592 int func
= BP_FUNC(bp
);
1593 u32 hw_lock_control_reg
;
1595 DP(NETIF_MSG_HW
, "Trying to take a lock on resource %d\n", resource
);
1597 /* Validating that the resource is within range */
1598 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
1600 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1601 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
1606 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
1608 hw_lock_control_reg
=
1609 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
1611 /* Try to acquire the lock */
1612 REG_WR(bp
, hw_lock_control_reg
+ 4, resource_bit
);
1613 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1614 if (lock_status
& resource_bit
)
1617 DP(NETIF_MSG_HW
, "Failed to get a lock on resource %d\n", resource
);
1622 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1624 * @bp: driver handle
1626 * Returns the recovery leader resource id according to the engine this function
1627 * belongs to. Currently only only 2 engines is supported.
1629 static inline int bnx2x_get_leader_lock_resource(struct bnx2x
*bp
)
1632 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1
;
1634 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0
;
1638 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1640 * @bp: driver handle
1642 * Tries to aquire a leader lock for cuurent engine.
1644 static inline bool bnx2x_trylock_leader_lock(struct bnx2x
*bp
)
1646 return bnx2x_trylock_hw_lock(bp
, bnx2x_get_leader_lock_resource(bp
));
1650 static void bnx2x_cnic_cfc_comp(struct bnx2x
*bp
, int cid
, u8 err
);
1653 void bnx2x_sp_event(struct bnx2x_fastpath
*fp
, union eth_rx_cqe
*rr_cqe
)
1655 struct bnx2x
*bp
= fp
->bp
;
1656 int cid
= SW_CID(rr_cqe
->ramrod_cqe
.conn_and_cmd_data
);
1657 int command
= CQE_CMD(rr_cqe
->ramrod_cqe
.conn_and_cmd_data
);
1658 enum bnx2x_queue_cmd drv_cmd
= BNX2X_Q_CMD_MAX
;
1659 struct bnx2x_queue_sp_obj
*q_obj
= &fp
->q_obj
;
1662 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1663 fp
->index
, cid
, command
, bp
->state
,
1664 rr_cqe
->ramrod_cqe
.ramrod_type
);
1667 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE
):
1668 DP(BNX2X_MSG_SP
, "got UPDATE ramrod. CID %d\n", cid
);
1669 drv_cmd
= BNX2X_Q_CMD_UPDATE
;
1672 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP
):
1673 DP(BNX2X_MSG_SP
, "got MULTI[%d] setup ramrod\n", cid
);
1674 drv_cmd
= BNX2X_Q_CMD_SETUP
;
1677 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP
):
1678 DP(NETIF_MSG_IFUP
, "got MULTI[%d] tx-only setup ramrod\n", cid
);
1679 drv_cmd
= BNX2X_Q_CMD_SETUP_TX_ONLY
;
1682 case (RAMROD_CMD_ID_ETH_HALT
):
1683 DP(BNX2X_MSG_SP
, "got MULTI[%d] halt ramrod\n", cid
);
1684 drv_cmd
= BNX2X_Q_CMD_HALT
;
1687 case (RAMROD_CMD_ID_ETH_TERMINATE
):
1688 DP(BNX2X_MSG_SP
, "got MULTI[%d] teminate ramrod\n", cid
);
1689 drv_cmd
= BNX2X_Q_CMD_TERMINATE
;
1692 case (RAMROD_CMD_ID_ETH_EMPTY
):
1693 DP(BNX2X_MSG_SP
, "got MULTI[%d] empty ramrod\n", cid
);
1694 drv_cmd
= BNX2X_Q_CMD_EMPTY
;
1698 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1699 command
, fp
->index
);
1703 if ((drv_cmd
!= BNX2X_Q_CMD_MAX
) &&
1704 q_obj
->complete_cmd(bp
, q_obj
, drv_cmd
))
1705 /* q_obj->complete_cmd() failure means that this was
1706 * an unexpected completion.
1708 * In this case we don't want to increase the bp->spq_left
1709 * because apparently we haven't sent this command the first
1712 #ifdef BNX2X_STOP_ON_ERROR
1718 smp_mb__before_atomic_inc();
1719 atomic_inc(&bp
->cq_spq_left
);
1720 /* push the change in bp->spq_left and towards the memory */
1721 smp_mb__after_atomic_inc();
1723 DP(BNX2X_MSG_SP
, "bp->cq_spq_left %x\n", atomic_read(&bp
->cq_spq_left
));
1728 void bnx2x_update_rx_prod(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
1729 u16 bd_prod
, u16 rx_comp_prod
, u16 rx_sge_prod
)
1731 u32 start
= BAR_USTRORM_INTMEM
+ fp
->ustorm_rx_prods_offset
;
1733 bnx2x_update_rx_prod_gen(bp
, fp
, bd_prod
, rx_comp_prod
, rx_sge_prod
,
1737 irqreturn_t
bnx2x_interrupt(int irq
, void *dev_instance
)
1739 struct bnx2x
*bp
= netdev_priv(dev_instance
);
1740 u16 status
= bnx2x_ack_int(bp
);
1745 /* Return here if interrupt is shared and it's not for us */
1746 if (unlikely(status
== 0)) {
1747 DP(NETIF_MSG_INTR
, "not our interrupt!\n");
1750 DP(NETIF_MSG_INTR
, "got an interrupt status 0x%x\n", status
);
1752 #ifdef BNX2X_STOP_ON_ERROR
1753 if (unlikely(bp
->panic
))
1757 for_each_eth_queue(bp
, i
) {
1758 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1760 mask
= 0x2 << (fp
->index
+ CNIC_PRESENT
);
1761 if (status
& mask
) {
1762 /* Handle Rx or Tx according to SB id */
1763 prefetch(fp
->rx_cons_sb
);
1764 for_each_cos_in_tx_queue(fp
, cos
)
1765 prefetch(fp
->txdata
[cos
].tx_cons_sb
);
1766 prefetch(&fp
->sb_running_index
[SM_RX_ID
]);
1767 napi_schedule(&bnx2x_fp(bp
, fp
->index
, napi
));
1774 if (status
& (mask
| 0x1)) {
1775 struct cnic_ops
*c_ops
= NULL
;
1777 if (likely(bp
->state
== BNX2X_STATE_OPEN
)) {
1779 c_ops
= rcu_dereference(bp
->cnic_ops
);
1781 c_ops
->cnic_handler(bp
->cnic_data
, NULL
);
1789 if (unlikely(status
& 0x1)) {
1790 queue_delayed_work(bnx2x_wq
, &bp
->sp_task
, 0);
1797 if (unlikely(status
))
1798 DP(NETIF_MSG_INTR
, "got an unknown interrupt! (status 0x%x)\n",
1807 * General service functions
1810 int bnx2x_acquire_hw_lock(struct bnx2x
*bp
, u32 resource
)
1813 u32 resource_bit
= (1 << resource
);
1814 int func
= BP_FUNC(bp
);
1815 u32 hw_lock_control_reg
;
1818 /* Validating that the resource is within range */
1819 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
1821 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1822 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
1827 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
1829 hw_lock_control_reg
=
1830 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
1833 /* Validating that the resource is not already taken */
1834 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1835 if (lock_status
& resource_bit
) {
1836 DP(NETIF_MSG_HW
, "lock_status 0x%x resource_bit 0x%x\n",
1837 lock_status
, resource_bit
);
1841 /* Try for 5 second every 5ms */
1842 for (cnt
= 0; cnt
< 1000; cnt
++) {
1843 /* Try to acquire the lock */
1844 REG_WR(bp
, hw_lock_control_reg
+ 4, resource_bit
);
1845 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1846 if (lock_status
& resource_bit
)
1851 DP(NETIF_MSG_HW
, "Timeout\n");
1855 int bnx2x_release_leader_lock(struct bnx2x
*bp
)
1857 return bnx2x_release_hw_lock(bp
, bnx2x_get_leader_lock_resource(bp
));
1860 int bnx2x_release_hw_lock(struct bnx2x
*bp
, u32 resource
)
1863 u32 resource_bit
= (1 << resource
);
1864 int func
= BP_FUNC(bp
);
1865 u32 hw_lock_control_reg
;
1867 DP(NETIF_MSG_HW
, "Releasing a lock on resource %d\n", resource
);
1869 /* Validating that the resource is within range */
1870 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
1872 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1873 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
1878 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
1880 hw_lock_control_reg
=
1881 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
1884 /* Validating that the resource is currently taken */
1885 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1886 if (!(lock_status
& resource_bit
)) {
1887 DP(NETIF_MSG_HW
, "lock_status 0x%x resource_bit 0x%x\n",
1888 lock_status
, resource_bit
);
1892 REG_WR(bp
, hw_lock_control_reg
, resource_bit
);
1897 int bnx2x_get_gpio(struct bnx2x
*bp
, int gpio_num
, u8 port
)
1899 /* The GPIO should be swapped if swap register is set and active */
1900 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
1901 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
1902 int gpio_shift
= gpio_num
+
1903 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
1904 u32 gpio_mask
= (1 << gpio_shift
);
1908 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
1909 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
1913 /* read GPIO value */
1914 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO
);
1916 /* get the requested pin value */
1917 if ((gpio_reg
& gpio_mask
) == gpio_mask
)
1922 DP(NETIF_MSG_LINK
, "pin %d value 0x%x\n", gpio_num
, value
);
1927 int bnx2x_set_gpio(struct bnx2x
*bp
, int gpio_num
, u32 mode
, u8 port
)
1929 /* The GPIO should be swapped if swap register is set and active */
1930 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
1931 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
1932 int gpio_shift
= gpio_num
+
1933 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
1934 u32 gpio_mask
= (1 << gpio_shift
);
1937 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
1938 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
1942 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
1943 /* read GPIO and mask except the float bits */
1944 gpio_reg
= (REG_RD(bp
, MISC_REG_GPIO
) & MISC_REGISTERS_GPIO_FLOAT
);
1947 case MISC_REGISTERS_GPIO_OUTPUT_LOW
:
1948 DP(NETIF_MSG_LINK
, "Set GPIO %d (shift %d) -> output low\n",
1949 gpio_num
, gpio_shift
);
1950 /* clear FLOAT and set CLR */
1951 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
1952 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_CLR_POS
);
1955 case MISC_REGISTERS_GPIO_OUTPUT_HIGH
:
1956 DP(NETIF_MSG_LINK
, "Set GPIO %d (shift %d) -> output high\n",
1957 gpio_num
, gpio_shift
);
1958 /* clear FLOAT and set SET */
1959 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
1960 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_SET_POS
);
1963 case MISC_REGISTERS_GPIO_INPUT_HI_Z
:
1964 DP(NETIF_MSG_LINK
, "Set GPIO %d (shift %d) -> input\n",
1965 gpio_num
, gpio_shift
);
1967 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
1974 REG_WR(bp
, MISC_REG_GPIO
, gpio_reg
);
1975 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
1980 int bnx2x_set_mult_gpio(struct bnx2x
*bp
, u8 pins
, u32 mode
)
1985 /* Any port swapping should be handled by caller. */
1987 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
1988 /* read GPIO and mask except the float bits */
1989 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO
);
1990 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
1991 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_CLR_POS
);
1992 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_SET_POS
);
1995 case MISC_REGISTERS_GPIO_OUTPUT_LOW
:
1996 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> output low\n", pins
);
1998 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_CLR_POS
);
2001 case MISC_REGISTERS_GPIO_OUTPUT_HIGH
:
2002 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> output high\n", pins
);
2004 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_SET_POS
);
2007 case MISC_REGISTERS_GPIO_INPUT_HI_Z
:
2008 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> input\n", pins
);
2010 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2014 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode
);
2020 REG_WR(bp
, MISC_REG_GPIO
, gpio_reg
);
2022 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2027 int bnx2x_set_gpio_int(struct bnx2x
*bp
, int gpio_num
, u32 mode
, u8 port
)
2029 /* The GPIO should be swapped if swap register is set and active */
2030 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
2031 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
2032 int gpio_shift
= gpio_num
+
2033 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
2034 u32 gpio_mask
= (1 << gpio_shift
);
2037 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
2038 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
2042 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2044 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO_INT
);
2047 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR
:
2048 DP(NETIF_MSG_LINK
, "Clear GPIO INT %d (shift %d) -> "
2049 "output low\n", gpio_num
, gpio_shift
);
2050 /* clear SET and set CLR */
2051 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_INT_SET_POS
);
2052 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_INT_CLR_POS
);
2055 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET
:
2056 DP(NETIF_MSG_LINK
, "Set GPIO INT %d (shift %d) -> "
2057 "output high\n", gpio_num
, gpio_shift
);
2058 /* clear CLR and set SET */
2059 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_INT_CLR_POS
);
2060 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_INT_SET_POS
);
2067 REG_WR(bp
, MISC_REG_GPIO_INT
, gpio_reg
);
2068 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2073 static int bnx2x_set_spio(struct bnx2x
*bp
, int spio_num
, u32 mode
)
2075 u32 spio_mask
= (1 << spio_num
);
2078 if ((spio_num
< MISC_REGISTERS_SPIO_4
) ||
2079 (spio_num
> MISC_REGISTERS_SPIO_7
)) {
2080 BNX2X_ERR("Invalid SPIO %d\n", spio_num
);
2084 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_SPIO
);
2085 /* read SPIO and mask except the float bits */
2086 spio_reg
= (REG_RD(bp
, MISC_REG_SPIO
) & MISC_REGISTERS_SPIO_FLOAT
);
2089 case MISC_REGISTERS_SPIO_OUTPUT_LOW
:
2090 DP(NETIF_MSG_LINK
, "Set SPIO %d -> output low\n", spio_num
);
2091 /* clear FLOAT and set CLR */
2092 spio_reg
&= ~(spio_mask
<< MISC_REGISTERS_SPIO_FLOAT_POS
);
2093 spio_reg
|= (spio_mask
<< MISC_REGISTERS_SPIO_CLR_POS
);
2096 case MISC_REGISTERS_SPIO_OUTPUT_HIGH
:
2097 DP(NETIF_MSG_LINK
, "Set SPIO %d -> output high\n", spio_num
);
2098 /* clear FLOAT and set SET */
2099 spio_reg
&= ~(spio_mask
<< MISC_REGISTERS_SPIO_FLOAT_POS
);
2100 spio_reg
|= (spio_mask
<< MISC_REGISTERS_SPIO_SET_POS
);
2103 case MISC_REGISTERS_SPIO_INPUT_HI_Z
:
2104 DP(NETIF_MSG_LINK
, "Set SPIO %d -> input\n", spio_num
);
2106 spio_reg
|= (spio_mask
<< MISC_REGISTERS_SPIO_FLOAT_POS
);
2113 REG_WR(bp
, MISC_REG_SPIO
, spio_reg
);
2114 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_SPIO
);
2119 void bnx2x_calc_fc_adv(struct bnx2x
*bp
)
2121 u8 cfg_idx
= bnx2x_get_link_cfg_idx(bp
);
2122 switch (bp
->link_vars
.ieee_fc
&
2123 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK
) {
2124 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE
:
2125 bp
->port
.advertising
[cfg_idx
] &= ~(ADVERTISED_Asym_Pause
|
2129 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH
:
2130 bp
->port
.advertising
[cfg_idx
] |= (ADVERTISED_Asym_Pause
|
2134 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC
:
2135 bp
->port
.advertising
[cfg_idx
] |= ADVERTISED_Asym_Pause
;
2139 bp
->port
.advertising
[cfg_idx
] &= ~(ADVERTISED_Asym_Pause
|
2145 u8
bnx2x_initial_phy_init(struct bnx2x
*bp
, int load_mode
)
2147 if (!BP_NOMCP(bp
)) {
2149 int cfx_idx
= bnx2x_get_link_cfg_idx(bp
);
2150 u16 req_line_speed
= bp
->link_params
.req_line_speed
[cfx_idx
];
2152 * Initialize link parameters structure variables
2153 * It is recommended to turn off RX FC for jumbo frames
2154 * for better performance
2156 if (CHIP_IS_E1x(bp
) && (bp
->dev
->mtu
> 5000))
2157 bp
->link_params
.req_fc_auto_adv
= BNX2X_FLOW_CTRL_TX
;
2159 bp
->link_params
.req_fc_auto_adv
= BNX2X_FLOW_CTRL_BOTH
;
2161 bnx2x_acquire_phy_lock(bp
);
2163 if (load_mode
== LOAD_DIAG
) {
2164 struct link_params
*lp
= &bp
->link_params
;
2165 lp
->loopback_mode
= LOOPBACK_XGXS
;
2166 /* do PHY loopback at 10G speed, if possible */
2167 if (lp
->req_line_speed
[cfx_idx
] < SPEED_10000
) {
2168 if (lp
->speed_cap_mask
[cfx_idx
] &
2169 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G
)
2170 lp
->req_line_speed
[cfx_idx
] =
2173 lp
->req_line_speed
[cfx_idx
] =
2178 rc
= bnx2x_phy_init(&bp
->link_params
, &bp
->link_vars
);
2180 bnx2x_release_phy_lock(bp
);
2182 bnx2x_calc_fc_adv(bp
);
2184 if (CHIP_REV_IS_SLOW(bp
) && bp
->link_vars
.link_up
) {
2185 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2186 bnx2x_link_report(bp
);
2188 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 0);
2189 bp
->link_params
.req_line_speed
[cfx_idx
] = req_line_speed
;
2192 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2196 void bnx2x_link_set(struct bnx2x
*bp
)
2198 if (!BP_NOMCP(bp
)) {
2199 bnx2x_acquire_phy_lock(bp
);
2200 bnx2x_link_reset(&bp
->link_params
, &bp
->link_vars
, 1);
2201 bnx2x_phy_init(&bp
->link_params
, &bp
->link_vars
);
2202 bnx2x_release_phy_lock(bp
);
2204 bnx2x_calc_fc_adv(bp
);
2206 BNX2X_ERR("Bootcode is missing - can not set link\n");
2209 static void bnx2x__link_reset(struct bnx2x
*bp
)
2211 if (!BP_NOMCP(bp
)) {
2212 bnx2x_acquire_phy_lock(bp
);
2213 bnx2x_link_reset(&bp
->link_params
, &bp
->link_vars
, 1);
2214 bnx2x_release_phy_lock(bp
);
2216 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2219 u8
bnx2x_link_test(struct bnx2x
*bp
, u8 is_serdes
)
2223 if (!BP_NOMCP(bp
)) {
2224 bnx2x_acquire_phy_lock(bp
);
2225 rc
= bnx2x_test_link(&bp
->link_params
, &bp
->link_vars
,
2227 bnx2x_release_phy_lock(bp
);
2229 BNX2X_ERR("Bootcode is missing - can not test link\n");
2234 static void bnx2x_init_port_minmax(struct bnx2x
*bp
)
2236 u32 r_param
= bp
->link_vars
.line_speed
/ 8;
2237 u32 fair_periodic_timeout_usec
;
2240 memset(&(bp
->cmng
.rs_vars
), 0,
2241 sizeof(struct rate_shaping_vars_per_port
));
2242 memset(&(bp
->cmng
.fair_vars
), 0, sizeof(struct fairness_vars_per_port
));
2244 /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2245 bp
->cmng
.rs_vars
.rs_periodic_timeout
= RS_PERIODIC_TIMEOUT_USEC
/ 4;
2247 /* this is the threshold below which no timer arming will occur
2248 1.25 coefficient is for the threshold to be a little bigger
2249 than the real time, to compensate for timer in-accuracy */
2250 bp
->cmng
.rs_vars
.rs_threshold
=
2251 (RS_PERIODIC_TIMEOUT_USEC
* r_param
* 5) / 4;
2253 /* resolution of fairness timer */
2254 fair_periodic_timeout_usec
= QM_ARB_BYTES
/ r_param
;
2255 /* for 10G it is 1000usec. for 1G it is 10000usec. */
2256 t_fair
= T_FAIR_COEF
/ bp
->link_vars
.line_speed
;
2258 /* this is the threshold below which we won't arm the timer anymore */
2259 bp
->cmng
.fair_vars
.fair_threshold
= QM_ARB_BYTES
;
2261 /* we multiply by 1e3/8 to get bytes/msec.
2262 We don't want the credits to pass a credit
2263 of the t_fair*FAIR_MEM (algorithm resolution) */
2264 bp
->cmng
.fair_vars
.upper_bound
= r_param
* t_fair
* FAIR_MEM
;
2265 /* since each tick is 4 usec */
2266 bp
->cmng
.fair_vars
.fairness_timeout
= fair_periodic_timeout_usec
/ 4;
2269 /* Calculates the sum of vn_min_rates.
2270 It's needed for further normalizing of the min_rates.
2272 sum of vn_min_rates.
2274 0 - if all the min_rates are 0.
2275 In the later case fainess algorithm should be deactivated.
2276 If not all min_rates are zero then those that are zeroes will be set to 1.
2278 static void bnx2x_calc_vn_weight_sum(struct bnx2x
*bp
)
2283 bp
->vn_weight_sum
= 0;
2284 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++) {
2285 u32 vn_cfg
= bp
->mf_config
[vn
];
2286 u32 vn_min_rate
= ((vn_cfg
& FUNC_MF_CFG_MIN_BW_MASK
) >>
2287 FUNC_MF_CFG_MIN_BW_SHIFT
) * 100;
2289 /* Skip hidden vns */
2290 if (vn_cfg
& FUNC_MF_CFG_FUNC_HIDE
)
2293 /* If min rate is zero - set it to 1 */
2295 vn_min_rate
= DEF_MIN_RATE
;
2299 bp
->vn_weight_sum
+= vn_min_rate
;
2302 /* if ETS or all min rates are zeros - disable fairness */
2303 if (BNX2X_IS_ETS_ENABLED(bp
)) {
2304 bp
->cmng
.flags
.cmng_enables
&=
2305 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2306 DP(NETIF_MSG_IFUP
, "Fairness will be disabled due to ETS\n");
2307 } else if (all_zero
) {
2308 bp
->cmng
.flags
.cmng_enables
&=
2309 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2310 DP(NETIF_MSG_IFUP
, "All MIN values are zeroes"
2311 " fairness will be disabled\n");
2313 bp
->cmng
.flags
.cmng_enables
|=
2314 CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2317 static void bnx2x_init_vn_minmax(struct bnx2x
*bp
, int vn
)
2319 struct rate_shaping_vars_per_vn m_rs_vn
;
2320 struct fairness_vars_per_vn m_fair_vn
;
2321 u32 vn_cfg
= bp
->mf_config
[vn
];
2322 int func
= func_by_vn(bp
, vn
);
2323 u16 vn_min_rate
, vn_max_rate
;
2326 /* If function is hidden - set min and max to zeroes */
2327 if (vn_cfg
& FUNC_MF_CFG_FUNC_HIDE
) {
2332 u32 maxCfg
= bnx2x_extract_max_cfg(bp
, vn_cfg
);
2334 vn_min_rate
= ((vn_cfg
& FUNC_MF_CFG_MIN_BW_MASK
) >>
2335 FUNC_MF_CFG_MIN_BW_SHIFT
) * 100;
2336 /* If fairness is enabled (not all min rates are zeroes) and
2337 if current min rate is zero - set it to 1.
2338 This is a requirement of the algorithm. */
2339 if (bp
->vn_weight_sum
&& (vn_min_rate
== 0))
2340 vn_min_rate
= DEF_MIN_RATE
;
2343 /* maxCfg in percents of linkspeed */
2344 vn_max_rate
= (bp
->link_vars
.line_speed
* maxCfg
) / 100;
2346 /* maxCfg is absolute in 100Mb units */
2347 vn_max_rate
= maxCfg
* 100;
2351 "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
2352 func
, vn_min_rate
, vn_max_rate
, bp
->vn_weight_sum
);
2354 memset(&m_rs_vn
, 0, sizeof(struct rate_shaping_vars_per_vn
));
2355 memset(&m_fair_vn
, 0, sizeof(struct fairness_vars_per_vn
));
2357 /* global vn counter - maximal Mbps for this vn */
2358 m_rs_vn
.vn_counter
.rate
= vn_max_rate
;
2360 /* quota - number of bytes transmitted in this period */
2361 m_rs_vn
.vn_counter
.quota
=
2362 (vn_max_rate
* RS_PERIODIC_TIMEOUT_USEC
) / 8;
2364 if (bp
->vn_weight_sum
) {
2365 /* credit for each period of the fairness algorithm:
2366 number of bytes in T_FAIR (the vn share the port rate).
2367 vn_weight_sum should not be larger than 10000, thus
2368 T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2370 m_fair_vn
.vn_credit_delta
=
2371 max_t(u32
, (vn_min_rate
* (T_FAIR_COEF
/
2372 (8 * bp
->vn_weight_sum
))),
2373 (bp
->cmng
.fair_vars
.fair_threshold
+
2375 DP(NETIF_MSG_IFUP
, "m_fair_vn.vn_credit_delta %d\n",
2376 m_fair_vn
.vn_credit_delta
);
2379 /* Store it to internal memory */
2380 for (i
= 0; i
< sizeof(struct rate_shaping_vars_per_vn
)/4; i
++)
2381 REG_WR(bp
, BAR_XSTRORM_INTMEM
+
2382 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func
) + i
* 4,
2383 ((u32
*)(&m_rs_vn
))[i
]);
2385 for (i
= 0; i
< sizeof(struct fairness_vars_per_vn
)/4; i
++)
2386 REG_WR(bp
, BAR_XSTRORM_INTMEM
+
2387 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func
) + i
* 4,
2388 ((u32
*)(&m_fair_vn
))[i
]);
2391 static int bnx2x_get_cmng_fns_mode(struct bnx2x
*bp
)
2393 if (CHIP_REV_IS_SLOW(bp
))
2394 return CMNG_FNS_NONE
;
2396 return CMNG_FNS_MINMAX
;
2398 return CMNG_FNS_NONE
;
2401 void bnx2x_read_mf_cfg(struct bnx2x
*bp
)
2403 int vn
, n
= (CHIP_MODE_IS_4_PORT(bp
) ? 2 : 1);
2406 return; /* what should be the default bvalue in this case */
2408 /* For 2 port configuration the absolute function number formula
2410 * abs_func = 2 * vn + BP_PORT + BP_PATH
2412 * and there are 4 functions per port
2414 * For 4 port configuration it is
2415 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2417 * and there are 2 functions per port
2419 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++) {
2420 int /*abs*/func
= n
* (2 * vn
+ BP_PORT(bp
)) + BP_PATH(bp
);
2422 if (func
>= E1H_FUNC_MAX
)
2426 MF_CFG_RD(bp
, func_mf_config
[func
].config
);
2430 static void bnx2x_cmng_fns_init(struct bnx2x
*bp
, u8 read_cfg
, u8 cmng_type
)
2433 if (cmng_type
== CMNG_FNS_MINMAX
) {
2436 /* clear cmng_enables */
2437 bp
->cmng
.flags
.cmng_enables
= 0;
2439 /* read mf conf from shmem */
2441 bnx2x_read_mf_cfg(bp
);
2443 /* Init rate shaping and fairness contexts */
2444 bnx2x_init_port_minmax(bp
);
2446 /* vn_weight_sum and enable fairness if not 0 */
2447 bnx2x_calc_vn_weight_sum(bp
);
2449 /* calculate and set min-max rate for each vn */
2451 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++)
2452 bnx2x_init_vn_minmax(bp
, vn
);
2454 /* always enable rate shaping and fairness */
2455 bp
->cmng
.flags
.cmng_enables
|=
2456 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN
;
2457 if (!bp
->vn_weight_sum
)
2458 DP(NETIF_MSG_IFUP
, "All MIN values are zeroes"
2459 " fairness will be disabled\n");
2463 /* rate shaping and fairness are disabled */
2465 "rate shaping and fairness are disabled\n");
2468 /* This function is called upon link interrupt */
2469 static void bnx2x_link_attn(struct bnx2x
*bp
)
2471 /* Make sure that we are synced with the current statistics */
2472 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
2474 bnx2x_link_update(&bp
->link_params
, &bp
->link_vars
);
2476 if (bp
->link_vars
.link_up
) {
2478 /* dropless flow control */
2479 if (!CHIP_IS_E1(bp
) && bp
->dropless_fc
) {
2480 int port
= BP_PORT(bp
);
2481 u32 pause_enabled
= 0;
2483 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_TX
)
2486 REG_WR(bp
, BAR_USTRORM_INTMEM
+
2487 USTORM_ETH_PAUSE_ENABLED_OFFSET(port
),
2491 if (bp
->link_vars
.mac_type
!= MAC_TYPE_EMAC
) {
2492 struct host_port_stats
*pstats
;
2494 pstats
= bnx2x_sp(bp
, port_stats
);
2495 /* reset old mac stats */
2496 memset(&(pstats
->mac_stx
[0]), 0,
2497 sizeof(struct mac_stx
));
2499 if (bp
->state
== BNX2X_STATE_OPEN
)
2500 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2503 if (bp
->link_vars
.link_up
&& bp
->link_vars
.line_speed
) {
2504 int cmng_fns
= bnx2x_get_cmng_fns_mode(bp
);
2506 if (cmng_fns
!= CMNG_FNS_NONE
) {
2507 bnx2x_cmng_fns_init(bp
, false, cmng_fns
);
2508 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
2510 /* rate shaping and fairness are disabled */
2512 "single function mode without fairness\n");
2515 __bnx2x_link_report(bp
);
2518 bnx2x_link_sync_notify(bp
);
2521 void bnx2x__link_status_update(struct bnx2x
*bp
)
2523 if (bp
->state
!= BNX2X_STATE_OPEN
)
2526 /* read updated dcb configuration */
2527 bnx2x_dcbx_pmf_update(bp
);
2529 bnx2x_link_status_update(&bp
->link_params
, &bp
->link_vars
);
2531 if (bp
->link_vars
.link_up
)
2532 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2534 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
2536 /* indicate link status */
2537 bnx2x_link_report(bp
);
2540 static void bnx2x_pmf_update(struct bnx2x
*bp
)
2542 int port
= BP_PORT(bp
);
2546 DP(NETIF_MSG_LINK
, "pmf %d\n", bp
->port
.pmf
);
2549 * We need the mb() to ensure the ordering between the writing to
2550 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2554 /* queue a periodic task */
2555 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 0);
2557 bnx2x_dcbx_pmf_update(bp
);
2559 /* enable nig attention */
2560 val
= (0xff0f | (1 << (BP_VN(bp
) + 4)));
2561 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
2562 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, val
);
2563 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, val
);
2564 } else if (!CHIP_IS_E1x(bp
)) {
2565 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, val
);
2566 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, val
);
2569 bnx2x_stats_handle(bp
, STATS_EVENT_PMF
);
2577 * General service functions
2580 /* send the MCP a request, block until there is a reply */
2581 u32
bnx2x_fw_command(struct bnx2x
*bp
, u32 command
, u32 param
)
2583 int mb_idx
= BP_FW_MB_IDX(bp
);
2587 u8 delay
= CHIP_REV_IS_SLOW(bp
) ? 100 : 10;
2589 mutex_lock(&bp
->fw_mb_mutex
);
2591 SHMEM_WR(bp
, func_mb
[mb_idx
].drv_mb_param
, param
);
2592 SHMEM_WR(bp
, func_mb
[mb_idx
].drv_mb_header
, (command
| seq
));
2594 DP(BNX2X_MSG_MCP
, "wrote command (%x) to FW MB param 0x%08x\n",
2595 (command
| seq
), param
);
2598 /* let the FW do it's magic ... */
2601 rc
= SHMEM_RD(bp
, func_mb
[mb_idx
].fw_mb_header
);
2603 /* Give the FW up to 5 second (500*10ms) */
2604 } while ((seq
!= (rc
& FW_MSG_SEQ_NUMBER_MASK
)) && (cnt
++ < 500));
2606 DP(BNX2X_MSG_MCP
, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2607 cnt
*delay
, rc
, seq
);
2609 /* is this a reply to our command? */
2610 if (seq
== (rc
& FW_MSG_SEQ_NUMBER_MASK
))
2611 rc
&= FW_MSG_CODE_MASK
;
2614 BNX2X_ERR("FW failed to respond!\n");
2618 mutex_unlock(&bp
->fw_mb_mutex
);
2624 void bnx2x_func_init(struct bnx2x
*bp
, struct bnx2x_func_init_params
*p
)
2626 if (CHIP_IS_E1x(bp
)) {
2627 struct tstorm_eth_function_common_config tcfg
= {0};
2629 storm_memset_func_cfg(bp
, &tcfg
, p
->func_id
);
2632 /* Enable the function in the FW */
2633 storm_memset_vf_to_pf(bp
, p
->func_id
, p
->pf_id
);
2634 storm_memset_func_en(bp
, p
->func_id
, 1);
2637 if (p
->func_flgs
& FUNC_FLG_SPQ
) {
2638 storm_memset_spq_addr(bp
, p
->spq_map
, p
->func_id
);
2639 REG_WR(bp
, XSEM_REG_FAST_MEMORY
+
2640 XSTORM_SPQ_PROD_OFFSET(p
->func_id
), p
->spq_prod
);
2645 * bnx2x_get_tx_only_flags - Return common flags
2649 * @zero_stats TRUE if statistics zeroing is needed
2651 * Return the flags that are common for the Tx-only and not normal connections.
2653 static inline unsigned long bnx2x_get_common_flags(struct bnx2x
*bp
,
2654 struct bnx2x_fastpath
*fp
,
2657 unsigned long flags
= 0;
2659 /* PF driver will always initialize the Queue to an ACTIVE state */
2660 __set_bit(BNX2X_Q_FLG_ACTIVE
, &flags
);
2662 /* tx only connections collect statistics (on the same index as the
2663 * parent connection). The statistics are zeroed when the parent
2664 * connection is initialized.
2667 __set_bit(BNX2X_Q_FLG_STATS
, &flags
);
2669 __set_bit(BNX2X_Q_FLG_ZERO_STATS
, &flags
);
2675 static inline unsigned long bnx2x_get_q_flags(struct bnx2x
*bp
,
2676 struct bnx2x_fastpath
*fp
,
2679 unsigned long flags
= 0;
2681 /* calculate other queue flags */
2683 __set_bit(BNX2X_Q_FLG_OV
, &flags
);
2686 __set_bit(BNX2X_Q_FLG_FCOE
, &flags
);
2688 if (!fp
->disable_tpa
) {
2689 __set_bit(BNX2X_Q_FLG_TPA
, &flags
);
2690 __set_bit(BNX2X_Q_FLG_TPA_IPV6
, &flags
);
2694 __set_bit(BNX2X_Q_FLG_LEADING_RSS
, &flags
);
2695 __set_bit(BNX2X_Q_FLG_MCAST
, &flags
);
2698 /* Always set HW VLAN stripping */
2699 __set_bit(BNX2X_Q_FLG_VLAN
, &flags
);
2702 return flags
| bnx2x_get_common_flags(bp
, fp
, true);
2705 static void bnx2x_pf_q_prep_general(struct bnx2x
*bp
,
2706 struct bnx2x_fastpath
*fp
, struct bnx2x_general_setup_params
*gen_init
,
2709 gen_init
->stat_id
= bnx2x_stats_id(fp
);
2710 gen_init
->spcl_id
= fp
->cl_id
;
2712 /* Always use mini-jumbo MTU for FCoE L2 ring */
2714 gen_init
->mtu
= BNX2X_FCOE_MINI_JUMBO_MTU
;
2716 gen_init
->mtu
= bp
->dev
->mtu
;
2718 gen_init
->cos
= cos
;
2721 static void bnx2x_pf_rx_q_prep(struct bnx2x
*bp
,
2722 struct bnx2x_fastpath
*fp
, struct rxq_pause_params
*pause
,
2723 struct bnx2x_rxq_setup_params
*rxq_init
)
2727 u16 tpa_agg_size
= 0;
2729 if (!fp
->disable_tpa
) {
2730 pause
->sge_th_lo
= SGE_TH_LO(bp
);
2731 pause
->sge_th_hi
= SGE_TH_HI(bp
);
2733 /* validate SGE ring has enough to cross high threshold */
2734 WARN_ON(bp
->dropless_fc
&&
2735 pause
->sge_th_hi
+ FW_PREFETCH_CNT
>
2736 MAX_RX_SGE_CNT
* NUM_RX_SGE_PAGES
);
2738 tpa_agg_size
= min_t(u32
,
2739 (min_t(u32
, 8, MAX_SKB_FRAGS
) *
2740 SGE_PAGE_SIZE
* PAGES_PER_SGE
), 0xffff);
2741 max_sge
= SGE_PAGE_ALIGN(bp
->dev
->mtu
) >>
2743 max_sge
= ((max_sge
+ PAGES_PER_SGE
- 1) &
2744 (~(PAGES_PER_SGE
-1))) >> PAGES_PER_SGE_SHIFT
;
2745 sge_sz
= (u16
)min_t(u32
, SGE_PAGE_SIZE
* PAGES_PER_SGE
,
2749 /* pause - not for e1 */
2750 if (!CHIP_IS_E1(bp
)) {
2751 pause
->bd_th_lo
= BD_TH_LO(bp
);
2752 pause
->bd_th_hi
= BD_TH_HI(bp
);
2754 pause
->rcq_th_lo
= RCQ_TH_LO(bp
);
2755 pause
->rcq_th_hi
= RCQ_TH_HI(bp
);
2757 * validate that rings have enough entries to cross
2760 WARN_ON(bp
->dropless_fc
&&
2761 pause
->bd_th_hi
+ FW_PREFETCH_CNT
>
2763 WARN_ON(bp
->dropless_fc
&&
2764 pause
->rcq_th_hi
+ FW_PREFETCH_CNT
>
2765 NUM_RCQ_RINGS
* MAX_RCQ_DESC_CNT
);
2771 rxq_init
->dscr_map
= fp
->rx_desc_mapping
;
2772 rxq_init
->sge_map
= fp
->rx_sge_mapping
;
2773 rxq_init
->rcq_map
= fp
->rx_comp_mapping
;
2774 rxq_init
->rcq_np_map
= fp
->rx_comp_mapping
+ BCM_PAGE_SIZE
;
2776 /* This should be a maximum number of data bytes that may be
2777 * placed on the BD (not including paddings).
2779 rxq_init
->buf_sz
= fp
->rx_buf_size
- BNX2X_FW_RX_ALIGN_START
-
2780 BNX2X_FW_RX_ALIGN_END
- IP_HEADER_ALIGNMENT_PADDING
;
2782 rxq_init
->cl_qzone_id
= fp
->cl_qzone_id
;
2783 rxq_init
->tpa_agg_sz
= tpa_agg_size
;
2784 rxq_init
->sge_buf_sz
= sge_sz
;
2785 rxq_init
->max_sges_pkt
= max_sge
;
2786 rxq_init
->rss_engine_id
= BP_FUNC(bp
);
2788 /* Maximum number or simultaneous TPA aggregation for this Queue.
2790 * For PF Clients it should be the maximum avaliable number.
2791 * VF driver(s) may want to define it to a smaller value.
2793 rxq_init
->max_tpa_queues
= MAX_AGG_QS(bp
);
2795 rxq_init
->cache_line_log
= BNX2X_RX_ALIGN_SHIFT
;
2796 rxq_init
->fw_sb_id
= fp
->fw_sb_id
;
2799 rxq_init
->sb_cq_index
= HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS
;
2801 rxq_init
->sb_cq_index
= HC_INDEX_ETH_RX_CQ_CONS
;
2804 static void bnx2x_pf_tx_q_prep(struct bnx2x
*bp
,
2805 struct bnx2x_fastpath
*fp
, struct bnx2x_txq_setup_params
*txq_init
,
2808 txq_init
->dscr_map
= fp
->txdata
[cos
].tx_desc_mapping
;
2809 txq_init
->sb_cq_index
= HC_INDEX_ETH_FIRST_TX_CQ_CONS
+ cos
;
2810 txq_init
->traffic_type
= LLFC_TRAFFIC_TYPE_NW
;
2811 txq_init
->fw_sb_id
= fp
->fw_sb_id
;
2814 * set the tss leading client id for TX classfication ==
2815 * leading RSS client id
2817 txq_init
->tss_leading_cl_id
= bnx2x_fp(bp
, 0, cl_id
);
2819 if (IS_FCOE_FP(fp
)) {
2820 txq_init
->sb_cq_index
= HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS
;
2821 txq_init
->traffic_type
= LLFC_TRAFFIC_TYPE_FCOE
;
2825 static void bnx2x_pf_init(struct bnx2x
*bp
)
2827 struct bnx2x_func_init_params func_init
= {0};
2828 struct event_ring_data eq_data
= { {0} };
2831 if (!CHIP_IS_E1x(bp
)) {
2832 /* reset IGU PF statistics: MSIX + ATTN */
2834 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+
2835 BNX2X_IGU_STAS_MSG_VF_CNT
*4 +
2836 (CHIP_MODE_IS_4_PORT(bp
) ?
2837 BP_FUNC(bp
) : BP_VN(bp
))*4, 0);
2839 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+
2840 BNX2X_IGU_STAS_MSG_VF_CNT
*4 +
2841 BNX2X_IGU_STAS_MSG_PF_CNT
*4 +
2842 (CHIP_MODE_IS_4_PORT(bp
) ?
2843 BP_FUNC(bp
) : BP_VN(bp
))*4, 0);
2846 /* function setup flags */
2847 flags
= (FUNC_FLG_STATS
| FUNC_FLG_LEADING
| FUNC_FLG_SPQ
);
2849 /* This flag is relevant for E1x only.
2850 * E2 doesn't have a TPA configuration in a function level.
2852 flags
|= (bp
->flags
& TPA_ENABLE_FLAG
) ? FUNC_FLG_TPA
: 0;
2854 func_init
.func_flgs
= flags
;
2855 func_init
.pf_id
= BP_FUNC(bp
);
2856 func_init
.func_id
= BP_FUNC(bp
);
2857 func_init
.spq_map
= bp
->spq_mapping
;
2858 func_init
.spq_prod
= bp
->spq_prod_idx
;
2860 bnx2x_func_init(bp
, &func_init
);
2862 memset(&(bp
->cmng
), 0, sizeof(struct cmng_struct_per_port
));
2865 * Congestion management values depend on the link rate
2866 * There is no active link so initial link rate is set to 10 Gbps.
2867 * When the link comes up The congestion management values are
2868 * re-calculated according to the actual link rate.
2870 bp
->link_vars
.line_speed
= SPEED_10000
;
2871 bnx2x_cmng_fns_init(bp
, true, bnx2x_get_cmng_fns_mode(bp
));
2873 /* Only the PMF sets the HW */
2875 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
2877 /* init Event Queue */
2878 eq_data
.base_addr
.hi
= U64_HI(bp
->eq_mapping
);
2879 eq_data
.base_addr
.lo
= U64_LO(bp
->eq_mapping
);
2880 eq_data
.producer
= bp
->eq_prod
;
2881 eq_data
.index_id
= HC_SP_INDEX_EQ_CONS
;
2882 eq_data
.sb_id
= DEF_SB_ID
;
2883 storm_memset_eq_data(bp
, &eq_data
, BP_FUNC(bp
));
2887 static void bnx2x_e1h_disable(struct bnx2x
*bp
)
2889 int port
= BP_PORT(bp
);
2891 bnx2x_tx_disable(bp
);
2893 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 0);
2896 static void bnx2x_e1h_enable(struct bnx2x
*bp
)
2898 int port
= BP_PORT(bp
);
2900 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 1);
2902 /* Tx queue should be only reenabled */
2903 netif_tx_wake_all_queues(bp
->dev
);
2906 * Should not call netif_carrier_on since it will be called if the link
2907 * is up when checking for link state
2911 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2913 static void bnx2x_drv_info_ether_stat(struct bnx2x
*bp
)
2915 struct eth_stats_info
*ether_stat
=
2916 &bp
->slowpath
->drv_info_to_mcp
.ether_stat
;
2918 /* leave last char as NULL */
2919 memcpy(ether_stat
->version
, DRV_MODULE_VERSION
,
2920 ETH_STAT_INFO_VERSION_LEN
- 1);
2922 bp
->fp
[0].mac_obj
.get_n_elements(bp
, &bp
->fp
[0].mac_obj
,
2923 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED
,
2924 ether_stat
->mac_local
);
2926 ether_stat
->mtu_size
= bp
->dev
->mtu
;
2928 if (bp
->dev
->features
& NETIF_F_RXCSUM
)
2929 ether_stat
->feature_flags
|= FEATURE_ETH_CHKSUM_OFFLOAD_MASK
;
2930 if (bp
->dev
->features
& NETIF_F_TSO
)
2931 ether_stat
->feature_flags
|= FEATURE_ETH_LSO_MASK
;
2932 ether_stat
->feature_flags
|= bp
->common
.boot_mode
;
2934 ether_stat
->promiscuous_mode
= (bp
->dev
->flags
& IFF_PROMISC
) ? 1 : 0;
2936 ether_stat
->txq_size
= bp
->tx_ring_size
;
2937 ether_stat
->rxq_size
= bp
->rx_ring_size
;
2940 static void bnx2x_drv_info_fcoe_stat(struct bnx2x
*bp
)
2943 struct bnx2x_dcbx_app_params
*app
= &bp
->dcbx_port_params
.app
;
2944 struct fcoe_stats_info
*fcoe_stat
=
2945 &bp
->slowpath
->drv_info_to_mcp
.fcoe_stat
;
2947 memcpy(fcoe_stat
->mac_local
, bp
->fip_mac
, ETH_ALEN
);
2949 fcoe_stat
->qos_priority
=
2950 app
->traffic_type_priority
[LLFC_TRAFFIC_TYPE_FCOE
];
2952 /* insert FCoE stats from ramrod response */
2954 struct tstorm_per_queue_stats
*fcoe_q_tstorm_stats
=
2955 &bp
->fw_stats_data
->queue_stats
[FCOE_IDX
].
