Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / net / ethernet / chelsio / cxgb3 / cxgb3_main.c
blob857cc254cab8795362dc07373631aae04d404b6b
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
62 enum {
63 MAX_TXQ_ENTRIES = 16384,
64 MAX_CTRL_TXQ_ENTRIES = 1024,
65 MAX_RSPQ_ENTRIES = 16384,
66 MAX_RX_BUFFERS = 16384,
67 MAX_RX_JUMBO_BUFFERS = 16384,
68 MIN_TXQ_ENTRIES = 4,
69 MIN_CTRL_TXQ_ENTRIES = 4,
70 MIN_RSPQ_ENTRIES = 32,
71 MIN_FL_ENTRIES = 32
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
80 #define EEPROM_MAGIC 0x38E2F10C
82 #define CH_DEVICE(devid, idx) \
83 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86 CH_DEVICE(0x20, 0), /* PE9000 */
87 CH_DEVICE(0x21, 1), /* T302E */
88 CH_DEVICE(0x22, 2), /* T310E */
89 CH_DEVICE(0x23, 3), /* T320X */
90 CH_DEVICE(0x24, 1), /* T302X */
91 CH_DEVICE(0x25, 3), /* T320E */
92 CH_DEVICE(0x26, 2), /* T310X */
93 CH_DEVICE(0x30, 2), /* T3B10 */
94 CH_DEVICE(0x31, 3), /* T3B20 */
95 CH_DEVICE(0x32, 1), /* T3B02 */
96 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
97 CH_DEVICE(0x36, 3), /* S320E-CR */
98 CH_DEVICE(0x37, 7), /* N320E-G2 */
99 {0,}
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
114 * The driver uses the best interrupt scheme available on a platform in the
115 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
116 * of these schemes the driver may consider as follows:
118 * msi = 2: choose from among all three options
119 * msi = 1: only consider MSI and pin interrupts
120 * msi = 0: force pin interrupts
122 static int msi = 2;
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
128 * The driver enables offload as a default.
129 * To disable it, use ofld_disable = 1.
132 static int ofld_disable = 0;
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
138 * We have work elements that we need to cancel when an interface is taken
139 * down. Normally the work elements would be executed by keventd but that
140 * can deadlock because of linkwatch. If our close method takes the rtnl
141 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143 * for our work to complete. Get our own work queue to solve this.
145 struct workqueue_struct *cxgb3_wq;
148 * link_report - show link status and link speed/duplex
149 * @p: the port whose settings are to be reported
151 * Shows the link status, speed, and duplex of a port.
153 static void link_report(struct net_device *dev)
155 if (!netif_carrier_ok(dev))
156 printk(KERN_INFO "%s: link down\n", dev->name);
157 else {
158 const char *s = "10Mbps";
159 const struct port_info *p = netdev_priv(dev);
161 switch (p->link_config.speed) {
162 case SPEED_10000:
163 s = "10Gbps";
164 break;
165 case SPEED_1000:
166 s = "1000Mbps";
167 break;
168 case SPEED_100:
169 s = "100Mbps";
170 break;
173 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179 struct port_info *pi)
181 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182 F_ENDROPPKT);
183 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189 struct port_info *pi)
191 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192 F_ENDROPPKT, 0);
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
197 struct net_device *dev = adap->port[port_id];
198 struct port_info *pi = netdev_priv(dev);
200 if (state == netif_carrier_ok(dev))
201 return;
203 if (state) {
204 struct cmac *mac = &pi->mac;
206 netif_carrier_on(dev);
208 disable_tx_fifo_drain(adap, pi);
210 /* Clear local faults */
211 t3_xgm_intr_disable(adap, pi->port_id);
212 t3_read_reg(adap, A_XGM_INT_STATUS +
213 pi->mac.offset);
214 t3_write_reg(adap,
215 A_XGM_INT_CAUSE + pi->mac.offset,
216 F_XGM_INT);
218 t3_set_reg_field(adap,
219 A_XGM_INT_ENABLE +
220 pi->mac.offset,
221 F_XGM_INT, F_XGM_INT);
222 t3_xgm_intr_enable(adap, pi->port_id);
224 t3_mac_enable(mac, MAC_DIRECTION_TX);
225 } else {
226 netif_carrier_off(dev);
228 /* Flush TX FIFO */
229 enable_tx_fifo_drain(adap, pi);
231 link_report(dev);
235 * t3_os_link_changed - handle link status changes
236 * @adapter: the adapter associated with the link change
237 * @port_id: the port index whose limk status has changed
238 * @link_stat: the new status of the link
239 * @speed: the new speed setting
240 * @duplex: the new duplex setting
241 * @pause: the new flow-control setting
243 * This is the OS-dependent handler for link status changes. The OS
244 * neutral handler takes care of most of the processing for these events,
245 * then calls this handler for any OS-specific processing.