2956 tstorm_queue_statistics
;
2958 struct xstorm_per_queue_stats
*fcoe_q_xstorm_stats
=
2959 &bp
->fw_stats_data
->queue_stats
[FCOE_IDX
].
2960 xstorm_queue_statistics
;
2962 struct fcoe_statistics_params
*fw_fcoe_stat
=
2963 &bp
->fw_stats_data
->fcoe
;
2965 ADD_64(fcoe_stat
->rx_bytes_hi
, 0, fcoe_stat
->rx_bytes_lo
,
2966 fw_fcoe_stat
->rx_stat0
.fcoe_rx_byte_cnt
);
2968 ADD_64(fcoe_stat
->rx_bytes_hi
,
2969 fcoe_q_tstorm_stats
->rcv_ucast_bytes
.hi
,
2970 fcoe_stat
->rx_bytes_lo
,
2971 fcoe_q_tstorm_stats
->rcv_ucast_bytes
.lo
);
2973 ADD_64(fcoe_stat
->rx_bytes_hi
,
2974 fcoe_q_tstorm_stats
->rcv_bcast_bytes
.hi
,
2975 fcoe_stat
->rx_bytes_lo
,
2976 fcoe_q_tstorm_stats
->rcv_bcast_bytes
.lo
);
2978 ADD_64(fcoe_stat
->rx_bytes_hi
,
2979 fcoe_q_tstorm_stats
->rcv_mcast_bytes
.hi
,
2980 fcoe_stat
->rx_bytes_lo
,
2981 fcoe_q_tstorm_stats
->rcv_mcast_bytes
.lo
);
2983 ADD_64(fcoe_stat
->rx_frames_hi
, 0, fcoe_stat
->rx_frames_lo
,
2984 fw_fcoe_stat
->rx_stat0
.fcoe_rx_pkt_cnt
);
2986 ADD_64(fcoe_stat
->rx_frames_hi
, 0, fcoe_stat
->rx_frames_lo
,
2987 fcoe_q_tstorm_stats
->rcv_ucast_pkts
);
2989 ADD_64(fcoe_stat
->rx_frames_hi
, 0, fcoe_stat
->rx_frames_lo
,
2990 fcoe_q_tstorm_stats
->rcv_bcast_pkts
);
2992 ADD_64(fcoe_stat
->rx_frames_hi
, 0, fcoe_stat
->rx_frames_lo
,
2993 fcoe_q_tstorm_stats
->rcv_mcast_pkts
);
2995 ADD_64(fcoe_stat
->tx_bytes_hi
, 0, fcoe_stat
->tx_bytes_lo
,
2996 fw_fcoe_stat
->tx_stat
.fcoe_tx_byte_cnt
);
2998 ADD_64(fcoe_stat
->tx_bytes_hi
,
2999 fcoe_q_xstorm_stats
->ucast_bytes_sent
.hi
,
3000 fcoe_stat
->tx_bytes_lo
,
3001 fcoe_q_xstorm_stats
->ucast_bytes_sent
.lo
);
3003 ADD_64(fcoe_stat
->tx_bytes_hi
,
3004 fcoe_q_xstorm_stats
->bcast_bytes_sent
.hi
,
3005 fcoe_stat
->tx_bytes_lo
,
3006 fcoe_q_xstorm_stats
->bcast_bytes_sent
.lo
);
3008 ADD_64(fcoe_stat
->tx_bytes_hi
,
3009 fcoe_q_xstorm_stats
->mcast_bytes_sent
.hi
,
3010 fcoe_stat
->tx_bytes_lo
,
3011 fcoe_q_xstorm_stats
->mcast_bytes_sent
.lo
);
3013 ADD_64(fcoe_stat
->tx_frames_hi
, 0, fcoe_stat
->tx_frames_lo
,
3014 fw_fcoe_stat
->tx_stat
.fcoe_tx_pkt_cnt
);
3016 ADD_64(fcoe_stat
->tx_frames_hi
, 0, fcoe_stat
->tx_frames_lo
,
3017 fcoe_q_xstorm_stats
->ucast_pkts_sent
);
3019 ADD_64(fcoe_stat
->tx_frames_hi
, 0, fcoe_stat
->tx_frames_lo
,
3020 fcoe_q_xstorm_stats
->bcast_pkts_sent
);
3022 ADD_64(fcoe_stat
->tx_frames_hi
, 0, fcoe_stat
->tx_frames_lo
,
3023 fcoe_q_xstorm_stats
->mcast_pkts_sent
);
3026 /* ask L5 driver to add data to the struct */
3027 bnx2x_cnic_notify(bp
, CNIC_CTL_FCOE_STATS_GET_CMD
);
3031 static void bnx2x_drv_info_iscsi_stat(struct bnx2x
*bp
)
3034 struct bnx2x_dcbx_app_params
*app
= &bp
->dcbx_port_params
.app
;
3035 struct iscsi_stats_info
*iscsi_stat
=
3036 &bp
->slowpath
->drv_info_to_mcp
.iscsi_stat
;
3038 memcpy(iscsi_stat
->mac_local
, bp
->cnic_eth_dev
.iscsi_mac
, ETH_ALEN
);
3040 iscsi_stat
->qos_priority
=
3041 app
->traffic_type_priority
[LLFC_TRAFFIC_TYPE_ISCSI
];
3043 /* ask L5 driver to add data to the struct */
3044 bnx2x_cnic_notify(bp
, CNIC_CTL_ISCSI_STATS_GET_CMD
);
3048 /* called due to MCP event (on pmf):
3049 * reread new bandwidth configuration
3051 * notify others function about the change
3053 static inline void bnx2x_config_mf_bw(struct bnx2x
*bp
)
3055 if (bp
->link_vars
.link_up
) {
3056 bnx2x_cmng_fns_init(bp
, true, CMNG_FNS_MINMAX
);
3057 bnx2x_link_sync_notify(bp
);
3059 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
3062 static inline void bnx2x_set_mf_bw(struct bnx2x
*bp
)
3064 bnx2x_config_mf_bw(bp
);
3065 bnx2x_fw_command(bp
, DRV_MSG_CODE_SET_MF_BW_ACK
, 0);
3068 static void bnx2x_handle_drv_info_req(struct bnx2x
*bp
)
3070 enum drv_info_opcode op_code
;
3071 u32 drv_info_ctl
= SHMEM2_RD(bp
, drv_info_control
);
3073 /* if drv_info version supported by MFW doesn't match - send NACK */
3074 if ((drv_info_ctl
& DRV_INFO_CONTROL_VER_MASK
) != DRV_INFO_CUR_VER
) {
3075 bnx2x_fw_command(bp
, DRV_MSG_CODE_DRV_INFO_NACK
, 0);
3079 op_code
= (drv_info_ctl
& DRV_INFO_CONTROL_OP_CODE_MASK
) >>
3080 DRV_INFO_CONTROL_OP_CODE_SHIFT
;
3082 memset(&bp
->slowpath
->drv_info_to_mcp
, 0,
3083 sizeof(union drv_info_to_mcp
));
3086 case ETH_STATS_OPCODE
:
3087 bnx2x_drv_info_ether_stat(bp
);
3089 case FCOE_STATS_OPCODE
:
3090 bnx2x_drv_info_fcoe_stat(bp
);
3092 case ISCSI_STATS_OPCODE
:
3093 bnx2x_drv_info_iscsi_stat(bp
);
3096 /* if op code isn't supported - send NACK */
3097 bnx2x_fw_command(bp
, DRV_MSG_CODE_DRV_INFO_NACK
, 0);
3101 /* if we got drv_info attn from MFW then these fields are defined in
3104 SHMEM2_WR(bp
, drv_info_host_addr_lo
,
3105 U64_LO(bnx2x_sp_mapping(bp
, drv_info_to_mcp
)));
3106 SHMEM2_WR(bp
, drv_info_host_addr_hi
,
3107 U64_HI(bnx2x_sp_mapping(bp
, drv_info_to_mcp
)));
3109 bnx2x_fw_command(bp
, DRV_MSG_CODE_DRV_INFO_ACK
, 0);
3112 static void bnx2x_dcc_event(struct bnx2x
*bp
, u32 dcc_event
)
3114 DP(BNX2X_MSG_MCP
, "dcc_event 0x%x\n", dcc_event
);
3116 if (dcc_event
& DRV_STATUS_DCC_DISABLE_ENABLE_PF
) {
3119 * This is the only place besides the function initialization
3120 * where the bp->flags can change so it is done without any
3123 if (bp
->mf_config
[BP_VN(bp
)] & FUNC_MF_CFG_FUNC_DISABLED
) {
3124 DP(NETIF_MSG_IFDOWN
, "mf_cfg function disabled\n");
3125 bp
->flags
|= MF_FUNC_DIS
;
3127 bnx2x_e1h_disable(bp
);
3129 DP(NETIF_MSG_IFUP
, "mf_cfg function enabled\n");
3130 bp
->flags
&= ~MF_FUNC_DIS
;
3132 bnx2x_e1h_enable(bp
);
3134 dcc_event
&= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF
;
3136 if (dcc_event
& DRV_STATUS_DCC_BANDWIDTH_ALLOCATION
) {
3137 bnx2x_config_mf_bw(bp
);
3138 dcc_event
&= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION
;
3141 /* Report results to MCP */
3143 bnx2x_fw_command(bp
, DRV_MSG_CODE_DCC_FAILURE
, 0);
3145 bnx2x_fw_command(bp
, DRV_MSG_CODE_DCC_OK
, 0);
3148 /* must be called under the spq lock */
3149 static inline struct eth_spe
*bnx2x_sp_get_next(struct bnx2x
*bp
)
3151 struct eth_spe
*next_spe
= bp
->spq_prod_bd
;
3153 if (bp
->spq_prod_bd
== bp
->spq_last_bd
) {
3154 bp
->spq_prod_bd
= bp
->spq
;
3155 bp
->spq_prod_idx
= 0;
3156 DP(NETIF_MSG_TIMER
, "end of spq\n");
3164 /* must be called under the spq lock */
3165 static inline void bnx2x_sp_prod_update(struct bnx2x
*bp
)
3167 int func
= BP_FUNC(bp
);
3170 * Make sure that BD data is updated before writing the producer:
3171 * BD data is written to the memory, the producer is read from the
3172 * memory, thus we need a full memory barrier to ensure the ordering.
3176 REG_WR16(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_SPQ_PROD_OFFSET(func
),
3182 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3184 * @cmd: command to check
3185 * @cmd_type: command type
3187 static inline bool bnx2x_is_contextless_ramrod(int cmd
, int cmd_type
)
3189 if ((cmd_type
== NONE_CONNECTION_TYPE
) ||
3190 (cmd
== RAMROD_CMD_ID_ETH_FORWARD_SETUP
) ||
3191 (cmd
== RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES
) ||
3192 (cmd
== RAMROD_CMD_ID_ETH_FILTER_RULES
) ||
3193 (cmd
== RAMROD_CMD_ID_ETH_MULTICAST_RULES
) ||
3194 (cmd
== RAMROD_CMD_ID_ETH_SET_MAC
) ||
3195 (cmd
== RAMROD_CMD_ID_ETH_RSS_UPDATE
))
3204 * bnx2x_sp_post - place a single command on an SP ring
3206 * @bp: driver handle
3207 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3208 * @cid: SW CID the command is related to
3209 * @data_hi: command private data address (high 32 bits)
3210 * @data_lo: command private data address (low 32 bits)
3211 * @cmd_type: command type (e.g. NONE, ETH)
3213 * SP data is handled as if it's always an address pair, thus data fields are
3214 * not swapped to little endian in upper functions. Instead this function swaps
3215 * data as if it's two u32 fields.
3217 int bnx2x_sp_post(struct bnx2x
*bp
, int command
, int cid
,
3218 u32 data_hi
, u32 data_lo
, int cmd_type
)
3220 struct eth_spe
*spe
;
3222 bool common
= bnx2x_is_contextless_ramrod(command
, cmd_type
);
3224 #ifdef BNX2X_STOP_ON_ERROR
3225 if (unlikely(bp
->panic
))
3229 spin_lock_bh(&bp
->spq_lock
);
3232 if (!atomic_read(&bp
->eq_spq_left
)) {
3233 BNX2X_ERR("BUG! EQ ring full!\n");
3234 spin_unlock_bh(&bp
->spq_lock
);
3238 } else if (!atomic_read(&bp
->cq_spq_left
)) {
3239 BNX2X_ERR("BUG! SPQ ring full!\n");
3240 spin_unlock_bh(&bp
->spq_lock
);
3245 spe
= bnx2x_sp_get_next(bp
);
3247 /* CID needs port number to be encoded int it */
3248 spe
->hdr
.conn_and_cmd_data
=
3249 cpu_to_le32((command
<< SPE_HDR_CMD_ID_SHIFT
) |
3252 type
= (cmd_type
<< SPE_HDR_CONN_TYPE_SHIFT
) & SPE_HDR_CONN_TYPE
;
3254 type
|= ((BP_FUNC(bp
) << SPE_HDR_FUNCTION_ID_SHIFT
) &
3255 SPE_HDR_FUNCTION_ID
);
3257 spe
->hdr
.type
= cpu_to_le16(type
);
3259 spe
->data
.update_data_addr
.hi
= cpu_to_le32(data_hi
);
3260 spe
->data
.update_data_addr
.lo
= cpu_to_le32(data_lo
);
3263 * It's ok if the actual decrement is issued towards the memory
3264 * somewhere between the spin_lock and spin_unlock. Thus no
3265 * more explict memory barrier is needed.
3268 atomic_dec(&bp
->eq_spq_left
);
3270 atomic_dec(&bp
->cq_spq_left
);
3273 DP(BNX2X_MSG_SP
/*NETIF_MSG_TIMER*/,
3274 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
3275 "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3276 bp
->spq_prod_idx
, (u32
)U64_HI(bp
->spq_mapping
),
3277 (u32
)(U64_LO(bp
->spq_mapping
) +
3278 (void *)bp
->spq_prod_bd
- (void *)bp
->spq
), command
, common
,
3279 HW_CID(bp
, cid
), data_hi
, data_lo
, type
,
3280 atomic_read(&bp
->cq_spq_left
), atomic_read(&bp
->eq_spq_left
));
3282 bnx2x_sp_prod_update(bp
);
3283 spin_unlock_bh(&bp
->spq_lock
);
3287 /* acquire split MCP access lock register */
3288 static int bnx2x_acquire_alr(struct bnx2x
*bp
)
3294 for (j
= 0; j
< 1000; j
++) {
3296 REG_WR(bp
, GRCBASE_MCP
+ 0x9c, val
);
3297 val
= REG_RD(bp
, GRCBASE_MCP
+ 0x9c);
3298 if (val
& (1L << 31))
3303 if (!(val
& (1L << 31))) {
3304 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3311 /* release split MCP access lock register */
3312 static void bnx2x_release_alr(struct bnx2x
*bp
)
3314 REG_WR(bp
, GRCBASE_MCP
+ 0x9c, 0);
3317 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3318 #define BNX2X_DEF_SB_IDX 0x0002
3320 static inline u16
bnx2x_update_dsb_idx(struct bnx2x
*bp
)
3322 struct host_sp_status_block
*def_sb
= bp
->def_status_blk
;
3325 barrier(); /* status block is written to by the chip */
3326 if (bp
->def_att_idx
!= def_sb
->atten_status_block
.attn_bits_index
) {
3327 bp
->def_att_idx
= def_sb
->atten_status_block
.attn_bits_index
;
3328 rc
|= BNX2X_DEF_SB_ATT_IDX
;
3331 if (bp
->def_idx
!= def_sb
->sp_sb
.running_index
) {
3332 bp
->def_idx
= def_sb
->sp_sb
.running_index
;
3333 rc
|= BNX2X_DEF_SB_IDX
;
3336 /* Do not reorder: indecies reading should complete before handling */
3342 * slow path service functions
3345 static void bnx2x_attn_int_asserted(struct bnx2x
*bp
, u32 asserted
)
3347 int port
= BP_PORT(bp
);
3348 u32 aeu_addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
3349 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
3350 u32 nig_int_mask_addr
= port
? NIG_REG_MASK_INTERRUPT_PORT1
:
3351 NIG_REG_MASK_INTERRUPT_PORT0
;
3356 if (bp
->attn_state
& asserted
)
3357 BNX2X_ERR("IGU ERROR\n");
3359 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
3360 aeu_mask
= REG_RD(bp
, aeu_addr
);
3362 DP(NETIF_MSG_HW
, "aeu_mask %x newly asserted %x\n",
3363 aeu_mask
, asserted
);
3364 aeu_mask
&= ~(asserted
& 0x3ff);
3365 DP(NETIF_MSG_HW
, "new mask %x\n", aeu_mask
);
3367 REG_WR(bp
, aeu_addr
, aeu_mask
);
3368 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
3370 DP(NETIF_MSG_HW
, "attn_state %x\n", bp
->attn_state
);
3371 bp
->attn_state
|= asserted
;
3372 DP(NETIF_MSG_HW
, "new state %x\n", bp
->attn_state
);
3374 if (asserted
& ATTN_HARD_WIRED_MASK
) {
3375 if (asserted
& ATTN_NIG_FOR_FUNC
) {
3377 bnx2x_acquire_phy_lock(bp
);
3379 /* save nig interrupt mask */
3380 nig_mask
= REG_RD(bp
, nig_int_mask_addr
);
3382 /* If nig_mask is not set, no need to call the update
3386 REG_WR(bp
, nig_int_mask_addr
, 0);
3388 bnx2x_link_attn(bp
);
3391 /* handle unicore attn? */
3393 if (asserted
& ATTN_SW_TIMER_4_FUNC
)
3394 DP(NETIF_MSG_HW
, "ATTN_SW_TIMER_4_FUNC!\n");
3396 if (asserted
& GPIO_2_FUNC
)
3397 DP(NETIF_MSG_HW
, "GPIO_2_FUNC!\n");
3399 if (asserted
& GPIO_3_FUNC
)
3400 DP(NETIF_MSG_HW
, "GPIO_3_FUNC!\n");
3402 if (asserted
& GPIO_4_FUNC
)
3403 DP(NETIF_MSG_HW
, "GPIO_4_FUNC!\n");
3406 if (asserted
& ATTN_GENERAL_ATTN_1
) {
3407 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_1!\n");
3408 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_1
, 0x0);
3410 if (asserted
& ATTN_GENERAL_ATTN_2
) {
3411 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_2!\n");
3412 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_2
, 0x0);
3414 if (asserted
& ATTN_GENERAL_ATTN_3
) {
3415 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_3!\n");
3416 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_3
, 0x0);
3419 if (asserted
& ATTN_GENERAL_ATTN_4
) {
3420 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_4!\n");
3421 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_4
, 0x0);
3423 if (asserted
& ATTN_GENERAL_ATTN_5
) {
3424 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_5!\n");
3425 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_5
, 0x0);
3427 if (asserted
& ATTN_GENERAL_ATTN_6
) {
3428 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_6!\n");
3429 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_6
, 0x0);
3433 } /* if hardwired */
3435 if (bp
->common
.int_block
== INT_BLOCK_HC
)
3436 reg_addr
= (HC_REG_COMMAND_REG
+ port
*32 +
3437 COMMAND_REG_ATTN_BITS_SET
);
3439 reg_addr
= (BAR_IGU_INTMEM
+ IGU_CMD_ATTN_BIT_SET_UPPER
*8);
3441 DP(NETIF_MSG_HW
, "about to mask 0x%08x at %s addr 0x%x\n", asserted
,
3442 (bp
->common
.int_block
== INT_BLOCK_HC
) ? "HC" : "IGU", reg_addr
);
3443 REG_WR(bp
, reg_addr
, asserted
);
3445 /* now set back the mask */
3446 if (asserted
& ATTN_NIG_FOR_FUNC
) {
3447 REG_WR(bp
, nig_int_mask_addr
, nig_mask
);
3448 bnx2x_release_phy_lock(bp
);
3452 static inline void bnx2x_fan_failure(struct bnx2x
*bp
)
3454 int port
= BP_PORT(bp
);
3456 /* mark the failure */
3459 dev_info
.port_hw_config
[port
].external_phy_config
);
3461 ext_phy_config
&= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK
;
3462 ext_phy_config
|= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE
;
3463 SHMEM_WR(bp
, dev_info
.port_hw_config
[port
].external_phy_config
,
3466 /* log the failure */
3467 netdev_err(bp
->dev
, "Fan Failure on Network Controller has caused"
3468 " the driver to shutdown the card to prevent permanent"
3469 " damage. Please contact OEM Support for assistance\n");
3472 * Scheudle device reset (unload)
3473 * This is due to some boards consuming sufficient power when driver is
3474 * up to overheat if fan fails.
3476 smp_mb__before_clear_bit();
3477 set_bit(BNX2X_SP_RTNL_FAN_FAILURE
, &bp
->sp_rtnl_state
);
3478 smp_mb__after_clear_bit();
3479 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);
3483 static inline void bnx2x_attn_int_deasserted0(struct bnx2x
*bp
, u32 attn
)
3485 int port
= BP_PORT(bp
);
3489 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
3490 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
3492 if (attn
& AEU_INPUTS_ATTN_BITS_SPIO5
) {
3494 val
= REG_RD(bp
, reg_offset
);
3495 val
&= ~AEU_INPUTS_ATTN_BITS_SPIO5
;
3496 REG_WR(bp
, reg_offset
, val
);
3498 BNX2X_ERR("SPIO5 hw attention\n");
3500 /* Fan failure attention */
3501 bnx2x_hw_reset_phy(&bp
->link_params
);
3502 bnx2x_fan_failure(bp
);
3505 if ((attn
& bp
->link_vars
.aeu_int_mask
) && bp
->port
.pmf
) {
3506 bnx2x_acquire_phy_lock(bp
);
3507 bnx2x_handle_module_detect_int(&bp
->link_params
);
3508 bnx2x_release_phy_lock(bp
);
3511 if (attn
& HW_INTERRUT_ASSERT_SET_0
) {
3513 val
= REG_RD(bp
, reg_offset
);
3514 val
&= ~(attn
& HW_INTERRUT_ASSERT_SET_0
);
3515 REG_WR(bp
, reg_offset
, val
);
3517 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3518 (u32
)(attn
& HW_INTERRUT_ASSERT_SET_0
));
3523 static inline void bnx2x_attn_int_deasserted1(struct bnx2x
*bp
, u32 attn
)
3527 if (attn
& AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT
) {
3529 val
= REG_RD(bp
, DORQ_REG_DORQ_INT_STS_CLR
);
3530 BNX2X_ERR("DB hw attention 0x%x\n", val
);
3531 /* DORQ discard attention */
3533 BNX2X_ERR("FATAL error from DORQ\n");
3536 if (attn
& HW_INTERRUT_ASSERT_SET_1
) {
3538 int port
= BP_PORT(bp
);
3541 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1
:
3542 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1
);
3544 val
= REG_RD(bp
, reg_offset
);
3545 val
&= ~(attn
& HW_INTERRUT_ASSERT_SET_1
);
3546 REG_WR(bp
, reg_offset
, val
);
3548 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3549 (u32
)(attn
& HW_INTERRUT_ASSERT_SET_1
));
3554 static inline void bnx2x_attn_int_deasserted2(struct bnx2x
*bp
, u32 attn
)
3558 if (attn
& AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT
) {
3560 val
= REG_RD(bp
, CFC_REG_CFC_INT_STS_CLR
);
3561 BNX2X_ERR("CFC hw attention 0x%x\n", val
);
3562 /* CFC error attention */
3564 BNX2X_ERR("FATAL error from CFC\n");
3567 if (attn
& AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT
) {
3568 val
= REG_RD(bp
, PXP_REG_PXP_INT_STS_CLR_0
);
3569 BNX2X_ERR("PXP hw attention-0 0x%x\n", val
);
3570 /* RQ_USDMDP_FIFO_OVERFLOW */
3572 BNX2X_ERR("FATAL error from PXP\n");
3574 if (!CHIP_IS_E1x(bp
)) {
3575 val
= REG_RD(bp
, PXP_REG_PXP_INT_STS_CLR_1
);
3576 BNX2X_ERR("PXP hw attention-1 0x%x\n", val
);
3580 if (attn
& HW_INTERRUT_ASSERT_SET_2
) {
3582 int port
= BP_PORT(bp
);
3585 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2
:
3586 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2
);
3588 val
= REG_RD(bp
, reg_offset
);
3589 val
&= ~(attn
& HW_INTERRUT_ASSERT_SET_2
);
3590 REG_WR(bp
, reg_offset
, val
);
3592 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3593 (u32
)(attn
& HW_INTERRUT_ASSERT_SET_2
));
3598 static inline void bnx2x_attn_int_deasserted3(struct bnx2x
*bp
, u32 attn
)
3602 if (attn
& EVEREST_GEN_ATTN_IN_USE_MASK
) {
3604 if (attn
& BNX2X_PMF_LINK_ASSERT
) {
3605 int func
= BP_FUNC(bp
);
3607 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
3608 bp
->mf_config
[BP_VN(bp
)] = MF_CFG_RD(bp
,
3609 func_mf_config
[BP_ABS_FUNC(bp
)].config
);
3611 func_mb
[BP_FW_MB_IDX(bp
)].drv_status
);
3612 if (val
& DRV_STATUS_DCC_EVENT_MASK
)
3614 (val
& DRV_STATUS_DCC_EVENT_MASK
));
3616 if (val
& DRV_STATUS_SET_MF_BW
)
3617 bnx2x_set_mf_bw(bp
);
3619 if (val
& DRV_STATUS_DRV_INFO_REQ
)
3620 bnx2x_handle_drv_info_req(bp
);
3621 if ((bp
->port
.pmf
== 0) && (val
& DRV_STATUS_PMF
))
3622 bnx2x_pmf_update(bp
);
3625 (val
& DRV_STATUS_DCBX_NEGOTIATION_RESULTS
) &&
3626 bp
->dcbx_enabled
> 0)
3627 /* start dcbx state machine */
3628 bnx2x_dcbx_set_params(bp
,
3629 BNX2X_DCBX_STATE_NEG_RECEIVED
);
3630 if (bp
->link_vars
.periodic_flags
&
3631 PERIODIC_FLAGS_LINK_EVENT
) {
3632 /* sync with link */
3633 bnx2x_acquire_phy_lock(bp
);
3634 bp
->link_vars
.periodic_flags
&=
3635 ~PERIODIC_FLAGS_LINK_EVENT
;
3636 bnx2x_release_phy_lock(bp
);
3638 bnx2x_link_sync_notify(bp
);
3639 bnx2x_link_report(bp
);
3641 /* Always call it here: bnx2x_link_report() will
3642 * prevent the link indication duplication.
3644 bnx2x__link_status_update(bp
);
3645 } else if (attn
& BNX2X_MC_ASSERT_BITS
) {
3647 BNX2X_ERR("MC assert!\n");
3648 bnx2x_mc_assert(bp
);
3649 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_10
, 0);
3650 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_9
, 0);
3651 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_8
, 0);
3652 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_7
, 0);
3655 } else if (attn
& BNX2X_MCP_ASSERT
) {
3657 BNX2X_ERR("MCP assert!\n");
3658 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_11
, 0);
3662 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn
);
3665 if (attn
& EVEREST_LATCHED_ATTN_IN_USE_MASK
) {
3666 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn
);
3667 if (attn
& BNX2X_GRC_TIMEOUT
) {
3668 val
= CHIP_IS_E1(bp
) ? 0 :
3669 REG_RD(bp
, MISC_REG_GRC_TIMEOUT_ATTN
);
3670 BNX2X_ERR("GRC time-out 0x%08x\n", val
);
3672 if (attn
& BNX2X_GRC_RSV
) {
3673 val
= CHIP_IS_E1(bp
) ? 0 :
3674 REG_RD(bp
, MISC_REG_GRC_RSV_ATTN
);
3675 BNX2X_ERR("GRC reserved 0x%08x\n", val
);
3677 REG_WR(bp
, MISC_REG_AEU_CLR_LATCH_SIGNAL
, 0x7ff);
3683 * 0-7 - Engine0 load counter.
3684 * 8-15 - Engine1 load counter.
3685 * 16 - Engine0 RESET_IN_PROGRESS bit.
3686 * 17 - Engine1 RESET_IN_PROGRESS bit.
3687 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3689 * 19 - Engine1 ONE_IS_LOADED.
3690 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3691 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3692 * just the one belonging to its engine).
3695 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3697 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3698 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3699 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3700 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3701 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3702 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3703 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3706 * Set the GLOBAL_RESET bit.
3708 * Should be run under rtnl lock
3710 void bnx2x_set_reset_global(struct bnx2x
*bp
)
3712 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3714 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
| BNX2X_GLOBAL_RESET_BIT
);
3720 * Clear the GLOBAL_RESET bit.
3722 * Should be run under rtnl lock
3724 static inline void bnx2x_clear_reset_global(struct bnx2x
*bp
)
3726 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3728 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
& (~BNX2X_GLOBAL_RESET_BIT
));
3734 * Checks the GLOBAL_RESET bit.
3736 * should be run under rtnl lock
3738 static inline bool bnx2x_reset_is_global(struct bnx2x
*bp
)
3740 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3742 DP(NETIF_MSG_HW
, "GEN_REG_VAL=0x%08x\n", val
);
3743 return (val
& BNX2X_GLOBAL_RESET_BIT
) ? true : false;
3747 * Clear RESET_IN_PROGRESS bit for the current engine.
3749 * Should be run under rtnl lock
3751 static inline void bnx2x_set_reset_done(struct bnx2x
*bp
)
3753 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3754 u32 bit
= BP_PATH(bp
) ?
3755 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
3759 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
3765 * Set RESET_IN_PROGRESS for the current engine.
3767 * should be run under rtnl lock
3769 void bnx2x_set_reset_in_progress(struct bnx2x
*bp
)
3771 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3772 u32 bit
= BP_PATH(bp
) ?
3773 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
3777 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
3783 * Checks the RESET_IN_PROGRESS bit for the given engine.
3784 * should be run under rtnl lock
3786 bool bnx2x_reset_is_done(struct bnx2x
*bp
, int engine
)
3788 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3790 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
3792 /* return false if bit is set */
3793 return (val
& bit
) ? false : true;
3797 * Increment the load counter for the current engine.
3799 * should be run under rtnl lock
3801 void bnx2x_inc_load_cnt(struct bnx2x
*bp
)
3803 u32 val1
, val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3804 u32 mask
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_MASK
:
3805 BNX2X_PATH0_LOAD_CNT_MASK
;
3806 u32 shift
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_SHIFT
:
3807 BNX2X_PATH0_LOAD_CNT_SHIFT
;
3809 DP(NETIF_MSG_HW
, "Old GEN_REG_VAL=0x%08x\n", val
);
3811 /* get the current counter value */
3812 val1
= (val
& mask
) >> shift
;
3817 /* clear the old value */
3820 /* set the new one */
3821 val
|= ((val1
<< shift
) & mask
);
3823 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
3829 * bnx2x_dec_load_cnt - decrement the load counter
3831 * @bp: driver handle
3833 * Should be run under rtnl lock.
3834 * Decrements the load counter for the current engine. Returns
3835 * the new counter value.
3837 u32
bnx2x_dec_load_cnt(struct bnx2x
*bp
)
3839 u32 val1
, val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3840 u32 mask
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_MASK
:
3841 BNX2X_PATH0_LOAD_CNT_MASK
;
3842 u32 shift
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_SHIFT
:
3843 BNX2X_PATH0_LOAD_CNT_SHIFT
;
3845 DP(NETIF_MSG_HW
, "Old GEN_REG_VAL=0x%08x\n", val
);
3847 /* get the current counter value */
3848 val1
= (val
& mask
) >> shift
;
3853 /* clear the old value */
3856 /* set the new one */
3857 val
|= ((val1
<< shift
) & mask
);
3859 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
3867 * Read the load counter for the current engine.
3869 * should be run under rtnl lock
3871 static inline u32
bnx2x_get_load_cnt(struct bnx2x
*bp
, int engine
)
3873 u32 mask
= (engine
? BNX2X_PATH1_LOAD_CNT_MASK
:
3874 BNX2X_PATH0_LOAD_CNT_MASK
);
3875 u32 shift
= (engine
? BNX2X_PATH1_LOAD_CNT_SHIFT
:
3876 BNX2X_PATH0_LOAD_CNT_SHIFT
);
3877 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3879 DP(NETIF_MSG_HW
, "GLOB_REG=0x%08x\n", val
);
3881 val
= (val
& mask
) >> shift
;
3883 DP(NETIF_MSG_HW
, "load_cnt for engine %d = %d\n", engine
, val
);
3889 * Reset the load counter for the current engine.
3891 * should be run under rtnl lock
3893 static inline void bnx2x_clear_load_cnt(struct bnx2x
*bp
)
3895 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
3896 u32 mask
= (BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_MASK
:
3897 BNX2X_PATH0_LOAD_CNT_MASK
);
3899 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
& (~mask
));
3902 static inline void _print_next_block(int idx
, const char *blk
)
3904 pr_cont("%s%s", idx
? ", " : "", blk
);
3907 static inline int bnx2x_check_blocks_with_parity0(u32 sig
, int par_num
,
3912 for (i
= 0; sig
; i
++) {
3913 cur_bit
= ((u32
)0x1 << i
);
3914 if (sig
& cur_bit
) {
3916 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR
:
3918 _print_next_block(par_num
++, "BRB");
3920 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR
:
3922 _print_next_block(par_num
++, "PARSER");
3924 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR
:
3926 _print_next_block(par_num
++, "TSDM");
3928 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR
:
3930 _print_next_block(par_num
++,
3933 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR
:
3935 _print_next_block(par_num
++, "TCM");
3937 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR
:
3939 _print_next_block(par_num
++, "TSEMI");
3941 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR
:
3943 _print_next_block(par_num
++, "XPB");
3955 static inline int bnx2x_check_blocks_with_parity1(u32 sig
, int par_num
,
3956 bool *global
, bool print
)
3960 for (i
= 0; sig
; i
++) {
3961 cur_bit
= ((u32
)0x1 << i
);
3962 if (sig
& cur_bit
) {
3964 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR
:
3966 _print_next_block(par_num
++, "PBF");
3968 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR
:
3970 _print_next_block(par_num
++, "QM");
3972 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR
:
3974 _print_next_block(par_num
++, "TM");
3976 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR
:
3978 _print_next_block(par_num
++, "XSDM");
3980 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR
:
3982 _print_next_block(par_num
++, "XCM");
3984 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR
:
3986 _print_next_block(par_num
++, "XSEMI");
3988 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR
:
3990 _print_next_block(par_num
++,
3993 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR
:
3995 _print_next_block(par_num
++, "NIG");
3997 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR
:
3999 _print_next_block(par_num
++,
4003 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR
:
4005 _print_next_block(par_num
++, "DEBUG");
4007 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR
:
4009 _print_next_block(par_num
++, "USDM");
4011 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR
:
4013 _print_next_block(par_num
++, "UCM");
4015 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR
:
4017 _print_next_block(par_num
++, "USEMI");
4019 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR
:
4021 _print_next_block(par_num
++, "UPB");
4023 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR
:
4025 _print_next_block(par_num
++, "CSDM");
4027 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR
:
4029 _print_next_block(par_num
++, "CCM");
4041 static inline int bnx2x_check_blocks_with_parity2(u32 sig
, int par_num
,
4046 for (i
= 0; sig
; i
++) {
4047 cur_bit
= ((u32
)0x1 << i
);
4048 if (sig
& cur_bit
) {
4050 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR
:
4052 _print_next_block(par_num
++, "CSEMI");
4054 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR
:
4056 _print_next_block(par_num
++, "PXP");
4058 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
:
4060 _print_next_block(par_num
++,
4061 "PXPPCICLOCKCLIENT");
4063 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR
:
4065 _print_next_block(par_num
++, "CFC");
4067 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR
:
4069 _print_next_block(par_num
++, "CDU");
4071 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR
:
4073 _print_next_block(par_num
++, "DMAE");
4075 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR
:
4077 _print_next_block(par_num
++, "IGU");
4079 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR
:
4081 _print_next_block(par_num
++, "MISC");
4093 static inline int bnx2x_check_blocks_with_parity3(u32 sig
, int par_num
,
4094 bool *global
, bool print
)
4098 for (i
= 0; sig
; i
++) {
4099 cur_bit
= ((u32
)0x1 << i
);
4100 if (sig
& cur_bit
) {
4102 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY
:
4104 _print_next_block(par_num
++, "MCP ROM");
4107 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY
:
4109 _print_next_block(par_num
++,
4113 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY
:
4115 _print_next_block(par_num
++,
4119 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY
:
4121 _print_next_block(par_num
++,
4135 static inline int bnx2x_check_blocks_with_parity4(u32 sig
, int par_num
,
4140 for (i
= 0; sig
; i
++) {
4141 cur_bit
= ((u32
)0x1 << i
);
4142 if (sig
& cur_bit
) {
4144 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
:
4146 _print_next_block(par_num
++, "PGLUE_B");
4148 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
:
4150 _print_next_block(par_num
++, "ATC");
4162 static inline bool bnx2x_parity_attn(struct bnx2x
*bp
, bool *global
, bool print
,
4165 if ((sig
[0] & HW_PRTY_ASSERT_SET_0
) ||
4166 (sig
[1] & HW_PRTY_ASSERT_SET_1
) ||
4167 (sig
[2] & HW_PRTY_ASSERT_SET_2
) ||
4168 (sig
[3] & HW_PRTY_ASSERT_SET_3
) ||
4169 (sig
[4] & HW_PRTY_ASSERT_SET_4
)) {
4171 DP(NETIF_MSG_HW
, "Was parity error: HW block parity attention: "
4172 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4174 sig
[0] & HW_PRTY_ASSERT_SET_0
,
4175 sig
[1] & HW_PRTY_ASSERT_SET_1
,
4176 sig
[2] & HW_PRTY_ASSERT_SET_2
,
4177 sig
[3] & HW_PRTY_ASSERT_SET_3
,
4178 sig
[4] & HW_PRTY_ASSERT_SET_4
);
4181 "Parity errors detected in blocks: ");
4182 par_num
= bnx2x_check_blocks_with_parity0(
4183 sig
[0] & HW_PRTY_ASSERT_SET_0
, par_num
, print
);
4184 par_num
= bnx2x_check_blocks_with_parity1(
4185 sig
[1] & HW_PRTY_ASSERT_SET_1
, par_num
, global
, print
);
4186 par_num
= bnx2x_check_blocks_with_parity2(
4187 sig
[2] & HW_PRTY_ASSERT_SET_2
, par_num
, print
);
4188 par_num
= bnx2x_check_blocks_with_parity3(
4189 sig
[3] & HW_PRTY_ASSERT_SET_3
, par_num
, global
, print
);
4190 par_num
= bnx2x_check_blocks_with_parity4(
4191 sig
[4] & HW_PRTY_ASSERT_SET_4
, par_num
, print
);
4202 * bnx2x_chk_parity_attn - checks for parity attentions.
4204 * @bp: driver handle
4205 * @global: true if there was a global attention
4206 * @print: show parity attention in syslog
4208 bool bnx2x_chk_parity_attn(struct bnx2x
*bp
, bool *global
, bool print
)
4210 struct attn_route attn
= { {0} };
4211 int port
= BP_PORT(bp
);
4213 attn
.sig
[0] = REG_RD(bp
,
4214 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+
4216 attn
.sig
[1] = REG_RD(bp
,
4217 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0
+
4219 attn
.sig
[2] = REG_RD(bp
,
4220 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0
+
4222 attn
.sig
[3] = REG_RD(bp
,
4223 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0
+
4226 if (!CHIP_IS_E1x(bp
))
4227 attn
.sig
[4] = REG_RD(bp
,
4228 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0
+
4231 return bnx2x_parity_attn(bp
, global
, print
, attn
.sig
);
4235 static inline void bnx2x_attn_int_deasserted4(struct bnx2x
*bp
, u32 attn
)
4238 if (attn
& AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT
) {
4240 val
= REG_RD(bp
, PGLUE_B_REG_PGLUE_B_INT_STS_CLR
);
4241 BNX2X_ERR("PGLUE hw attention 0x%x\n", val
);
4242 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR
)
4243 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4245 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR
)
4246 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4247 "INCORRECT_RCV_BEHAVIOR\n");
4248 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN
)
4249 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4250 "WAS_ERROR_ATTN\n");
4251 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN
)
4252 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4253 "VF_LENGTH_VIOLATION_ATTN\n");
4255 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN
)
4256 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4257 "VF_GRC_SPACE_VIOLATION_ATTN\n");
4259 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN
)
4260 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4261 "VF_MSIX_BAR_VIOLATION_ATTN\n");
4262 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN
)
4263 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4264 "TCPL_ERROR_ATTN\n");
4265 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN
)
4266 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4267 "TCPL_IN_TWO_RCBS_ATTN\n");
4268 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW
)
4269 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4270 "CSSNOOP_FIFO_OVERFLOW\n");
4272 if (attn
& AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT
) {
4273 val
= REG_RD(bp
, ATC_REG_ATC_INT_STS_CLR
);
4274 BNX2X_ERR("ATC hw attention 0x%x\n", val
);
4275 if (val
& ATC_ATC_INT_STS_REG_ADDRESS_ERROR
)
4276 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4277 if (val
& ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND
)
4278 BNX2X_ERR("ATC_ATC_INT_STS_REG"
4279 "_ATC_TCPL_TO_NOT_PEND\n");
4280 if (val
& ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS
)
4281 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4282 "ATC_GPA_MULTIPLE_HITS\n");
4283 if (val
& ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT
)
4284 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4285 "ATC_RCPL_TO_EMPTY_CNT\n");
4286 if (val
& ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR
)
4287 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4288 if (val
& ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU
)
4289 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4290 "ATC_IREQ_LESS_THAN_STU\n");
4293 if (attn
& (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
|
4294 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
)) {
4295 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4296 (u32
)(attn
& (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
|
4297 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
)));
4302 static void bnx2x_attn_int_deasserted(struct bnx2x
*bp
, u32 deasserted
)
4304 struct attn_route attn
, *group_mask
;
4305 int port
= BP_PORT(bp
);
4310 bool global
= false;
4312 /* need to take HW lock because MCP or other port might also
4313 try to handle this event */
4314 bnx2x_acquire_alr(bp
);
4316 if (bnx2x_chk_parity_attn(bp
, &global
, true)) {
4317 #ifndef BNX2X_STOP_ON_ERROR
4318 bp
->recovery_state
= BNX2X_RECOVERY_INIT
;
4319 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);
4320 /* Disable HW interrupts */
4321 bnx2x_int_disable(bp
);
4322 /* In case of parity errors don't handle attentions so that
4323 * other function would "see" parity errors.
4328 bnx2x_release_alr(bp
);
4332 attn
.sig
[0] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+ port
*4);
4333 attn
.sig
[1] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0
+ port
*4);
4334 attn
.sig
[2] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0
+ port
*4);
4335 attn
.sig
[3] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0
+ port
*4);
4336 if (!CHIP_IS_E1x(bp
))
4338 REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0
+ port
*4);
4342 DP(NETIF_MSG_HW
, "attn: %08x %08x %08x %08x %08x\n",
4343 attn
.sig
[0], attn
.sig
[1], attn
.sig
[2], attn
.sig
[3], attn
.sig
[4]);
4345 for (index
= 0; index
< MAX_DYNAMIC_ATTN_GRPS
; index
++) {
4346 if (deasserted
& (1 << index
)) {
4347 group_mask
= &bp
->attn_group
[index
];
4349 DP(NETIF_MSG_HW
, "group[%d]: %08x %08x "
4352 group_mask
->sig
[0], group_mask
->sig
[1],
4353 group_mask
->sig
[2], group_mask
->sig
[3],
4354 group_mask
->sig
[4]);
4356 bnx2x_attn_int_deasserted4(bp
,
4357 attn
.sig
[4] & group_mask
->sig
[4]);
4358 bnx2x_attn_int_deasserted3(bp
,
4359 attn
.sig
[3] & group_mask
->sig
[3]);
4360 bnx2x_attn_int_deasserted1(bp
,
4361 attn
.sig
[1] & group_mask
->sig
[1]);
4362 bnx2x_attn_int_deasserted2(bp
,
4363 attn
.sig
[2] & group_mask
->sig
[2]);
4364 bnx2x_attn_int_deasserted0(bp
,
4365 attn
.sig
[0] & group_mask
->sig
[0]);
4369 bnx2x_release_alr(bp
);
4371 if (bp
->common
.int_block
== INT_BLOCK_HC
)
4372 reg_addr
= (HC_REG_COMMAND_REG
+ port
*32 +
4373 COMMAND_REG_ATTN_BITS_CLR
);
4375 reg_addr
= (BAR_IGU_INTMEM
+ IGU_CMD_ATTN_BIT_CLR_UPPER
*8);
4378 DP(NETIF_MSG_HW
, "about to mask 0x%08x at %s addr 0x%x\n", val
,
4379 (bp
->common
.int_block
== INT_BLOCK_HC
) ? "HC" : "IGU", reg_addr
);
4380 REG_WR(bp
, reg_addr
, val
);
4382 if (~bp
->attn_state
& deasserted
)
4383 BNX2X_ERR("IGU ERROR\n");
4385 reg_addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
4386 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
4388 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
4389 aeu_mask
= REG_RD(bp
, reg_addr
);
4391 DP(NETIF_MSG_HW
, "aeu_mask %x newly deasserted %x\n",
4392 aeu_mask
, deasserted
);
4393 aeu_mask
|= (deasserted
& 0x3ff);
4394 DP(NETIF_MSG_HW
, "new mask %x\n", aeu_mask
);
4396 REG_WR(bp
, reg_addr
, aeu_mask
);
4397 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
4399 DP(NETIF_MSG_HW
, "attn_state %x\n", bp
->attn_state
);
4400 bp
->attn_state
&= ~deasserted
;
4401 DP(NETIF_MSG_HW
, "new state %x\n", bp
->attn_state
);
4404 static void bnx2x_attn_int(struct bnx2x
*bp
)
4406 /* read local copy of bits */
4407 u32 attn_bits
= le32_to_cpu(bp
->def_status_blk
->atten_status_block
.
4409 u32 attn_ack
= le32_to_cpu(bp
->def_status_blk
->atten_status_block
.
4411 u32 attn_state
= bp
->attn_state
;
4413 /* look for changed bits */
4414 u32 asserted
= attn_bits
& ~attn_ack
& ~attn_state
;
4415 u32 deasserted
= ~attn_bits
& attn_ack
& attn_state
;
4418 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4419 attn_bits
, attn_ack
, asserted
, deasserted
);
4421 if (~(attn_bits
^ attn_ack
) & (attn_bits
^ attn_state
))
4422 BNX2X_ERR("BAD attention state\n");
4424 /* handle bits that were raised */
4426 bnx2x_attn_int_asserted(bp
, asserted
);
4429 bnx2x_attn_int_deasserted(bp
, deasserted
);
4432 void bnx2x_igu_ack_sb(struct bnx2x
*bp
, u8 igu_sb_id
, u8 segment
,
4433 u16 index
, u8 op
, u8 update
)
4435 u32 igu_addr
= BAR_IGU_INTMEM
+ (IGU_CMD_INT_ACK_BASE
+ igu_sb_id
)*8;
4437 bnx2x_igu_ack_sb_gen(bp
, igu_sb_id
, segment
, index
, op
, update
,
4441 static inline void bnx2x_update_eq_prod(struct bnx2x
*bp
, u16 prod
)
4443 /* No memory barriers */
4444 storm_memset_eq_prod(bp
, prod
, BP_FUNC(bp
));
4445 mmiowb(); /* keep prod updates ordered */
4449 static int bnx2x_cnic_handle_cfc_del(struct bnx2x
*bp
, u32 cid
,
4450 union event_ring_elem
*elem
)
4452 u8 err
= elem
->message
.error
;
4454 if (!bp
->cnic_eth_dev
.starting_cid
||
4455 (cid
< bp
->cnic_eth_dev
.starting_cid
&&
4456 cid
!= bp
->cnic_eth_dev
.iscsi_l2_cid
))
4459 DP(BNX2X_MSG_SP
, "got delete ramrod for CNIC CID %d\n", cid
);
4461 if (unlikely(err
)) {
4463 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4465 bnx2x_panic_dump(bp
);
4467 bnx2x_cnic_cfc_comp(bp
, cid
, err
);
4472 static inline void bnx2x_handle_mcast_eqe(struct bnx2x
*bp
)
4474 struct bnx2x_mcast_ramrod_params rparam
;
4477 memset(&rparam
, 0, sizeof(rparam
));
4479 rparam
.mcast_obj
= &bp
->mcast_obj
;
4481 netif_addr_lock_bh(bp
->dev
);
4483 /* Clear pending state for the last command */
4484 bp
->mcast_obj
.raw
.clear_pending(&bp
->mcast_obj
.raw
);
4486 /* If there are pending mcast commands - send them */
4487 if (bp
->mcast_obj
.check_pending(&bp
->mcast_obj
)) {
4488 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
4490 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4494 netif_addr_unlock_bh(bp
->dev
);
4497 static inline void bnx2x_handle_classification_eqe(struct bnx2x
*bp
,
4498 union event_ring_elem
*elem
)
4500 unsigned long ramrod_flags
= 0;
4502 u32 cid
= elem
->message
.data
.eth_event
.echo
& BNX2X_SWCID_MASK
;
4503 struct bnx2x_vlan_mac_obj
*vlan_mac_obj
;
4505 /* Always push next commands out, don't wait here */
4506 __set_bit(RAMROD_CONT
, &ramrod_flags
);
4508 switch (elem
->message
.data
.eth_event
.echo
>> BNX2X_SWCID_SHIFT
) {
4509 case BNX2X_FILTER_MAC_PENDING
:
4511 if (cid
== BNX2X_ISCSI_ETH_CID
)
4512 vlan_mac_obj
= &bp
->iscsi_l2_mac_obj
;
4515 vlan_mac_obj
= &bp
->fp
[cid
].mac_obj
;
4518 case BNX2X_FILTER_MCAST_PENDING
:
4519 /* This is only relevant for 57710 where multicast MACs are
4520 * configured as unicast MACs using the same ramrod.
4522 bnx2x_handle_mcast_eqe(bp
);
4525 BNX2X_ERR("Unsupported classification command: %d\n",
4526 elem
->message
.data
.eth_event
.echo
);
4530 rc
= vlan_mac_obj
->complete(bp
, vlan_mac_obj
, elem
, &ramrod_flags
);
4533 BNX2X_ERR("Failed to schedule new commands: %d\n", rc
);
4535 DP(BNX2X_MSG_SP
, "Scheduled next pending commands...\n");
4540 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x
*bp
, bool start
);
4543 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x
*bp
)
4545 netif_addr_lock_bh(bp
->dev
);
4547 clear_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
);
4549 /* Send rx_mode command again if was requested */
4550 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
))
4551 bnx2x_set_storm_rx_mode(bp
);
4553 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
,
4555 bnx2x_set_iscsi_eth_rx_mode(bp
, true);
4556 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
,
4558 bnx2x_set_iscsi_eth_rx_mode(bp
, false);
4561 netif_addr_unlock_bh(bp
->dev
);
4564 static inline struct bnx2x_queue_sp_obj
*bnx2x_cid_to_q_obj(
4565 struct bnx2x
*bp
, u32 cid
)
4567 DP(BNX2X_MSG_SP
, "retrieving fp from cid %d\n", cid
);
4569 if (cid
== BNX2X_FCOE_ETH_CID
)
4570 return &bnx2x_fcoe(bp
, q_obj
);
4573 return &bnx2x_fp(bp
, CID_TO_FP(cid
), q_obj
);
4576 static void bnx2x_eq_int(struct bnx2x
*bp
)
4578 u16 hw_cons
, sw_cons
, sw_prod
;
4579 union event_ring_elem
*elem
;
4583 struct bnx2x_queue_sp_obj
*q_obj
;
4584 struct bnx2x_func_sp_obj
*f_obj
= &bp
->func_obj
;
4585 struct bnx2x_raw_obj
*rss_raw
= &bp
->rss_conf_obj
.raw
;
4587 hw_cons
= le16_to_cpu(*bp
->eq_cons_sb
);
4589 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4590 * when we get the the next-page we nned to adjust so the loop
4591 * condition below will be met. The next element is the size of a
4592 * regular element and hence incrementing by 1
4594 if ((hw_cons
& EQ_DESC_MAX_PAGE
) == EQ_DESC_MAX_PAGE
)
4597 /* This function may never run in parallel with itself for a
4598 * specific bp, thus there is no need in "paired" read memory
4601 sw_cons
= bp
->eq_cons
;
4602 sw_prod
= bp
->eq_prod
;
4604 DP(BNX2X_MSG_SP
, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4605 hw_cons
, sw_cons
, atomic_read(&bp
->eq_spq_left
));
4607 for (; sw_cons
!= hw_cons
;
4608 sw_prod
= NEXT_EQ_IDX(sw_prod
), sw_cons
= NEXT_EQ_IDX(sw_cons
)) {
4611 elem
= &bp
->eq_ring
[EQ_DESC(sw_cons
)];
4613 cid
= SW_CID(elem
->message
.data
.cfc_del_event
.cid
);
4614 opcode
= elem
->message
.opcode
;
4617 /* handle eq element */
4619 case EVENT_RING_OPCODE_STAT_QUERY
:
4620 DP(NETIF_MSG_TIMER
, "got statistics comp event %d\n",
4622 /* nothing to do with stats comp */
4625 case EVENT_RING_OPCODE_CFC_DEL
:
4626 /* handle according to cid range */
4628 * we may want to verify here that the bp state is
4632 "got delete ramrod for MULTI[%d]\n", cid
);
4634 if (!bnx2x_cnic_handle_cfc_del(bp
, cid
, elem
))
4637 q_obj
= bnx2x_cid_to_q_obj(bp
, cid
);
4639 if (q_obj
->complete_cmd(bp
, q_obj
, BNX2X_Q_CMD_CFC_DEL
))
4646 case EVENT_RING_OPCODE_STOP_TRAFFIC
:
4647 DP(BNX2X_MSG_SP
, "got STOP TRAFFIC\n");
4648 if (f_obj
->complete_cmd(bp
, f_obj
,
4649 BNX2X_F_CMD_TX_STOP
))
4651 bnx2x_dcbx_set_params(bp
, BNX2X_DCBX_STATE_TX_PAUSED
);
4654 case EVENT_RING_OPCODE_START_TRAFFIC
:
4655 DP(BNX2X_MSG_SP
, "got START TRAFFIC\n");
4656 if (f_obj
->complete_cmd(bp
, f_obj
,
4657 BNX2X_F_CMD_TX_START
))
4659 bnx2x_dcbx_set_params(bp
, BNX2X_DCBX_STATE_TX_RELEASED
);
4661 case EVENT_RING_OPCODE_FUNCTION_START
:
4662 DP(BNX2X_MSG_SP
, "got FUNC_START ramrod\n");
4663 if (f_obj
->complete_cmd(bp
, f_obj
, BNX2X_F_CMD_START
))
4668 case EVENT_RING_OPCODE_FUNCTION_STOP
:
4669 DP(BNX2X_MSG_SP
, "got FUNC_STOP ramrod\n");
4670 if (f_obj
->complete_cmd(bp
, f_obj
, BNX2X_F_CMD_STOP
))
4676 switch (opcode
| bp
->state
) {
4677 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES
|
4679 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES
|
4680 BNX2X_STATE_OPENING_WAIT4_PORT
):
4681 cid
= elem
->message
.data
.eth_event
.echo
&
4683 DP(BNX2X_MSG_SP
, "got RSS_UPDATE ramrod. CID %d\n",
4685 rss_raw
->clear_pending(rss_raw
);
4688 case (EVENT_RING_OPCODE_SET_MAC
| BNX2X_STATE_OPEN
):
4689 case (EVENT_RING_OPCODE_SET_MAC
| BNX2X_STATE_DIAG
):
4690 case (EVENT_RING_OPCODE_SET_MAC
|
4691 BNX2X_STATE_CLOSING_WAIT4_HALT
):
4692 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
4694 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
4696 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
4697 BNX2X_STATE_CLOSING_WAIT4_HALT
):
4698 DP(BNX2X_MSG_SP
, "got (un)set mac ramrod\n");
4699 bnx2x_handle_classification_eqe(bp
, elem
);
4702 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
4704 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
4706 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
4707 BNX2X_STATE_CLOSING_WAIT4_HALT
):
4708 DP(BNX2X_MSG_SP
, "got mcast ramrod\n");
4709 bnx2x_handle_mcast_eqe(bp
);
4712 case (EVENT_RING_OPCODE_FILTERS_RULES
|
4714 case (EVENT_RING_OPCODE_FILTERS_RULES
|
4716 case (EVENT_RING_OPCODE_FILTERS_RULES
|
4717 BNX2X_STATE_CLOSING_WAIT4_HALT
):
4718 DP(BNX2X_MSG_SP
, "got rx_mode ramrod\n");
4719 bnx2x_handle_rx_mode_eqe(bp
);
4722 /* unknown event log error and continue */
4723 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4724 elem
->message
.opcode
, bp
->state
);
4730 smp_mb__before_atomic_inc();
4731 atomic_add(spqe_cnt
, &bp
->eq_spq_left
);
4733 bp
->eq_cons
= sw_cons
;
4734 bp
->eq_prod
= sw_prod
;
4735 /* Make sure that above mem writes were issued towards the memory */
4738 /* update producer */
4739 bnx2x_update_eq_prod(bp
, bp
->eq_prod
);
4742 static void bnx2x_sp_task(struct work_struct
*work
)
4744 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, sp_task
.work
);
4747 status
= bnx2x_update_dsb_idx(bp
);
4748 /* if (status == 0) */
4749 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4751 DP(NETIF_MSG_INTR
, "got a slowpath interrupt (status 0x%x)\n", status
);
4754 if (status
& BNX2X_DEF_SB_ATT_IDX
) {
4756 status
&= ~BNX2X_DEF_SB_ATT_IDX
;
4759 /* SP events: STAT_QUERY and others */
4760 if (status
& BNX2X_DEF_SB_IDX
) {
4762 struct bnx2x_fastpath
*fp
= bnx2x_fcoe_fp(bp
);
4764 if ((!NO_FCOE(bp
)) &&
4765 (bnx2x_has_rx_work(fp
) || bnx2x_has_tx_work(fp
))) {
4767 * Prevent local bottom-halves from running as
4768 * we are going to change the local NAPI list.
4771 napi_schedule(&bnx2x_fcoe(bp
, napi
));
4775 /* Handle EQ completions */
4778 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
,
4779 le16_to_cpu(bp
->def_idx
), IGU_INT_NOP
, 1);
4781 status
&= ~BNX2X_DEF_SB_IDX
;
4784 if (unlikely(status
))
4785 DP(NETIF_MSG_INTR
, "got an unknown interrupt! (status 0x%x)\n",
4788 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, ATTENTION_ID
,
4789 le16_to_cpu(bp
->def_att_idx
), IGU_INT_ENABLE
, 1);
4792 irqreturn_t
bnx2x_msix_sp_int(int irq
, void *dev_instance
)
4794 struct net_device
*dev
= dev_instance
;
4795 struct bnx2x
*bp
= netdev_priv(dev
);
4797 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
, 0,
4798 IGU_INT_DISABLE
, 0);
4800 #ifdef BNX2X_STOP_ON_ERROR
4801 if (unlikely(bp
->panic
))
4807 struct cnic_ops
*c_ops
;
4810 c_ops
= rcu_dereference(bp
->cnic_ops
);
4812 c_ops
->cnic_handler(bp
->cnic_data
, NULL
);
4816 queue_delayed_work(bnx2x_wq
, &bp
->sp_task
, 0);
4821 /* end of slow path */
4824 void bnx2x_drv_pulse(struct bnx2x
*bp
)
4826 SHMEM_WR(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_pulse_mb
,
4827 bp
->fw_drv_pulse_wr_seq
);
4831 static void bnx2x_timer(unsigned long data
)
4833 struct bnx2x
*bp
= (struct bnx2x
*) data
;
4835 if (!netif_running(bp
->dev
))
4838 if (!BP_NOMCP(bp
)) {
4839 int mb_idx
= BP_FW_MB_IDX(bp
);
4843 ++bp
->fw_drv_pulse_wr_seq
;
4844 bp
->fw_drv_pulse_wr_seq
&= DRV_PULSE_SEQ_MASK
;
4845 /* TBD - add SYSTEM_TIME */
4846 drv_pulse
= bp
->fw_drv_pulse_wr_seq
;
4847 bnx2x_drv_pulse(bp
);
4849 mcp_pulse
= (SHMEM_RD(bp
, func_mb
[mb_idx
].mcp_pulse_mb
) &
4850 MCP_PULSE_SEQ_MASK
);
4851 /* The delta between driver pulse and mcp response
4852 * should be 1 (before mcp response) or 0 (after mcp response)
4854 if ((drv_pulse
!= mcp_pulse
) &&
4855 (drv_pulse
!= ((mcp_pulse
+ 1) & MCP_PULSE_SEQ_MASK
))) {
4856 /* someone lost a heartbeat... */
4857 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4858 drv_pulse
, mcp_pulse
);
4862 if (bp
->state
== BNX2X_STATE_OPEN
)
4863 bnx2x_stats_handle(bp
, STATS_EVENT_UPDATE
);
4865 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
4868 /* end of Statistics */
4873 * nic init service functions
4876 static inline void bnx2x_fill(struct bnx2x
*bp
, u32 addr
, int fill
, u32 len
)
4879 if (!(len
%4) && !(addr
%4))
4880 for (i
= 0; i
< len
; i
+= 4)
4881 REG_WR(bp
, addr
+ i
, fill
);
4883 for (i
= 0; i
< len
; i
++)
4884 REG_WR8(bp
, addr
+ i
, fill
);
4888 /* helper: writes FP SP data to FW - data_size in dwords */
4889 static inline void bnx2x_wr_fp_sb_data(struct bnx2x
*bp
,
4895 for (index
= 0; index
< data_size
; index
++)
4896 REG_WR(bp
, BAR_CSTRORM_INTMEM
+
4897 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id
) +
4899 *(sb_data_p
+ index
));
4902 static inline void bnx2x_zero_fp_sb(struct bnx2x
*bp
, int fw_sb_id
)
4906 struct hc_status_block_data_e2 sb_data_e2
;
4907 struct hc_status_block_data_e1x sb_data_e1x
;
4909 /* disable the function first */
4910 if (!CHIP_IS_E1x(bp
)) {
4911 memset(&sb_data_e2
, 0, sizeof(struct hc_status_block_data_e2
));
4912 sb_data_e2
.common
.state
= SB_DISABLED
;
4913 sb_data_e2
.common
.p_func
.vf_valid
= false;
4914 sb_data_p
= (u32
*)&sb_data_e2
;
4915 data_size
= sizeof(struct hc_status_block_data_e2
)/sizeof(u32
);
4917 memset(&sb_data_e1x
, 0,
4918 sizeof(struct hc_status_block_data_e1x
));
4919 sb_data_e1x
.common
.state
= SB_DISABLED
;
4920 sb_data_e1x
.common
.p_func
.vf_valid
= false;
4921 sb_data_p
= (u32
*)&sb_data_e1x
;
4922 data_size
= sizeof(struct hc_status_block_data_e1x
)/sizeof(u32
);
4924 bnx2x_wr_fp_sb_data(bp
, fw_sb_id
, sb_data_p
, data_size
);
4926 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
4927 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id
), 0,
4928 CSTORM_STATUS_BLOCK_SIZE
);
4929 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
4930 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id
), 0,
4931 CSTORM_SYNC_BLOCK_SIZE
);
4934 /* helper: writes SP SB data to FW */
4935 static inline void bnx2x_wr_sp_sb_data(struct bnx2x
*bp
,
4936 struct hc_sp_status_block_data
*sp_sb_data
)
4938 int func
= BP_FUNC(bp
);
4940 for (i
= 0; i
< sizeof(struct hc_sp_status_block_data
)/sizeof(u32
); i
++)
4941 REG_WR(bp
, BAR_CSTRORM_INTMEM
+
4942 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func
) +
4944 *((u32
*)sp_sb_data
+ i
));
4947 static inline void bnx2x_zero_sp_sb(struct bnx2x
*bp
)
4949 int func
= BP_FUNC(bp
);
4950 struct hc_sp_status_block_data sp_sb_data
;
4951 memset(&sp_sb_data
, 0, sizeof(struct hc_sp_status_block_data
));
4953 sp_sb_data
.state
= SB_DISABLED
;
4954 sp_sb_data
.p_func
.vf_valid
= false;
4956 bnx2x_wr_sp_sb_data(bp
, &sp_sb_data
);
4958 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
4959 CSTORM_SP_STATUS_BLOCK_OFFSET(func
), 0,
4960 CSTORM_SP_STATUS_BLOCK_SIZE
);
4961 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
4962 CSTORM_SP_SYNC_BLOCK_OFFSET(func
), 0,
4963 CSTORM_SP_SYNC_BLOCK_SIZE
);
4969 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm
*hc_sm
,
4970 int igu_sb_id
, int igu_seg_id
)
4972 hc_sm
->igu_sb_id
= igu_sb_id
;
4973 hc_sm
->igu_seg_id
= igu_seg_id
;
4974 hc_sm
->timer_value
= 0xFF;
4975 hc_sm
->time_to_expire
= 0xFFFFFFFF;
4979 /* allocates state machine ids. */
4981 void bnx2x_map_sb_state_machines(struct hc_index_data
*index_data
)
4983 /* zero out state machine indices */
4985 index_data
[HC_INDEX_ETH_RX_CQ_CONS
].flags
&= ~HC_INDEX_DATA_SM_ID
;
4988 index_data
[HC_INDEX_OOO_TX_CQ_CONS
].flags
&= ~HC_INDEX_DATA_SM_ID
;
4989 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS0
].flags
&= ~HC_INDEX_DATA_SM_ID
;
4990 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS1
].flags
&= ~HC_INDEX_DATA_SM_ID
;
4991 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS2
].flags
&= ~HC_INDEX_DATA_SM_ID
;
4995 index_data
[HC_INDEX_ETH_RX_CQ_CONS
].flags
|=
4996 SM_RX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
4999 index_data
[HC_INDEX_OOO_TX_CQ_CONS
].flags
|=
5000 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5001 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS0
].flags
|=
5002 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5003 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS1
].flags
|=
5004 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5005 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS2
].flags
|=
5006 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5009 static void bnx2x_init_sb(struct bnx2x
*bp
, dma_addr_t mapping
, int vfid
,
5010 u8 vf_valid
, int fw_sb_id
, int igu_sb_id
)
5014 struct hc_status_block_data_e2 sb_data_e2
;
5015 struct hc_status_block_data_e1x sb_data_e1x
;
5016 struct hc_status_block_sm
*hc_sm_p
;
5020 if (CHIP_INT_MODE_IS_BC(bp
))
5021 igu_seg_id
= HC_SEG_ACCESS_NORM
;
5023 igu_seg_id
= IGU_SEG_ACCESS_NORM
;
5025 bnx2x_zero_fp_sb(bp
, fw_sb_id
);
5027 if (!CHIP_IS_E1x(bp
)) {
5028 memset(&sb_data_e2
, 0, sizeof(struct hc_status_block_data_e2
));
5029 sb_data_e2
.common
.state
= SB_ENABLED
;
5030 sb_data_e2
.common
.p_func
.pf_id
= BP_FUNC(bp
);
5031 sb_data_e2
.common
.p_func
.vf_id
= vfid
;
5032 sb_data_e2
.common
.p_func
.vf_valid
= vf_valid
;
5033 sb_data_e2
.common
.p_func
.vnic_id
= BP_VN(bp
);
5034 sb_data_e2
.common
.same_igu_sb_1b
= true;
5035 sb_data_e2
.common
.host_sb_addr
.hi
= U64_HI(mapping
);
5036 sb_data_e2
.common
.host_sb_addr
.lo
= U64_LO(mapping
);
5037 hc_sm_p
= sb_data_e2
.common
.state_machine
;
5038 sb_data_p
= (u32
*)&sb_data_e2
;
5039 data_size
= sizeof(struct hc_status_block_data_e2
)/sizeof(u32
);
5040 bnx2x_map_sb_state_machines(sb_data_e2
.index_data
);
5042 memset(&sb_data_e1x
, 0,
5043 sizeof(struct hc_status_block_data_e1x
));
5044 sb_data_e1x
.common
.state
= SB_ENABLED
;
5045 sb_data_e1x
.common
.p_func
.pf_id
= BP_FUNC(bp
);
5046 sb_data_e1x
.common
.p_func
.vf_id
= 0xff;
5047 sb_data_e1x
.common
.p_func
.vf_valid
= false;
5048 sb_data_e1x
.common
.p_func
.vnic_id
= BP_VN(bp
);
5049 sb_data_e1x
.common
.same_igu_sb_1b
= true;
5050 sb_data_e1x
.common
.host_sb_addr
.hi
= U64_HI(mapping
);
5051 sb_data_e1x
.common
.host_sb_addr
.lo
= U64_LO(mapping
);
5052 hc_sm_p
= sb_data_e1x
.common
.state_machine
;
5053 sb_data_p
= (u32
*)&sb_data_e1x
;
5054 data_size
= sizeof(struct hc_status_block_data_e1x
)/sizeof(u32
);
5055 bnx2x_map_sb_state_machines(sb_data_e1x
.index_data
);
5058 bnx2x_setup_ndsb_state_machine(&hc_sm_p
[SM_RX_ID
],
5059 igu_sb_id
, igu_seg_id
);
5060 bnx2x_setup_ndsb_state_machine(&hc_sm_p
[SM_TX_ID
],
5061 igu_sb_id
, igu_seg_id
);
5063 DP(NETIF_MSG_HW
, "Init FW SB %d\n", fw_sb_id
);
5065 /* write indecies to HW */
5066 bnx2x_wr_fp_sb_data(bp
, fw_sb_id
, sb_data_p
, data_size
);
5069 static void bnx2x_update_coalesce_sb(struct bnx2x
*bp
, u8 fw_sb_id
,
5070 u16 tx_usec
, u16 rx_usec
)
5072 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
, HC_INDEX_ETH_RX_CQ_CONS
,
5074 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
5075 HC_INDEX_ETH_TX_CQ_CONS_COS0
, false,
5077 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
5078 HC_INDEX_ETH_TX_CQ_CONS_COS1
, false,
5080 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
5081 HC_INDEX_ETH_TX_CQ_CONS_COS2
, false,
5085 static void bnx2x_init_def_sb(struct bnx2x
*bp
)
5087 struct host_sp_status_block
*def_sb
= bp
->def_status_blk
;
5088 dma_addr_t mapping
= bp
->def_status_blk_mapping
;
5089 int igu_sp_sb_index
;
5091 int port
= BP_PORT(bp
);
5092 int func
= BP_FUNC(bp
);
5093 int reg_offset
, reg_offset_en5
;
5096 struct hc_sp_status_block_data sp_sb_data
;
5097 memset(&sp_sb_data
, 0, sizeof(struct hc_sp_status_block_data
));
5099 if (CHIP_INT_MODE_IS_BC(bp
)) {
5100 igu_sp_sb_index
= DEF_SB_IGU_ID
;
5101 igu_seg_id
= HC_SEG_ACCESS_DEF
;
5103 igu_sp_sb_index
= bp
->igu_dsb_id
;
5104 igu_seg_id
= IGU_SEG_ACCESS_DEF
;
5108 section
= ((u64
)mapping
) + offsetof(struct host_sp_status_block
,
5109 atten_status_block
);
5110 def_sb
->atten_status_block
.status_block_id
= igu_sp_sb_index
;
5114 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
5115 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
5116 reg_offset_en5
= (port
? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0
:
5117 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0
);
5118 for (index
= 0; index
< MAX_DYNAMIC_ATTN_GRPS
; index
++) {
5120 /* take care of sig[0]..sig[4] */
5121 for (sindex
= 0; sindex
< 4; sindex
++)
5122 bp
->attn_group
[index
].sig
[sindex
] =
5123 REG_RD(bp
, reg_offset
+ sindex
*0x4 + 0x10*index
);
5125 if (!CHIP_IS_E1x(bp
))
5127 * enable5 is separate from the rest of the registers,
5128 * and therefore the address skip is 4
5129 * and not 16 between the different groups
5131 bp
->attn_group
[index
].sig
[4] = REG_RD(bp
,
5132 reg_offset_en5
+ 0x4*index
);
5134 bp
->attn_group
[index
].sig
[4] = 0;
5137 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
5138 reg_offset
= (port
? HC_REG_ATTN_MSG1_ADDR_L
:
5139 HC_REG_ATTN_MSG0_ADDR_L
);
5141 REG_WR(bp
, reg_offset
, U64_LO(section
));
5142 REG_WR(bp
, reg_offset
+ 4, U64_HI(section
));
5143 } else if (!CHIP_IS_E1x(bp
)) {
5144 REG_WR(bp
, IGU_REG_ATTN_MSG_ADDR_L
, U64_LO(section
));
5145 REG_WR(bp
, IGU_REG_ATTN_MSG_ADDR_H
, U64_HI(section
));
5148 section
= ((u64
)mapping
) + offsetof(struct host_sp_status_block
,
5151 bnx2x_zero_sp_sb(bp
);
5153 sp_sb_data
.state
= SB_ENABLED
;
5154 sp_sb_data
.host_sb_addr
.lo
= U64_LO(section
);
5155 sp_sb_data
.host_sb_addr
.hi
= U64_HI(section
);
5156 sp_sb_data
.igu_sb_id
= igu_sp_sb_index
;
5157 sp_sb_data
.igu_seg_id
= igu_seg_id
;
5158 sp_sb_data
.p_func
.pf_id
= func
;
5159 sp_sb_data
.p_func
.vnic_id
= BP_VN(bp
);
5160 sp_sb_data
.p_func
.vf_id
= 0xff;
5162 bnx2x_wr_sp_sb_data(bp
, &sp_sb_data
);
5164 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
, 0, IGU_INT_ENABLE
, 0);
5167 void bnx2x_update_coalesce(struct bnx2x
*bp
)
5171 for_each_eth_queue(bp
, i
)
5172 bnx2x_update_coalesce_sb(bp
, bp
->fp
[i
].fw_sb_id
,
5173 bp
->tx_ticks
, bp
->rx_ticks
);
5176 static void bnx2x_init_sp_ring(struct bnx2x
*bp
)
5178 spin_lock_init(&bp
->spq_lock
);
5179 atomic_set(&bp
->cq_spq_left
, MAX_SPQ_PENDING
);
5181 bp
->spq_prod_idx
= 0;
5182 bp
->dsb_sp_prod
= BNX2X_SP_DSB_INDEX
;
5183 bp
->spq_prod_bd
= bp
->spq
;
5184 bp
->spq_last_bd
= bp
->spq_prod_bd
+ MAX_SP_DESC_CNT
;
5187 static void bnx2x_init_eq_ring(struct bnx2x
*bp
)
5190 for (i
= 1; i
<= NUM_EQ_PAGES
; i
++) {
5191 union event_ring_elem
*elem
=
5192 &bp
->eq_ring
[EQ_DESC_CNT_PAGE
* i
- 1];
5194 elem
->next_page
.addr
.hi
=
5195 cpu_to_le32(U64_HI(bp
->eq_mapping
+
5196 BCM_PAGE_SIZE
* (i
% NUM_EQ_PAGES
)));
5197 elem
->next_page
.addr
.lo
=
5198 cpu_to_le32(U64_LO(bp
->eq_mapping
+
5199 BCM_PAGE_SIZE
*(i
% NUM_EQ_PAGES
)));
5202 bp
->eq_prod
= NUM_EQ_DESC
;
5203 bp
->eq_cons_sb
= BNX2X_EQ_INDEX
;
5204 /* we want a warning message before it gets rought... */
5205 atomic_set(&bp
->eq_spq_left
,
5206 min_t(int, MAX_SP_DESC_CNT
- MAX_SPQ_PENDING
, NUM_EQ_DESC
) - 1);
5210 /* called with netif_addr_lock_bh() */
5211 void bnx2x_set_q_rx_mode(struct bnx2x
*bp
, u8 cl_id
,
5212 unsigned long rx_mode_flags
,
5213 unsigned long rx_accept_flags
,
5214 unsigned long tx_accept_flags
,
5215 unsigned long ramrod_flags
)
5217 struct bnx2x_rx_mode_ramrod_params ramrod_param
;
5220 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
5222 /* Prepare ramrod parameters */
5223 ramrod_param
.cid
= 0;
5224 ramrod_param
.cl_id
= cl_id
;
5225 ramrod_param
.rx_mode_obj
= &bp
->rx_mode_obj
;
5226 ramrod_param
.func_id
= BP_FUNC(bp
);
5228 ramrod_param
.pstate
= &bp
->sp_state
;
5229 ramrod_param
.state
= BNX2X_FILTER_RX_MODE_PENDING
;
5231 ramrod_param
.rdata
= bnx2x_sp(bp
, rx_mode_rdata
);
5232 ramrod_param
.rdata_mapping
= bnx2x_sp_mapping(bp
, rx_mode_rdata
);
5234 set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
);
5236 ramrod_param
.ramrod_flags
= ramrod_flags
;
5237 ramrod_param
.rx_mode_flags
= rx_mode_flags
;
5239 ramrod_param
.rx_accept_flags
= rx_accept_flags
;
5240 ramrod_param
.tx_accept_flags
= tx_accept_flags
;
5242 rc
= bnx2x_config_rx_mode(bp
, &ramrod_param
);
5244 BNX2X_ERR("Set rx_mode %d failed\n", bp
->rx_mode
);
5249 /* called with netif_addr_lock_bh() */
5250 void bnx2x_set_storm_rx_mode(struct bnx2x
*bp
)
5252 unsigned long rx_mode_flags
= 0, ramrod_flags
= 0;
5253 unsigned long rx_accept_flags
= 0, tx_accept_flags
= 0;
5258 /* Configure rx_mode of FCoE Queue */
5259 __set_bit(BNX2X_RX_MODE_FCOE_ETH
, &rx_mode_flags
);
5262 switch (bp
->rx_mode
) {
5263 case BNX2X_RX_MODE_NONE
:
5265 * 'drop all' supersedes any accept flags that may have been
5266 * passed to the function.
5269 case BNX2X_RX_MODE_NORMAL
:
5270 __set_bit(BNX2X_ACCEPT_UNICAST
, &rx_accept_flags
);
5271 __set_bit(BNX2X_ACCEPT_MULTICAST
, &rx_accept_flags
);
5272 __set_bit(BNX2X_ACCEPT_BROADCAST
, &rx_accept_flags
);
5274 /* internal switching mode */
5275 __set_bit(BNX2X_ACCEPT_UNICAST
, &tx_accept_flags
);
5276 __set_bit(BNX2X_ACCEPT_MULTICAST
, &tx_accept_flags
);
5277 __set_bit(BNX2X_ACCEPT_BROADCAST
, &tx_accept_flags
);
5280 case BNX2X_RX_MODE_ALLMULTI
:
5281 __set_bit(BNX2X_ACCEPT_UNICAST
, &rx_accept_flags
);
5282 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &rx_accept_flags
);
5283 __set_bit(BNX2X_ACCEPT_BROADCAST
, &rx_accept_flags
);
5285 /* internal switching mode */
5286 __set_bit(BNX2X_ACCEPT_UNICAST
, &tx_accept_flags
);
5287 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &tx_accept_flags
);
5288 __set_bit(BNX2X_ACCEPT_BROADCAST
, &tx_accept_flags
);
5291 case BNX2X_RX_MODE_PROMISC
:
5292 /* According to deffinition of SI mode, iface in promisc mode
5293 * should receive matched and unmatched (in resolution of port)
5296 __set_bit(BNX2X_ACCEPT_UNMATCHED
, &rx_accept_flags
);
5297 __set_bit(BNX2X_ACCEPT_UNICAST
, &rx_accept_flags
);
5298 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &rx_accept_flags
);
5299 __set_bit(BNX2X_ACCEPT_BROADCAST
, &rx_accept_flags
);
5301 /* internal switching mode */
5302 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &tx_accept_flags
);
5303 __set_bit(BNX2X_ACCEPT_BROADCAST
, &tx_accept_flags
);
5306 __set_bit(BNX2X_ACCEPT_ALL_UNICAST
, &tx_accept_flags
);
5308 __set_bit(BNX2X_ACCEPT_UNICAST
, &tx_accept_flags
);
5312 BNX2X_ERR("Unknown rx_mode: %d\n", bp
->rx_mode
);
5316 if (bp
->rx_mode
!= BNX2X_RX_MODE_NONE
) {
5317 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, &rx_accept_flags
);
5318 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, &tx_accept_flags
);
5321 __set_bit(RAMROD_RX
, &ramrod_flags
);
5322 __set_bit(RAMROD_TX
, &ramrod_flags
);
5324 bnx2x_set_q_rx_mode(bp
, bp
->fp
->cl_id
, rx_mode_flags
, rx_accept_flags
,
5325 tx_accept_flags
, ramrod_flags
);
5328 static void bnx2x_init_internal_common(struct bnx2x
*bp
)
5334 * In switch independent mode, the TSTORM needs to accept
5335 * packets that failed classification, since approximate match
5336 * mac addresses aren't written to NIG LLH
5338 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+
5339 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET
, 2);
5340 else if (!CHIP_IS_E1(bp
)) /* 57710 doesn't support MF */
5341 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+
5342 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET
, 0);
5344 /* Zero this manually as its initialization is
5345 currently missing in the initTool */
5346 for (i
= 0; i
< (USTORM_AGG_DATA_SIZE
>> 2); i
++)
5347 REG_WR(bp
, BAR_USTRORM_INTMEM
+
5348 USTORM_AGG_DATA_OFFSET
+ i
* 4, 0);
5349 if (!CHIP_IS_E1x(bp
)) {
5350 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_IGU_MODE_OFFSET
,
5351 CHIP_INT_MODE_IS_BC(bp
) ?
5352 HC_IGU_BC_MODE
: HC_IGU_NBC_MODE
);
5356 static void bnx2x_init_internal(struct bnx2x
*bp
, u32 load_code
)
5358 switch (load_code
) {
5359 case FW_MSG_CODE_DRV_LOAD_COMMON
:
5360 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
:
5361 bnx2x_init_internal_common(bp
);
5364 case FW_MSG_CODE_DRV_LOAD_PORT
:
5368 case FW_MSG_CODE_DRV_LOAD_FUNCTION
:
5369 /* internal memory per function is
5370 initialized inside bnx2x_pf_init */
5374 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code
);
5379 static inline u8
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath
*fp
)
5381 return fp
->bp
->igu_base_sb
+ fp
->index
+ CNIC_PRESENT
;
5384 static inline u8
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath
*fp
)
5386 return fp
->bp
->base_fw_ndsb
+ fp
->index
+ CNIC_PRESENT
;
5389 static inline u8
bnx2x_fp_cl_id(struct bnx2x_fastpath
*fp
)
5391 if (CHIP_IS_E1x(fp
->bp
))
5392 return BP_L_ID(fp
->bp
) + fp
->index
;
5393 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5394 return bnx2x_fp_igu_sb_id(fp
);
5397 static void bnx2x_init_eth_fp(struct bnx2x
*bp
, int fp_idx
)
5399 struct bnx2x_fastpath
*fp
= &bp
->fp
[fp_idx
];
5401 unsigned long q_type
= 0;
5402 u32 cids
[BNX2X_MULTI_TX_COS
] = { 0 };
5403 fp
->rx_queue
= fp_idx
;
5405 fp
->cl_id
= bnx2x_fp_cl_id(fp
);
5406 fp
->fw_sb_id
= bnx2x_fp_fw_sb_id(fp
);
5407 fp
->igu_sb_id
= bnx2x_fp_igu_sb_id(fp
);
5408 /* qZone id equals to FW (per path) client id */
5409 fp
->cl_qzone_id
= bnx2x_fp_qzone_id(fp
);
5412 fp
->ustorm_rx_prods_offset
= bnx2x_rx_ustorm_prods_offset(fp
);
5413 /* Setup SB indicies */
5414 fp
->rx_cons_sb
= BNX2X_RX_SB_INDEX
;
5416 /* Configure Queue State object */
5417 __set_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
);
5418 __set_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
);
5420 BUG_ON(fp
->max_cos
> BNX2X_MULTI_TX_COS
);
5423 for_each_cos_in_tx_queue(fp
, cos
) {
5424 bnx2x_init_txdata(bp
, &fp
->txdata
[cos
],
5425 CID_COS_TO_TX_ONLY_CID(fp
->cid
, cos
),
5426 FP_COS_TO_TXQ(fp
, cos
),
5427 BNX2X_TX_SB_INDEX_BASE
+ cos
);
5428 cids
[cos
] = fp
->txdata
[cos
].cid
;
5431 bnx2x_init_queue_obj(bp
, &fp
->q_obj
, fp
->cl_id
, cids
, fp
->max_cos
,
5432 BP_FUNC(bp
), bnx2x_sp(bp
, q_rdata
),
5433 bnx2x_sp_mapping(bp
, q_rdata
), q_type
);
5436 * Configure classification DBs: Always enable Tx switching
5438 bnx2x_init_vlan_mac_fp_objs(fp
, BNX2X_OBJ_TYPE_RX_TX
);
5440 DP(NETIF_MSG_IFUP
, "queue[%d]: bnx2x_init_sb(%p,%p) "
5441 "cl_id %d fw_sb %d igu_sb %d\n",
5442 fp_idx
, bp
, fp
->status_blk
.e2_sb
, fp
->cl_id
, fp
->fw_sb_id
,
5444 bnx2x_init_sb(bp
, fp
->status_blk_mapping
, BNX2X_VF_ID_INVALID
, false,
5445 fp
->fw_sb_id
, fp
->igu_sb_id
);
5447 bnx2x_update_fpsb_idx(fp
);
5450 void bnx2x_nic_init(struct bnx2x
*bp
, u32 load_code
)
5454 for_each_eth_queue(bp
, i
)
5455 bnx2x_init_eth_fp(bp
, i
);
5458 bnx2x_init_fcoe_fp(bp
);
5460 bnx2x_init_sb(bp
, bp
->cnic_sb_mapping
,
5461 BNX2X_VF_ID_INVALID
, false,
5462 bnx2x_cnic_fw_sb_id(bp
), bnx2x_cnic_igu_sb_id(bp
));
5466 /* Initialize MOD_ABS interrupts */
5467 bnx2x_init_mod_abs_int(bp
, &bp
->link_vars
, bp
->common
.chip_id
,
5468 bp
->common
.shmem_base
, bp
->common
.shmem2_base
,
5470 /* ensure status block indices were read */
5473 bnx2x_init_def_sb(bp
);
5474 bnx2x_update_dsb_idx(bp
);
5475 bnx2x_init_rx_rings(bp
);
5476 bnx2x_init_tx_rings(bp
);
5477 bnx2x_init_sp_ring(bp
);
5478 bnx2x_init_eq_ring(bp
);
5479 bnx2x_init_internal(bp
, load_code
);
5481 bnx2x_stats_init(bp
);
5483 /* flush all before enabling interrupts */
5487 bnx2x_int_enable(bp
);
5489 /* Check for SPIO5 */
5490 bnx2x_attn_int_deasserted0(bp
,
5491 REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+ BP_PORT(bp
)*4) &
5492 AEU_INPUTS_ATTN_BITS_SPIO5
);
5495 /* end of nic init */
5498 * gzip service functions
5501 static int bnx2x_gunzip_init(struct bnx2x
*bp
)
5503 bp
->gunzip_buf
= dma_alloc_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
,
5504 &bp
->gunzip_mapping
, GFP_KERNEL
);
5505 if (bp
->gunzip_buf
== NULL
)
5508 bp
->strm
= kmalloc(sizeof(*bp
->strm
), GFP_KERNEL
);
5509 if (bp
->strm
== NULL
)
5512 bp
->strm
->workspace
= vmalloc(zlib_inflate_workspacesize());
5513 if (bp
->strm
->workspace
== NULL
)
5523 dma_free_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
, bp
->gunzip_buf
,
5524 bp
->gunzip_mapping
);
5525 bp
->gunzip_buf
= NULL
;
5528 netdev_err(bp
->dev
, "Cannot allocate firmware buffer for"
5529 " un-compression\n");
5533 static void bnx2x_gunzip_end(struct bnx2x
*bp
)
5536 vfree(bp
->strm
->workspace
);
5541 if (bp
->gunzip_buf
) {
5542 dma_free_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
, bp
->gunzip_buf
,
5543 bp
->gunzip_mapping
);
5544 bp
->gunzip_buf
= NULL
;
5548 static int bnx2x_gunzip(struct bnx2x
*bp
, const u8
*zbuf
, int len
)
5552 /* check gzip header */
5553 if ((zbuf
[0] != 0x1f) || (zbuf
[1] != 0x8b) || (zbuf
[2] != Z_DEFLATED
)) {
5554 BNX2X_ERR("Bad gzip header\n");
5562 if (zbuf
[3] & FNAME
)
5563 while ((zbuf
[n
++] != 0) && (n
< len
));
5565 bp
->strm
->next_in
= (typeof(bp
->strm
->next_in
))zbuf
+ n
;
5566 bp
->strm
->avail_in
= len
- n
;
5567 bp
->strm
->next_out
= bp
->gunzip_buf
;
5568 bp
->strm
->avail_out
= FW_BUF_SIZE
;
5570 rc
= zlib_inflateInit2(bp
->strm
, -MAX_WBITS
);
5574 rc
= zlib_inflate(bp
->strm
, Z_FINISH
);
5575 if ((rc
!= Z_OK
) && (rc
!= Z_STREAM_END
))
5576 netdev_err(bp
->dev
, "Firmware decompression error: %s\n",
5579 bp
->gunzip_outlen
= (FW_BUF_SIZE
- bp
->strm
->avail_out
);
5580 if (bp
->gunzip_outlen
& 0x3)
5581 netdev_err(bp
->dev
, "Firmware decompression error:"
5582 " gunzip_outlen (%d) not aligned\n",
5584 bp
->gunzip_outlen
>>= 2;
5586 zlib_inflateEnd(bp
->strm
);
5588 if (rc
== Z_STREAM_END
)
5594 /* nic load/unload */
5597 * General service functions
5600 /* send a NIG loopback debug packet */
5601 static void bnx2x_lb_pckt(struct bnx2x
*bp
)
5605 /* Ethernet source and destination addresses */
5606 wb_write
[0] = 0x55555555;
5607 wb_write
[1] = 0x55555555;
5608 wb_write
[2] = 0x20; /* SOP */
5609 REG_WR_DMAE(bp
, NIG_REG_DEBUG_PACKET_LB
, wb_write
, 3);
5611 /* NON-IP protocol */
5612 wb_write
[0] = 0x09000000;
5613 wb_write
[1] = 0x55555555;
5614 wb_write
[2] = 0x10; /* EOP, eop_bvalid = 0 */
5615 REG_WR_DMAE(bp
, NIG_REG_DEBUG_PACKET_LB
, wb_write
, 3);
5618 /* some of the internal memories
5619 * are not directly readable from the driver
5620 * to test them we send debug packets
5622 static int bnx2x_int_mem_test(struct bnx2x
*bp
)
5628 if (CHIP_REV_IS_FPGA(bp
))
5630 else if (CHIP_REV_IS_EMUL(bp
))
5635 /* Disable inputs of parser neighbor blocks */
5636 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x0);
5637 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x0);
5638 REG_WR(bp
, CFC_REG_DEBUG0
, 0x1);
5639 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x0);
5641 /* Write 0 to parser credits for CFC search request */
5642 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x0);
5644 /* send Ethernet packet */
5647 /* TODO do i reset NIG statistic? */
5648 /* Wait until NIG register shows 1 packet of size 0x10 */
5649 count
= 1000 * factor
;
5652 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
5653 val
= *bnx2x_sp(bp
, wb_data
[0]);
5661 BNX2X_ERR("NIG timeout val = 0x%x\n", val
);
5665 /* Wait until PRS register shows 1 packet */
5666 count
= 1000 * factor
;
5668 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
5676 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
5680 /* Reset and init BRB, PRS */
5681 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
, 0x03);
5683 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0x03);
5685 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
5686 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
5688 DP(NETIF_MSG_HW
, "part2\n");
5690 /* Disable inputs of parser neighbor blocks */
5691 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x0);
5692 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x0);
5693 REG_WR(bp
, CFC_REG_DEBUG0
, 0x1);
5694 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x0);
5696 /* Write 0 to parser credits for CFC search request */
5697 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x0);
5699 /* send 10 Ethernet packets */
5700 for (i
= 0; i
< 10; i
++)
5703 /* Wait until NIG register shows 10 + 1
5704 packets of size 11*0x10 = 0xb0 */
5705 count
= 1000 * factor
;
5708 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
5709 val
= *bnx2x_sp(bp
, wb_data
[0]);
5717 BNX2X_ERR("NIG timeout val = 0x%x\n", val
);
5721 /* Wait until PRS register shows 2 packets */
5722 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
5724 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
5726 /* Write 1 to parser credits for CFC search request */
5727 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x1);
5729 /* Wait until PRS register shows 3 packets */
5730 msleep(10 * factor
);
5731 /* Wait until NIG register shows 1 packet of size 0x10 */
5732 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
5734 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
5736 /* clear NIG EOP FIFO */
5737 for (i
= 0; i
< 11; i
++)
5738 REG_RD(bp
, NIG_REG_INGRESS_EOP_LB_FIFO
);
5739 val
= REG_RD(bp
, NIG_REG_INGRESS_EOP_LB_EMPTY
);
5741 BNX2X_ERR("clear of NIG failed\n");
5745 /* Reset and init BRB, PRS, NIG */
5746 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
, 0x03);
5748 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0x03);
5750 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
5751 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
5754 REG_WR(bp
, PRS_REG_NIC_MODE
, 1);
5757 /* Enable inputs of parser neighbor blocks */
5758 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x7fffffff);
5759 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x1);
5760 REG_WR(bp
, CFC_REG_DEBUG0
, 0x0);
5761 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x1);
5763 DP(NETIF_MSG_HW
, "done\n");
5768 static void bnx2x_enable_blocks_attention(struct bnx2x
*bp
)
5770 REG_WR(bp
, PXP_REG_PXP_INT_MASK_0
, 0);
5771 if (!CHIP_IS_E1x(bp
))
5772 REG_WR(bp
, PXP_REG_PXP_INT_MASK_1
, 0x40);
5774 REG_WR(bp
, PXP_REG_PXP_INT_MASK_1
, 0);
5775 REG_WR(bp
, DORQ_REG_DORQ_INT_MASK
, 0);
5776 REG_WR(bp
, CFC_REG_CFC_INT_MASK
, 0);
5778 * mask read length error interrupts in brb for parser
5779 * (parsing unit and 'checksum and crc' unit)
5780 * these errors are legal (PU reads fixed length and CAC can cause
5781 * read length error on truncated packets)
5783 REG_WR(bp
, BRB1_REG_BRB1_INT_MASK
, 0xFC00);
5784 REG_WR(bp
, QM_REG_QM_INT_MASK
, 0);
5785 REG_WR(bp
, TM_REG_TM_INT_MASK
, 0);
5786 REG_WR(bp
, XSDM_REG_XSDM_INT_MASK_0
, 0);
5787 REG_WR(bp
, XSDM_REG_XSDM_INT_MASK_1
, 0);
5788 REG_WR(bp
, XCM_REG_XCM_INT_MASK
, 0);
5789 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5790 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5791 REG_WR(bp
, USDM_REG_USDM_INT_MASK_0
, 0);
5792 REG_WR(bp
, USDM_REG_USDM_INT_MASK_1
, 0);
5793 REG_WR(bp
, UCM_REG_UCM_INT_MASK
, 0);
5794 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5795 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5796 REG_WR(bp
, GRCBASE_UPB
+ PB_REG_PB_INT_MASK
, 0);
5797 REG_WR(bp
, CSDM_REG_CSDM_INT_MASK_0
, 0);
5798 REG_WR(bp
, CSDM_REG_CSDM_INT_MASK_1
, 0);
5799 REG_WR(bp
, CCM_REG_CCM_INT_MASK
, 0);
5800 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5801 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5803 if (CHIP_REV_IS_FPGA(bp
))
5804 REG_WR(bp
, PXP2_REG_PXP2_INT_MASK_0
, 0x580000);
5805 else if (!CHIP_IS_E1x(bp
))
5806 REG_WR(bp
, PXP2_REG_PXP2_INT_MASK_0
,
5807 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5808 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5809 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5810 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5811 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED
));
5813 REG_WR(bp
, PXP2_REG_PXP2_INT_MASK_0
, 0x480000);
5814 REG_WR(bp
, TSDM_REG_TSDM_INT_MASK_0
, 0);
5815 REG_WR(bp
, TSDM_REG_TSDM_INT_MASK_1
, 0);
5816 REG_WR(bp
, TCM_REG_TCM_INT_MASK
, 0);
5817 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5819 if (!CHIP_IS_E1x(bp
))
5820 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5821 REG_WR(bp
, TSEM_REG_TSEM_INT_MASK_1
, 0x07ff);
5823 REG_WR(bp
, CDU_REG_CDU_INT_MASK
, 0);
5824 REG_WR(bp
, DMAE_REG_DMAE_INT_MASK
, 0);
5825 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5826 REG_WR(bp
, PBF_REG_PBF_INT_MASK
, 0x18); /* bit 3,4 masked */
5829 static void bnx2x_reset_common(struct bnx2x
*bp
)
5834 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
5837 if (CHIP_IS_E3(bp
)) {
5838 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT0
;
5839 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT1
;
5842 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_CLEAR
, val
);
5845 static void bnx2x_setup_dmae(struct bnx2x
*bp
)
5848 spin_lock_init(&bp
->dmae_lock
);
5851 static void bnx2x_init_pxp(struct bnx2x
*bp
)
5854 int r_order
, w_order
;
5856 pci_read_config_word(bp
->pdev
,
5857 pci_pcie_cap(bp
->pdev
) + PCI_EXP_DEVCTL
, &devctl
);
5858 DP(NETIF_MSG_HW
, "read 0x%x from devctl\n", devctl
);
5859 w_order
= ((devctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
5861 r_order
= ((devctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
5863 DP(NETIF_MSG_HW
, "force read order to %d\n", bp
->mrrs
);
5867 bnx2x_init_pxp_arb(bp
, r_order
, w_order
);
5870 static void bnx2x_setup_fan_failure_detection(struct bnx2x
*bp
)
5880 val
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.config2
) &
5881 SHARED_HW_CFG_FAN_FAILURE_MASK
;
5883 if (val
== SHARED_HW_CFG_FAN_FAILURE_ENABLED
)
5887 * The fan failure mechanism is usually related to the PHY type since
5888 * the power consumption of the board is affected by the PHY. Currently,
5889 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5891 else if (val
== SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE
)
5892 for (port
= PORT_0
; port
< PORT_MAX
; port
++) {
5894 bnx2x_fan_failure_det_req(
5896 bp
->common
.shmem_base
,
5897 bp
->common
.shmem2_base
,
5901 DP(NETIF_MSG_HW
, "fan detection setting: %d\n", is_required
);
5903 if (is_required
== 0)
5906 /* Fan failure is indicated by SPIO 5 */
5907 bnx2x_set_spio(bp
, MISC_REGISTERS_SPIO_5
,
5908 MISC_REGISTERS_SPIO_INPUT_HI_Z
);
5910 /* set to active low mode */
5911 val
= REG_RD(bp
, MISC_REG_SPIO_INT
);
5912 val
|= ((1 << MISC_REGISTERS_SPIO_5
) <<
5913 MISC_REGISTERS_SPIO_INT_OLD_SET_POS
);
5914 REG_WR(bp
, MISC_REG_SPIO_INT
, val
);
5916 /* enable interrupt to signal the IGU */
5917 val
= REG_RD(bp
, MISC_REG_SPIO_EVENT_EN
);
5918 val
|= (1 << MISC_REGISTERS_SPIO_5
);
5919 REG_WR(bp
, MISC_REG_SPIO_EVENT_EN
, val
);
5922 static void bnx2x_pretend_func(struct bnx2x
*bp
, u8 pretend_func_num
)
5928 if (CHIP_IS_E1H(bp
) && (pretend_func_num
>= E1H_FUNC_MAX
))
5931 switch (BP_ABS_FUNC(bp
)) {
5933 offset
= PXP2_REG_PGL_PRETEND_FUNC_F0
;
5936 offset
= PXP2_REG_PGL_PRETEND_FUNC_F1
;
5939 offset
= PXP2_REG_PGL_PRETEND_FUNC_F2
;
5942 offset
= PXP2_REG_PGL_PRETEND_FUNC_F3
;
5945 offset
= PXP2_REG_PGL_PRETEND_FUNC_F4
;
5948 offset
= PXP2_REG_PGL_PRETEND_FUNC_F5
;
5951 offset
= PXP2_REG_PGL_PRETEND_FUNC_F6
;
5954 offset
= PXP2_REG_PGL_PRETEND_FUNC_F7
;
5960 REG_WR(bp
, offset
, pretend_func_num
);
5962 DP(NETIF_MSG_HW
, "Pretending to func %d\n", pretend_func_num
);
5965 void bnx2x_pf_disable(struct bnx2x
*bp
)
5967 u32 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
5968 val
&= ~IGU_PF_CONF_FUNC_EN
;
5970 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
5971 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 0);
5972 REG_WR(bp
, CFC_REG_WEAK_ENABLE_PF
, 0);
5975 static inline void bnx2x__common_init_phy(struct bnx2x
*bp
)
5977 u32 shmem_base
[2], shmem2_base
[2];
5978 shmem_base
[0] = bp
->common
.shmem_base
;
5979 shmem2_base
[0] = bp
->common
.shmem2_base
;
5980 if (!CHIP_IS_E1x(bp
)) {
5982 SHMEM2_RD(bp
, other_shmem_base_addr
);
5984 SHMEM2_RD(bp
, other_shmem2_base_addr
);
5986 bnx2x_acquire_phy_lock(bp
);
5987 bnx2x_common_init_phy(bp
, shmem_base
, shmem2_base
,
5988 bp
->common
.chip_id
);
5989 bnx2x_release_phy_lock(bp
);
5993 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
5995 * @bp: driver handle
5997 static int bnx2x_init_hw_common(struct bnx2x
*bp
)
6001 DP(BNX2X_MSG_MCP
, "starting common init func %d\n", BP_ABS_FUNC(bp
));
6004 * take the UNDI lock to protect undi_unload flow from accessing
6005 * registers while we're resetting the chip
6007 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
6009 bnx2x_reset_common(bp
);
6010 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0xffffffff);
6013 if (CHIP_IS_E3(bp
)) {
6014 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT0
;
6015 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT1
;
6017 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_SET
, val
);
6019 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
6021 bnx2x_init_block(bp
, BLOCK_MISC
, PHASE_COMMON
);
6023 if (!CHIP_IS_E1x(bp
)) {
6027 * 4-port mode or 2-port mode we need to turn of master-enable
6028 * for everyone, after that, turn it back on for self.
6029 * so, we disregard multi-function or not, and always disable
6030 * for all functions on the given path, this means 0,2,4,6 for
6031 * path 0 and 1,3,5,7 for path 1
6033 for (abs_func_id
= BP_PATH(bp
);
6034 abs_func_id
< E2_FUNC_MAX
*2; abs_func_id
+= 2) {
6035 if (abs_func_id
== BP_ABS_FUNC(bp
)) {
6037 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
,
6042 bnx2x_pretend_func(bp
, abs_func_id
);
6043 /* clear pf enable */
6044 bnx2x_pf_disable(bp
);
6045 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
6049 bnx2x_init_block(bp
, BLOCK_PXP
, PHASE_COMMON
);
6050 if (CHIP_IS_E1(bp
)) {
6051 /* enable HW interrupt from PXP on USDM overflow
6052 bit 16 on INT_MASK_0 */
6053 REG_WR(bp
, PXP_REG_PXP_INT_MASK_0
, 0);
6056 bnx2x_init_block(bp
, BLOCK_PXP2
, PHASE_COMMON
);
6060 REG_WR(bp
, PXP2_REG_RQ_QM_ENDIAN_M
, 1);
6061 REG_WR(bp
, PXP2_REG_RQ_TM_ENDIAN_M
, 1);
6062 REG_WR(bp
, PXP2_REG_RQ_SRC_ENDIAN_M
, 1);
6063 REG_WR(bp
, PXP2_REG_RQ_CDU_ENDIAN_M
, 1);
6064 REG_WR(bp
, PXP2_REG_RQ_DBG_ENDIAN_M
, 1);
6065 /* make sure this value is 0 */
6066 REG_WR(bp
, PXP2_REG_RQ_HC_ENDIAN_M
, 0);
6068 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6069 REG_WR(bp
, PXP2_REG_RD_QM_SWAP_MODE
, 1);
6070 REG_WR(bp
, PXP2_REG_RD_TM_SWAP_MODE
, 1);
6071 REG_WR(bp
, PXP2_REG_RD_SRC_SWAP_MODE
, 1);
6072 REG_WR(bp
, PXP2_REG_RD_CDURD_SWAP_MODE
, 1);
6075 bnx2x_ilt_init_page_size(bp
, INITOP_SET
);
6077 if (CHIP_REV_IS_FPGA(bp
) && CHIP_IS_E1H(bp
))
6078 REG_WR(bp
, PXP2_REG_PGL_TAGS_LIMIT
, 0x1);
6080 /* let the HW do it's magic ... */
6082 /* finish PXP init */
6083 val
= REG_RD(bp
, PXP2_REG_RQ_CFG_DONE
);
6085 BNX2X_ERR("PXP2 CFG failed\n");
6088 val
= REG_RD(bp
, PXP2_REG_RD_INIT_DONE
);
6090 BNX2X_ERR("PXP2 RD_INIT failed\n");
6094 /* Timers bug workaround E2 only. We need to set the entire ILT to
6095 * have entries with value "0" and valid bit on.
6096 * This needs to be done by the first PF that is loaded in a path
6097 * (i.e. common phase)
6099 if (!CHIP_IS_E1x(bp
)) {
6100 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6101 * (i.e. vnic3) to start even if it is marked as "scan-off".
6102 * This occurs when a different function (func2,3) is being marked
6103 * as "scan-off". Real-life scenario for example: if a driver is being
6104 * load-unloaded while func6,7 are down. This will cause the timer to access
6105 * the ilt, translate to a logical address and send a request to read/write.
6106 * Since the ilt for the function that is down is not valid, this will cause
6107 * a translation error which is unrecoverable.
6108 * The Workaround is intended to make sure that when this happens nothing fatal
6109 * will occur. The workaround:
6110 * 1. First PF driver which loads on a path will:
6111 * a. After taking the chip out of reset, by using pretend,
6112 * it will write "0" to the following registers of
6114 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6115 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6116 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6117 * And for itself it will write '1' to
6118 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6119 * dmae-operations (writing to pram for example.)
6120 * note: can be done for only function 6,7 but cleaner this
6122 * b. Write zero+valid to the entire ILT.
6123 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6124 * VNIC3 (of that port). The range allocated will be the
6125 * entire ILT. This is needed to prevent ILT range error.
6126 * 2. Any PF driver load flow:
6127 * a. ILT update with the physical addresses of the allocated
6129 * b. Wait 20msec. - note that this timeout is needed to make
6130 * sure there are no requests in one of the PXP internal
6131 * queues with "old" ILT addresses.
6132 * c. PF enable in the PGLC.
6133 * d. Clear the was_error of the PF in the PGLC. (could have
6134 * occured while driver was down)
6135 * e. PF enable in the CFC (WEAK + STRONG)
6136 * f. Timers scan enable
6137 * 3. PF driver unload flow:
6138 * a. Clear the Timers scan_en.
6139 * b. Polling for scan_on=0 for that PF.
6140 * c. Clear the PF enable bit in the PXP.
6141 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6142 * e. Write zero+valid to all ILT entries (The valid bit must
6144 * f. If this is VNIC 3 of a port then also init
6145 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6146 * to the last enrty in the ILT.
6149 * Currently the PF error in the PGLC is non recoverable.
6150 * In the future the there will be a recovery routine for this error.
6151 * Currently attention is masked.
6152 * Having an MCP lock on the load/unload process does not guarantee that
6153 * there is no Timer disable during Func6/7 enable. This is because the
6154 * Timers scan is currently being cleared by the MCP on FLR.
6155 * Step 2.d can be done only for PF6/7 and the driver can also check if
6156 * there is error before clearing it. But the flow above is simpler and
6158 * All ILT entries are written by zero+valid and not just PF6/7
6159 * ILT entries since in the future the ILT entries allocation for
6160 * PF-s might be dynamic.
6162 struct ilt_client_info ilt_cli
;
6163 struct bnx2x_ilt ilt
;
6164 memset(&ilt_cli
, 0, sizeof(struct ilt_client_info
));
6165 memset(&ilt
, 0, sizeof(struct bnx2x_ilt
));
6167 /* initialize dummy TM client */
6169 ilt_cli
.end
= ILT_NUM_PAGE_ENTRIES
- 1;
6170 ilt_cli
.client_num
= ILT_CLIENT_TM
;
6172 /* Step 1: set zeroes to all ilt page entries with valid bit on
6173 * Step 2: set the timers first/last ilt entry to point
6174 * to the entire range to prevent ILT range error for 3rd/4th
6175 * vnic (this code assumes existance of the vnic)
6177 * both steps performed by call to bnx2x_ilt_client_init_op()
6178 * with dummy TM client
6180 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6181 * and his brother are split registers
6183 bnx2x_pretend_func(bp
, (BP_PATH(bp
) + 6));
6184 bnx2x_ilt_client_init_op_ilt(bp
, &ilt
, &ilt_cli
, INITOP_CLEAR
);
6185 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
6187 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN
, BNX2X_PXP_DRAM_ALIGN
);
6188 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN_RD
, BNX2X_PXP_DRAM_ALIGN
);
6189 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN_SEL
, 1);
6193 REG_WR(bp
, PXP2_REG_RQ_DISABLE_INPUTS
, 0);
6194 REG_WR(bp
, PXP2_REG_RD_DISABLE_INPUTS
, 0);
6196 if (!CHIP_IS_E1x(bp
)) {
6197 int factor
= CHIP_REV_IS_EMUL(bp
) ? 1000 :
6198 (CHIP_REV_IS_FPGA(bp
) ? 400 : 0);
6199 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, PHASE_COMMON
);
6201 bnx2x_init_block(bp
, BLOCK_ATC
, PHASE_COMMON
);
6203 /* let the HW do it's magic ... */
6206 val
= REG_RD(bp
, ATC_REG_ATC_INIT_DONE
);
6207 } while (factor
-- && (val
!= 1));
6210 BNX2X_ERR("ATC_INIT failed\n");
6215 bnx2x_init_block(bp
, BLOCK_DMAE
, PHASE_COMMON
);
6217 /* clean the DMAE memory */
6219 bnx2x_init_fill(bp
, TSEM_REG_PRAM
, 0, 8, 1);
6221 bnx2x_init_block(bp
, BLOCK_TCM
, PHASE_COMMON
);
6223 bnx2x_init_block(bp
, BLOCK_UCM
, PHASE_COMMON
);
6225 bnx2x_init_block(bp
, BLOCK_CCM
, PHASE_COMMON
);
6227 bnx2x_init_block(bp
, BLOCK_XCM
, PHASE_COMMON
);
6229 bnx2x_read_dmae(bp
, XSEM_REG_PASSIVE_BUFFER
, 3);
6230 bnx2x_read_dmae(bp
, CSEM_REG_PASSIVE_BUFFER
, 3);
6231 bnx2x_read_dmae(bp
, TSEM_REG_PASSIVE_BUFFER
, 3);
6232 bnx2x_read_dmae(bp
, USEM_REG_PASSIVE_BUFFER
, 3);
6234 bnx2x_init_block(bp
, BLOCK_QM
, PHASE_COMMON
);
6237 /* QM queues pointers table */
6238 bnx2x_qm_init_ptr_table(bp
, bp
->qm_cid_count
, INITOP_SET
);
6240 /* soft reset pulse */
6241 REG_WR(bp
, QM_REG_SOFT_RESET
, 1);
6242 REG_WR(bp
, QM_REG_SOFT_RESET
, 0);
6245 bnx2x_init_block(bp
, BLOCK_TM
, PHASE_COMMON
);
6248 bnx2x_init_block(bp
, BLOCK_DORQ
, PHASE_COMMON
);
6249 REG_WR(bp
, DORQ_REG_DPM_CID_OFST
, BNX2X_DB_SHIFT
);
6250 if (!CHIP_REV_IS_SLOW(bp
))
6251 /* enable hw interrupt from doorbell Q */
6252 REG_WR(bp
, DORQ_REG_DORQ_INT_MASK
, 0);
6254 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
6256 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
6257 REG_WR(bp
, PRS_REG_A_PRSU_20
, 0xf);
6259 if (!CHIP_IS_E1(bp
))
6260 REG_WR(bp
, PRS_REG_E1HOV_MODE
, bp
->path_has_ovlan
);
6262 if (!CHIP_IS_E1x(bp
) && !CHIP_IS_E3B0(bp
))
6263 /* Bit-map indicating which L2 hdrs may appear
6264 * after the basic Ethernet header
6266 REG_WR(bp
, PRS_REG_HDRS_AFTER_BASIC
,
6267 bp
->path_has_ovlan
? 7 : 6);
6269 bnx2x_init_block(bp
, BLOCK_TSDM
, PHASE_COMMON
);
6270 bnx2x_init_block(bp
, BLOCK_CSDM
, PHASE_COMMON
);
6271 bnx2x_init_block(bp
, BLOCK_USDM
, PHASE_COMMON
);
6272 bnx2x_init_block(bp
, BLOCK_XSDM
, PHASE_COMMON
);
6274 if (!CHIP_IS_E1x(bp
)) {
6275 /* reset VFC memories */
6276 REG_WR(bp
, TSEM_REG_FAST_MEMORY
+ VFC_REG_MEMORIES_RST
,
6277 VFC_MEMORIES_RST_REG_CAM_RST
|
6278 VFC_MEMORIES_RST_REG_RAM_RST
);
6279 REG_WR(bp
, XSEM_REG_FAST_MEMORY
+ VFC_REG_MEMORIES_RST
,
6280 VFC_MEMORIES_RST_REG_CAM_RST
|
6281 VFC_MEMORIES_RST_REG_RAM_RST
);
6286 bnx2x_init_block(bp
, BLOCK_TSEM
, PHASE_COMMON
);
6287 bnx2x_init_block(bp
, BLOCK_USEM
, PHASE_COMMON
);
6288 bnx2x_init_block(bp
, BLOCK_CSEM
, PHASE_COMMON
);
6289 bnx2x_init_block(bp
, BLOCK_XSEM
, PHASE_COMMON
);
6292 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
6294 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
,
6297 bnx2x_init_block(bp
, BLOCK_UPB
, PHASE_COMMON
);
6298 bnx2x_init_block(bp
, BLOCK_XPB
, PHASE_COMMON
);
6299 bnx2x_init_block(bp
, BLOCK_PBF
, PHASE_COMMON
);
6301 if (!CHIP_IS_E1x(bp
))
6302 REG_WR(bp
, PBF_REG_HDRS_AFTER_BASIC
,
6303 bp
->path_has_ovlan
? 7 : 6);
6305 REG_WR(bp
, SRC_REG_SOFT_RST
, 1);
6307 bnx2x_init_block(bp
, BLOCK_SRC
, PHASE_COMMON
);
6310 REG_WR(bp
, SRC_REG_KEYSEARCH_0
, 0x63285672);
6311 REG_WR(bp
, SRC_REG_KEYSEARCH_1
, 0x24b8f2cc);
6312 REG_WR(bp
, SRC_REG_KEYSEARCH_2
, 0x223aef9b);
6313 REG_WR(bp
, SRC_REG_KEYSEARCH_3
, 0x26001e3a);
6314 REG_WR(bp
, SRC_REG_KEYSEARCH_4
, 0x7ae91116);
6315 REG_WR(bp
, SRC_REG_KEYSEARCH_5
, 0x5ce5230b);
6316 REG_WR(bp
, SRC_REG_KEYSEARCH_6
, 0x298d8adf);
6317 REG_WR(bp
, SRC_REG_KEYSEARCH_7
, 0x6eb0ff09);
6318 REG_WR(bp
, SRC_REG_KEYSEARCH_8
, 0x1830f82f);
6319 REG_WR(bp
, SRC_REG_KEYSEARCH_9
, 0x01e46be7);
6321 REG_WR(bp
, SRC_REG_SOFT_RST
, 0);
6323 if (sizeof(union cdu_context
) != 1024)
6324 /* we currently assume that a context is 1024 bytes */
6325 dev_alert(&bp
->pdev
->dev
, "please adjust the size "
6326 "of cdu_context(%ld)\n",
6327 (long)sizeof(union cdu_context
));
6329 bnx2x_init_block(bp
, BLOCK_CDU
, PHASE_COMMON
);
6330 val
= (4 << 24) + (0 << 12) + 1024;
6331 REG_WR(bp
, CDU_REG_CDU_GLOBAL_PARAMS
, val
);
6333 bnx2x_init_block(bp
, BLOCK_CFC
, PHASE_COMMON
);
6334 REG_WR(bp
, CFC_REG_INIT_REG
, 0x7FF);
6335 /* enable context validation interrupt from CFC */
6336 REG_WR(bp
, CFC_REG_CFC_INT_MASK
, 0);
6338 /* set the thresholds to prevent CFC/CDU race */
6339 REG_WR(bp
, CFC_REG_DEBUG0
, 0x20020000);
6341 bnx2x_init_block(bp
, BLOCK_HC
, PHASE_COMMON
);
6343 if (!CHIP_IS_E1x(bp
) && BP_NOMCP(bp
))
6344 REG_WR(bp
, IGU_REG_RESET_MEMORIES
, 0x36);
6346 bnx2x_init_block(bp
, BLOCK_IGU
, PHASE_COMMON
);
6347 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, PHASE_COMMON
);
6349 /* Reset PCIE errors for debug */
6350 REG_WR(bp
, 0x2814, 0xffffffff);
6351 REG_WR(bp
, 0x3820, 0xffffffff);
6353 if (!CHIP_IS_E1x(bp
)) {
6354 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_CONTROL_5
,
6355 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1
|
6356 PXPCS_TL_CONTROL_5_ERR_UNSPPORT
));
6357 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_FUNC345_STAT
,
6358 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4
|
6359 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3
|
6360 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2
));
6361 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_FUNC678_STAT
,
6362 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7
|
6363 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6
|
6364 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5
));
6367 bnx2x_init_block(bp
, BLOCK_NIG
, PHASE_COMMON
);
6368 if (!CHIP_IS_E1(bp
)) {
6369 /* in E3 this done in per-port section */
6370 if (!CHIP_IS_E3(bp
))
6371 REG_WR(bp
, NIG_REG_LLH_MF_MODE
, IS_MF(bp
));
6373 if (CHIP_IS_E1H(bp
))
6374 /* not applicable for E2 (and above ...) */
6375 REG_WR(bp
, NIG_REG_LLH_E1HOV_MODE
, IS_MF_SD(bp
));
6377 if (CHIP_REV_IS_SLOW(bp
))
6380 /* finish CFC init */
6381 val
= reg_poll(bp
, CFC_REG_LL_INIT_DONE
, 1, 100, 10);
6383 BNX2X_ERR("CFC LL_INIT failed\n");
6386 val
= reg_poll(bp
, CFC_REG_AC_INIT_DONE
, 1, 100, 10);
6388 BNX2X_ERR("CFC AC_INIT failed\n");
6391 val
= reg_poll(bp
, CFC_REG_CAM_INIT_DONE
, 1, 100, 10);
6393 BNX2X_ERR("CFC CAM_INIT failed\n");
6396 REG_WR(bp
, CFC_REG_DEBUG0
, 0);
6398 if (CHIP_IS_E1(bp
)) {
6399 /* read NIG statistic
6400 to see if this is our first up since powerup */
6401 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
6402 val
= *bnx2x_sp(bp
, wb_data
[0]);
6404 /* do internal memory self test */
6405 if ((val
== 0) && bnx2x_int_mem_test(bp
)) {
6406 BNX2X_ERR("internal mem self test failed\n");
6411 bnx2x_setup_fan_failure_detection(bp
);
6413 /* clear PXP2 attentions */
6414 REG_RD(bp
, PXP2_REG_PXP2_INT_STS_CLR_0
);
6416 bnx2x_enable_blocks_attention(bp
);
6417 bnx2x_enable_blocks_parity(bp
);
6419 if (!BP_NOMCP(bp
)) {
6420 if (CHIP_IS_E1x(bp
))
6421 bnx2x__common_init_phy(bp
);
6423 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6429 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6431 * @bp: driver handle
6433 static int bnx2x_init_hw_common_chip(struct bnx2x
*bp
)
6435 int rc
= bnx2x_init_hw_common(bp
);
6440 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6442 bnx2x__common_init_phy(bp
);
6447 static int bnx2x_init_hw_port(struct bnx2x
*bp
)
6449 int port
= BP_PORT(bp
);
6450 int init_phase
= port
? PHASE_PORT1
: PHASE_PORT0
;
6454 bnx2x__link_reset(bp
);
6456 DP(BNX2X_MSG_MCP
, "starting port init port %d\n", port
);
6458 REG_WR(bp
, NIG_REG_MASK_INTERRUPT_PORT0
+ port
*4, 0);
6460 bnx2x_init_block(bp
, BLOCK_MISC
, init_phase
);
6461 bnx2x_init_block(bp
, BLOCK_PXP
, init_phase
);
6462 bnx2x_init_block(bp
, BLOCK_PXP2
, init_phase
);
6464 /* Timers bug workaround: disables the pf_master bit in pglue at
6465 * common phase, we need to enable it here before any dmae access are
6466 * attempted. Therefore we manually added the enable-master to the
6467 * port phase (it also happens in the function phase)
6469 if (!CHIP_IS_E1x(bp
))
6470 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
6472 bnx2x_init_block(bp
, BLOCK_ATC
, init_phase
);
6473 bnx2x_init_block(bp
, BLOCK_DMAE
, init_phase
);
6474 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, init_phase
);
6475 bnx2x_init_block(bp
, BLOCK_QM
, init_phase
);
6477 bnx2x_init_block(bp
, BLOCK_TCM
, init_phase
);
6478 bnx2x_init_block(bp
, BLOCK_UCM
, init_phase
);
6479 bnx2x_init_block(bp
, BLOCK_CCM
, init_phase
);
6480 bnx2x_init_block(bp
, BLOCK_XCM
, init_phase
);
6482 /* QM cid (connection) count */
6483 bnx2x_qm_init_cid_count(bp
, bp
->qm_cid_count
, INITOP_SET
);
6486 bnx2x_init_block(bp
, BLOCK_TM
, init_phase
);
6487 REG_WR(bp
, TM_REG_LIN0_SCAN_TIME
+ port
*4, 20);
6488 REG_WR(bp
, TM_REG_LIN0_MAX_ACTIVE_CID
+ port
*4, 31);
6491 bnx2x_init_block(bp
, BLOCK_DORQ
, init_phase
);
6493 if (CHIP_IS_E1(bp
) || CHIP_IS_E1H(bp
)) {
6494 bnx2x_init_block(bp
, BLOCK_BRB1
, init_phase
);
6497 low
= ((bp
->flags
& ONE_PORT_FLAG
) ? 160 : 246);
6498 else if (bp
->dev
->mtu
> 4096) {
6499 if (bp
->flags
& ONE_PORT_FLAG
)
6503 /* (24*1024 + val*4)/256 */
6504 low
= 96 + (val
/64) +
6505 ((val
% 64) ? 1 : 0);
6508 low
= ((bp
->flags
& ONE_PORT_FLAG
) ? 80 : 160);
6509 high
= low
+ 56; /* 14*1024/256 */
6510 REG_WR(bp
, BRB1_REG_PAUSE_LOW_THRESHOLD_0
+ port
*4, low
);
6511 REG_WR(bp
, BRB1_REG_PAUSE_HIGH_THRESHOLD_0
+ port
*4, high
);
6514 if (CHIP_MODE_IS_4_PORT(bp
))
6515 REG_WR(bp
, (BP_PORT(bp
) ?
6516 BRB1_REG_MAC_GUARANTIED_1
:
6517 BRB1_REG_MAC_GUARANTIED_0
), 40);
6520 bnx2x_init_block(bp
, BLOCK_PRS
, init_phase
);
6521 if (CHIP_IS_E3B0(bp
))
6522 /* Ovlan exists only if we are in multi-function +
6523 * switch-dependent mode, in switch-independent there
6524 * is no ovlan headers
6526 REG_WR(bp
, BP_PORT(bp
) ?
6527 PRS_REG_HDRS_AFTER_BASIC_PORT_1
:
6528 PRS_REG_HDRS_AFTER_BASIC_PORT_0
,
6529 (bp
->path_has_ovlan
? 7 : 6));
6531 bnx2x_init_block(bp
, BLOCK_TSDM
, init_phase
);
6532 bnx2x_init_block(bp
, BLOCK_CSDM
, init_phase
);
6533 bnx2x_init_block(bp
, BLOCK_USDM
, init_phase
);
6534 bnx2x_init_block(bp
, BLOCK_XSDM
, init_phase
);
6536 bnx2x_init_block(bp
, BLOCK_TSEM
, init_phase
);
6537 bnx2x_init_block(bp
, BLOCK_USEM
, init_phase
);
6538 bnx2x_init_block(bp
, BLOCK_CSEM
, init_phase
);
6539 bnx2x_init_block(bp
, BLOCK_XSEM
, init_phase
);
6541 bnx2x_init_block(bp
, BLOCK_UPB
, init_phase
);
6542 bnx2x_init_block(bp
, BLOCK_XPB
, init_phase
);
6544 bnx2x_init_block(bp
, BLOCK_PBF
, init_phase
);
6546 if (CHIP_IS_E1x(bp
)) {
6547 /* configure PBF to work without PAUSE mtu 9000 */
6548 REG_WR(bp
, PBF_REG_P0_PAUSE_ENABLE
+ port
*4, 0);
6550 /* update threshold */
6551 REG_WR(bp
, PBF_REG_P0_ARB_THRSH
+ port
*4, (9040/16));
6552 /* update init credit */
6553 REG_WR(bp
, PBF_REG_P0_INIT_CRD
+ port
*4, (9040/16) + 553 - 22);
6556 REG_WR(bp
, PBF_REG_INIT_P0
+ port
*4, 1);
6558 REG_WR(bp
, PBF_REG_INIT_P0
+ port
*4, 0);
6562 bnx2x_init_block(bp
, BLOCK_SRC
, init_phase
);
6564 bnx2x_init_block(bp
, BLOCK_CDU
, init_phase
);
6565 bnx2x_init_block(bp
, BLOCK_CFC
, init_phase
);
6567 if (CHIP_IS_E1(bp
)) {
6568 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
6569 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
6571 bnx2x_init_block(bp
, BLOCK_HC
, init_phase
);
6573 bnx2x_init_block(bp
, BLOCK_IGU
, init_phase
);
6575 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, init_phase
);
6576 /* init aeu_mask_attn_func_0/1:
6577 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6578 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6579 * bits 4-7 are used for "per vn group attention" */
6580 val
= IS_MF(bp
) ? 0xF7 : 0x7;
6581 /* Enable DCBX attention for all but E1 */
6582 val
|= CHIP_IS_E1(bp
) ? 0 : 0x10;
6583 REG_WR(bp
, MISC_REG_AEU_MASK_ATTN_FUNC_0
+ port
*4, val
);
6585 bnx2x_init_block(bp
, BLOCK_NIG
, init_phase
);
6587 if (!CHIP_IS_E1x(bp
)) {
6588 /* Bit-map indicating which L2 hdrs may appear after the
6589 * basic Ethernet header
6591 REG_WR(bp
, BP_PORT(bp
) ?
6592 NIG_REG_P1_HDRS_AFTER_BASIC
:
6593 NIG_REG_P0_HDRS_AFTER_BASIC
,
6594 IS_MF_SD(bp
) ? 7 : 6);
6597 REG_WR(bp
, BP_PORT(bp
) ?
6598 NIG_REG_LLH1_MF_MODE
:
6599 NIG_REG_LLH_MF_MODE
, IS_MF(bp
));
6601 if (!CHIP_IS_E3(bp
))
6602 REG_WR(bp
, NIG_REG_XGXS_SERDES0_MODE_SEL
+ port
*4, 1);
6604 if (!CHIP_IS_E1(bp
)) {
6605 /* 0x2 disable mf_ov, 0x1 enable */
6606 REG_WR(bp
, NIG_REG_LLH0_BRB1_DRV_MASK_MF
+ port
*4,
6607 (IS_MF_SD(bp
) ? 0x1 : 0x2));
6609 if (!CHIP_IS_E1x(bp
)) {
6611 switch (bp
->mf_mode
) {
6612 case MULTI_FUNCTION_SD
:
6615 case MULTI_FUNCTION_SI
:
6620 REG_WR(bp
, (BP_PORT(bp
) ? NIG_REG_LLH1_CLS_TYPE
:
6621 NIG_REG_LLH0_CLS_TYPE
), val
);
6624 REG_WR(bp
, NIG_REG_LLFC_ENABLE_0
+ port
*4, 0);
6625 REG_WR(bp
, NIG_REG_LLFC_OUT_EN_0
+ port
*4, 0);
6626 REG_WR(bp
, NIG_REG_PAUSE_ENABLE_0
+ port
*4, 1);
6631 /* If SPIO5 is set to generate interrupts, enable it for this port */
6632 val
= REG_RD(bp
, MISC_REG_SPIO_EVENT_EN
);
6633 if (val
& (1 << MISC_REGISTERS_SPIO_5
)) {
6634 u32 reg_addr
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
6635 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
6636 val
= REG_RD(bp
, reg_addr
);
6637 val
|= AEU_INPUTS_ATTN_BITS_SPIO5
;
6638 REG_WR(bp
, reg_addr
, val
);
6644 static void bnx2x_ilt_wr(struct bnx2x
*bp
, u32 index
, dma_addr_t addr
)
6649 reg
= PXP2_REG_RQ_ONCHIP_AT
+ index
*8;
6651 reg
= PXP2_REG_RQ_ONCHIP_AT_B0
+ index
*8;
6653 bnx2x_wb_wr(bp
, reg
, ONCHIP_ADDR1(addr
), ONCHIP_ADDR2(addr
));
6656 static inline void bnx2x_igu_clear_sb(struct bnx2x
*bp
, u8 idu_sb_id
)
6658 bnx2x_igu_clear_sb_gen(bp
, BP_FUNC(bp
), idu_sb_id
, true /*PF*/);
6661 static inline void bnx2x_clear_func_ilt(struct bnx2x
*bp
, u32 func
)
6663 u32 i
, base
= FUNC_ILT_BASE(func
);
6664 for (i
= base
; i
< base
+ ILT_PER_FUNC
; i
++)
6665 bnx2x_ilt_wr(bp
, i
, 0);
6668 static int bnx2x_init_hw_func(struct bnx2x
*bp
)
6670 int port
= BP_PORT(bp
);
6671 int func
= BP_FUNC(bp
);
6672 int init_phase
= PHASE_PF0
+ func
;
6673 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
6676 u32 main_mem_base
, main_mem_size
, main_mem_prty_clr
;
6677 int i
, main_mem_width
;
6679 DP(BNX2X_MSG_MCP
, "starting func init func %d\n", func
);
6681 /* FLR cleanup - hmmm */
6682 if (!CHIP_IS_E1x(bp
))
6683 bnx2x_pf_flr_clnup(bp
);
6685 /* set MSI reconfigure capability */
6686 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
6687 addr
= (port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
);
6688 val
= REG_RD(bp
, addr
);
6689 val
|= HC_CONFIG_0_REG_MSI_ATTN_EN_0
;
6690 REG_WR(bp
, addr
, val
);
6693 bnx2x_init_block(bp
, BLOCK_PXP
, init_phase
);
6694 bnx2x_init_block(bp
, BLOCK_PXP2
, init_phase
);
6697 cdu_ilt_start
= ilt
->clients
[ILT_CLIENT_CDU
].start
;
6699 for (i
= 0; i
< L2_ILT_LINES(bp
); i
++) {
6700 ilt
->lines
[cdu_ilt_start
+ i
].page
=
6701 bp
->context
.vcxt
+ (ILT_PAGE_CIDS
* i
);
6702 ilt
->lines
[cdu_ilt_start
+ i
].page_mapping
=
6703 bp
->context
.cxt_mapping
+ (CDU_ILT_PAGE_SZ
* i
);
6704 /* cdu ilt pages are allocated manually so there's no need to
6707 bnx2x_ilt_init_op(bp
, INITOP_SET
);
6710 bnx2x_src_init_t2(bp
, bp
->t2
, bp
->t2_mapping
, SRC_CONN_NUM
);
6712 /* T1 hash bits value determines the T1 number of entries */
6713 REG_WR(bp
, SRC_REG_NUMBER_HASH_BITS0
+ port
*4, SRC_HASH_BITS
);
6718 REG_WR(bp
, PRS_REG_NIC_MODE
, 1);
6719 #endif /* BCM_CNIC */
6721 if (!CHIP_IS_E1x(bp
)) {
6722 u32 pf_conf
= IGU_PF_CONF_FUNC_EN
;
6724 /* Turn on a single ISR mode in IGU if driver is going to use
6727 if (!(bp
->flags
& USING_MSIX_FLAG
))
6728 pf_conf
|= IGU_PF_CONF_SINGLE_ISR_EN
;
6730 * Timers workaround bug: function init part.
6731 * Need to wait 20msec after initializing ILT,
6732 * needed to make sure there are no requests in
6733 * one of the PXP internal queues with "old" ILT addresses
6737 * Master enable - Due to WB DMAE writes performed before this
6738 * register is re-initialized as part of the regular function
6741 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
6742 /* Enable the function in IGU */
6743 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, pf_conf
);
6748 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, init_phase
);
6750 if (!CHIP_IS_E1x(bp
))
6751 REG_WR(bp
, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR
, func
);
6753 bnx2x_init_block(bp
, BLOCK_ATC
, init_phase
);
6754 bnx2x_init_block(bp
, BLOCK_DMAE
, init_phase
);
6755 bnx2x_init_block(bp
, BLOCK_NIG
, init_phase
);
6756 bnx2x_init_block(bp
, BLOCK_SRC
, init_phase
);
6757 bnx2x_init_block(bp
, BLOCK_MISC
, init_phase
);
6758 bnx2x_init_block(bp
, BLOCK_TCM
, init_phase
);
6759 bnx2x_init_block(bp
, BLOCK_UCM
, init_phase
);
6760 bnx2x_init_block(bp
, BLOCK_CCM
, init_phase
);
6761 bnx2x_init_block(bp
, BLOCK_XCM
, init_phase
);
6762 bnx2x_init_block(bp
, BLOCK_TSEM
, init_phase
);
6763 bnx2x_init_block(bp
, BLOCK_USEM
, init_phase
);
6764 bnx2x_init_block(bp
, BLOCK_CSEM
, init_phase
);
6765 bnx2x_init_block(bp
, BLOCK_XSEM
, init_phase
);
6767 if (!CHIP_IS_E1x(bp
))
6768 REG_WR(bp
, QM_REG_PF_EN
, 1);
6770 if (!CHIP_IS_E1x(bp
)) {
6771 REG_WR(bp
, TSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
6772 REG_WR(bp
, USEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
6773 REG_WR(bp
, CSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
6774 REG_WR(bp
, XSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
6776 bnx2x_init_block(bp
, BLOCK_QM
, init_phase
);
6778 bnx2x_init_block(bp
, BLOCK_TM
, init_phase
);
6779 bnx2x_init_block(bp
, BLOCK_DORQ
, init_phase
);
6780 bnx2x_init_block(bp
, BLOCK_BRB1
, init_phase
);
6781 bnx2x_init_block(bp
, BLOCK_PRS
, init_phase
);
6782 bnx2x_init_block(bp
, BLOCK_TSDM
, init_phase
);
6783 bnx2x_init_block(bp
, BLOCK_CSDM
, init_phase
);
6784 bnx2x_init_block(bp
, BLOCK_USDM
, init_phase
);
6785 bnx2x_init_block(bp
, BLOCK_XSDM
, init_phase
);
6786 bnx2x_init_block(bp
, BLOCK_UPB
, init_phase
);
6787 bnx2x_init_block(bp
, BLOCK_XPB
, init_phase
);
6788 bnx2x_init_block(bp
, BLOCK_PBF
, init_phase
);
6789 if (!CHIP_IS_E1x(bp
))
6790 REG_WR(bp
, PBF_REG_DISABLE_PF
, 0);
6792 bnx2x_init_block(bp
, BLOCK_CDU
, init_phase
);
6794 bnx2x_init_block(bp
, BLOCK_CFC
, init_phase
);
6796 if (!CHIP_IS_E1x(bp
))
6797 REG_WR(bp
, CFC_REG_WEAK_ENABLE_PF
, 1);
6800 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 1);
6801 REG_WR(bp
, NIG_REG_LLH0_FUNC_VLAN_ID
+ port
*8, bp
->mf_ov
);
6804 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, init_phase
);
6806 /* HC init per function */
6807 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
6808 if (CHIP_IS_E1H(bp
)) {
6809 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
6811 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
6812 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
6814 bnx2x_init_block(bp
, BLOCK_HC
, init_phase
);
6817 int num_segs
, sb_idx
, prod_offset
;
6819 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
6821 if (!CHIP_IS_E1x(bp
)) {
6822 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, 0);
6823 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, 0);
6826 bnx2x_init_block(bp
, BLOCK_IGU
, init_phase
);
6828 if (!CHIP_IS_E1x(bp
)) {
6832 * E2 mode: address 0-135 match to the mapping memory;
6833 * 136 - PF0 default prod; 137 - PF1 default prod;
6834 * 138 - PF2 default prod; 139 - PF3 default prod;
6835 * 140 - PF0 attn prod; 141 - PF1 attn prod;
6836 * 142 - PF2 attn prod; 143 - PF3 attn prod;
6839 * E1.5 mode - In backward compatible mode;
6840 * for non default SB; each even line in the memory
6841 * holds the U producer and each odd line hold
6842 * the C producer. The first 128 producers are for
6843 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6844 * producers are for the DSB for each PF.
6845 * Each PF has five segments: (the order inside each
6846 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6847 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6848 * 144-147 attn prods;
6850 /* non-default-status-blocks */
6851 num_segs
= CHIP_INT_MODE_IS_BC(bp
) ?
6852 IGU_BC_NDSB_NUM_SEGS
: IGU_NORM_NDSB_NUM_SEGS
;
6853 for (sb_idx
= 0; sb_idx
< bp
->igu_sb_cnt
; sb_idx
++) {
6854 prod_offset
= (bp
->igu_base_sb
+ sb_idx
) *
6857 for (i
= 0; i
< num_segs
; i
++) {
6858 addr
= IGU_REG_PROD_CONS_MEMORY
+
6859 (prod_offset
+ i
) * 4;
6860 REG_WR(bp
, addr
, 0);
6862 /* send consumer update with value 0 */
6863 bnx2x_ack_sb(bp
, bp
->igu_base_sb
+ sb_idx
,
6864 USTORM_ID
, 0, IGU_INT_NOP
, 1);
6865 bnx2x_igu_clear_sb(bp
,
6866 bp
->igu_base_sb
+ sb_idx
);
6869 /* default-status-blocks */
6870 num_segs
= CHIP_INT_MODE_IS_BC(bp
) ?
6871 IGU_BC_DSB_NUM_SEGS
: IGU_NORM_DSB_NUM_SEGS
;
6873 if (CHIP_MODE_IS_4_PORT(bp
))
6874 dsb_idx
= BP_FUNC(bp
);
6876 dsb_idx
= BP_VN(bp
);
6878 prod_offset
= (CHIP_INT_MODE_IS_BC(bp
) ?
6879 IGU_BC_BASE_DSB_PROD
+ dsb_idx
:
6880 IGU_NORM_BASE_DSB_PROD
+ dsb_idx
);
6883 * igu prods come in chunks of E1HVN_MAX (4) -
6884 * does not matters what is the current chip mode
6886 for (i
= 0; i
< (num_segs
* E1HVN_MAX
);
6888 addr
= IGU_REG_PROD_CONS_MEMORY
+
6889 (prod_offset
+ i
)*4;
6890 REG_WR(bp
, addr
, 0);
6892 /* send consumer update with 0 */
6893 if (CHIP_INT_MODE_IS_BC(bp
)) {
6894 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6895 USTORM_ID
, 0, IGU_INT_NOP
, 1);
6896 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6897 CSTORM_ID
, 0, IGU_INT_NOP
, 1);
6898 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6899 XSTORM_ID
, 0, IGU_INT_NOP
, 1);
6900 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6901 TSTORM_ID
, 0, IGU_INT_NOP
, 1);
6902 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6903 ATTENTION_ID
, 0, IGU_INT_NOP
, 1);
6905 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6906 USTORM_ID
, 0, IGU_INT_NOP
, 1);
6907 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
6908 ATTENTION_ID
, 0, IGU_INT_NOP
, 1);
6910 bnx2x_igu_clear_sb(bp
, bp
->igu_dsb_id
);
6912 /* !!! these should become driver const once
6913 rf-tool supports split-68 const */
6914 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_LSB
, 0);
6915 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_MSB
, 0);
6916 REG_WR(bp
, IGU_REG_SB_MASK_LSB
, 0);
6917 REG_WR(bp
, IGU_REG_SB_MASK_MSB
, 0);
6918 REG_WR(bp
, IGU_REG_PBA_STATUS_LSB
, 0);
6919 REG_WR(bp
, IGU_REG_PBA_STATUS_MSB
, 0);
6923 /* Reset PCIE errors for debug */
6924 REG_WR(bp
, 0x2114, 0xffffffff);
6925 REG_WR(bp
, 0x2120, 0xffffffff);
6927 if (CHIP_IS_E1x(bp
)) {
6928 main_mem_size
= HC_REG_MAIN_MEMORY_SIZE
/ 2; /*dwords*/
6929 main_mem_base
= HC_REG_MAIN_MEMORY
+
6930 BP_PORT(bp
) * (main_mem_size
* 4);
6931 main_mem_prty_clr
= HC_REG_HC_PRTY_STS_CLR
;
6934 val
= REG_RD(bp
, main_mem_prty_clr
);
6936 DP(BNX2X_MSG_MCP
, "Hmmm... Parity errors in HC "
6938 "function init (0x%x)!\n", val
);
6940 /* Clear "false" parity errors in MSI-X table */
6941 for (i
= main_mem_base
;
6942 i
< main_mem_base
+ main_mem_size
* 4;
6943 i
+= main_mem_width
) {
6944 bnx2x_read_dmae(bp
, i
, main_mem_width
/ 4);
6945 bnx2x_write_dmae(bp
, bnx2x_sp_mapping(bp
, wb_data
),
6946 i
, main_mem_width
/ 4);
6948 /* Clear HC parity attention */
6949 REG_RD(bp
, main_mem_prty_clr
);
6952 #ifdef BNX2X_STOP_ON_ERROR
6953 /* Enable STORMs SP logging */
6954 REG_WR8(bp
, BAR_USTRORM_INTMEM
+
6955 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
6956 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+
6957 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
6958 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
6959 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
6960 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+
6961 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
6964 bnx2x_phy_probe(&bp
->link_params
);
6970 void bnx2x_free_mem(struct bnx2x
*bp
)
6973 bnx2x_free_fp_mem(bp
);
6974 /* end of fastpath */
6976 BNX2X_PCI_FREE(bp
->def_status_blk
, bp
->def_status_blk_mapping
,
6977 sizeof(struct host_sp_status_block
));
6979 BNX2X_PCI_FREE(bp
->fw_stats
, bp
->fw_stats_mapping
,
6980 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
6982 BNX2X_PCI_FREE(bp
->slowpath
, bp
->slowpath_mapping
,
6983 sizeof(struct bnx2x_slowpath
));
6985 BNX2X_PCI_FREE(bp
->context
.vcxt
, bp
->context
.cxt_mapping
,
6988 bnx2x_ilt_mem_op(bp
, ILT_MEMOP_FREE
);
6990 BNX2X_FREE(bp
->ilt
->lines
);
6993 if (!CHIP_IS_E1x(bp
))
6994 BNX2X_PCI_FREE(bp
->cnic_sb
.e2_sb
, bp
->cnic_sb_mapping
,
6995 sizeof(struct host_hc_status_block_e2
));
6997 BNX2X_PCI_FREE(bp
->cnic_sb
.e1x_sb
, bp
->cnic_sb_mapping
,
6998 sizeof(struct host_hc_status_block_e1x
));
7000 BNX2X_PCI_FREE(bp
->t2
, bp
->t2_mapping
, SRC_T2_SZ
);
7003 BNX2X_PCI_FREE(bp
->spq
, bp
->spq_mapping
, BCM_PAGE_SIZE
);
7005 BNX2X_PCI_FREE(bp
->eq_ring
, bp
->eq_mapping
,
7006 BCM_PAGE_SIZE
* NUM_EQ_PAGES
);
7009 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x
*bp
)
7012 int is_fcoe_stats
= NO_FCOE(bp
) ? 0 : 1;
7014 /* number of queues for statistics is number of eth queues + FCoE */
7015 u8 num_queue_stats
= BNX2X_NUM_ETH_QUEUES(bp
) + is_fcoe_stats
;
7017 /* Total number of FW statistics requests =
7018 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7021 bp
->fw_stats_num
= 2 + is_fcoe_stats
+ num_queue_stats
;
7024 /* Request is built from stats_query_header and an array of
7025 * stats_query_cmd_group each of which contains
7026 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7027 * configured in the stats_query_header.
7029 num_groups
= ((bp
->fw_stats_num
) / STATS_QUERY_CMD_COUNT
) +
7030 (((bp
->fw_stats_num
) % STATS_QUERY_CMD_COUNT
) ? 1 : 0);
7032 bp
->fw_stats_req_sz
= sizeof(struct stats_query_header
) +
7033 num_groups
* sizeof(struct stats_query_cmd_group
);
7035 /* Data for statistics requests + stats_conter
7037 * stats_counter holds per-STORM counters that are incremented
7038 * when STORM has finished with the current request.
7040 * memory for FCoE offloaded statistics are counted anyway,
7041 * even if they will not be sent.
7043 bp
->fw_stats_data_sz
= sizeof(struct per_port_stats
) +
7044 sizeof(struct per_pf_stats
) +
7045 sizeof(struct fcoe_statistics_params
) +
7046 sizeof(struct per_queue_stats
) * num_queue_stats
+
7047 sizeof(struct stats_counter
);
7049 BNX2X_PCI_ALLOC(bp
->fw_stats
, &bp
->fw_stats_mapping
,
7050 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
7053 bp
->fw_stats_req
= (struct bnx2x_fw_stats_req
*)bp
->fw_stats
;
7054 bp
->fw_stats_req_mapping
= bp
->fw_stats_mapping
;
7056 bp
->fw_stats_data
= (struct bnx2x_fw_stats_data
*)
7057 ((u8
*)bp
->fw_stats
+ bp
->fw_stats_req_sz
);
7059 bp
->fw_stats_data_mapping
= bp
->fw_stats_mapping
+
7060 bp
->fw_stats_req_sz
;
7064 BNX2X_PCI_FREE(bp
->fw_stats
, bp
->fw_stats_mapping
,
7065 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
7070 int bnx2x_alloc_mem(struct bnx2x
*bp
)
7073 if (!CHIP_IS_E1x(bp
))
7074 /* size = the status block + ramrod buffers */
7075 BNX2X_PCI_ALLOC(bp
->cnic_sb
.e2_sb
, &bp
->cnic_sb_mapping
,
7076 sizeof(struct host_hc_status_block_e2
));
7078 BNX2X_PCI_ALLOC(bp
->cnic_sb
.e1x_sb
, &bp
->cnic_sb_mapping
,
7079 sizeof(struct host_hc_status_block_e1x
));
7081 /* allocate searcher T2 table */
7082 BNX2X_PCI_ALLOC(bp
->t2
, &bp
->t2_mapping
, SRC_T2_SZ
);
7086 BNX2X_PCI_ALLOC(bp
->def_status_blk
, &bp
->def_status_blk_mapping
,
7087 sizeof(struct host_sp_status_block
));
7089 BNX2X_PCI_ALLOC(bp
->slowpath
, &bp
->slowpath_mapping
,
7090 sizeof(struct bnx2x_slowpath
));
7092 /* Allocated memory for FW statistics */
7093 if (bnx2x_alloc_fw_stats_mem(bp
))
7096 bp
->context
.size
= sizeof(union cdu_context
) * BNX2X_L2_CID_COUNT(bp
);
7098 BNX2X_PCI_ALLOC(bp
->context
.vcxt
, &bp
->context
.cxt_mapping
,
7101 BNX2X_ALLOC(bp
->ilt
->lines
, sizeof(struct ilt_line
) * ILT_MAX_LINES
);
7103 if (bnx2x_ilt_mem_op(bp
, ILT_MEMOP_ALLOC
))
7106 /* Slow path ring */
7107 BNX2X_PCI_ALLOC(bp
->spq
, &bp
->spq_mapping
, BCM_PAGE_SIZE
);
7110 BNX2X_PCI_ALLOC(bp
->eq_ring
, &bp
->eq_mapping
,
7111 BCM_PAGE_SIZE
* NUM_EQ_PAGES
);
7115 /* need to be done at the end, since it's self adjusting to amount
7116 * of memory available for RSS queues
7118 if (bnx2x_alloc_fp_mem(bp
))
7128 * Init service functions
7131 int bnx2x_set_mac_one(struct bnx2x
*bp
, u8
*mac
,
7132 struct bnx2x_vlan_mac_obj
*obj
, bool set
,
7133 int mac_type
, unsigned long *ramrod_flags
)
7136 struct bnx2x_vlan_mac_ramrod_params ramrod_param
;
7138 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
7140 /* Fill general parameters */
7141 ramrod_param
.vlan_mac_obj
= obj
;
7142 ramrod_param
.ramrod_flags
= *ramrod_flags
;
7144 /* Fill a user request section if needed */
7145 if (!test_bit(RAMROD_CONT
, ramrod_flags
)) {
7146 memcpy(ramrod_param
.user_req
.u
.mac
.mac
, mac
, ETH_ALEN
);
7148 __set_bit(mac_type
, &ramrod_param
.user_req
.vlan_mac_flags
);
7150 /* Set the command: ADD or DEL */
7152 ramrod_param
.user_req
.cmd
= BNX2X_VLAN_MAC_ADD
;
7154 ramrod_param
.user_req
.cmd
= BNX2X_VLAN_MAC_DEL
;
7157 rc
= bnx2x_config_vlan_mac(bp
, &ramrod_param
);
7159 BNX2X_ERR("%s MAC failed\n", (set
? "Set" : "Del"));
7163 int bnx2x_del_all_macs(struct bnx2x
*bp
,
7164 struct bnx2x_vlan_mac_obj
*mac_obj
,
7165 int mac_type
, bool wait_for_comp
)
7168 unsigned long ramrod_flags
= 0, vlan_mac_flags
= 0;
7170 /* Wait for completion of requested */
7172 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
7174 /* Set the mac type of addresses we want to clear */
7175 __set_bit(mac_type
, &vlan_mac_flags
);
7177 rc
= mac_obj
->delete_all(bp
, mac_obj
, &vlan_mac_flags
, &ramrod_flags
);
7179 BNX2X_ERR("Failed to delete MACs: %d\n", rc
);
7184 int bnx2x_set_eth_mac(struct bnx2x
*bp
, bool set
)
7186 unsigned long ramrod_flags
= 0;
7189 if (is_zero_ether_addr(bp
->dev
->dev_addr
) && IS_MF_ISCSI_SD(bp
)) {
7190 DP(NETIF_MSG_IFUP
, "Ignoring Zero MAC for iSCSI SD mode\n");
7195 DP(NETIF_MSG_IFUP
, "Adding Eth MAC\n");
7197 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
7198 /* Eth MAC is set on RSS leading client (fp[0]) */
7199 return bnx2x_set_mac_one(bp
, bp
->dev
->dev_addr
, &bp
->fp
->mac_obj
, set
,
7200 BNX2X_ETH_MAC
, &ramrod_flags
);
7203 int bnx2x_setup_leading(struct bnx2x
*bp
)
7205 return bnx2x_setup_queue(bp
, &bp
->fp
[0], 1);
7209 * bnx2x_set_int_mode - configure interrupt mode
7211 * @bp: driver handle
7213 * In case of MSI-X it will also try to enable MSI-X.
7215 static void __devinit
bnx2x_set_int_mode(struct bnx2x
*bp
)
7219 bnx2x_enable_msi(bp
);
7220 /* falling through... */
7222 bp
->num_queues
= 1 + NON_ETH_CONTEXT_USE
;
7223 DP(NETIF_MSG_IFUP
, "set number of queues to 1\n");
7226 /* Set number of queues according to bp->multi_mode value */
7227 bnx2x_set_num_queues(bp
);
7229 DP(NETIF_MSG_IFUP
, "set number of queues to %d\n",
7232 /* if we can't use MSI-X we only need one fp,
7233 * so try to enable MSI-X with the requested number of fp's
7234 * and fallback to MSI or legacy INTx with one fp
7236 if (bnx2x_enable_msix(bp
)) {
7237 /* failed to enable MSI-X */
7240 "Multi requested but failed to "
7241 "enable MSI-X (%d), "
7242 "set number of queues to %d\n",
7244 1 + NON_ETH_CONTEXT_USE
);
7245 bp
->num_queues
= 1 + NON_ETH_CONTEXT_USE
;
7247 /* Try to enable MSI */
7248 if (!(bp
->flags
& DISABLE_MSI_FLAG
))
7249 bnx2x_enable_msi(bp
);
7255 /* must be called prioir to any HW initializations */
7256 static inline u16
bnx2x_cid_ilt_lines(struct bnx2x
*bp
)
7258 return L2_ILT_LINES(bp
);
7261 void bnx2x_ilt_set_info(struct bnx2x
*bp
)
7263 struct ilt_client_info
*ilt_client
;
7264 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
7267 ilt
->start_line
= FUNC_ILT_BASE(BP_FUNC(bp
));
7268 DP(BNX2X_MSG_SP
, "ilt starts at line %d\n", ilt
->start_line
);
7271 ilt_client
= &ilt
->clients
[ILT_CLIENT_CDU
];
7272 ilt_client
->client_num
= ILT_CLIENT_CDU
;
7273 ilt_client
->page_size
= CDU_ILT_PAGE_SZ
;
7274 ilt_client
->flags
= ILT_CLIENT_SKIP_MEM
;
7275 ilt_client
->start
= line
;
7276 line
+= bnx2x_cid_ilt_lines(bp
);
7278 line
+= CNIC_ILT_LINES
;
7280 ilt_client
->end
= line
- 1;
7282 DP(BNX2X_MSG_SP
, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7283 "flags 0x%x, hw psz %d\n",
7286 ilt_client
->page_size
,
7288 ilog2(ilt_client
->page_size
>> 12));
7291 if (QM_INIT(bp
->qm_cid_count
)) {
7292 ilt_client
= &ilt
->clients
[ILT_CLIENT_QM
];
7293 ilt_client
->client_num
= ILT_CLIENT_QM
;
7294 ilt_client
->page_size
= QM_ILT_PAGE_SZ
;
7295 ilt_client
->flags
= 0;
7296 ilt_client
->start
= line
;
7298 /* 4 bytes for each cid */
7299 line
+= DIV_ROUND_UP(bp
->qm_cid_count
* QM_QUEUES_PER_FUNC
* 4,
7302 ilt_client
->end
= line
- 1;
7304 DP(BNX2X_MSG_SP
, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7305 "flags 0x%x, hw psz %d\n",
7308 ilt_client
->page_size
,
7310 ilog2(ilt_client
->page_size
>> 12));
7314 ilt_client
= &ilt
->clients
[ILT_CLIENT_SRC
];
7316 ilt_client
->client_num
= ILT_CLIENT_SRC
;
7317 ilt_client
->page_size
= SRC_ILT_PAGE_SZ
;
7318 ilt_client
->flags
= 0;
7319 ilt_client
->start
= line
;
7320 line
+= SRC_ILT_LINES
;
7321 ilt_client
->end
= line
- 1;
7323 DP(BNX2X_MSG_SP
, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7324 "flags 0x%x, hw psz %d\n",
7327 ilt_client
->page_size
,
7329 ilog2(ilt_client
->page_size
>> 12));
7332 ilt_client
->flags
= (ILT_CLIENT_SKIP_INIT
| ILT_CLIENT_SKIP_MEM
);
7336 ilt_client
= &ilt
->clients
[ILT_CLIENT_TM
];
7338 ilt_client
->client_num
= ILT_CLIENT_TM
;
7339 ilt_client
->page_size
= TM_ILT_PAGE_SZ
;
7340 ilt_client
->flags
= 0;
7341 ilt_client
->start
= line
;
7342 line
+= TM_ILT_LINES
;
7343 ilt_client
->end
= line
- 1;
7345 DP(BNX2X_MSG_SP
, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7346 "flags 0x%x, hw psz %d\n",
7349 ilt_client
->page_size
,
7351 ilog2(ilt_client
->page_size
>> 12));
7354 ilt_client
->flags
= (ILT_CLIENT_SKIP_INIT
| ILT_CLIENT_SKIP_MEM
);
7356 BUG_ON(line
> ILT_MAX_LINES
);
7360 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7362 * @bp: driver handle
7363 * @fp: pointer to fastpath
7364 * @init_params: pointer to parameters structure
7366 * parameters configured:
7367 * - HC configuration
7368 * - Queue's CDU context
7370 static inline void bnx2x_pf_q_prep_init(struct bnx2x
*bp
,
7371 struct bnx2x_fastpath
*fp
, struct bnx2x_queue_init_params
*init_params
)
7375 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7376 if (!IS_FCOE_FP(fp
)) {
7377 __set_bit(BNX2X_Q_FLG_HC
, &init_params
->rx
.flags
);
7378 __set_bit(BNX2X_Q_FLG_HC
, &init_params
->tx
.flags
);
7380 /* If HC is supporterd, enable host coalescing in the transition
7383 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_params
->rx
.flags
);
7384 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_params
->tx
.flags
);
7387 init_params
->rx
.hc_rate
= bp
->rx_ticks
?
7388 (1000000 / bp
->rx_ticks
) : 0;
7389 init_params
->tx
.hc_rate
= bp
->tx_ticks
?
7390 (1000000 / bp
->tx_ticks
) : 0;
7393 init_params
->rx
.fw_sb_id
= init_params
->tx
.fw_sb_id
=
7397 * CQ index among the SB indices: FCoE clients uses the default
7398 * SB, therefore it's different.
7400 init_params
->rx
.sb_cq_index
= HC_INDEX_ETH_RX_CQ_CONS
;
7401 init_params
->tx
.sb_cq_index
= HC_INDEX_ETH_FIRST_TX_CQ_CONS
;
7404 /* set maximum number of COSs supported by this queue */
7405 init_params
->max_cos
= fp
->max_cos
;
7407 DP(BNX2X_MSG_SP
, "fp: %d setting queue params max cos to: %d\n",
7408 fp
->index
, init_params
->max_cos
);
7410 /* set the context pointers queue object */
7411 for (cos
= FIRST_TX_COS_INDEX
; cos
< init_params
->max_cos
; cos
++)
7412 init_params
->cxts
[cos
] =
7413 &bp
->context
.vcxt
[fp
->txdata
[cos
].cid
].eth
;
7416 int bnx2x_setup_tx_only(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
7417 struct bnx2x_queue_state_params
*q_params
,
7418 struct bnx2x_queue_setup_tx_only_params
*tx_only_params
,
7419 int tx_index
, bool leading
)
7421 memset(tx_only_params
, 0, sizeof(*tx_only_params
));
7423 /* Set the command */
7424 q_params
->cmd
= BNX2X_Q_CMD_SETUP_TX_ONLY
;
7426 /* Set tx-only QUEUE flags: don't zero statistics */
7427 tx_only_params
->flags
= bnx2x_get_common_flags(bp
, fp
, false);
7429 /* choose the index of the cid to send the slow path on */
7430 tx_only_params
->cid_index
= tx_index
;
7432 /* Set general TX_ONLY_SETUP parameters */
7433 bnx2x_pf_q_prep_general(bp
, fp
, &tx_only_params
->gen_params
, tx_index
);
7435 /* Set Tx TX_ONLY_SETUP parameters */
7436 bnx2x_pf_tx_q_prep(bp
, fp
, &tx_only_params
->txq_params
, tx_index
);
7438 DP(BNX2X_MSG_SP
, "preparing to send tx-only ramrod for connection:"
7439 "cos %d, primary cid %d, cid %d, "
7440 "client id %d, sp-client id %d, flags %lx\n",
7441 tx_index
, q_params
->q_obj
->cids
[FIRST_TX_COS_INDEX
],
7442 q_params
->q_obj
->cids
[tx_index
], q_params
->q_obj
->cl_id
,
7443 tx_only_params
->gen_params
.spcl_id
, tx_only_params
->flags
);
7445 /* send the ramrod */
7446 return bnx2x_queue_state_change(bp
, q_params
);
7451 * bnx2x_setup_queue - setup queue
7453 * @bp: driver handle
7454 * @fp: pointer to fastpath
7455 * @leading: is leading
7457 * This function performs 2 steps in a Queue state machine
7458 * actually: 1) RESET->INIT 2) INIT->SETUP
7461 int bnx2x_setup_queue(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
7464 struct bnx2x_queue_state_params q_params
= {0};
7465 struct bnx2x_queue_setup_params
*setup_params
=
7466 &q_params
.params
.setup
;
7467 struct bnx2x_queue_setup_tx_only_params
*tx_only_params
=
7468 &q_params
.params
.tx_only
;
7472 DP(BNX2X_MSG_SP
, "setting up queue %d\n", fp
->index
);
7474 /* reset IGU state skip FCoE L2 queue */
7475 if (!IS_FCOE_FP(fp
))
7476 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
, 0,
7479 q_params
.q_obj
= &fp
->q_obj
;
7480 /* We want to wait for completion in this context */
7481 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
7483 /* Prepare the INIT parameters */
7484 bnx2x_pf_q_prep_init(bp
, fp
, &q_params
.params
.init
);
7486 /* Set the command */
7487 q_params
.cmd
= BNX2X_Q_CMD_INIT
;
7489 /* Change the state to INIT */
7490 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7492 BNX2X_ERR("Queue(%d) INIT failed\n", fp
->index
);
7496 DP(BNX2X_MSG_SP
, "init complete\n");
7499 /* Now move the Queue to the SETUP state... */
7500 memset(setup_params
, 0, sizeof(*setup_params
));
7502 /* Set QUEUE flags */
7503 setup_params
->flags
= bnx2x_get_q_flags(bp
, fp
, leading
);
7505 /* Set general SETUP parameters */
7506 bnx2x_pf_q_prep_general(bp
, fp
, &setup_params
->gen_params
,
7507 FIRST_TX_COS_INDEX
);
7509 bnx2x_pf_rx_q_prep(bp
, fp
, &setup_params
->pause_params
,
7510 &setup_params
->rxq_params
);
7512 bnx2x_pf_tx_q_prep(bp
, fp
, &setup_params
->txq_params
,
7513 FIRST_TX_COS_INDEX
);
7515 /* Set the command */
7516 q_params
.cmd
= BNX2X_Q_CMD_SETUP
;
7518 /* Change the state to SETUP */
7519 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7521 BNX2X_ERR("Queue(%d) SETUP failed\n", fp
->index
);
7525 /* loop through the relevant tx-only indices */
7526 for (tx_index
= FIRST_TX_ONLY_COS_INDEX
;
7527 tx_index
< fp
->max_cos
;
7530 /* prepare and send tx-only ramrod*/
7531 rc
= bnx2x_setup_tx_only(bp
, fp
, &q_params
,
7532 tx_only_params
, tx_index
, leading
);
7534 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7535 fp
->index
, tx_index
);
7543 static int bnx2x_stop_queue(struct bnx2x
*bp
, int index
)
7545 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
7546 struct bnx2x_fp_txdata
*txdata
;
7547 struct bnx2x_queue_state_params q_params
= {0};
7550 DP(BNX2X_MSG_SP
, "stopping queue %d cid %d\n", index
, fp
->cid
);
7552 q_params
.q_obj
= &fp
->q_obj
;
7553 /* We want to wait for completion in this context */
7554 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
7557 /* close tx-only connections */
7558 for (tx_index
= FIRST_TX_ONLY_COS_INDEX
;
7559 tx_index
< fp
->max_cos
;
7562 /* ascertain this is a normal queue*/
7563 txdata
= &fp
->txdata
[tx_index
];
7565 DP(BNX2X_MSG_SP
, "stopping tx-only queue %d\n",
7568 /* send halt terminate on tx-only connection */
7569 q_params
.cmd
= BNX2X_Q_CMD_TERMINATE
;
7570 memset(&q_params
.params
.terminate
, 0,
7571 sizeof(q_params
.params
.terminate
));
7572 q_params
.params
.terminate
.cid_index
= tx_index
;
7574 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7578 /* send halt terminate on tx-only connection */
7579 q_params
.cmd
= BNX2X_Q_CMD_CFC_DEL
;
7580 memset(&q_params
.params
.cfc_del
, 0,
7581 sizeof(q_params
.params
.cfc_del
));
7582 q_params
.params
.cfc_del
.cid_index
= tx_index
;
7583 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7587 /* Stop the primary connection: */
7588 /* ...halt the connection */
7589 q_params
.cmd
= BNX2X_Q_CMD_HALT
;
7590 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7594 /* ...terminate the connection */
7595 q_params
.cmd
= BNX2X_Q_CMD_TERMINATE
;
7596 memset(&q_params
.params
.terminate
, 0,
7597 sizeof(q_params
.params
.terminate
));
7598 q_params
.params
.terminate
.cid_index
= FIRST_TX_COS_INDEX
;
7599 rc
= bnx2x_queue_state_change(bp
, &q_params
);
7602 /* ...delete cfc entry */
7603 q_params
.cmd
= BNX2X_Q_CMD_CFC_DEL
;
7604 memset(&q_params
.params
.cfc_del
, 0,
7605 sizeof(q_params
.params
.cfc_del
));
7606 q_params
.params
.cfc_del
.cid_index
= FIRST_TX_COS_INDEX
;
7607 return bnx2x_queue_state_change(bp
, &q_params
);
7611 static void bnx2x_reset_func(struct bnx2x
*bp
)
7613 int port
= BP_PORT(bp
);
7614 int func
= BP_FUNC(bp
);
7617 /* Disable the function in the FW */
7618 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(func
), 0);
7619 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(func
), 0);
7620 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(func
), 0);
7621 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(func
), 0);
7624 for_each_eth_queue(bp
, i
) {
7625 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
7626 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
7627 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp
->fw_sb_id
),
7633 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
7634 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp
)),
7638 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
7639 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func
),
7642 for (i
= 0; i
< XSTORM_SPQ_DATA_SIZE
/ 4; i
++)
7643 REG_WR(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_SPQ_DATA_OFFSET(func
),
7647 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
7648 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
7649 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
7651 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, 0);
7652 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, 0);
7656 /* Disable Timer scan */
7657 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 0);
7659 * Wait for at least 10ms and up to 2 second for the timers scan to
7662 for (i
= 0; i
< 200; i
++) {
7664 if (!REG_RD(bp
, TM_REG_LIN0_SCAN_ON
+ port
*4))
7669 bnx2x_clear_func_ilt(bp
, func
);
7671 /* Timers workaround bug for E2: if this is vnic-3,
7672 * we need to set the entire ilt range for this timers.
7674 if (!CHIP_IS_E1x(bp
) && BP_VN(bp
) == 3) {
7675 struct ilt_client_info ilt_cli
;
7676 /* use dummy TM client */
7677 memset(&ilt_cli
, 0, sizeof(struct ilt_client_info
));
7679 ilt_cli
.end
= ILT_NUM_PAGE_ENTRIES
- 1;
7680 ilt_cli
.client_num
= ILT_CLIENT_TM
;
7682 bnx2x_ilt_boundry_init_op(bp
, &ilt_cli
, 0, INITOP_CLEAR
);
7685 /* this assumes that reset_port() called before reset_func()*/
7686 if (!CHIP_IS_E1x(bp
))
7687 bnx2x_pf_disable(bp
);
7692 static void bnx2x_reset_port(struct bnx2x
*bp
)
7694 int port
= BP_PORT(bp
);
7697 /* Reset physical Link */
7698 bnx2x__link_reset(bp
);
7700 REG_WR(bp
, NIG_REG_MASK_INTERRUPT_PORT0
+ port
*4, 0);
7702 /* Do not rcv packets to BRB */
7703 REG_WR(bp
, NIG_REG_LLH0_BRB1_DRV_MASK
+ port
*4, 0x0);
7704 /* Do not direct rcv packets that are not for MCP to the BRB */
7705 REG_WR(bp
, (port
? NIG_REG_LLH1_BRB1_NOT_MCP
:
7706 NIG_REG_LLH0_BRB1_NOT_MCP
), 0x0);
7709 REG_WR(bp
, MISC_REG_AEU_MASK_ATTN_FUNC_0
+ port
*4, 0);
7712 /* Check for BRB port occupancy */
7713 val
= REG_RD(bp
, BRB1_REG_PORT_NUM_OCC_BLOCKS_0
+ port
*4);
7715 DP(NETIF_MSG_IFDOWN
,
7716 "BRB1 is not empty %d blocks are occupied\n", val
);
7718 /* TODO: Close Doorbell port? */
7721 static inline int bnx2x_reset_hw(struct bnx2x
*bp
, u32 load_code
)
7723 struct bnx2x_func_state_params func_params
= {0};
7725 /* Prepare parameters for function state transitions */
7726 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
7728 func_params
.f_obj
= &bp
->func_obj
;
7729 func_params
.cmd
= BNX2X_F_CMD_HW_RESET
;
7731 func_params
.params
.hw_init
.load_phase
= load_code
;
7733 return bnx2x_func_state_change(bp
, &func_params
);
7736 static inline int bnx2x_func_stop(struct bnx2x
*bp
)
7738 struct bnx2x_func_state_params func_params
= {0};
7741 /* Prepare parameters for function state transitions */
7742 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
7743 func_params
.f_obj
= &bp
->func_obj
;
7744 func_params
.cmd
= BNX2X_F_CMD_STOP
;
7747 * Try to stop the function the 'good way'. If fails (in case
7748 * of a parity error during bnx2x_chip_cleanup()) and we are
7749 * not in a debug mode, perform a state transaction in order to
7750 * enable further HW_RESET transaction.
7752 rc
= bnx2x_func_state_change(bp
, &func_params
);
7754 #ifdef BNX2X_STOP_ON_ERROR
7757 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7759 __set_bit(RAMROD_DRV_CLR_ONLY
, &func_params
.ramrod_flags
);
7760 return bnx2x_func_state_change(bp
, &func_params
);
7768 * bnx2x_send_unload_req - request unload mode from the MCP.
7770 * @bp: driver handle
7771 * @unload_mode: requested function's unload mode
7773 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7775 u32
bnx2x_send_unload_req(struct bnx2x
*bp
, int unload_mode
)
7778 int port
= BP_PORT(bp
);
7780 /* Select the UNLOAD request mode */
7781 if (unload_mode
== UNLOAD_NORMAL
)
7782 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
7784 else if (bp
->flags
& NO_WOL_FLAG
)
7785 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
;
7788 u32 emac_base
= port
? GRCBASE_EMAC1
: GRCBASE_EMAC0
;
7789 u8
*mac_addr
= bp
->dev
->dev_addr
;
7793 /* The mac address is written to entries 1-4 to
7794 * preserve entry 0 which is used by the PMF
7796 u8 entry
= (BP_VN(bp
) + 1)*8;
7798 val
= (mac_addr
[0] << 8) | mac_addr
[1];
7799 EMAC_WR(bp
, EMAC_REG_EMAC_MAC_MATCH
+ entry
, val
);
7801 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
7802 (mac_addr
[4] << 8) | mac_addr
[5];
7803 EMAC_WR(bp
, EMAC_REG_EMAC_MAC_MATCH
+ entry
+ 4, val
);
7805 /* Enable the PME and clear the status */
7806 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmc
);
7807 pmc
|= PCI_PM_CTRL_PME_ENABLE
| PCI_PM_CTRL_PME_STATUS
;
7808 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, pmc
);
7810 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_EN
;
7813 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
7815 /* Send the request to the MCP */
7817 reset_code
= bnx2x_fw_command(bp
, reset_code
, 0);
7819 int path
= BP_PATH(bp
);
7821 DP(NETIF_MSG_IFDOWN
, "NO MCP - load counts[%d] "
7823 path
, load_count
[path
][0], load_count
[path
][1],
7824 load_count
[path
][2]);
7825 load_count
[path
][0]--;
7826 load_count
[path
][1 + port
]--;
7827 DP(NETIF_MSG_IFDOWN
, "NO MCP - new load counts[%d] "
7829 path
, load_count
[path
][0], load_count
[path
][1],
7830 load_count
[path
][2]);
7831 if (load_count
[path
][0] == 0)
7832 reset_code
= FW_MSG_CODE_DRV_UNLOAD_COMMON
;
7833 else if (load_count
[path
][1 + port
] == 0)
7834 reset_code
= FW_MSG_CODE_DRV_UNLOAD_PORT
;
7836 reset_code
= FW_MSG_CODE_DRV_UNLOAD_FUNCTION
;
7843 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7845 * @bp: driver handle
7847 void bnx2x_send_unload_done(struct bnx2x
*bp
)
7849 /* Report UNLOAD_DONE to MCP */
7851 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, 0);
7854 static inline int bnx2x_func_wait_started(struct bnx2x
*bp
)
7857 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
7863 * (assumption: No Attention from MCP at this stage)
7864 * PMF probably in the middle of TXdisable/enable transaction
7865 * 1. Sync IRS for default SB
7866 * 2. Sync SP queue - this guarantes us that attention handling started
7867 * 3. Wait, that TXdisable/enable transaction completes
7869 * 1+2 guranty that if DCBx attention was scheduled it already changed
7870 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7871 * received complettion for the transaction the state is TX_STOPPED.
7872 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7876 /* make sure default SB ISR is done */
7878 synchronize_irq(bp
->msix_table
[0].vector
);
7880 synchronize_irq(bp
->pdev
->irq
);
7882 flush_workqueue(bnx2x_wq
);
7884 while (bnx2x_func_get_state(bp
, &bp
->func_obj
) !=
7885 BNX2X_F_STATE_STARTED
&& tout
--)
7888 if (bnx2x_func_get_state(bp
, &bp
->func_obj
) !=
7889 BNX2X_F_STATE_STARTED
) {
7890 #ifdef BNX2X_STOP_ON_ERROR
7894 * Failed to complete the transaction in a "good way"
7895 * Force both transactions with CLR bit
7897 struct bnx2x_func_state_params func_params
= {0};
7899 DP(BNX2X_MSG_SP
, "Hmmm... unexpected function state! "
7900 "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7902 func_params
.f_obj
= &bp
->func_obj
;
7903 __set_bit(RAMROD_DRV_CLR_ONLY
,
7904 &func_params
.ramrod_flags
);
7906 /* STARTED-->TX_ST0PPED */
7907 func_params
.cmd
= BNX2X_F_CMD_TX_STOP
;
7908 bnx2x_func_state_change(bp
, &func_params
);
7910 /* TX_ST0PPED-->STARTED */
7911 func_params
.cmd
= BNX2X_F_CMD_TX_START
;
7912 return bnx2x_func_state_change(bp
, &func_params
);
7919 void bnx2x_chip_cleanup(struct bnx2x
*bp
, int unload_mode
)
7921 int port
= BP_PORT(bp
);
7924 struct bnx2x_mcast_ramrod_params rparam
= {0};
7927 /* Wait until tx fastpath tasks complete */
7928 for_each_tx_queue(bp
, i
) {
7929 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
7931 for_each_cos_in_tx_queue(fp
, cos
)
7932 rc
= bnx2x_clean_tx_queue(bp
, &fp
->txdata
[cos
]);
7933 #ifdef BNX2X_STOP_ON_ERROR
7939 /* Give HW time to discard old tx messages */
7940 usleep_range(1000, 1000);
7942 /* Clean all ETH MACs */
7943 rc
= bnx2x_del_all_macs(bp
, &bp
->fp
[0].mac_obj
, BNX2X_ETH_MAC
, false);
7945 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc
);
7947 /* Clean up UC list */
7948 rc
= bnx2x_del_all_macs(bp
, &bp
->fp
[0].mac_obj
, BNX2X_UC_LIST_MAC
,
7951 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7955 if (!CHIP_IS_E1(bp
))
7956 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 0);
7958 /* Set "drop all" (stop Rx).
7959 * We need to take a netif_addr_lock() here in order to prevent
7960 * a race between the completion code and this code.
7962 netif_addr_lock_bh(bp
->dev
);
7963 /* Schedule the rx_mode command */
7964 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
))
7965 set_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
);
7967 bnx2x_set_storm_rx_mode(bp
);
7969 /* Cleanup multicast configuration */
7970 rparam
.mcast_obj
= &bp
->mcast_obj
;
7971 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
7973 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc
);
7975 netif_addr_unlock_bh(bp
->dev
);
7980 * Send the UNLOAD_REQUEST to the MCP. This will return if
7981 * this function should perform FUNC, PORT or COMMON HW
7984 reset_code
= bnx2x_send_unload_req(bp
, unload_mode
);
7987 * (assumption: No Attention from MCP at this stage)
7988 * PMF probably in the middle of TXdisable/enable transaction
7990 rc
= bnx2x_func_wait_started(bp
);
7992 BNX2X_ERR("bnx2x_func_wait_started failed\n");
7993 #ifdef BNX2X_STOP_ON_ERROR
7998 /* Close multi and leading connections
7999 * Completions for ramrods are collected in a synchronous way
8001 for_each_queue(bp
, i
)
8002 if (bnx2x_stop_queue(bp
, i
))
8003 #ifdef BNX2X_STOP_ON_ERROR
8008 /* If SP settings didn't get completed so far - something
8009 * very wrong has happen.
8011 if (!bnx2x_wait_sp_comp(bp
, ~0x0UL
))
8012 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8014 #ifndef BNX2X_STOP_ON_ERROR
8017 rc
= bnx2x_func_stop(bp
);
8019 BNX2X_ERR("Function stop failed!\n");
8020 #ifdef BNX2X_STOP_ON_ERROR
8025 /* Disable HW interrupts, NAPI */
8026 bnx2x_netif_stop(bp
, 1);
8031 /* Reset the chip */
8032 rc
= bnx2x_reset_hw(bp
, reset_code
);
8034 BNX2X_ERR("HW_RESET failed\n");
8037 /* Report UNLOAD_DONE to MCP */
8038 bnx2x_send_unload_done(bp
);
8041 void bnx2x_disable_close_the_gate(struct bnx2x
*bp
)
8045 DP(NETIF_MSG_HW
, "Disabling \"close the gates\"\n");
8047 if (CHIP_IS_E1(bp
)) {
8048 int port
= BP_PORT(bp
);
8049 u32 addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
8050 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
8052 val
= REG_RD(bp
, addr
);
8054 REG_WR(bp
, addr
, val
);
8056 val
= REG_RD(bp
, MISC_REG_AEU_GENERAL_MASK
);
8057 val
&= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK
|
8058 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK
);
8059 REG_WR(bp
, MISC_REG_AEU_GENERAL_MASK
, val
);
8063 /* Close gates #2, #3 and #4: */
8064 static void bnx2x_set_234_gates(struct bnx2x
*bp
, bool close
)
8068 /* Gates #2 and #4a are closed/opened for "not E1" only */
8069 if (!CHIP_IS_E1(bp
)) {
8071 REG_WR(bp
, PXP_REG_HST_DISCARD_DOORBELLS
, !!close
);
8073 REG_WR(bp
, PXP_REG_HST_DISCARD_INTERNAL_WRITES
, !!close
);
8077 if (CHIP_IS_E1x(bp
)) {
8078 /* Prevent interrupts from HC on both ports */
8079 val
= REG_RD(bp
, HC_REG_CONFIG_1
);
8080 REG_WR(bp
, HC_REG_CONFIG_1
,
8081 (!close
) ? (val
| HC_CONFIG_1_REG_BLOCK_DISABLE_1
) :
8082 (val
& ~(u32
)HC_CONFIG_1_REG_BLOCK_DISABLE_1
));
8084 val
= REG_RD(bp
, HC_REG_CONFIG_0
);
8085 REG_WR(bp
, HC_REG_CONFIG_0
,
8086 (!close
) ? (val
| HC_CONFIG_0_REG_BLOCK_DISABLE_0
) :
8087 (val
& ~(u32
)HC_CONFIG_0_REG_BLOCK_DISABLE_0
));
8089 /* Prevent incomming interrupts in IGU */
8090 val
= REG_RD(bp
, IGU_REG_BLOCK_CONFIGURATION
);
8092 REG_WR(bp
, IGU_REG_BLOCK_CONFIGURATION
,
8094 (val
| IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE
) :
8095 (val
& ~(u32
)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE
));
8098 DP(NETIF_MSG_HW
, "%s gates #2, #3 and #4\n",
8099 close
? "closing" : "opening");
8103 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8105 static void bnx2x_clp_reset_prep(struct bnx2x
*bp
, u32
*magic_val
)
8107 /* Do some magic... */
8108 u32 val
= MF_CFG_RD(bp
, shared_mf_config
.clp_mb
);
8109 *magic_val
= val
& SHARED_MF_CLP_MAGIC
;
8110 MF_CFG_WR(bp
, shared_mf_config
.clp_mb
, val
| SHARED_MF_CLP_MAGIC
);
8114 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8116 * @bp: driver handle
8117 * @magic_val: old value of the `magic' bit.
8119 static void bnx2x_clp_reset_done(struct bnx2x
*bp
, u32 magic_val
)
8121 /* Restore the `magic' bit value... */
8122 u32 val
= MF_CFG_RD(bp
, shared_mf_config
.clp_mb
);
8123 MF_CFG_WR(bp
, shared_mf_config
.clp_mb
,
8124 (val
& (~SHARED_MF_CLP_MAGIC
)) | magic_val
);
8128 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8130 * @bp: driver handle
8131 * @magic_val: old value of 'magic' bit.
8133 * Takes care of CLP configurations.
8135 static void bnx2x_reset_mcp_prep(struct bnx2x
*bp
, u32
*magic_val
)
8138 u32 validity_offset
;
8140 DP(NETIF_MSG_HW
, "Starting\n");
8142 /* Set `magic' bit in order to save MF config */
8143 if (!CHIP_IS_E1(bp
))
8144 bnx2x_clp_reset_prep(bp
, magic_val
);
8146 /* Get shmem offset */
8147 shmem
= REG_RD(bp
, MISC_REG_SHARED_MEM_ADDR
);
8148 validity_offset
= offsetof(struct shmem_region
, validity_map
[0]);
8150 /* Clear validity map flags */
8152 REG_WR(bp
, shmem
+ validity_offset
, 0);
8155 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
8156 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
8159 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8161 * @bp: driver handle
8163 static inline void bnx2x_mcp_wait_one(struct bnx2x
*bp
)
8165 /* special handling for emulation and FPGA,
8166 wait 10 times longer */
8167 if (CHIP_REV_IS_SLOW(bp
))
8168 msleep(MCP_ONE_TIMEOUT
*10);
8170 msleep(MCP_ONE_TIMEOUT
);
8174 * initializes bp->common.shmem_base and waits for validity signature to appear
8176 static int bnx2x_init_shmem(struct bnx2x
*bp
)
8182 bp
->common
.shmem_base
= REG_RD(bp
, MISC_REG_SHARED_MEM_ADDR
);
8183 if (bp
->common
.shmem_base
) {
8184 val
= SHMEM_RD(bp
, validity_map
[BP_PORT(bp
)]);
8185 if (val
& SHR_MEM_VALIDITY_MB
)
8189 bnx2x_mcp_wait_one(bp
);
8191 } while (cnt
++ < (MCP_TIMEOUT
/ MCP_ONE_TIMEOUT
));
8193 BNX2X_ERR("BAD MCP validity signature\n");
8198 static int bnx2x_reset_mcp_comp(struct bnx2x
*bp
, u32 magic_val
)
8200 int rc
= bnx2x_init_shmem(bp
);
8202 /* Restore the `magic' bit value */
8203 if (!CHIP_IS_E1(bp
))
8204 bnx2x_clp_reset_done(bp
, magic_val
);
8209 static void bnx2x_pxp_prep(struct bnx2x
*bp
)
8211 if (!CHIP_IS_E1(bp
)) {
8212 REG_WR(bp
, PXP2_REG_RD_START_INIT
, 0);
8213 REG_WR(bp
, PXP2_REG_RQ_RBC_DONE
, 0);
8219 * Reset the whole chip except for:
8221 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8224 * - MISC (including AEU)
8228 static void bnx2x_process_kill_chip_reset(struct bnx2x
*bp
, bool global
)
8230 u32 not_reset_mask1
, reset_mask1
, not_reset_mask2
, reset_mask2
;
8231 u32 global_bits2
, stay_reset2
;
8234 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8235 * (per chip) blocks.
8238 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU
|
8239 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE
;
8241 /* Don't reset the following blocks */
8243 MISC_REGISTERS_RESET_REG_1_RST_HC
|
8244 MISC_REGISTERS_RESET_REG_1_RST_PXPV
|
8245 MISC_REGISTERS_RESET_REG_1_RST_PXP
;
8248 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO
|
8249 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE
|
8250 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE
|
8251 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE
|
8252 MISC_REGISTERS_RESET_REG_2_RST_RBCN
|
8253 MISC_REGISTERS_RESET_REG_2_RST_GRC
|
8254 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE
|
8255 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B
|
8256 MISC_REGISTERS_RESET_REG_2_RST_ATC
|
8257 MISC_REGISTERS_RESET_REG_2_PGLC
;
8260 * Keep the following blocks in reset:
8261 * - all xxMACs are handled by the bnx2x_link code.
8264 MISC_REGISTERS_RESET_REG_2_RST_BMAC0
|
8265 MISC_REGISTERS_RESET_REG_2_RST_BMAC1
|
8266 MISC_REGISTERS_RESET_REG_2_RST_EMAC0
|
8267 MISC_REGISTERS_RESET_REG_2_RST_EMAC1
|
8268 MISC_REGISTERS_RESET_REG_2_UMAC0
|
8269 MISC_REGISTERS_RESET_REG_2_UMAC1
|
8270 MISC_REGISTERS_RESET_REG_2_XMAC
|
8271 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT
;
8273 /* Full reset masks according to the chip */
8274 reset_mask1
= 0xffffffff;
8277 reset_mask2
= 0xffff;
8278 else if (CHIP_IS_E1H(bp
))
8279 reset_mask2
= 0x1ffff;
8280 else if (CHIP_IS_E2(bp
))
8281 reset_mask2
= 0xfffff;
8282 else /* CHIP_IS_E3 */
8283 reset_mask2
= 0x3ffffff;
8285 /* Don't reset global blocks unless we need to */
8287 reset_mask2
&= ~global_bits2
;
8290 * In case of attention in the QM, we need to reset PXP
8291 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8292 * because otherwise QM reset would release 'close the gates' shortly
8293 * before resetting the PXP, then the PSWRQ would send a write
8294 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8295 * read the payload data from PSWWR, but PSWWR would not
8296 * respond. The write queue in PGLUE would stuck, dmae commands
8297 * would not return. Therefore it's important to reset the second
8298 * reset register (containing the
8299 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8300 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8303 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_CLEAR
,
8304 reset_mask2
& (~not_reset_mask2
));
8306 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
8307 reset_mask1
& (~not_reset_mask1
));
8312 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_SET
,
8313 reset_mask2
& (~stay_reset2
));
8318 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, reset_mask1
);
8323 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8324 * It should get cleared in no more than 1s.
8326 * @bp: driver handle
8328 * It should get cleared in no more than 1s. Returns 0 if
8329 * pending writes bit gets cleared.
8331 static int bnx2x_er_poll_igu_vq(struct bnx2x
*bp
)
8337 pend_bits
= REG_RD(bp
, IGU_REG_PENDING_BITS_STATUS
);
8342 usleep_range(1000, 1000);
8343 } while (cnt
-- > 0);
8346 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8354 static int bnx2x_process_kill(struct bnx2x
*bp
, bool global
)
8358 u32 sr_cnt
, blk_cnt
, port_is_idle_0
, port_is_idle_1
, pgl_exp_rom2
;
8361 /* Empty the Tetris buffer, wait for 1s */
8363 sr_cnt
= REG_RD(bp
, PXP2_REG_RD_SR_CNT
);
8364 blk_cnt
= REG_RD(bp
, PXP2_REG_RD_BLK_CNT
);
8365 port_is_idle_0
= REG_RD(bp
, PXP2_REG_RD_PORT_IS_IDLE_0
);
8366 port_is_idle_1
= REG_RD(bp
, PXP2_REG_RD_PORT_IS_IDLE_1
);
8367 pgl_exp_rom2
= REG_RD(bp
, PXP2_REG_PGL_EXP_ROM2
);
8368 if ((sr_cnt
== 0x7e) && (blk_cnt
== 0xa0) &&
8369 ((port_is_idle_0
& 0x1) == 0x1) &&
8370 ((port_is_idle_1
& 0x1) == 0x1) &&
8371 (pgl_exp_rom2
== 0xffffffff))
8373 usleep_range(1000, 1000);
8374 } while (cnt
-- > 0);
8377 DP(NETIF_MSG_HW
, "Tetris buffer didn't get empty or there"
8379 " outstanding read requests after 1s!\n");
8380 DP(NETIF_MSG_HW
, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8381 " port_is_idle_0=0x%08x,"
8382 " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8383 sr_cnt
, blk_cnt
, port_is_idle_0
, port_is_idle_1
,
8390 /* Close gates #2, #3 and #4 */
8391 bnx2x_set_234_gates(bp
, true);
8393 /* Poll for IGU VQs for 57712 and newer chips */
8394 if (!CHIP_IS_E1x(bp
) && bnx2x_er_poll_igu_vq(bp
))
8398 /* TBD: Indicate that "process kill" is in progress to MCP */
8400 /* Clear "unprepared" bit */
8401 REG_WR(bp
, MISC_REG_UNPREPARED
, 0);
8404 /* Make sure all is written to the chip before the reset */
8407 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8408 * PSWHST, GRC and PSWRD Tetris buffer.
8410 usleep_range(1000, 1000);
8412 /* Prepare to chip reset: */
8415 bnx2x_reset_mcp_prep(bp
, &val
);
8421 /* reset the chip */
8422 bnx2x_process_kill_chip_reset(bp
, global
);
8425 /* Recover after reset: */
8427 if (global
&& bnx2x_reset_mcp_comp(bp
, val
))
8430 /* TBD: Add resetting the NO_MCP mode DB here */
8435 /* Open the gates #2, #3 and #4 */
8436 bnx2x_set_234_gates(bp
, false);
8438 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8439 * reset state, re-enable attentions. */
8444 int bnx2x_leader_reset(struct bnx2x
*bp
)
8447 bool global
= bnx2x_reset_is_global(bp
);
8449 /* Try to recover after the failure */
8450 if (bnx2x_process_kill(bp
, global
)) {
8451 netdev_err(bp
->dev
, "Something bad had happen on engine %d! "
8452 "Aii!\n", BP_PATH(bp
));
8454 goto exit_leader_reset
;
8458 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8461 bnx2x_set_reset_done(bp
);
8463 bnx2x_clear_reset_global(bp
);
8467 bnx2x_release_leader_lock(bp
);
8472 static inline void bnx2x_recovery_failed(struct bnx2x
*bp
)
8474 netdev_err(bp
->dev
, "Recovery has failed. Power cycle is needed.\n");
8476 /* Disconnect this device */
8477 netif_device_detach(bp
->dev
);
8480 * Block ifup for all function on this engine until "process kill"
8483 bnx2x_set_reset_in_progress(bp
);
8485 /* Shut down the power */
8486 bnx2x_set_power_state(bp
, PCI_D3hot
);
8488 bp
->recovery_state
= BNX2X_RECOVERY_FAILED
;
8494 * Assumption: runs under rtnl lock. This together with the fact
8495 * that it's called only from bnx2x_sp_rtnl() ensure that it
8496 * will never be called when netif_running(bp->dev) is false.
8498 static void bnx2x_parity_recover(struct bnx2x
*bp
)
8500 bool global
= false;
8502 DP(NETIF_MSG_HW
, "Handling parity\n");
8504 switch (bp
->recovery_state
) {
8505 case BNX2X_RECOVERY_INIT
:
8506 DP(NETIF_MSG_HW
, "State is BNX2X_RECOVERY_INIT\n");
8507 bnx2x_chk_parity_attn(bp
, &global
, false);
8509 /* Try to get a LEADER_LOCK HW lock */
8510 if (bnx2x_trylock_leader_lock(bp
)) {
8511 bnx2x_set_reset_in_progress(bp
);
8513 * Check if there is a global attention and if
8514 * there was a global attention, set the global
8519 bnx2x_set_reset_global(bp
);
8524 /* Stop the driver */
8525 /* If interface has been removed - break */
8526 if (bnx2x_nic_unload(bp
, UNLOAD_RECOVERY
))
8529 bp
->recovery_state
= BNX2X_RECOVERY_WAIT
;
8532 * Reset MCP command sequence number and MCP mail box
8533 * sequence as we are going to reset the MCP.
8537 bp
->fw_drv_pulse_wr_seq
= 0;
8540 /* Ensure "is_leader", MCP command sequence and
8541 * "recovery_state" update values are seen on other
8547 case BNX2X_RECOVERY_WAIT
:
8548 DP(NETIF_MSG_HW
, "State is BNX2X_RECOVERY_WAIT\n");
8549 if (bp
->is_leader
) {
8550 int other_engine
= BP_PATH(bp
) ? 0 : 1;
8551 u32 other_load_counter
=
8552 bnx2x_get_load_cnt(bp
, other_engine
);
8554 bnx2x_get_load_cnt(bp
, BP_PATH(bp
));
8555 global
= bnx2x_reset_is_global(bp
);
8558 * In case of a parity in a global block, let
8559 * the first leader that performs a
8560 * leader_reset() reset the global blocks in
8561 * order to clear global attentions. Otherwise
8562 * the the gates will remain closed for that
8566 (global
&& other_load_counter
)) {
8567 /* Wait until all other functions get
8570 schedule_delayed_work(&bp
->sp_rtnl_task
,
8574 /* If all other functions got down -
8575 * try to bring the chip back to
8576 * normal. In any case it's an exit
8577 * point for a leader.
8579 if (bnx2x_leader_reset(bp
)) {
8580 bnx2x_recovery_failed(bp
);
8584 /* If we are here, means that the
8585 * leader has succeeded and doesn't
8586 * want to be a leader any more. Try
8587 * to continue as a none-leader.
8591 } else { /* non-leader */
8592 if (!bnx2x_reset_is_done(bp
, BP_PATH(bp
))) {
8593 /* Try to get a LEADER_LOCK HW lock as
8594 * long as a former leader may have
8595 * been unloaded by the user or
8596 * released a leadership by another
8599 if (bnx2x_trylock_leader_lock(bp
)) {
8600 /* I'm a leader now! Restart a
8607 schedule_delayed_work(&bp
->sp_rtnl_task
,
8613 * If there was a global attention, wait
8614 * for it to be cleared.
8616 if (bnx2x_reset_is_global(bp
)) {
8617 schedule_delayed_work(
8623 if (bnx2x_nic_load(bp
, LOAD_NORMAL
))
8624 bnx2x_recovery_failed(bp
);
8626 bp
->recovery_state
=
8627 BNX2X_RECOVERY_DONE
;
8640 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8641 * scheduled on a general queue in order to prevent a dead lock.
8643 static void bnx2x_sp_rtnl_task(struct work_struct
*work
)
8645 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, sp_rtnl_task
.work
);
8649 if (!netif_running(bp
->dev
))
8652 /* if stop on error is defined no recovery flows should be executed */
8653 #ifdef BNX2X_STOP_ON_ERROR
8654 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8655 "so reset not done to allow debug dump,\n"
8656 "you will need to reboot when done\n");
8657 goto sp_rtnl_not_reset
;
8660 if (unlikely(bp
->recovery_state
!= BNX2X_RECOVERY_DONE
)) {
8662 * Clear all pending SP commands as we are going to reset the
8665 bp
->sp_rtnl_state
= 0;
8668 bnx2x_parity_recover(bp
);
8673 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT
, &bp
->sp_rtnl_state
)) {
8675 * Clear all pending SP commands as we are going to reset the
8678 bp
->sp_rtnl_state
= 0;
8681 bnx2x_nic_unload(bp
, UNLOAD_NORMAL
);
8682 bnx2x_nic_load(bp
, LOAD_NORMAL
);
8686 #ifdef BNX2X_STOP_ON_ERROR
8689 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC
, &bp
->sp_rtnl_state
))
8690 bnx2x_setup_tc(bp
->dev
, bp
->dcbx_port_params
.ets
.num_of_cos
);
8693 * in case of fan failure we need to reset id if the "stop on error"
8694 * debug flag is set, since we trying to prevent permanent overheating
8697 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE
, &bp
->sp_rtnl_state
)) {
8698 DP(BNX2X_MSG_SP
, "fan failure detected. Unloading driver\n");
8699 netif_device_detach(bp
->dev
);
8700 bnx2x_close(bp
->dev
);
8707 /* end of nic load/unload */
8709 static void bnx2x_period_task(struct work_struct
*work
)
8711 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, period_task
.work
);
8713 if (!netif_running(bp
->dev
))
8714 goto period_task_exit
;
8716 if (CHIP_REV_IS_SLOW(bp
)) {
8717 BNX2X_ERR("period task called on emulation, ignoring\n");
8718 goto period_task_exit
;
8721 bnx2x_acquire_phy_lock(bp
);
8723 * The barrier is needed to ensure the ordering between the writing to
8724 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8729 bnx2x_period_func(&bp
->link_params
, &bp
->link_vars
);
8731 /* Re-queue task in 1 sec */
8732 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 1*HZ
);
8735 bnx2x_release_phy_lock(bp
);
8741 * Init service functions
8744 static u32
bnx2x_get_pretend_reg(struct bnx2x
*bp
)
8746 u32 base
= PXP2_REG_PGL_PRETEND_FUNC_F0
;
8747 u32 stride
= PXP2_REG_PGL_PRETEND_FUNC_F1
- base
;
8748 return base
+ (BP_ABS_FUNC(bp
)) * stride
;
8751 static void bnx2x_undi_int_disable_e1h(struct bnx2x
*bp
)
8753 u32 reg
= bnx2x_get_pretend_reg(bp
);
8755 /* Flush all outstanding writes */
8758 /* Pretend to be function 0 */
8760 REG_RD(bp
, reg
); /* Flush the GRC transaction (in the chip) */
8762 /* From now we are in the "like-E1" mode */
8763 bnx2x_int_disable(bp
);
8765 /* Flush all outstanding writes */
8768 /* Restore the original function */
8769 REG_WR(bp
, reg
, BP_ABS_FUNC(bp
));
8773 static inline void bnx2x_undi_int_disable(struct bnx2x
*bp
)
8776 bnx2x_int_disable(bp
);
8778 bnx2x_undi_int_disable_e1h(bp
);
8781 static void __devinit
bnx2x_undi_unload(struct bnx2x
*bp
)
8785 /* Check if there is any driver already loaded */
8786 val
= REG_RD(bp
, MISC_REG_UNPREPARED
);
8789 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
8791 * Check if it is the UNDI driver
8792 * UNDI driver initializes CID offset for normal bell to 0x7
8794 val
= REG_RD(bp
, DORQ_REG_NORM_CID_OFST
);
8796 u32 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
8797 /* save our pf_num */
8798 int orig_pf_num
= bp
->pf_num
;
8800 u32 swap_en
, swap_val
, value
;
8802 /* clear the UNDI indication */
8803 REG_WR(bp
, DORQ_REG_NORM_CID_OFST
, 0);
8805 BNX2X_DEV_INFO("UNDI is active! reset device\n");
8807 /* try unload UNDI on port 0 */
8810 (SHMEM_RD(bp
, func_mb
[bp
->pf_num
].drv_mb_header
) &
8811 DRV_MSG_SEQ_NUMBER_MASK
);
8812 reset_code
= bnx2x_fw_command(bp
, reset_code
, 0);
8814 /* if UNDI is loaded on the other port */
8815 if (reset_code
!= FW_MSG_CODE_DRV_UNLOAD_COMMON
) {
8817 /* send "DONE" for previous unload */
8818 bnx2x_fw_command(bp
,
8819 DRV_MSG_CODE_UNLOAD_DONE
, 0);
8821 /* unload UNDI on port 1 */
8824 (SHMEM_RD(bp
, func_mb
[bp
->pf_num
].drv_mb_header
) &
8825 DRV_MSG_SEQ_NUMBER_MASK
);
8826 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
8828 bnx2x_fw_command(bp
, reset_code
, 0);
8831 bnx2x_undi_int_disable(bp
);
8834 /* close input traffic and wait for it */
8835 /* Do not rcv packets to BRB */
8836 REG_WR(bp
, (port
? NIG_REG_LLH1_BRB1_DRV_MASK
:
8837 NIG_REG_LLH0_BRB1_DRV_MASK
), 0x0);
8838 /* Do not direct rcv packets that are not for MCP to
8840 REG_WR(bp
, (port
? NIG_REG_LLH1_BRB1_NOT_MCP
:
8841 NIG_REG_LLH0_BRB1_NOT_MCP
), 0x0);
8843 REG_WR(bp
, (port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
8844 MISC_REG_AEU_MASK_ATTN_FUNC_0
), 0);
8847 /* save NIG port swap info */
8848 swap_val
= REG_RD(bp
, NIG_REG_PORT_SWAP
);
8849 swap_en
= REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
);
8852 GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
8856 if (CHIP_IS_E3(bp
)) {
8857 value
|= MISC_REGISTERS_RESET_REG_2_MSTAT0
;
8858 value
|= MISC_REGISTERS_RESET_REG_2_MSTAT1
;
8862 GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_CLEAR
,
8865 /* take the NIG out of reset and restore swap values */
8867 GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
,
8868 MISC_REGISTERS_RESET_REG_1_RST_NIG
);
8869 REG_WR(bp
, NIG_REG_PORT_SWAP
, swap_val
);
8870 REG_WR(bp
, NIG_REG_STRAP_OVERRIDE
, swap_en
);
8872 /* send unload done to the MCP */
8873 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, 0);
8875 /* restore our func and fw_seq */
8876 bp
->pf_num
= orig_pf_num
;
8878 (SHMEM_RD(bp
, func_mb
[bp
->pf_num
].drv_mb_header
) &
8879 DRV_MSG_SEQ_NUMBER_MASK
);
8882 /* now it's safe to release the lock */
8883 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
8887 static void __devinit
bnx2x_get_common_hwinfo(struct bnx2x
*bp
)
8889 u32 val
, val2
, val3
, val4
, id
, boot_mode
;
8892 /* Get the chip revision id and number. */
8893 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8894 val
= REG_RD(bp
, MISC_REG_CHIP_NUM
);
8895 id
= ((val
& 0xffff) << 16);
8896 val
= REG_RD(bp
, MISC_REG_CHIP_REV
);
8897 id
|= ((val
& 0xf) << 12);
8898 val
= REG_RD(bp
, MISC_REG_CHIP_METAL
);
8899 id
|= ((val
& 0xff) << 4);
8900 val
= REG_RD(bp
, MISC_REG_BOND_ID
);
8902 bp
->common
.chip_id
= id
;
8904 /* Set doorbell size */
8905 bp
->db_size
= (1 << BNX2X_DB_SHIFT
);
8907 if (!CHIP_IS_E1x(bp
)) {
8908 val
= REG_RD(bp
, MISC_REG_PORT4MODE_EN_OVWR
);
8910 val
= REG_RD(bp
, MISC_REG_PORT4MODE_EN
);
8912 val
= (val
>> 1) & 1;
8913 BNX2X_DEV_INFO("chip is in %s\n", val
? "4_PORT_MODE" :
8915 bp
->common
.chip_port_mode
= val
? CHIP_4_PORT_MODE
:
8918 if (CHIP_MODE_IS_4_PORT(bp
))
8919 bp
->pfid
= (bp
->pf_num
>> 1); /* 0..3 */
8921 bp
->pfid
= (bp
->pf_num
& 0x6); /* 0, 2, 4, 6 */
8923 bp
->common
.chip_port_mode
= CHIP_PORT_MODE_NONE
; /* N/A */
8924 bp
->pfid
= bp
->pf_num
; /* 0..7 */
8927 bp
->link_params
.chip_id
= bp
->common
.chip_id
;
8928 BNX2X_DEV_INFO("chip ID is 0x%x\n", id
);
8930 val
= (REG_RD(bp
, 0x2874) & 0x55);
8931 if ((bp
->common
.chip_id
& 0x1) ||
8932 (CHIP_IS_E1(bp
) && val
) || (CHIP_IS_E1H(bp
) && (val
== 0x55))) {
8933 bp
->flags
|= ONE_PORT_FLAG
;
8934 BNX2X_DEV_INFO("single port device\n");
8937 val
= REG_RD(bp
, MCP_REG_MCPR_NVM_CFG4
);
8938 bp
->common
.flash_size
= (BNX2X_NVRAM_1MB_SIZE
<<
8939 (val
& MCPR_NVM_CFG4_FLASH_SIZE
));
8940 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8941 bp
->common
.flash_size
, bp
->common
.flash_size
);
8943 bnx2x_init_shmem(bp
);
8947 bp
->common
.shmem2_base
= REG_RD(bp
, (BP_PATH(bp
) ?
8948 MISC_REG_GENERIC_CR_1
:
8949 MISC_REG_GENERIC_CR_0
));
8951 bp
->link_params
.shmem_base
= bp
->common
.shmem_base
;
8952 bp
->link_params
.shmem2_base
= bp
->common
.shmem2_base
;
8953 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
8954 bp
->common
.shmem_base
, bp
->common
.shmem2_base
);
8956 if (!bp
->common
.shmem_base
) {
8957 BNX2X_DEV_INFO("MCP not active\n");
8958 bp
->flags
|= NO_MCP_FLAG
;
8962 bp
->common
.hw_config
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.config
);
8963 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp
->common
.hw_config
);
8965 bp
->link_params
.hw_led_mode
= ((bp
->common
.hw_config
&
8966 SHARED_HW_CFG_LED_MODE_MASK
) >>
8967 SHARED_HW_CFG_LED_MODE_SHIFT
);
8969 bp
->link_params
.feature_config_flags
= 0;
8970 val
= SHMEM_RD(bp
, dev_info
.shared_feature_config
.config
);
8971 if (val
& SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED
)
8972 bp
->link_params
.feature_config_flags
|=
8973 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED
;
8975 bp
->link_params
.feature_config_flags
&=
8976 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED
;
8978 val
= SHMEM_RD(bp
, dev_info
.bc_rev
) >> 8;
8979 bp
->common
.bc_ver
= val
;
8980 BNX2X_DEV_INFO("bc_ver %X\n", val
);
8981 if (val
< BNX2X_BC_VER
) {
8982 /* for now only warn
8983 * later we might need to enforce this */
8984 BNX2X_ERR("This driver needs bc_ver %X but found %X, "
8985 "please upgrade BC\n", BNX2X_BC_VER
, val
);
8987 bp
->link_params
.feature_config_flags
|=
8988 (val
>= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL
) ?
8989 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY
: 0;
8991 bp
->link_params
.feature_config_flags
|=
8992 (val
>= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL
) ?
8993 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY
: 0;
8995 bp
->link_params
.feature_config_flags
|=
8996 (val
>= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED
) ?
8997 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED
: 0;
8998 bp
->flags
|= (val
>= REQ_BC_VER_4_PFC_STATS_SUPPORTED
) ?
8999 BC_SUPPORTS_PFC_STATS
: 0;
9001 boot_mode
= SHMEM_RD(bp
,
9002 dev_info
.port_feature_config
[BP_PORT(bp
)].mba_config
) &
9003 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK
;
9004 switch (boot_mode
) {
9005 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE
:
9006 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_PXE
;
9008 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB
:
9009 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_ISCSI
;
9011 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT
:
9012 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_FCOE
;
9014 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE
:
9015 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_NONE
;
9019 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_PMC
, &pmc
);
9020 bp
->flags
|= (pmc
& PCI_PM_CAP_PME_D3cold
) ? 0 : NO_WOL_FLAG
;
9022 BNX2X_DEV_INFO("%sWoL capable\n",
9023 (bp
->flags
& NO_WOL_FLAG
) ? "not " : "");
9025 val
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
);
9026 val2
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[4]);
9027 val3
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[8]);
9028 val4
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[12]);
9030 dev_info(&bp
->pdev
->dev
, "part number %X-%X-%X-%X\n",
9031 val
, val2
, val3
, val4
);
9034 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9035 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9037 static void __devinit
bnx2x_get_igu_cam_info(struct bnx2x
*bp
)
9039 int pfid
= BP_FUNC(bp
);
9042 u8 fid
, igu_sb_cnt
= 0;
9044 bp
->igu_base_sb
= 0xff;
9045 if (CHIP_INT_MODE_IS_BC(bp
)) {
9047 igu_sb_cnt
= bp
->igu_sb_cnt
;
9048 bp
->igu_base_sb
= (CHIP_MODE_IS_4_PORT(bp
) ? pfid
: vn
) *
9051 bp
->igu_dsb_id
= E1HVN_MAX
* FP_SB_MAX_E1x
+
9052 (CHIP_MODE_IS_4_PORT(bp
) ? pfid
: vn
);
9057 /* IGU in normal mode - read CAM */
9058 for (igu_sb_id
= 0; igu_sb_id
< IGU_REG_MAPPING_MEMORY_SIZE
;
9060 val
= REG_RD(bp
, IGU_REG_MAPPING_MEMORY
+ igu_sb_id
* 4);
9061 if (!(val
& IGU_REG_MAPPING_MEMORY_VALID
))
9064 if ((fid
& IGU_FID_ENCODE_IS_PF
)) {
9065 if ((fid
& IGU_FID_PF_NUM_MASK
) != pfid
)
9067 if (IGU_VEC(val
) == 0)
9068 /* default status block */
9069 bp
->igu_dsb_id
= igu_sb_id
;
9071 if (bp
->igu_base_sb
== 0xff)
9072 bp
->igu_base_sb
= igu_sb_id
;
9078 #ifdef CONFIG_PCI_MSI
9080 * It's expected that number of CAM entries for this functions is equal
9081 * to the number evaluated based on the MSI-X table size. We want a
9082 * harsh warning if these values are different!
9084 WARN_ON(bp
->igu_sb_cnt
!= igu_sb_cnt
);
9087 if (igu_sb_cnt
== 0)
9088 BNX2X_ERR("CAM configuration error\n");
9091 static void __devinit
bnx2x_link_settings_supported(struct bnx2x
*bp
,
9094 int cfg_size
= 0, idx
, port
= BP_PORT(bp
);
9096 /* Aggregation of supported attributes of all external phys */
9097 bp
->port
.supported
[0] = 0;
9098 bp
->port
.supported
[1] = 0;
9099 switch (bp
->link_params
.num_phys
) {
9101 bp
->port
.supported
[0] = bp
->link_params
.phy
[INT_PHY
].supported
;
9105 bp
->port
.supported
[0] = bp
->link_params
.phy
[EXT_PHY1
].supported
;
9109 if (bp
->link_params
.multi_phy_config
&
9110 PORT_HW_CFG_PHY_SWAPPED_ENABLED
) {
9111 bp
->port
.supported
[1] =
9112 bp
->link_params
.phy
[EXT_PHY1
].supported
;
9113 bp
->port
.supported
[0] =
9114 bp
->link_params
.phy
[EXT_PHY2
].supported
;
9116 bp
->port
.supported
[0] =
9117 bp
->link_params
.phy
[EXT_PHY1
].supported
;
9118 bp
->port
.supported
[1] =
9119 bp
->link_params
.phy
[EXT_PHY2
].supported
;
9125 if (!(bp
->port
.supported
[0] || bp
->port
.supported
[1])) {
9126 BNX2X_ERR("NVRAM config error. BAD phy config."
9127 "PHY1 config 0x%x, PHY2 config 0x%x\n",
9129 dev_info
.port_hw_config
[port
].external_phy_config
),
9131 dev_info
.port_hw_config
[port
].external_phy_config2
));
9136 bp
->port
.phy_addr
= REG_RD(bp
, MISC_REG_WC0_CTRL_PHY_ADDR
);
9138 switch (switch_cfg
) {
9140 bp
->port
.phy_addr
= REG_RD(
9141 bp
, NIG_REG_SERDES0_CTRL_PHY_ADDR
+ port
*0x10);
9143 case SWITCH_CFG_10G
:
9144 bp
->port
.phy_addr
= REG_RD(
9145 bp
, NIG_REG_XGXS0_CTRL_PHY_ADDR
+ port
*0x18);
9148 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9149 bp
->port
.link_config
[0]);
9153 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp
->port
.phy_addr
);
9154 /* mask what we support according to speed_cap_mask per configuration */
9155 for (idx
= 0; idx
< cfg_size
; idx
++) {
9156 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
9157 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF
))
9158 bp
->port
.supported
[idx
] &= ~SUPPORTED_10baseT_Half
;
9160 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
9161 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL
))
9162 bp
->port
.supported
[idx
] &= ~SUPPORTED_10baseT_Full
;
9164 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
9165 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF
))
9166 bp
->port
.supported
[idx
] &= ~SUPPORTED_100baseT_Half
;
9168 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
9169 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL
))
9170 bp
->port
.supported
[idx
] &= ~SUPPORTED_100baseT_Full
;
9172 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
9173 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G
))
9174 bp
->port
.supported
[idx
] &= ~(SUPPORTED_1000baseT_Half
|
9175 SUPPORTED_1000baseT_Full
);
9177 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
9178 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G
))
9179 bp
->port
.supported
[idx
] &= ~SUPPORTED_2500baseX_Full
;
9181 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
9182 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G
))
9183 bp
->port
.supported
[idx
] &= ~SUPPORTED_10000baseT_Full
;
9187 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp
->port
.supported
[0],
9188 bp
->port
.supported
[1]);
9191 static void __devinit
bnx2x_link_settings_requested(struct bnx2x
*bp
)
9193 u32 link_config
, idx
, cfg_size
= 0;
9194 bp
->port
.advertising
[0] = 0;
9195 bp
->port
.advertising
[1] = 0;
9196 switch (bp
->link_params
.num_phys
) {
9205 for (idx
= 0; idx
< cfg_size
; idx
++) {
9206 bp
->link_params
.req_duplex
[idx
] = DUPLEX_FULL
;
9207 link_config
= bp
->port
.link_config
[idx
];
9208 switch (link_config
& PORT_FEATURE_LINK_SPEED_MASK
) {
9209 case PORT_FEATURE_LINK_SPEED_AUTO
:
9210 if (bp
->port
.supported
[idx
] & SUPPORTED_Autoneg
) {
9211 bp
->link_params
.req_line_speed
[idx
] =
9213 bp
->port
.advertising
[idx
] |=
9214 bp
->port
.supported
[idx
];
9216 /* force 10G, no AN */
9217 bp
->link_params
.req_line_speed
[idx
] =
9219 bp
->port
.advertising
[idx
] |=
9220 (ADVERTISED_10000baseT_Full
|
9226 case PORT_FEATURE_LINK_SPEED_10M_FULL
:
9227 if (bp
->port
.supported
[idx
] & SUPPORTED_10baseT_Full
) {
9228 bp
->link_params
.req_line_speed
[idx
] =
9230 bp
->port
.advertising
[idx
] |=
9231 (ADVERTISED_10baseT_Full
|
9234 BNX2X_ERR("NVRAM config error. "
9235 "Invalid link_config 0x%x"
9236 " speed_cap_mask 0x%x\n",
9238 bp
->link_params
.speed_cap_mask
[idx
]);
9243 case PORT_FEATURE_LINK_SPEED_10M_HALF
:
9244 if (bp
->port
.supported
[idx
] & SUPPORTED_10baseT_Half
) {
9245 bp
->link_params
.req_line_speed
[idx
] =
9247 bp
->link_params
.req_duplex
[idx
] =
9249 bp
->port
.advertising
[idx
] |=
9250 (ADVERTISED_10baseT_Half
|
9253 BNX2X_ERR("NVRAM config error. "
9254 "Invalid link_config 0x%x"
9255 " speed_cap_mask 0x%x\n",
9257 bp
->link_params
.speed_cap_mask
[idx
]);
9262 case PORT_FEATURE_LINK_SPEED_100M_FULL
:
9263 if (bp
->port
.supported
[idx
] &
9264 SUPPORTED_100baseT_Full
) {
9265 bp
->link_params
.req_line_speed
[idx
] =
9267 bp
->port
.advertising
[idx
] |=
9268 (ADVERTISED_100baseT_Full
|
9271 BNX2X_ERR("NVRAM config error. "
9272 "Invalid link_config 0x%x"
9273 " speed_cap_mask 0x%x\n",
9275 bp
->link_params
.speed_cap_mask
[idx
]);
9280 case PORT_FEATURE_LINK_SPEED_100M_HALF
:
9281 if (bp
->port
.supported
[idx
] &
9282 SUPPORTED_100baseT_Half
) {
9283 bp
->link_params
.req_line_speed
[idx
] =
9285 bp
->link_params
.req_duplex
[idx
] =
9287 bp
->port
.advertising
[idx
] |=
9288 (ADVERTISED_100baseT_Half
|
9291 BNX2X_ERR("NVRAM config error. "
9292 "Invalid link_config 0x%x"
9293 " speed_cap_mask 0x%x\n",
9295 bp
->link_params
.speed_cap_mask
[idx
]);
9300 case PORT_FEATURE_LINK_SPEED_1G
:
9301 if (bp
->port
.supported
[idx
] &
9302 SUPPORTED_1000baseT_Full
) {
9303 bp
->link_params
.req_line_speed
[idx
] =
9305 bp
->port
.advertising
[idx
] |=
9306 (ADVERTISED_1000baseT_Full
|
9309 BNX2X_ERR("NVRAM config error. "
9310 "Invalid link_config 0x%x"
9311 " speed_cap_mask 0x%x\n",
9313 bp
->link_params
.speed_cap_mask
[idx
]);
9318 case PORT_FEATURE_LINK_SPEED_2_5G
:
9319 if (bp
->port
.supported
[idx
] &
9320 SUPPORTED_2500baseX_Full
) {
9321 bp
->link_params
.req_line_speed
[idx
] =
9323 bp
->port
.advertising
[idx
] |=
9324 (ADVERTISED_2500baseX_Full
|
9327 BNX2X_ERR("NVRAM config error. "
9328 "Invalid link_config 0x%x"
9329 " speed_cap_mask 0x%x\n",
9331 bp
->link_params
.speed_cap_mask
[idx
]);
9336 case PORT_FEATURE_LINK_SPEED_10G_CX4
:
9337 if (bp
->port
.supported
[idx
] &
9338 SUPPORTED_10000baseT_Full
) {
9339 bp
->link_params
.req_line_speed
[idx
] =
9341 bp
->port
.advertising
[idx
] |=
9342 (ADVERTISED_10000baseT_Full
|
9345 BNX2X_ERR("NVRAM config error. "
9346 "Invalid link_config 0x%x"
9347 " speed_cap_mask 0x%x\n",
9349 bp
->link_params
.speed_cap_mask
[idx
]);
9353 case PORT_FEATURE_LINK_SPEED_20G
:
9354 bp
->link_params
.req_line_speed
[idx
] = SPEED_20000
;
9358 BNX2X_ERR("NVRAM config error. "
9359 "BAD link speed link_config 0x%x\n",
9361 bp
->link_params
.req_line_speed
[idx
] =
9363 bp
->port
.advertising
[idx
] =
9364 bp
->port
.supported
[idx
];
9368 bp
->link_params
.req_flow_ctrl
[idx
] = (link_config
&
9369 PORT_FEATURE_FLOW_CONTROL_MASK
);
9370 if ((bp
->link_params
.req_flow_ctrl
[idx
] ==
9371 BNX2X_FLOW_CTRL_AUTO
) &&
9372 !(bp
->port
.supported
[idx
] & SUPPORTED_Autoneg
)) {
9373 bp
->link_params
.req_flow_ctrl
[idx
] =
9374 BNX2X_FLOW_CTRL_NONE
;
9377 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
9378 " 0x%x advertising 0x%x\n",
9379 bp
->link_params
.req_line_speed
[idx
],
9380 bp
->link_params
.req_duplex
[idx
],
9381 bp
->link_params
.req_flow_ctrl
[idx
],
9382 bp
->port
.advertising
[idx
]);
9386 static void __devinit
bnx2x_set_mac_buf(u8
*mac_buf
, u32 mac_lo
, u16 mac_hi
)
9388 mac_hi
= cpu_to_be16(mac_hi
);
9389 mac_lo
= cpu_to_be32(mac_lo
);
9390 memcpy(mac_buf
, &mac_hi
, sizeof(mac_hi
));
9391 memcpy(mac_buf
+ sizeof(mac_hi
), &mac_lo
, sizeof(mac_lo
));
9394 static void __devinit
bnx2x_get_port_hwinfo(struct bnx2x
*bp
)
9396 int port
= BP_PORT(bp
);
9398 u32 ext_phy_type
, ext_phy_config
;
9400 bp
->link_params
.bp
= bp
;
9401 bp
->link_params
.port
= port
;
9403 bp
->link_params
.lane_config
=
9404 SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].lane_config
);
9406 bp
->link_params
.speed_cap_mask
[0] =
9408 dev_info
.port_hw_config
[port
].speed_capability_mask
);
9409 bp
->link_params
.speed_cap_mask
[1] =
9411 dev_info
.port_hw_config
[port
].speed_capability_mask2
);
9412 bp
->port
.link_config
[0] =
9413 SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].link_config
);
9415 bp
->port
.link_config
[1] =
9416 SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].link_config2
);
9418 bp
->link_params
.multi_phy_config
=
9419 SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].multi_phy_config
);
9420 /* If the device is capable of WoL, set the default state according
9423 config
= SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].config
);
9424 bp
->wol
= (!(bp
->flags
& NO_WOL_FLAG
) &&
9425 (config
& PORT_FEATURE_WOL_ENABLED
));
9427 BNX2X_DEV_INFO("lane_config 0x%08x "
9428 "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
9429 bp
->link_params
.lane_config
,
9430 bp
->link_params
.speed_cap_mask
[0],
9431 bp
->port
.link_config
[0]);
9433 bp
->link_params
.switch_cfg
= (bp
->port
.link_config
[0] &
9434 PORT_FEATURE_CONNECTED_SWITCH_MASK
);
9435 bnx2x_phy_probe(&bp
->link_params
);
9436 bnx2x_link_settings_supported(bp
, bp
->link_params
.switch_cfg
);
9438 bnx2x_link_settings_requested(bp
);
9441 * If connected directly, work with the internal PHY, otherwise, work
9442 * with the external PHY
9446 dev_info
.port_hw_config
[port
].external_phy_config
);
9447 ext_phy_type
= XGXS_EXT_PHY_TYPE(ext_phy_config
);
9448 if (ext_phy_type
== PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT
)
9449 bp
->mdio
.prtad
= bp
->port
.phy_addr
;
9451 else if ((ext_phy_type
!= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE
) &&
9452 (ext_phy_type
!= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN
))
9454 XGXS_EXT_PHY_ADDR(ext_phy_config
);
9457 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9458 * In MF mode, it is set to cover self test cases
9461 bp
->port
.need_hw_lock
= 1;
9463 bp
->port
.need_hw_lock
= bnx2x_hw_lock_required(bp
,
9464 bp
->common
.shmem_base
,
9465 bp
->common
.shmem2_base
);
9468 void bnx2x_get_iscsi_info(struct bnx2x
*bp
)
9471 int port
= BP_PORT(bp
);
9473 u32 max_iscsi_conn
= FW_ENCODE_32BIT_PATTERN
^ SHMEM_RD(bp
,
9474 drv_lic_key
[port
].max_iscsi_conn
);
9476 /* Get the number of maximum allowed iSCSI connections */
9477 bp
->cnic_eth_dev
.max_iscsi_conn
=
9478 (max_iscsi_conn
& BNX2X_MAX_ISCSI_INIT_CONN_MASK
) >>
9479 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT
;
9481 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9482 bp
->cnic_eth_dev
.max_iscsi_conn
);
9485 * If maximum allowed number of connections is zero -
9486 * disable the feature.
9488 if (!bp
->cnic_eth_dev
.max_iscsi_conn
)
9489 bp
->flags
|= NO_ISCSI_FLAG
;
9491 bp
->flags
|= NO_ISCSI_FLAG
;
9495 static void __devinit
bnx2x_get_fcoe_info(struct bnx2x
*bp
)
9498 int port
= BP_PORT(bp
);
9499 int func
= BP_ABS_FUNC(bp
);
9501 u32 max_fcoe_conn
= FW_ENCODE_32BIT_PATTERN
^ SHMEM_RD(bp
,
9502 drv_lic_key
[port
].max_fcoe_conn
);
9504 /* Get the number of maximum allowed FCoE connections */
9505 bp
->cnic_eth_dev
.max_fcoe_conn
=
9506 (max_fcoe_conn
& BNX2X_MAX_FCOE_INIT_CONN_MASK
) >>
9507 BNX2X_MAX_FCOE_INIT_CONN_SHIFT
;
9512 bp
->cnic_eth_dev
.fcoe_wwn_port_name_hi
=
9514 dev_info
.port_hw_config
[port
].
9515 fcoe_wwn_port_name_upper
);
9516 bp
->cnic_eth_dev
.fcoe_wwn_port_name_lo
=
9518 dev_info
.port_hw_config
[port
].
9519 fcoe_wwn_port_name_lower
);
9522 bp
->cnic_eth_dev
.fcoe_wwn_node_name_hi
=
9524 dev_info
.port_hw_config
[port
].
9525 fcoe_wwn_node_name_upper
);
9526 bp
->cnic_eth_dev
.fcoe_wwn_node_name_lo
=
9528 dev_info
.port_hw_config
[port
].
9529 fcoe_wwn_node_name_lower
);
9530 } else if (!IS_MF_SD(bp
)) {
9531 u32 cfg
= MF_CFG_RD(bp
, func_ext_config
[func
].func_cfg
);
9534 * Read the WWN info only if the FCoE feature is enabled for
9537 if (cfg
& MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD
) {
9539 bp
->cnic_eth_dev
.fcoe_wwn_port_name_hi
=
9540 MF_CFG_RD(bp
, func_ext_config
[func
].
9541 fcoe_wwn_port_name_upper
);
9542 bp
->cnic_eth_dev
.fcoe_wwn_port_name_lo
=
9543 MF_CFG_RD(bp
, func_ext_config
[func
].
9544 fcoe_wwn_port_name_lower
);
9547 bp
->cnic_eth_dev
.fcoe_wwn_node_name_hi
=
9548 MF_CFG_RD(bp
, func_ext_config
[func
].
9549 fcoe_wwn_node_name_upper
);
9550 bp
->cnic_eth_dev
.fcoe_wwn_node_name_lo
=
9551 MF_CFG_RD(bp
, func_ext_config
[func
].
9552 fcoe_wwn_node_name_lower
);
9556 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp
->cnic_eth_dev
.max_fcoe_conn
);
9559 * If maximum allowed number of connections is zero -
9560 * disable the feature.
9562 if (!bp
->cnic_eth_dev
.max_fcoe_conn
)
9563 bp
->flags
|= NO_FCOE_FLAG
;
9565 bp
->flags
|= NO_FCOE_FLAG
;
9569 static void __devinit
bnx2x_get_cnic_info(struct bnx2x
*bp
)
9572 * iSCSI may be dynamically disabled but reading
9573 * info here we will decrease memory usage by driver
9574 * if the feature is disabled for good
9576 bnx2x_get_iscsi_info(bp
);
9577 bnx2x_get_fcoe_info(bp
);
9580 static void __devinit
bnx2x_get_mac_hwinfo(struct bnx2x
*bp
)
9583 int func
= BP_ABS_FUNC(bp
);
9584 int port
= BP_PORT(bp
);
9586 u8
*iscsi_mac
= bp
->cnic_eth_dev
.iscsi_mac
;
9587 u8
*fip_mac
= bp
->fip_mac
;
9590 /* Zero primary MAC configuration */
9591 memset(bp
->dev
->dev_addr
, 0, ETH_ALEN
);
9594 BNX2X_ERROR("warning: random MAC workaround active\n");
9595 random_ether_addr(bp
->dev
->dev_addr
);
9596 } else if (IS_MF(bp
)) {
9597 val2
= MF_CFG_RD(bp
, func_mf_config
[func
].mac_upper
);
9598 val
= MF_CFG_RD(bp
, func_mf_config
[func
].mac_lower
);
9599 if ((val2
!= FUNC_MF_CFG_UPPERMAC_DEFAULT
) &&
9600 (val
!= FUNC_MF_CFG_LOWERMAC_DEFAULT
))
9601 bnx2x_set_mac_buf(bp
->dev
->dev_addr
, val
, val2
);
9605 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9606 * FCoE MAC then the appropriate feature should be disabled.
9609 u32 cfg
= MF_CFG_RD(bp
, func_ext_config
[func
].func_cfg
);
9610 if (cfg
& MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD
) {
9611 val2
= MF_CFG_RD(bp
, func_ext_config
[func
].
9612 iscsi_mac_addr_upper
);
9613 val
= MF_CFG_RD(bp
, func_ext_config
[func
].
9614 iscsi_mac_addr_lower
);
9615 bnx2x_set_mac_buf(iscsi_mac
, val
, val2
);
9616 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9619 bp
->flags
|= NO_ISCSI_OOO_FLAG
| NO_ISCSI_FLAG
;
9621 if (cfg
& MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD
) {
9622 val2
= MF_CFG_RD(bp
, func_ext_config
[func
].
9623 fcoe_mac_addr_upper
);
9624 val
= MF_CFG_RD(bp
, func_ext_config
[func
].
9625 fcoe_mac_addr_lower
);
9626 bnx2x_set_mac_buf(fip_mac
, val
, val2
);
9627 BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9631 bp
->flags
|= NO_FCOE_FLAG
;
9632 } else { /* SD mode */
9633 if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp
)) {
9634 /* use primary mac as iscsi mac */
9635 memcpy(iscsi_mac
, bp
->dev
->dev_addr
, ETH_ALEN
);
9636 /* Zero primary MAC configuration */
9637 memset(bp
->dev
->dev_addr
, 0, ETH_ALEN
);
9639 BNX2X_DEV_INFO("SD ISCSI MODE\n");
9640 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9646 /* in SF read MACs from port configuration */
9647 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_upper
);
9648 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_lower
);
9649 bnx2x_set_mac_buf(bp
->dev
->dev_addr
, val
, val2
);
9652 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
9654 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
9656 bnx2x_set_mac_buf(iscsi_mac
, val
, val2
);
9658 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
9659 fcoe_fip_mac_upper
);
9660 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
9661 fcoe_fip_mac_lower
);
9662 bnx2x_set_mac_buf(fip_mac
, val
, val2
);
9666 memcpy(bp
->link_params
.mac_addr
, bp
->dev
->dev_addr
, ETH_ALEN
);
9667 memcpy(bp
->dev
->perm_addr
, bp
->dev
->dev_addr
, ETH_ALEN
);
9670 /* Set the FCoE MAC in MF_SD mode */
9671 if (!CHIP_IS_E1x(bp
) && IS_MF_SD(bp
))
9672 memcpy(fip_mac
, bp
->dev
->dev_addr
, ETH_ALEN
);
9674 /* Disable iSCSI if MAC configuration is
9677 if (!is_valid_ether_addr(iscsi_mac
)) {
9678 bp
->flags
|= NO_ISCSI_FLAG
;
9679 memset(iscsi_mac
, 0, ETH_ALEN
);
9682 /* Disable FCoE if MAC configuration is
9685 if (!is_valid_ether_addr(fip_mac
)) {
9686 bp
->flags
|= NO_FCOE_FLAG
;
9687 memset(bp
->fip_mac
, 0, ETH_ALEN
);
9691 if (!bnx2x_is_valid_ether_addr(bp
, bp
->dev
->dev_addr
))
9692 dev_err(&bp
->pdev
->dev
,
9693 "bad Ethernet MAC address configuration: "
9694 "%pM, change it manually before bringing up "
9695 "the appropriate network interface\n",
9699 static int __devinit
bnx2x_get_hwinfo(struct bnx2x
*bp
)
9701 int /*abs*/func
= BP_ABS_FUNC(bp
);
9706 bnx2x_get_common_hwinfo(bp
);
9709 * initialize IGU parameters
9711 if (CHIP_IS_E1x(bp
)) {
9712 bp
->common
.int_block
= INT_BLOCK_HC
;
9714 bp
->igu_dsb_id
= DEF_SB_IGU_ID
;
9715 bp
->igu_base_sb
= 0;
9717 bp
->common
.int_block
= INT_BLOCK_IGU
;
9719 /* do not allow device reset during IGU info preocessing */
9720 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
9722 val
= REG_RD(bp
, IGU_REG_BLOCK_CONFIGURATION
);
9724 if (val
& IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
) {
9727 BNX2X_DEV_INFO("FORCING Normal Mode\n");
9729 val
&= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
);
9730 REG_WR(bp
, IGU_REG_BLOCK_CONFIGURATION
, val
);
9731 REG_WR(bp
, IGU_REG_RESET_MEMORIES
, 0x7f);
9733 while (tout
&& REG_RD(bp
, IGU_REG_RESET_MEMORIES
)) {
9735 usleep_range(1000, 1000);
9738 if (REG_RD(bp
, IGU_REG_RESET_MEMORIES
)) {
9739 dev_err(&bp
->pdev
->dev
,
9740 "FORCING Normal Mode failed!!!\n");
9745 if (val
& IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
) {
9746 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9747 bp
->common
.int_block
|= INT_BLOCK_MODE_BW_COMP
;
9749 BNX2X_DEV_INFO("IGU Normal Mode\n");
9751 bnx2x_get_igu_cam_info(bp
);
9753 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
9757 * set base FW non-default (fast path) status block id, this value is
9758 * used to initialize the fw_sb_id saved on the fp/queue structure to
9759 * determine the id used by the FW.
9761 if (CHIP_IS_E1x(bp
))
9762 bp
->base_fw_ndsb
= BP_PORT(bp
) * FP_SB_MAX_E1x
+ BP_L_ID(bp
);
9764 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9765 * the same queue are indicated on the same IGU SB). So we prefer
9766 * FW and IGU SBs to be the same value.
9768 bp
->base_fw_ndsb
= bp
->igu_base_sb
;
9770 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
9771 "base_fw_ndsb %d\n", bp
->igu_dsb_id
, bp
->igu_base_sb
,
9772 bp
->igu_sb_cnt
, bp
->base_fw_ndsb
);
9775 * Initialize MF configuration
9782 if (!CHIP_IS_E1(bp
) && !BP_NOMCP(bp
)) {
9783 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9784 bp
->common
.shmem2_base
, SHMEM2_RD(bp
, size
),
9785 (u32
)offsetof(struct shmem2_region
, mf_cfg_addr
));
9787 if (SHMEM2_HAS(bp
, mf_cfg_addr
))
9788 bp
->common
.mf_cfg_base
= SHMEM2_RD(bp
, mf_cfg_addr
);
9790 bp
->common
.mf_cfg_base
= bp
->common
.shmem_base
+
9791 offsetof(struct shmem_region
, func_mb
) +
9792 E1H_FUNC_MAX
* sizeof(struct drv_func_mb
);
9794 * get mf configuration:
9795 * 1. existence of MF configuration
9796 * 2. MAC address must be legal (check only upper bytes)
9797 * for Switch-Independent mode;
9798 * OVLAN must be legal for Switch-Dependent mode
9799 * 3. SF_MODE configures specific MF mode
9801 if (bp
->common
.mf_cfg_base
!= SHMEM_MF_CFG_ADDR_NONE
) {
9802 /* get mf configuration */
9804 dev_info
.shared_feature_config
.config
);
9805 val
&= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK
;
9808 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT
:
9809 val
= MF_CFG_RD(bp
, func_mf_config
[func
].
9811 /* check for legal mac (upper bytes)*/
9812 if (val
!= 0xffff) {
9813 bp
->mf_mode
= MULTI_FUNCTION_SI
;
9814 bp
->mf_config
[vn
] = MF_CFG_RD(bp
,
9815 func_mf_config
[func
].config
);
9817 BNX2X_DEV_INFO("illegal MAC address "
9820 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED
:
9821 /* get OV configuration */
9823 func_mf_config
[FUNC_0
].e1hov_tag
);
9824 val
&= FUNC_MF_CFG_E1HOV_TAG_MASK
;
9826 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
) {
9827 bp
->mf_mode
= MULTI_FUNCTION_SD
;
9828 bp
->mf_config
[vn
] = MF_CFG_RD(bp
,
9829 func_mf_config
[func
].config
);
9831 BNX2X_DEV_INFO("illegal OV for SD\n");
9834 /* Unknown configuration: reset mf_config */
9835 bp
->mf_config
[vn
] = 0;
9836 BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val
);
9840 BNX2X_DEV_INFO("%s function mode\n",
9841 IS_MF(bp
) ? "multi" : "single");
9843 switch (bp
->mf_mode
) {
9844 case MULTI_FUNCTION_SD
:
9845 val
= MF_CFG_RD(bp
, func_mf_config
[func
].e1hov_tag
) &
9846 FUNC_MF_CFG_E1HOV_TAG_MASK
;
9847 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
) {
9849 bp
->path_has_ovlan
= true;
9851 BNX2X_DEV_INFO("MF OV for func %d is %d "
9852 "(0x%04x)\n", func
, bp
->mf_ov
,
9855 dev_err(&bp
->pdev
->dev
,
9856 "No valid MF OV for func %d, "
9857 "aborting\n", func
);
9861 case MULTI_FUNCTION_SI
:
9862 BNX2X_DEV_INFO("func %d is in MF "
9863 "switch-independent mode\n", func
);
9867 dev_err(&bp
->pdev
->dev
,
9868 "VN %d is in a single function mode, "
9875 /* check if other port on the path needs ovlan:
9876 * Since MF configuration is shared between ports
9877 * Possible mixed modes are only
9878 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9880 if (CHIP_MODE_IS_4_PORT(bp
) &&
9881 !bp
->path_has_ovlan
&&
9883 bp
->common
.mf_cfg_base
!= SHMEM_MF_CFG_ADDR_NONE
) {
9884 u8 other_port
= !BP_PORT(bp
);
9885 u8 other_func
= BP_PATH(bp
) + 2*other_port
;
9887 func_mf_config
[other_func
].e1hov_tag
);
9888 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
)
9889 bp
->path_has_ovlan
= true;
9893 /* adjust igu_sb_cnt to MF for E1x */
9894 if (CHIP_IS_E1x(bp
) && IS_MF(bp
))
9895 bp
->igu_sb_cnt
/= E1HVN_MAX
;
9898 bnx2x_get_port_hwinfo(bp
);
9900 /* Get MAC addresses */
9901 bnx2x_get_mac_hwinfo(bp
);
9903 bnx2x_get_cnic_info(bp
);
9905 /* Get current FW pulse sequence */
9906 if (!BP_NOMCP(bp
)) {
9907 int mb_idx
= BP_FW_MB_IDX(bp
);
9909 bp
->fw_drv_pulse_wr_seq
=
9910 (SHMEM_RD(bp
, func_mb
[mb_idx
].drv_pulse_mb
) &
9911 DRV_PULSE_SEQ_MASK
);
9912 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp
->fw_drv_pulse_wr_seq
);
9918 static void __devinit
bnx2x_read_fwinfo(struct bnx2x
*bp
)
9920 int cnt
, i
, block_end
, rodi
;
9921 char vpd_start
[BNX2X_VPD_LEN
+1];
9922 char str_id_reg
[VENDOR_ID_LEN
+1];
9923 char str_id_cap
[VENDOR_ID_LEN
+1];
9925 char *vpd_extended_data
= NULL
;
9928 cnt
= pci_read_vpd(bp
->pdev
, 0, BNX2X_VPD_LEN
, vpd_start
);
9929 memset(bp
->fw_ver
, 0, sizeof(bp
->fw_ver
));
9931 if (cnt
< BNX2X_VPD_LEN
)
9934 /* VPD RO tag should be first tag after identifier string, hence
9935 * we should be able to find it in first BNX2X_VPD_LEN chars
9937 i
= pci_vpd_find_tag(vpd_start
, 0, BNX2X_VPD_LEN
,
9938 PCI_VPD_LRDT_RO_DATA
);
9942 block_end
= i
+ PCI_VPD_LRDT_TAG_SIZE
+
9943 pci_vpd_lrdt_size(&vpd_start
[i
]);
9945 i
+= PCI_VPD_LRDT_TAG_SIZE
;
9947 if (block_end
> BNX2X_VPD_LEN
) {
9948 vpd_extended_data
= kmalloc(block_end
, GFP_KERNEL
);
9949 if (vpd_extended_data
== NULL
)
9952 /* read rest of vpd image into vpd_extended_data */
9953 memcpy(vpd_extended_data
, vpd_start
, BNX2X_VPD_LEN
);
9954 cnt
= pci_read_vpd(bp
->pdev
, BNX2X_VPD_LEN
,
9955 block_end
- BNX2X_VPD_LEN
,
9956 vpd_extended_data
+ BNX2X_VPD_LEN
);
9957 if (cnt
< (block_end
- BNX2X_VPD_LEN
))
9959 vpd_data
= vpd_extended_data
;
9961 vpd_data
= vpd_start
;
9963 /* now vpd_data holds full vpd content in both cases */
9965 rodi
= pci_vpd_find_info_keyword(vpd_data
, i
, block_end
,
9966 PCI_VPD_RO_KEYWORD_MFR_ID
);
9970 len
= pci_vpd_info_field_size(&vpd_data
[rodi
]);
9972 if (len
!= VENDOR_ID_LEN
)
9975 rodi
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
9977 /* vendor specific info */
9978 snprintf(str_id_reg
, VENDOR_ID_LEN
+ 1, "%04x", PCI_VENDOR_ID_DELL
);
9979 snprintf(str_id_cap
, VENDOR_ID_LEN
+ 1, "%04X", PCI_VENDOR_ID_DELL
);
9980 if (!strncmp(str_id_reg
, &vpd_data
[rodi
], VENDOR_ID_LEN
) ||
9981 !strncmp(str_id_cap
, &vpd_data
[rodi
], VENDOR_ID_LEN
)) {
9983 rodi
= pci_vpd_find_info_keyword(vpd_data
, i
, block_end
,
9984 PCI_VPD_RO_KEYWORD_VENDOR0
);
9986 len
= pci_vpd_info_field_size(&vpd_data
[rodi
]);
9988 rodi
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
9990 if (len
< 32 && (len
+ rodi
) <= BNX2X_VPD_LEN
) {
9991 memcpy(bp
->fw_ver
, &vpd_data
[rodi
], len
);
9992 bp
->fw_ver
[len
] = ' ';
9995 kfree(vpd_extended_data
);
9999 kfree(vpd_extended_data
);
10003 static void __devinit
bnx2x_set_modes_bitmap(struct bnx2x
*bp
)
10007 if (CHIP_REV_IS_FPGA(bp
))
10008 SET_FLAGS(flags
, MODE_FPGA
);
10009 else if (CHIP_REV_IS_EMUL(bp
))
10010 SET_FLAGS(flags
, MODE_EMUL
);
10012 SET_FLAGS(flags
, MODE_ASIC
);
10014 if (CHIP_MODE_IS_4_PORT(bp
))
10015 SET_FLAGS(flags
, MODE_PORT4
);
10017 SET_FLAGS(flags
, MODE_PORT2
);
10019 if (CHIP_IS_E2(bp
))
10020 SET_FLAGS(flags
, MODE_E2
);
10021 else if (CHIP_IS_E3(bp
)) {
10022 SET_FLAGS(flags
, MODE_E3
);
10023 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
10024 SET_FLAGS(flags
, MODE_E3_A0
);
10025 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10026 SET_FLAGS(flags
, MODE_E3_B0
| MODE_COS3
);
10030 SET_FLAGS(flags
, MODE_MF
);
10031 switch (bp
->mf_mode
) {
10032 case MULTI_FUNCTION_SD
:
10033 SET_FLAGS(flags
, MODE_MF_SD
);
10035 case MULTI_FUNCTION_SI
:
10036 SET_FLAGS(flags
, MODE_MF_SI
);
10040 SET_FLAGS(flags
, MODE_SF
);
10042 #if defined(__LITTLE_ENDIAN)
10043 SET_FLAGS(flags
, MODE_LITTLE_ENDIAN
);
10044 #else /*(__BIG_ENDIAN)*/
10045 SET_FLAGS(flags
, MODE_BIG_ENDIAN
);
10047 INIT_MODE_FLAGS(bp
) = flags
;
10050 static int __devinit
bnx2x_init_bp(struct bnx2x
*bp
)
10055 mutex_init(&bp
->port
.phy_mutex
);
10056 mutex_init(&bp
->fw_mb_mutex
);
10057 spin_lock_init(&bp
->stats_lock
);
10059 mutex_init(&bp
->cnic_mutex
);
10062 INIT_DELAYED_WORK(&bp
->sp_task
, bnx2x_sp_task
);
10063 INIT_DELAYED_WORK(&bp
->sp_rtnl_task
, bnx2x_sp_rtnl_task
);
10064 INIT_DELAYED_WORK(&bp
->period_task
, bnx2x_period_task
);
10065 rc
= bnx2x_get_hwinfo(bp
);
10069 bnx2x_set_modes_bitmap(bp
);
10071 rc
= bnx2x_alloc_mem_bp(bp
);
10075 bnx2x_read_fwinfo(bp
);
10077 func
= BP_FUNC(bp
);
10079 /* need to reset chip if undi was active */
10081 bnx2x_undi_unload(bp
);
10083 /* init fw_seq after undi_unload! */
10084 if (!BP_NOMCP(bp
)) {
10086 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
10087 DRV_MSG_SEQ_NUMBER_MASK
);
10088 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp
->fw_seq
);
10091 if (CHIP_REV_IS_FPGA(bp
))
10092 dev_err(&bp
->pdev
->dev
, "FPGA detected\n");
10094 if (BP_NOMCP(bp
) && (func
== 0))
10095 dev_err(&bp
->pdev
->dev
, "MCP disabled, "
10096 "must load devices in order!\n");
10098 bp
->multi_mode
= multi_mode
;
10100 bp
->disable_tpa
= disable_tpa
;
10103 bp
->disable_tpa
|= IS_MF_ISCSI_SD(bp
);
10106 /* Set TPA flags */
10107 if (bp
->disable_tpa
) {
10108 bp
->flags
&= ~TPA_ENABLE_FLAG
;
10109 bp
->dev
->features
&= ~NETIF_F_LRO
;
10111 bp
->flags
|= TPA_ENABLE_FLAG
;
10112 bp
->dev
->features
|= NETIF_F_LRO
;
10115 if (CHIP_IS_E1(bp
))
10116 bp
->dropless_fc
= 0;
10118 bp
->dropless_fc
= dropless_fc
;
10122 bp
->tx_ring_size
= MAX_TX_AVAIL
;
10124 /* make sure that the numbers are in the right granularity */
10125 bp
->tx_ticks
= (50 / BNX2X_BTR
) * BNX2X_BTR
;
10126 bp
->rx_ticks
= (25 / BNX2X_BTR
) * BNX2X_BTR
;
10128 bp
->current_interval
= CHIP_REV_IS_SLOW(bp
) ? 5*HZ
: HZ
;
10130 init_timer(&bp
->timer
);
10131 bp
->timer
.expires
= jiffies
+ bp
->current_interval
;
10132 bp
->timer
.data
= (unsigned long) bp
;
10133 bp
->timer
.function
= bnx2x_timer
;
10135 bnx2x_dcbx_set_state(bp
, true, BNX2X_DCBX_ENABLED_ON_NEG_ON
);
10136 bnx2x_dcbx_init_params(bp
);
10139 if (CHIP_IS_E1x(bp
))
10140 bp
->cnic_base_cl_id
= FP_SB_MAX_E1x
;
10142 bp
->cnic_base_cl_id
= FP_SB_MAX_E2
;
10145 /* multiple tx priority */
10146 if (CHIP_IS_E1x(bp
))
10147 bp
->max_cos
= BNX2X_MULTI_TX_COS_E1X
;
10148 if (CHIP_IS_E2(bp
) || CHIP_IS_E3A0(bp
))
10149 bp
->max_cos
= BNX2X_MULTI_TX_COS_E2_E3A0
;
10150 if (CHIP_IS_E3B0(bp
))
10151 bp
->max_cos
= BNX2X_MULTI_TX_COS_E3B0
;
10157 /****************************************************************************
10158 * General service functions
10159 ****************************************************************************/
10162 * net_device service functions
10165 /* called with rtnl_lock */
10166 static int bnx2x_open(struct net_device
*dev
)
10168 struct bnx2x
*bp
= netdev_priv(dev
);
10169 bool global
= false;
10170 int other_engine
= BP_PATH(bp
) ? 0 : 1;
10171 u32 other_load_counter
, load_counter
;
10173 netif_carrier_off(dev
);
10175 bnx2x_set_power_state(bp
, PCI_D0
);
10177 other_load_counter
= bnx2x_get_load_cnt(bp
, other_engine
);
10178 load_counter
= bnx2x_get_load_cnt(bp
, BP_PATH(bp
));
10181 * If parity had happen during the unload, then attentions
10182 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10183 * want the first function loaded on the current engine to
10184 * complete the recovery.
10186 if (!bnx2x_reset_is_done(bp
, BP_PATH(bp
)) ||
10187 bnx2x_chk_parity_attn(bp
, &global
, true))
10190 * If there are attentions and they are in a global
10191 * blocks, set the GLOBAL_RESET bit regardless whether
10192 * it will be this function that will complete the
10196 bnx2x_set_reset_global(bp
);
10199 * Only the first function on the current engine should
10200 * try to recover in open. In case of attentions in
10201 * global blocks only the first in the chip should try
10204 if ((!load_counter
&&
10205 (!global
|| !other_load_counter
)) &&
10206 bnx2x_trylock_leader_lock(bp
) &&
10207 !bnx2x_leader_reset(bp
)) {
10208 netdev_info(bp
->dev
, "Recovered in open\n");
10212 /* recovery has failed... */
10213 bnx2x_set_power_state(bp
, PCI_D3hot
);
10214 bp
->recovery_state
= BNX2X_RECOVERY_FAILED
;
10216 netdev_err(bp
->dev
, "Recovery flow hasn't been properly"
10217 " completed yet. Try again later. If u still see this"
10218 " message after a few retries then power cycle is"
10224 bp
->recovery_state
= BNX2X_RECOVERY_DONE
;
10225 return bnx2x_nic_load(bp
, LOAD_OPEN
);
10228 /* called with rtnl_lock */
10229 int bnx2x_close(struct net_device
*dev
)
10231 struct bnx2x
*bp
= netdev_priv(dev
);
10233 /* Unload the driver, release IRQs */
10234 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
);
10237 bnx2x_set_power_state(bp
, PCI_D3hot
);
10242 static inline int bnx2x_init_mcast_macs_list(struct bnx2x
*bp
,
10243 struct bnx2x_mcast_ramrod_params
*p
)
10245 int mc_count
= netdev_mc_count(bp
->dev
);
10246 struct bnx2x_mcast_list_elem
*mc_mac
=
10247 kzalloc(sizeof(*mc_mac
) * mc_count
, GFP_ATOMIC
);
10248 struct netdev_hw_addr
*ha
;
10253 INIT_LIST_HEAD(&p
->mcast_list
);
10255 netdev_for_each_mc_addr(ha
, bp
->dev
) {
10256 mc_mac
->mac
= bnx2x_mc_addr(ha
);
10257 list_add_tail(&mc_mac
->link
, &p
->mcast_list
);
10261 p
->mcast_list_len
= mc_count
;
10266 static inline void bnx2x_free_mcast_macs_list(
10267 struct bnx2x_mcast_ramrod_params
*p
)
10269 struct bnx2x_mcast_list_elem
*mc_mac
=
10270 list_first_entry(&p
->mcast_list
, struct bnx2x_mcast_list_elem
,
10278 * bnx2x_set_uc_list - configure a new unicast MACs list.
10280 * @bp: driver handle
10282 * We will use zero (0) as a MAC type for these MACs.
10284 static inline int bnx2x_set_uc_list(struct bnx2x
*bp
)
10287 struct net_device
*dev
= bp
->dev
;
10288 struct netdev_hw_addr
*ha
;
10289 struct bnx2x_vlan_mac_obj
*mac_obj
= &bp
->fp
->mac_obj
;
10290 unsigned long ramrod_flags
= 0;
10292 /* First schedule a cleanup up of old configuration */
10293 rc
= bnx2x_del_all_macs(bp
, mac_obj
, BNX2X_UC_LIST_MAC
, false);
10295 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc
);
10299 netdev_for_each_uc_addr(ha
, dev
) {
10300 rc
= bnx2x_set_mac_one(bp
, bnx2x_uc_addr(ha
), mac_obj
, true,
10301 BNX2X_UC_LIST_MAC
, &ramrod_flags
);
10303 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10309 /* Execute the pending commands */
10310 __set_bit(RAMROD_CONT
, &ramrod_flags
);
10311 return bnx2x_set_mac_one(bp
, NULL
, mac_obj
, false /* don't care */,
10312 BNX2X_UC_LIST_MAC
, &ramrod_flags
);
10315 static inline int bnx2x_set_mc_list(struct bnx2x
*bp
)
10317 struct net_device
*dev
= bp
->dev
;
10318 struct bnx2x_mcast_ramrod_params rparam
= {0};
10321 rparam
.mcast_obj
= &bp
->mcast_obj
;
10323 /* first, clear all configured multicast MACs */
10324 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
10326 BNX2X_ERR("Failed to clear multicast "
10327 "configuration: %d\n", rc
);
10331 /* then, configure a new MACs list */
10332 if (netdev_mc_count(dev
)) {
10333 rc
= bnx2x_init_mcast_macs_list(bp
, &rparam
);
10335 BNX2X_ERR("Failed to create multicast MACs "
10340 /* Now add the new MACs */
10341 rc
= bnx2x_config_mcast(bp
, &rparam
,
10342 BNX2X_MCAST_CMD_ADD
);
10344 BNX2X_ERR("Failed to set a new multicast "
10345 "configuration: %d\n", rc
);
10347 bnx2x_free_mcast_macs_list(&rparam
);
10354 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10355 void bnx2x_set_rx_mode(struct net_device
*dev
)
10357 struct bnx2x
*bp
= netdev_priv(dev
);
10358 u32 rx_mode
= BNX2X_RX_MODE_NORMAL
;
10360 if (bp
->state
!= BNX2X_STATE_OPEN
) {
10361 DP(NETIF_MSG_IFUP
, "state is %x, returning\n", bp
->state
);
10365 DP(NETIF_MSG_IFUP
, "dev->flags = %x\n", bp
->dev
->flags
);
10367 if (dev
->flags
& IFF_PROMISC
)
10368 rx_mode
= BNX2X_RX_MODE_PROMISC
;
10369 else if ((dev
->flags
& IFF_ALLMULTI
) ||
10370 ((netdev_mc_count(dev
) > BNX2X_MAX_MULTICAST
) &&
10372 rx_mode
= BNX2X_RX_MODE_ALLMULTI
;
10374 /* some multicasts */
10375 if (bnx2x_set_mc_list(bp
) < 0)
10376 rx_mode
= BNX2X_RX_MODE_ALLMULTI
;
10378 if (bnx2x_set_uc_list(bp
) < 0)
10379 rx_mode
= BNX2X_RX_MODE_PROMISC
;
10382 bp
->rx_mode
= rx_mode
;
10384 /* handle ISCSI SD mode */
10385 if (IS_MF_ISCSI_SD(bp
))
10386 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
10389 /* Schedule the rx_mode command */
10390 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
)) {
10391 set_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
);
10395 bnx2x_set_storm_rx_mode(bp
);
10398 /* called with rtnl_lock */
10399 static int bnx2x_mdio_read(struct net_device
*netdev
, int prtad
,
10400 int devad
, u16 addr
)
10402 struct bnx2x
*bp
= netdev_priv(netdev
);
10406 DP(NETIF_MSG_LINK
, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10407 prtad
, devad
, addr
);
10409 /* The HW expects different devad if CL22 is used */
10410 devad
= (devad
== MDIO_DEVAD_NONE
) ? DEFAULT_PHY_DEV_ADDR
: devad
;
10412 bnx2x_acquire_phy_lock(bp
);
10413 rc
= bnx2x_phy_read(&bp
->link_params
, prtad
, devad
, addr
, &value
);
10414 bnx2x_release_phy_lock(bp
);
10415 DP(NETIF_MSG_LINK
, "mdio_read_val 0x%x rc = 0x%x\n", value
, rc
);
10422 /* called with rtnl_lock */
10423 static int bnx2x_mdio_write(struct net_device
*netdev
, int prtad
, int devad
,
10424 u16 addr
, u16 value
)
10426 struct bnx2x
*bp
= netdev_priv(netdev
);
10429 DP(NETIF_MSG_LINK
, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10430 " value 0x%x\n", prtad
, devad
, addr
, value
);
10432 /* The HW expects different devad if CL22 is used */
10433 devad
= (devad
== MDIO_DEVAD_NONE
) ? DEFAULT_PHY_DEV_ADDR
: devad
;
10435 bnx2x_acquire_phy_lock(bp
);
10436 rc
= bnx2x_phy_write(&bp
->link_params
, prtad
, devad
, addr
, value
);
10437 bnx2x_release_phy_lock(bp
);
10441 /* called with rtnl_lock */
10442 static int bnx2x_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
10444 struct bnx2x
*bp
= netdev_priv(dev
);
10445 struct mii_ioctl_data
*mdio
= if_mii(ifr
);
10447 DP(NETIF_MSG_LINK
, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10448 mdio
->phy_id
, mdio
->reg_num
, mdio
->val_in
);
10450 if (!netif_running(dev
))
10453 return mdio_mii_ioctl(&bp
->mdio
, mdio
, cmd
);
10456 #ifdef CONFIG_NET_POLL_CONTROLLER
10457 static void poll_bnx2x(struct net_device
*dev
)
10459 struct bnx2x
*bp
= netdev_priv(dev
);
10461 disable_irq(bp
->pdev
->irq
);
10462 bnx2x_interrupt(bp
->pdev
->irq
, dev
);
10463 enable_irq(bp
->pdev
->irq
);
10467 static int bnx2x_validate_addr(struct net_device
*dev
)
10469 struct bnx2x
*bp
= netdev_priv(dev
);
10471 if (!bnx2x_is_valid_ether_addr(bp
, dev
->dev_addr
))
10472 return -EADDRNOTAVAIL
;
10476 static const struct net_device_ops bnx2x_netdev_ops
= {
10477 .ndo_open
= bnx2x_open
,
10478 .ndo_stop
= bnx2x_close
,
10479 .ndo_start_xmit
= bnx2x_start_xmit
,
10480 .ndo_select_queue
= bnx2x_select_queue
,
10481 .ndo_set_rx_mode
= bnx2x_set_rx_mode
,
10482 .ndo_set_mac_address
= bnx2x_change_mac_addr
,
10483 .ndo_validate_addr
= bnx2x_validate_addr
,
10484 .ndo_do_ioctl
= bnx2x_ioctl
,
10485 .ndo_change_mtu
= bnx2x_change_mtu
,
10486 .ndo_fix_features
= bnx2x_fix_features
,
10487 .ndo_set_features
= bnx2x_set_features
,
10488 .ndo_tx_timeout
= bnx2x_tx_timeout
,
10489 #ifdef CONFIG_NET_POLL_CONTROLLER
10490 .ndo_poll_controller
= poll_bnx2x
,
10492 .ndo_setup_tc
= bnx2x_setup_tc
,
10494 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10495 .ndo_fcoe_get_wwn
= bnx2x_fcoe_get_wwn
,
10499 static inline int bnx2x_set_coherency_mask(struct bnx2x
*bp
)
10501 struct device
*dev
= &bp
->pdev
->dev
;
10503 if (dma_set_mask(dev
, DMA_BIT_MASK(64)) == 0) {
10504 bp
->flags
|= USING_DAC_FLAG
;
10505 if (dma_set_coherent_mask(dev
, DMA_BIT_MASK(64)) != 0) {
10506 dev_err(dev
, "dma_set_coherent_mask failed, "
10510 } else if (dma_set_mask(dev
, DMA_BIT_MASK(32)) != 0) {
10511 dev_err(dev
, "System does not support DMA, aborting\n");
10518 static int __devinit
bnx2x_init_dev(struct pci_dev
*pdev
,
10519 struct net_device
*dev
,
10520 unsigned long board_type
)
10524 bool chip_is_e1x
= (board_type
== BCM57710
||
10525 board_type
== BCM57711
||
10526 board_type
== BCM57711E
);
10528 SET_NETDEV_DEV(dev
, &pdev
->dev
);
10529 bp
= netdev_priv(dev
);
10534 bp
->pf_num
= PCI_FUNC(pdev
->devfn
);
10536 rc
= pci_enable_device(pdev
);
10538 dev_err(&bp
->pdev
->dev
,
10539 "Cannot enable PCI device, aborting\n");
10543 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
10544 dev_err(&bp
->pdev
->dev
,
10545 "Cannot find PCI device base address, aborting\n");
10547 goto err_out_disable
;
10550 if (!(pci_resource_flags(pdev
, 2) & IORESOURCE_MEM
)) {
10551 dev_err(&bp
->pdev
->dev
, "Cannot find second PCI device"
10552 " base address, aborting\n");
10554 goto err_out_disable
;
10557 if (atomic_read(&pdev
->enable_cnt
) == 1) {
10558 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
10560 dev_err(&bp
->pdev
->dev
,
10561 "Cannot obtain PCI resources, aborting\n");
10562 goto err_out_disable
;
10565 pci_set_master(pdev
);
10566 pci_save_state(pdev
);
10569 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
10570 if (bp
->pm_cap
== 0) {
10571 dev_err(&bp
->pdev
->dev
,
10572 "Cannot find power management capability, aborting\n");
10574 goto err_out_release
;
10577 if (!pci_is_pcie(pdev
)) {
10578 dev_err(&bp
->pdev
->dev
, "Not PCI Express, aborting\n");
10580 goto err_out_release
;
10583 rc
= bnx2x_set_coherency_mask(bp
);
10585 goto err_out_release
;
10587 dev
->mem_start
= pci_resource_start(pdev
, 0);
10588 dev
->base_addr
= dev
->mem_start
;
10589 dev
->mem_end
= pci_resource_end(pdev
, 0);
10591 dev
->irq
= pdev
->irq
;
10593 bp
->regview
= pci_ioremap_bar(pdev
, 0);
10594 if (!bp
->regview
) {
10595 dev_err(&bp
->pdev
->dev
,
10596 "Cannot map register space, aborting\n");
10598 goto err_out_release
;
10601 bnx2x_set_power_state(bp
, PCI_D0
);
10603 /* clean indirect addresses */
10604 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
10605 PCICFG_VENDOR_ID_OFFSET
);
10607 * Clean the following indirect addresses for all functions since it
10608 * is not used by the driver.
10610 REG_WR(bp
, PXP2_REG_PGL_ADDR_88_F0
, 0);
10611 REG_WR(bp
, PXP2_REG_PGL_ADDR_8C_F0
, 0);
10612 REG_WR(bp
, PXP2_REG_PGL_ADDR_90_F0
, 0);
10613 REG_WR(bp
, PXP2_REG_PGL_ADDR_94_F0
, 0);
10616 REG_WR(bp
, PXP2_REG_PGL_ADDR_88_F1
, 0);
10617 REG_WR(bp
, PXP2_REG_PGL_ADDR_8C_F1
, 0);
10618 REG_WR(bp
, PXP2_REG_PGL_ADDR_90_F1
, 0);
10619 REG_WR(bp
, PXP2_REG_PGL_ADDR_94_F1
, 0);
10623 * Enable internal target-read (in case we are probed after PF FLR).
10624 * Must be done prior to any BAR read access. Only for 57712 and up
10627 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ
, 1);
10629 /* Reset the load counter */
10630 bnx2x_clear_load_cnt(bp
);
10632 dev
->watchdog_timeo
= TX_TIMEOUT
;
10634 dev
->netdev_ops
= &bnx2x_netdev_ops
;
10635 bnx2x_set_ethtool_ops(dev
);
10637 dev
->priv_flags
|= IFF_UNICAST_FLT
;
10639 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
10640 NETIF_F_TSO
| NETIF_F_TSO_ECN
| NETIF_F_TSO6
| NETIF_F_LRO
|
10641 NETIF_F_RXCSUM
| NETIF_F_RXHASH
| NETIF_F_HW_VLAN_TX
;
10643 dev
->vlan_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
10644 NETIF_F_TSO
| NETIF_F_TSO_ECN
| NETIF_F_TSO6
| NETIF_F_HIGHDMA
;
10646 dev
->features
|= dev
->hw_features
| NETIF_F_HW_VLAN_RX
;
10647 if (bp
->flags
& USING_DAC_FLAG
)
10648 dev
->features
|= NETIF_F_HIGHDMA
;
10650 /* Add Loopback capability to the device */
10651 dev
->hw_features
|= NETIF_F_LOOPBACK
;
10654 dev
->dcbnl_ops
= &bnx2x_dcbnl_ops
;
10657 /* get_port_hwinfo() will set prtad and mmds properly */
10658 bp
->mdio
.prtad
= MDIO_PRTAD_NONE
;
10660 bp
->mdio
.mode_support
= MDIO_SUPPORTS_C45
| MDIO_EMULATE_C22
;
10661 bp
->mdio
.dev
= dev
;
10662 bp
->mdio
.mdio_read
= bnx2x_mdio_read
;
10663 bp
->mdio
.mdio_write
= bnx2x_mdio_write
;
10668 if (atomic_read(&pdev
->enable_cnt
) == 1)
10669 pci_release_regions(pdev
);
10672 pci_disable_device(pdev
);
10673 pci_set_drvdata(pdev
, NULL
);
10679 static void __devinit
bnx2x_get_pcie_width_speed(struct bnx2x
*bp
,
10680 int *width
, int *speed
)
10682 u32 val
= REG_RD(bp
, PCICFG_OFFSET
+ PCICFG_LINK_CONTROL
);
10684 *width
= (val
& PCICFG_LINK_WIDTH
) >> PCICFG_LINK_WIDTH_SHIFT
;
10686 /* return value of 1=2.5GHz 2=5GHz */
10687 *speed
= (val
& PCICFG_LINK_SPEED
) >> PCICFG_LINK_SPEED_SHIFT
;
10690 static int bnx2x_check_firmware(struct bnx2x
*bp
)
10692 const struct firmware
*firmware
= bp
->firmware
;
10693 struct bnx2x_fw_file_hdr
*fw_hdr
;
10694 struct bnx2x_fw_file_section
*sections
;
10695 u32 offset
, len
, num_ops
;
10700 if (firmware
->size
< sizeof(struct bnx2x_fw_file_hdr
))
10703 fw_hdr
= (struct bnx2x_fw_file_hdr
*)firmware
->data
;
10704 sections
= (struct bnx2x_fw_file_section
*)fw_hdr
;
10706 /* Make sure none of the offsets and sizes make us read beyond
10707 * the end of the firmware data */
10708 for (i
= 0; i
< sizeof(*fw_hdr
) / sizeof(*sections
); i
++) {
10709 offset
= be32_to_cpu(sections
[i
].offset
);
10710 len
= be32_to_cpu(sections
[i
].len
);
10711 if (offset
+ len
> firmware
->size
) {
10712 dev_err(&bp
->pdev
->dev
,
10713 "Section %d length is out of bounds\n", i
);
10718 /* Likewise for the init_ops offsets */
10719 offset
= be32_to_cpu(fw_hdr
->init_ops_offsets
.offset
);
10720 ops_offsets
= (u16
*)(firmware
->data
+ offset
);
10721 num_ops
= be32_to_cpu(fw_hdr
->init_ops
.len
) / sizeof(struct raw_op
);
10723 for (i
= 0; i
< be32_to_cpu(fw_hdr
->init_ops_offsets
.len
) / 2; i
++) {
10724 if (be16_to_cpu(ops_offsets
[i
]) > num_ops
) {
10725 dev_err(&bp
->pdev
->dev
,
10726 "Section offset %d is out of bounds\n", i
);
10731 /* Check FW version */
10732 offset
= be32_to_cpu(fw_hdr
->fw_version
.offset
);
10733 fw_ver
= firmware
->data
+ offset
;
10734 if ((fw_ver
[0] != BCM_5710_FW_MAJOR_VERSION
) ||
10735 (fw_ver
[1] != BCM_5710_FW_MINOR_VERSION
) ||
10736 (fw_ver
[2] != BCM_5710_FW_REVISION_VERSION
) ||
10737 (fw_ver
[3] != BCM_5710_FW_ENGINEERING_VERSION
)) {
10738 dev_err(&bp
->pdev
->dev
,
10739 "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10740 fw_ver
[0], fw_ver
[1], fw_ver
[2],
10741 fw_ver
[3], BCM_5710_FW_MAJOR_VERSION
,
10742 BCM_5710_FW_MINOR_VERSION
,
10743 BCM_5710_FW_REVISION_VERSION
,
10744 BCM_5710_FW_ENGINEERING_VERSION
);
10751 static inline void be32_to_cpu_n(const u8
*_source
, u8
*_target
, u32 n
)
10753 const __be32
*source
= (const __be32
*)_source
;
10754 u32
*target
= (u32
*)_target
;
10757 for (i
= 0; i
< n
/4; i
++)
10758 target
[i
] = be32_to_cpu(source
[i
]);
10762 Ops array is stored in the following format:
10763 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10765 static inline void bnx2x_prep_ops(const u8
*_source
, u8
*_target
, u32 n
)
10767 const __be32
*source
= (const __be32
*)_source
;
10768 struct raw_op
*target
= (struct raw_op
*)_target
;
10771 for (i
= 0, j
= 0; i
< n
/8; i
++, j
+= 2) {
10772 tmp
= be32_to_cpu(source
[j
]);
10773 target
[i
].op
= (tmp
>> 24) & 0xff;
10774 target
[i
].offset
= tmp
& 0xffffff;
10775 target
[i
].raw_data
= be32_to_cpu(source
[j
+ 1]);
10780 * IRO array is stored in the following format:
10781 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10783 static inline void bnx2x_prep_iro(const u8
*_source
, u8
*_target
, u32 n
)
10785 const __be32
*source
= (const __be32
*)_source
;
10786 struct iro
*target
= (struct iro
*)_target
;
10789 for (i
= 0, j
= 0; i
< n
/sizeof(struct iro
); i
++) {
10790 target
[i
].base
= be32_to_cpu(source
[j
]);
10792 tmp
= be32_to_cpu(source
[j
]);
10793 target
[i
].m1
= (tmp
>> 16) & 0xffff;
10794 target
[i
].m2
= tmp
& 0xffff;
10796 tmp
= be32_to_cpu(source
[j
]);
10797 target
[i
].m3
= (tmp
>> 16) & 0xffff;
10798 target
[i
].size
= tmp
& 0xffff;
10803 static inline void be16_to_cpu_n(const u8
*_source
, u8
*_target
, u32 n
)
10805 const __be16
*source
= (const __be16
*)_source
;
10806 u16
*target
= (u16
*)_target
;
10809 for (i
= 0; i
< n
/2; i
++)
10810 target
[i
] = be16_to_cpu(source
[i
]);
10813 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
10815 u32 len = be32_to_cpu(fw_hdr->arr.len); \
10816 bp->arr = kmalloc(len, GFP_KERNEL); \
10818 pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10821 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
10822 (u8 *)bp->arr, len); \
10825 int bnx2x_init_firmware(struct bnx2x
*bp
)
10827 const char *fw_file_name
;
10828 struct bnx2x_fw_file_hdr
*fw_hdr
;
10834 if (CHIP_IS_E1(bp
))
10835 fw_file_name
= FW_FILE_NAME_E1
;
10836 else if (CHIP_IS_E1H(bp
))
10837 fw_file_name
= FW_FILE_NAME_E1H
;
10838 else if (!CHIP_IS_E1x(bp
))
10839 fw_file_name
= FW_FILE_NAME_E2
;
10841 BNX2X_ERR("Unsupported chip revision\n");
10844 BNX2X_DEV_INFO("Loading %s\n", fw_file_name
);
10846 rc
= request_firmware(&bp
->firmware
, fw_file_name
, &bp
->pdev
->dev
);
10848 BNX2X_ERR("Can't load firmware file %s\n",
10850 goto request_firmware_exit
;
10853 rc
= bnx2x_check_firmware(bp
);
10855 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name
);
10856 goto request_firmware_exit
;
10859 fw_hdr
= (struct bnx2x_fw_file_hdr
*)bp
->firmware
->data
;
10861 /* Initialize the pointers to the init arrays */
10863 BNX2X_ALLOC_AND_SET(init_data
, request_firmware_exit
, be32_to_cpu_n
);
10866 BNX2X_ALLOC_AND_SET(init_ops
, init_ops_alloc_err
, bnx2x_prep_ops
);
10869 BNX2X_ALLOC_AND_SET(init_ops_offsets
, init_offsets_alloc_err
,
10872 /* STORMs firmware */
10873 INIT_TSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
10874 be32_to_cpu(fw_hdr
->tsem_int_table_data
.offset
);
10875 INIT_TSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
10876 be32_to_cpu(fw_hdr
->tsem_pram_data
.offset
);
10877 INIT_USEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
10878 be32_to_cpu(fw_hdr
->usem_int_table_data
.offset
);
10879 INIT_USEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
10880 be32_to_cpu(fw_hdr
->usem_pram_data
.offset
);
10881 INIT_XSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
10882 be32_to_cpu(fw_hdr
->xsem_int_table_data
.offset
);
10883 INIT_XSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
10884 be32_to_cpu(fw_hdr
->xsem_pram_data
.offset
);
10885 INIT_CSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
10886 be32_to_cpu(fw_hdr
->csem_int_table_data
.offset
);
10887 INIT_CSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
10888 be32_to_cpu(fw_hdr
->csem_pram_data
.offset
);
10890 BNX2X_ALLOC_AND_SET(iro_arr
, iro_alloc_err
, bnx2x_prep_iro
);
10895 kfree(bp
->init_ops_offsets
);
10896 init_offsets_alloc_err
:
10897 kfree(bp
->init_ops
);
10898 init_ops_alloc_err
:
10899 kfree(bp
->init_data
);
10900 request_firmware_exit
:
10901 release_firmware(bp
->firmware
);
10902 bp
->firmware
= NULL
;
10907 static void bnx2x_release_firmware(struct bnx2x
*bp
)
10909 kfree(bp
->init_ops_offsets
);
10910 kfree(bp
->init_ops
);
10911 kfree(bp
->init_data
);
10912 release_firmware(bp
->firmware
);
10913 bp
->firmware
= NULL
;
10917 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv
= {
10918 .init_hw_cmn_chip
= bnx2x_init_hw_common_chip
,
10919 .init_hw_cmn
= bnx2x_init_hw_common
,
10920 .init_hw_port
= bnx2x_init_hw_port
,
10921 .init_hw_func
= bnx2x_init_hw_func
,
10923 .reset_hw_cmn
= bnx2x_reset_common
,
10924 .reset_hw_port
= bnx2x_reset_port
,
10925 .reset_hw_func
= bnx2x_reset_func
,
10927 .gunzip_init
= bnx2x_gunzip_init
,
10928 .gunzip_end
= bnx2x_gunzip_end
,
10930 .init_fw
= bnx2x_init_firmware
,
10931 .release_fw
= bnx2x_release_firmware
,
10934 void bnx2x__init_func_obj(struct bnx2x
*bp
)
10936 /* Prepare DMAE related driver resources */
10937 bnx2x_setup_dmae(bp
);
10939 bnx2x_init_func_obj(bp
, &bp
->func_obj
,
10940 bnx2x_sp(bp
, func_rdata
),
10941 bnx2x_sp_mapping(bp
, func_rdata
),
10942 &bnx2x_func_sp_drv
);
10945 /* must be called after sriov-enable */
10946 static inline int bnx2x_set_qm_cid_count(struct bnx2x
*bp
)
10948 int cid_count
= BNX2X_L2_CID_COUNT(bp
);
10951 cid_count
+= CNIC_CID_MAX
;
10953 return roundup(cid_count
, QM_CID_ROUND
);
10957 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
10962 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev
*pdev
)
10967 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
10970 * If MSI-X is not supported - return number of SBs needed to support
10971 * one fast path queue: one FP queue + SB for CNIC
10974 return 1 + CNIC_PRESENT
;
10977 * The value in the PCI configuration space is the index of the last
10978 * entry, namely one less than the actual size of the table, which is
10979 * exactly what we want to return from this function: number of all SBs
10980 * without the default SB.
10982 pci_read_config_word(pdev
, pos
+ PCI_MSI_FLAGS
, &control
);
10983 return control
& PCI_MSIX_FLAGS_QSIZE
;
10986 static int __devinit
bnx2x_init_one(struct pci_dev
*pdev
,
10987 const struct pci_device_id
*ent
)
10989 struct net_device
*dev
= NULL
;
10991 int pcie_width
, pcie_speed
;
10992 int rc
, max_non_def_sbs
;
10993 int rx_count
, tx_count
, rss_count
;
10995 * An estimated maximum supported CoS number according to the chip
10997 * We will try to roughly estimate the maximum number of CoSes this chip
10998 * may support in order to minimize the memory allocated for Tx
10999 * netdev_queue's. This number will be accurately calculated during the
11000 * initialization of bp->max_cos based on the chip versions AND chip
11001 * revision in the bnx2x_init_bp().
11003 u8 max_cos_est
= 0;
11005 switch (ent
->driver_data
) {
11009 max_cos_est
= BNX2X_MULTI_TX_COS_E1X
;
11014 max_cos_est
= BNX2X_MULTI_TX_COS_E2_E3A0
;
11023 max_cos_est
= BNX2X_MULTI_TX_COS_E3B0
;
11027 pr_err("Unknown board_type (%ld), aborting\n",
11032 max_non_def_sbs
= bnx2x_get_num_non_def_sbs(pdev
);
11035 * Do not allow the maximum SB count to grow above 16
11036 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11037 * We will use the FP_SB_MAX_E1x macro for this matter.
11039 max_non_def_sbs
= min_t(int, FP_SB_MAX_E1x
, max_non_def_sbs
);
11041 WARN_ON(!max_non_def_sbs
);
11043 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
11044 rss_count
= max_non_def_sbs
- CNIC_PRESENT
;
11046 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11047 rx_count
= rss_count
+ FCOE_PRESENT
;
11050 * Maximum number of netdev Tx queues:
11051 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
11053 tx_count
= MAX_TXQS_PER_COS
* max_cos_est
+ FCOE_PRESENT
;
11055 /* dev zeroed in init_etherdev */
11056 dev
= alloc_etherdev_mqs(sizeof(*bp
), tx_count
, rx_count
);
11058 dev_err(&pdev
->dev
, "Cannot allocate net device\n");
11062 bp
= netdev_priv(dev
);
11064 DP(NETIF_MSG_DRV
, "Allocated netdev with %d tx and %d rx queues\n",
11065 tx_count
, rx_count
);
11067 bp
->igu_sb_cnt
= max_non_def_sbs
;
11068 bp
->msg_enable
= debug
;
11069 pci_set_drvdata(pdev
, dev
);
11071 rc
= bnx2x_init_dev(pdev
, dev
, ent
->driver_data
);
11077 DP(NETIF_MSG_DRV
, "max_non_def_sbs %d\n", max_non_def_sbs
);
11079 rc
= bnx2x_init_bp(bp
);
11081 goto init_one_exit
;
11084 * Map doorbels here as we need the real value of bp->max_cos which
11085 * is initialized in bnx2x_init_bp().
11087 bp
->doorbells
= ioremap_nocache(pci_resource_start(pdev
, 2),
11088 min_t(u64
, BNX2X_DB_SIZE(bp
),
11089 pci_resource_len(pdev
, 2)));
11090 if (!bp
->doorbells
) {
11091 dev_err(&bp
->pdev
->dev
,
11092 "Cannot map doorbell space, aborting\n");
11094 goto init_one_exit
;
11097 /* calc qm_cid_count */
11098 bp
->qm_cid_count
= bnx2x_set_qm_cid_count(bp
);
11101 /* disable FCOE L2 queue for E1x */
11102 if (CHIP_IS_E1x(bp
))
11103 bp
->flags
|= NO_FCOE_FLAG
;
11107 /* Configure interrupt mode: try to enable MSI-X/MSI if
11108 * needed, set bp->num_queues appropriately.
11110 bnx2x_set_int_mode(bp
);
11112 /* Add all NAPI objects */
11113 bnx2x_add_all_napi(bp
);
11115 rc
= register_netdev(dev
);
11117 dev_err(&pdev
->dev
, "Cannot register net device\n");
11118 goto init_one_exit
;
11122 if (!NO_FCOE(bp
)) {
11123 /* Add storage MAC address */
11125 dev_addr_add(bp
->dev
, bp
->fip_mac
, NETDEV_HW_ADDR_T_SAN
);
11130 bnx2x_get_pcie_width_speed(bp
, &pcie_width
, &pcie_speed
);
11132 netdev_info(dev
, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11133 board_info
[ent
->driver_data
].name
,
11134 (CHIP_REV(bp
) >> 12) + 'A', (CHIP_METAL(bp
) >> 4),
11136 ((!CHIP_IS_E2(bp
) && pcie_speed
== 2) ||
11137 (CHIP_IS_E2(bp
) && pcie_speed
== 1)) ?
11138 "5GHz (Gen2)" : "2.5GHz",
11139 dev
->base_addr
, bp
->pdev
->irq
, dev
->dev_addr
);
11145 iounmap(bp
->regview
);
11148 iounmap(bp
->doorbells
);
11152 if (atomic_read(&pdev
->enable_cnt
) == 1)
11153 pci_release_regions(pdev
);
11155 pci_disable_device(pdev
);
11156 pci_set_drvdata(pdev
, NULL
);
11161 static void __devexit
bnx2x_remove_one(struct pci_dev
*pdev
)
11163 struct net_device
*dev
= pci_get_drvdata(pdev
);
11167 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
11170 bp
= netdev_priv(dev
);
11173 /* Delete storage MAC address */
11174 if (!NO_FCOE(bp
)) {
11176 dev_addr_del(bp
->dev
, bp
->fip_mac
, NETDEV_HW_ADDR_T_SAN
);
11182 /* Delete app tlvs from dcbnl */
11183 bnx2x_dcbnl_update_applist(bp
, true);
11186 unregister_netdev(dev
);
11188 /* Delete all NAPI objects */
11189 bnx2x_del_all_napi(bp
);
11191 /* Power on: we can't let PCI layer write to us while we are in D3 */
11192 bnx2x_set_power_state(bp
, PCI_D0
);
11194 /* Disable MSI/MSI-X */
11195 bnx2x_disable_msi(bp
);
11198 bnx2x_set_power_state(bp
, PCI_D3hot
);
11200 /* Make sure RESET task is not scheduled before continuing */
11201 cancel_delayed_work_sync(&bp
->sp_rtnl_task
);
11204 iounmap(bp
->regview
);
11207 iounmap(bp
->doorbells
);
11209 bnx2x_release_firmware(bp
);
11211 bnx2x_free_mem_bp(bp
);
11215 if (atomic_read(&pdev
->enable_cnt
) == 1)
11216 pci_release_regions(pdev
);
11218 pci_disable_device(pdev
);
11219 pci_set_drvdata(pdev
, NULL
);
11222 static int bnx2x_eeh_nic_unload(struct bnx2x
*bp
)
11226 bp
->state
= BNX2X_STATE_ERROR
;
11228 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
11231 bnx2x_cnic_notify(bp
, CNIC_CTL_STOP_CMD
);
11234 bnx2x_tx_disable(bp
);
11236 bnx2x_netif_stop(bp
, 0);
11238 del_timer_sync(&bp
->timer
);
11240 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
11243 bnx2x_free_irq(bp
);
11245 /* Free SKBs, SGEs, TPA pool and driver internals */
11246 bnx2x_free_skbs(bp
);
11248 for_each_rx_queue(bp
, i
)
11249 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
11251 bnx2x_free_mem(bp
);
11253 bp
->state
= BNX2X_STATE_CLOSED
;
11255 netif_carrier_off(bp
->dev
);
11260 static void bnx2x_eeh_recover(struct bnx2x
*bp
)
11264 mutex_init(&bp
->port
.phy_mutex
);
11266 bp
->common
.shmem_base
= REG_RD(bp
, MISC_REG_SHARED_MEM_ADDR
);
11267 bp
->link_params
.shmem_base
= bp
->common
.shmem_base
;
11268 BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp
->common
.shmem_base
);
11270 if (!bp
->common
.shmem_base
||
11271 (bp
->common
.shmem_base
< 0xA0000) ||
11272 (bp
->common
.shmem_base
>= 0xC0000)) {
11273 BNX2X_DEV_INFO("MCP not active\n");
11274 bp
->flags
|= NO_MCP_FLAG
;
11278 val
= SHMEM_RD(bp
, validity_map
[BP_PORT(bp
)]);
11279 if ((val
& (SHR_MEM_VALIDITY_DEV_INFO
| SHR_MEM_VALIDITY_MB
))
11280 != (SHR_MEM_VALIDITY_DEV_INFO
| SHR_MEM_VALIDITY_MB
))
11281 BNX2X_ERR("BAD MCP validity signature\n");
11283 if (!BP_NOMCP(bp
)) {
11285 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
11286 DRV_MSG_SEQ_NUMBER_MASK
);
11287 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp
->fw_seq
);
11292 * bnx2x_io_error_detected - called when PCI error is detected
11293 * @pdev: Pointer to PCI device
11294 * @state: The current pci connection state
11296 * This function is called after a PCI bus error affecting
11297 * this device has been detected.
11299 static pci_ers_result_t
bnx2x_io_error_detected(struct pci_dev
*pdev
,
11300 pci_channel_state_t state
)
11302 struct net_device
*dev
= pci_get_drvdata(pdev
);
11303 struct bnx2x
*bp
= netdev_priv(dev
);
11307 netif_device_detach(dev
);
11309 if (state
== pci_channel_io_perm_failure
) {
11311 return PCI_ERS_RESULT_DISCONNECT
;
11314 if (netif_running(dev
))
11315 bnx2x_eeh_nic_unload(bp
);
11317 pci_disable_device(pdev
);
11321 /* Request a slot reset */
11322 return PCI_ERS_RESULT_NEED_RESET
;
11326 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11327 * @pdev: Pointer to PCI device
11329 * Restart the card from scratch, as if from a cold-boot.
11331 static pci_ers_result_t
bnx2x_io_slot_reset(struct pci_dev
*pdev
)
11333 struct net_device
*dev
= pci_get_drvdata(pdev
);
11334 struct bnx2x
*bp
= netdev_priv(dev
);
11338 if (pci_enable_device(pdev
)) {
11339 dev_err(&pdev
->dev
,
11340 "Cannot re-enable PCI device after reset\n");
11342 return PCI_ERS_RESULT_DISCONNECT
;
11345 pci_set_master(pdev
);
11346 pci_restore_state(pdev
);
11348 if (netif_running(dev
))
11349 bnx2x_set_power_state(bp
, PCI_D0
);
11353 return PCI_ERS_RESULT_RECOVERED
;
11357 * bnx2x_io_resume - called when traffic can start flowing again
11358 * @pdev: Pointer to PCI device
11360 * This callback is called when the error recovery driver tells us that
11361 * its OK to resume normal operation.
11363 static void bnx2x_io_resume(struct pci_dev
*pdev
)
11365 struct net_device
*dev
= pci_get_drvdata(pdev
);
11366 struct bnx2x
*bp
= netdev_priv(dev
);
11368 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
11369 netdev_err(bp
->dev
, "Handling parity error recovery. "
11370 "Try again later\n");
11376 bnx2x_eeh_recover(bp
);
11378 if (netif_running(dev
))
11379 bnx2x_nic_load(bp
, LOAD_NORMAL
);
11381 netif_device_attach(dev
);
11386 static struct pci_error_handlers bnx2x_err_handler
= {
11387 .error_detected
= bnx2x_io_error_detected
,
11388 .slot_reset
= bnx2x_io_slot_reset
,
11389 .resume
= bnx2x_io_resume
,
11392 static struct pci_driver bnx2x_pci_driver
= {
11393 .name
= DRV_MODULE_NAME
,
11394 .id_table
= bnx2x_pci_tbl
,
11395 .probe
= bnx2x_init_one
,
11396 .remove
= __devexit_p(bnx2x_remove_one
),
11397 .suspend
= bnx2x_suspend
,
11398 .resume
= bnx2x_resume
,
11399 .err_handler
= &bnx2x_err_handler
,
11402 static int __init
bnx2x_init(void)
11406 pr_info("%s", version
);
11408 bnx2x_wq
= create_singlethread_workqueue("bnx2x");
11409 if (bnx2x_wq
== NULL
) {
11410 pr_err("Cannot create workqueue\n");
11414 ret
= pci_register_driver(&bnx2x_pci_driver
);
11416 pr_err("Cannot register driver\n");
11417 destroy_workqueue(bnx2x_wq
);
11422 static void __exit
bnx2x_cleanup(void)
11424 pci_unregister_driver(&bnx2x_pci_driver
);
11426 destroy_workqueue(bnx2x_wq
);
11429 void bnx2x_notify_link_changed(struct bnx2x
*bp
)
11431 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ BP_FUNC(bp
)*sizeof(u32
), 1);
11434 module_init(bnx2x_init
);
11435 module_exit(bnx2x_cleanup
);
11439 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11441 * @bp: driver handle
11442 * @set: set or clear the CAM entry
11444 * This function will wait until the ramdord completion returns.
11445 * Return 0 if success, -ENODEV if ramrod doesn't return.
11447 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x
*bp
)
11449 unsigned long ramrod_flags
= 0;
11451 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
11452 return bnx2x_set_mac_one(bp
, bp
->cnic_eth_dev
.iscsi_mac
,
11453 &bp
->iscsi_l2_mac_obj
, true,
11454 BNX2X_ISCSI_ETH_MAC
, &ramrod_flags
);
11457 /* count denotes the number of new completions we have seen */
11458 static void bnx2x_cnic_sp_post(struct bnx2x
*bp
, int count
)
11460 struct eth_spe
*spe
;
11462 #ifdef BNX2X_STOP_ON_ERROR
11463 if (unlikely(bp
->panic
))
11467 spin_lock_bh(&bp
->spq_lock
);
11468 BUG_ON(bp
->cnic_spq_pending
< count
);
11469 bp
->cnic_spq_pending
-= count
;
11472 for (; bp
->cnic_kwq_pending
; bp
->cnic_kwq_pending
--) {
11473 u16 type
= (le16_to_cpu(bp
->cnic_kwq_cons
->hdr
.type
)
11474 & SPE_HDR_CONN_TYPE
) >>
11475 SPE_HDR_CONN_TYPE_SHIFT
;
11476 u8 cmd
= (le32_to_cpu(bp
->cnic_kwq_cons
->hdr
.conn_and_cmd_data
)
11477 >> SPE_HDR_CMD_ID_SHIFT
) & 0xff;
11479 /* Set validation for iSCSI L2 client before sending SETUP
11482 if (type
== ETH_CONNECTION_TYPE
) {
11483 if (cmd
== RAMROD_CMD_ID_ETH_CLIENT_SETUP
)
11484 bnx2x_set_ctx_validation(bp
, &bp
->context
.
11485 vcxt
[BNX2X_ISCSI_ETH_CID
].eth
,
11486 BNX2X_ISCSI_ETH_CID
);
11490 * There may be not more than 8 L2, not more than 8 L5 SPEs
11491 * and in the air. We also check that number of outstanding
11492 * COMMON ramrods is not more than the EQ and SPQ can
11495 if (type
== ETH_CONNECTION_TYPE
) {
11496 if (!atomic_read(&bp
->cq_spq_left
))
11499 atomic_dec(&bp
->cq_spq_left
);
11500 } else if (type
== NONE_CONNECTION_TYPE
) {
11501 if (!atomic_read(&bp
->eq_spq_left
))
11504 atomic_dec(&bp
->eq_spq_left
);
11505 } else if ((type
== ISCSI_CONNECTION_TYPE
) ||
11506 (type
== FCOE_CONNECTION_TYPE
)) {
11507 if (bp
->cnic_spq_pending
>=
11508 bp
->cnic_eth_dev
.max_kwqe_pending
)
11511 bp
->cnic_spq_pending
++;
11513 BNX2X_ERR("Unknown SPE type: %d\n", type
);
11518 spe
= bnx2x_sp_get_next(bp
);
11519 *spe
= *bp
->cnic_kwq_cons
;
11521 DP(NETIF_MSG_TIMER
, "pending on SPQ %d, on KWQ %d count %d\n",
11522 bp
->cnic_spq_pending
, bp
->cnic_kwq_pending
, count
);
11524 if (bp
->cnic_kwq_cons
== bp
->cnic_kwq_last
)
11525 bp
->cnic_kwq_cons
= bp
->cnic_kwq
;
11527 bp
->cnic_kwq_cons
++;
11529 bnx2x_sp_prod_update(bp
);
11530 spin_unlock_bh(&bp
->spq_lock
);
11533 static int bnx2x_cnic_sp_queue(struct net_device
*dev
,
11534 struct kwqe_16
*kwqes
[], u32 count
)
11536 struct bnx2x
*bp
= netdev_priv(dev
);
11539 #ifdef BNX2X_STOP_ON_ERROR
11540 if (unlikely(bp
->panic
))
11544 spin_lock_bh(&bp
->spq_lock
);
11546 for (i
= 0; i
< count
; i
++) {
11547 struct eth_spe
*spe
= (struct eth_spe
*)kwqes
[i
];
11549 if (bp
->cnic_kwq_pending
== MAX_SP_DESC_CNT
)
11552 *bp
->cnic_kwq_prod
= *spe
;
11554 bp
->cnic_kwq_pending
++;
11556 DP(NETIF_MSG_TIMER
, "L5 SPQE %x %x %x:%x pos %d\n",
11557 spe
->hdr
.conn_and_cmd_data
, spe
->hdr
.type
,
11558 spe
->data
.update_data_addr
.hi
,
11559 spe
->data
.update_data_addr
.lo
,
11560 bp
->cnic_kwq_pending
);
11562 if (bp
->cnic_kwq_prod
== bp
->cnic_kwq_last
)
11563 bp
->cnic_kwq_prod
= bp
->cnic_kwq
;
11565 bp
->cnic_kwq_prod
++;
11568 spin_unlock_bh(&bp
->spq_lock
);
11570 if (bp
->cnic_spq_pending
< bp
->cnic_eth_dev
.max_kwqe_pending
)
11571 bnx2x_cnic_sp_post(bp
, 0);
11576 static int bnx2x_cnic_ctl_send(struct bnx2x
*bp
, struct cnic_ctl_info
*ctl
)
11578 struct cnic_ops
*c_ops
;
11581 mutex_lock(&bp
->cnic_mutex
);
11582 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
11583 lockdep_is_held(&bp
->cnic_mutex
));
11585 rc
= c_ops
->cnic_ctl(bp
->cnic_data
, ctl
);
11586 mutex_unlock(&bp
->cnic_mutex
);
11591 static int bnx2x_cnic_ctl_send_bh(struct bnx2x
*bp
, struct cnic_ctl_info
*ctl
)
11593 struct cnic_ops
*c_ops
;
11597 c_ops
= rcu_dereference(bp
->cnic_ops
);
11599 rc
= c_ops
->cnic_ctl(bp
->cnic_data
, ctl
);
11606 * for commands that have no data
11608 int bnx2x_cnic_notify(struct bnx2x
*bp
, int cmd
)
11610 struct cnic_ctl_info ctl
= {0};
11614 return bnx2x_cnic_ctl_send(bp
, &ctl
);
11617 static void bnx2x_cnic_cfc_comp(struct bnx2x
*bp
, int cid
, u8 err
)
11619 struct cnic_ctl_info ctl
= {0};
11621 /* first we tell CNIC and only then we count this as a completion */
11622 ctl
.cmd
= CNIC_CTL_COMPLETION_CMD
;
11623 ctl
.data
.comp
.cid
= cid
;
11624 ctl
.data
.comp
.error
= err
;
11626 bnx2x_cnic_ctl_send_bh(bp
, &ctl
);
11627 bnx2x_cnic_sp_post(bp
, 0);
11631 /* Called with netif_addr_lock_bh() taken.
11632 * Sets an rx_mode config for an iSCSI ETH client.
11634 * Completion should be checked outside.
11636 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x
*bp
, bool start
)
11638 unsigned long accept_flags
= 0, ramrod_flags
= 0;
11639 u8 cl_id
= bnx2x_cnic_eth_cl_id(bp
, BNX2X_ISCSI_ETH_CL_ID_IDX
);
11640 int sched_state
= BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
;
11643 /* Start accepting on iSCSI L2 ring. Accept all multicasts
11644 * because it's the only way for UIO Queue to accept
11645 * multicasts (in non-promiscuous mode only one Queue per
11646 * function will receive multicast packets (leading in our
11649 __set_bit(BNX2X_ACCEPT_UNICAST
, &accept_flags
);
11650 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &accept_flags
);
11651 __set_bit(BNX2X_ACCEPT_BROADCAST
, &accept_flags
);
11652 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, &accept_flags
);
11654 /* Clear STOP_PENDING bit if START is requested */
11655 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
, &bp
->sp_state
);
11657 sched_state
= BNX2X_FILTER_ISCSI_ETH_START_SCHED
;
11659 /* Clear START_PENDING bit if STOP is requested */
11660 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
, &bp
->sp_state
);
11662 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
))
11663 set_bit(sched_state
, &bp
->sp_state
);
11665 __set_bit(RAMROD_RX
, &ramrod_flags
);
11666 bnx2x_set_q_rx_mode(bp
, cl_id
, 0, accept_flags
, 0,
11672 static int bnx2x_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*ctl
)
11674 struct bnx2x
*bp
= netdev_priv(dev
);
11677 switch (ctl
->cmd
) {
11678 case DRV_CTL_CTXTBL_WR_CMD
: {
11679 u32 index
= ctl
->data
.io
.offset
;
11680 dma_addr_t addr
= ctl
->data
.io
.dma_addr
;
11682 bnx2x_ilt_wr(bp
, index
, addr
);
11686 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD
: {
11687 int count
= ctl
->data
.credit
.credit_count
;
11689 bnx2x_cnic_sp_post(bp
, count
);
11693 /* rtnl_lock is held. */
11694 case DRV_CTL_START_L2_CMD
: {
11695 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
11696 unsigned long sp_bits
= 0;
11698 /* Configure the iSCSI classification object */
11699 bnx2x_init_mac_obj(bp
, &bp
->iscsi_l2_mac_obj
,
11700 cp
->iscsi_l2_client_id
,
11701 cp
->iscsi_l2_cid
, BP_FUNC(bp
),
11702 bnx2x_sp(bp
, mac_rdata
),
11703 bnx2x_sp_mapping(bp
, mac_rdata
),
11704 BNX2X_FILTER_MAC_PENDING
,
11705 &bp
->sp_state
, BNX2X_OBJ_TYPE_RX
,
11708 /* Set iSCSI MAC address */
11709 rc
= bnx2x_set_iscsi_eth_mac_addr(bp
);
11716 /* Start accepting on iSCSI L2 ring */
11718 netif_addr_lock_bh(dev
);
11719 bnx2x_set_iscsi_eth_rx_mode(bp
, true);
11720 netif_addr_unlock_bh(dev
);
11722 /* bits to wait on */
11723 __set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &sp_bits
);
11724 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
, &sp_bits
);
11726 if (!bnx2x_wait_sp_comp(bp
, sp_bits
))
11727 BNX2X_ERR("rx_mode completion timed out!\n");
11732 /* rtnl_lock is held. */
11733 case DRV_CTL_STOP_L2_CMD
: {
11734 unsigned long sp_bits
= 0;
11736 /* Stop accepting on iSCSI L2 ring */
11737 netif_addr_lock_bh(dev
);
11738 bnx2x_set_iscsi_eth_rx_mode(bp
, false);
11739 netif_addr_unlock_bh(dev
);
11741 /* bits to wait on */
11742 __set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &sp_bits
);
11743 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
, &sp_bits
);
11745 if (!bnx2x_wait_sp_comp(bp
, sp_bits
))
11746 BNX2X_ERR("rx_mode completion timed out!\n");
11751 /* Unset iSCSI L2 MAC */
11752 rc
= bnx2x_del_all_macs(bp
, &bp
->iscsi_l2_mac_obj
,
11753 BNX2X_ISCSI_ETH_MAC
, true);
11756 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD
: {
11757 int count
= ctl
->data
.credit
.credit_count
;
11759 smp_mb__before_atomic_inc();
11760 atomic_add(count
, &bp
->cq_spq_left
);
11761 smp_mb__after_atomic_inc();
11764 case DRV_CTL_ULP_REGISTER_CMD
: {
11765 int ulp_type
= ctl
->data
.ulp_type
;
11767 if (CHIP_IS_E3(bp
)) {
11768 int idx
= BP_FW_MB_IDX(bp
);
11771 cap
= SHMEM2_RD(bp
, drv_capabilities_flag
[idx
]);
11772 if (ulp_type
== CNIC_ULP_ISCSI
)
11773 cap
|= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI
;
11774 else if (ulp_type
== CNIC_ULP_FCOE
)
11775 cap
|= DRV_FLAGS_CAPABILITIES_LOADED_FCOE
;
11776 SHMEM2_WR(bp
, drv_capabilities_flag
[idx
], cap
);
11780 case DRV_CTL_ULP_UNREGISTER_CMD
: {
11781 int ulp_type
= ctl
->data
.ulp_type
;
11783 if (CHIP_IS_E3(bp
)) {
11784 int idx
= BP_FW_MB_IDX(bp
);
11787 cap
= SHMEM2_RD(bp
, drv_capabilities_flag
[idx
]);
11788 if (ulp_type
== CNIC_ULP_ISCSI
)
11789 cap
&= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI
;
11790 else if (ulp_type
== CNIC_ULP_FCOE
)
11791 cap
&= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE
;
11792 SHMEM2_WR(bp
, drv_capabilities_flag
[idx
], cap
);
11798 BNX2X_ERR("unknown command %x\n", ctl
->cmd
);
11805 void bnx2x_setup_cnic_irq_info(struct bnx2x
*bp
)
11807 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
11809 if (bp
->flags
& USING_MSIX_FLAG
) {
11810 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
11811 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
11812 cp
->irq_arr
[0].vector
= bp
->msix_table
[1].vector
;
11814 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
11815 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
11817 if (!CHIP_IS_E1x(bp
))
11818 cp
->irq_arr
[0].status_blk
= (void *)bp
->cnic_sb
.e2_sb
;
11820 cp
->irq_arr
[0].status_blk
= (void *)bp
->cnic_sb
.e1x_sb
;
11822 cp
->irq_arr
[0].status_blk_num
= bnx2x_cnic_fw_sb_id(bp
);
11823 cp
->irq_arr
[0].status_blk_num2
= bnx2x_cnic_igu_sb_id(bp
);
11824 cp
->irq_arr
[1].status_blk
= bp
->def_status_blk
;
11825 cp
->irq_arr
[1].status_blk_num
= DEF_SB_ID
;
11826 cp
->irq_arr
[1].status_blk_num2
= DEF_SB_IGU_ID
;
11831 static int bnx2x_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
11834 struct bnx2x
*bp
= netdev_priv(dev
);
11835 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
11840 bp
->cnic_kwq
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
11844 bp
->cnic_kwq_cons
= bp
->cnic_kwq
;
11845 bp
->cnic_kwq_prod
= bp
->cnic_kwq
;
11846 bp
->cnic_kwq_last
= bp
->cnic_kwq
+ MAX_SP_DESC_CNT
;
11848 bp
->cnic_spq_pending
= 0;
11849 bp
->cnic_kwq_pending
= 0;
11851 bp
->cnic_data
= data
;
11854 cp
->drv_state
|= CNIC_DRV_STATE_REGD
;
11855 cp
->iro_arr
= bp
->iro_arr
;
11857 bnx2x_setup_cnic_irq_info(bp
);
11859 rcu_assign_pointer(bp
->cnic_ops
, ops
);
11864 static int bnx2x_unregister_cnic(struct net_device
*dev
)
11866 struct bnx2x
*bp
= netdev_priv(dev
);
11867 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
11869 mutex_lock(&bp
->cnic_mutex
);
11871 RCU_INIT_POINTER(bp
->cnic_ops
, NULL
);
11872 mutex_unlock(&bp
->cnic_mutex
);
11874 kfree(bp
->cnic_kwq
);
11875 bp
->cnic_kwq
= NULL
;
11880 struct cnic_eth_dev
*bnx2x_cnic_probe(struct net_device
*dev
)
11882 struct bnx2x
*bp
= netdev_priv(dev
);
11883 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
11885 /* If both iSCSI and FCoE are disabled - return NULL in
11886 * order to indicate CNIC that it should not try to work
11887 * with this device.
11889 if (NO_ISCSI(bp
) && NO_FCOE(bp
))
11892 cp
->drv_owner
= THIS_MODULE
;
11893 cp
->chip_id
= CHIP_ID(bp
);
11894 cp
->pdev
= bp
->pdev
;
11895 cp
->io_base
= bp
->regview
;
11896 cp
->io_base2
= bp
->doorbells
;
11897 cp
->max_kwqe_pending
= 8;
11898 cp
->ctx_blk_size
= CDU_ILT_PAGE_SZ
;
11899 cp
->ctx_tbl_offset
= FUNC_ILT_BASE(BP_FUNC(bp
)) +
11900 bnx2x_cid_ilt_lines(bp
);
11901 cp
->ctx_tbl_len
= CNIC_ILT_LINES
;
11902 cp
->starting_cid
= bnx2x_cid_ilt_lines(bp
) * ILT_PAGE_CIDS
;
11903 cp
->drv_submit_kwqes_16
= bnx2x_cnic_sp_queue
;
11904 cp
->drv_ctl
= bnx2x_drv_ctl
;
11905 cp
->drv_register_cnic
= bnx2x_register_cnic
;
11906 cp
->drv_unregister_cnic
= bnx2x_unregister_cnic
;
11907 cp
->fcoe_init_cid
= BNX2X_FCOE_ETH_CID
;
11908 cp
->iscsi_l2_client_id
=
11909 bnx2x_cnic_eth_cl_id(bp
, BNX2X_ISCSI_ETH_CL_ID_IDX
);
11910 cp
->iscsi_l2_cid
= BNX2X_ISCSI_ETH_CID
;
11912 if (NO_ISCSI_OOO(bp
))
11913 cp
->drv_state
|= CNIC_DRV_STATE_NO_ISCSI_OOO
;
11916 cp
->drv_state
|= CNIC_DRV_STATE_NO_ISCSI
;
11919 cp
->drv_state
|= CNIC_DRV_STATE_NO_FCOE
;
11921 DP(BNX2X_MSG_SP
, "page_size %d, tbl_offset %d, tbl_lines %d, "
11922 "starting cid %d\n",
11924 cp
->ctx_tbl_offset
,
11929 EXPORT_SYMBOL(bnx2x_cnic_probe
);
11931 #endif /* BCM_CNIC */