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248 int speed, int duplex, int pause)
250 struct net_device *dev = adapter->port[port_id];
251 struct port_info *pi = netdev_priv(dev);
252 struct cmac *mac = &pi->mac;
254 /* Skip changes from disabled ports. */
255 if (!netif_running(dev))
256 return;
258 if (link_stat != netif_carrier_ok(dev)) {
259 if (link_stat) {
260 disable_tx_fifo_drain(adapter, pi);
262 t3_mac_enable(mac, MAC_DIRECTION_RX);
264 /* Clear local faults */
265 t3_xgm_intr_disable(adapter, pi->port_id);
266 t3_read_reg(adapter, A_XGM_INT_STATUS +
267 pi->mac.offset);
268 t3_write_reg(adapter,
269 A_XGM_INT_CAUSE + pi->mac.offset,
270 F_XGM_INT);
272 t3_set_reg_field(adapter,
273 A_XGM_INT_ENABLE + pi->mac.offset,
274 F_XGM_INT, F_XGM_INT);
275 t3_xgm_intr_enable(adapter, pi->port_id);
277 netif_carrier_on(dev);
278 } else {
279 netif_carrier_off(dev);
281 t3_xgm_intr_disable(adapter, pi->port_id);
282 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283 t3_set_reg_field(adapter,
284 A_XGM_INT_ENABLE + pi->mac.offset,
285 F_XGM_INT, 0);
287 if (is_10G(adapter))
288 pi->phy.ops->power_down(&pi->phy, 1);
290 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291 t3_mac_disable(mac, MAC_DIRECTION_RX);
292 t3_link_start(&pi->phy, mac, &pi->link_config);
294 /* Flush TX FIFO */
295 enable_tx_fifo_drain(adapter, pi);
298 link_report(dev);
303 * t3_os_phymod_changed - handle PHY module changes
304 * @phy: the PHY reporting the module change
305 * @mod_type: new module type
307 * This is the OS-dependent handler for PHY module changes. It is
308 * invoked when a PHY module is removed or inserted for any OS-specific
309 * processing.
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
313 static const char *mod_str[] = {
314 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
317 const struct net_device *dev = adap->port[port_id];
318 const struct port_info *pi = netdev_priv(dev);
320 if (pi->phy.modtype == phy_modtype_none)
321 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322 else
323 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324 mod_str[pi->phy.modtype]);
327 static void cxgb_set_rxmode(struct net_device *dev)
329 struct port_info *pi = netdev_priv(dev);
331 t3_mac_set_rx_mode(&pi->mac, dev);
335 * link_start - enable a port
336 * @dev: the device to enable
338 * Performs the MAC and PHY actions needed to enable a port.
340 static void link_start(struct net_device *dev)
342 struct port_info *pi = netdev_priv(dev);
343 struct cmac *mac = &pi->mac;
345 t3_mac_reset(mac);
346 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347 t3_mac_set_mtu(mac, dev->mtu);
348 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350 t3_mac_set_rx_mode(mac, dev);
351 t3_link_start(&pi->phy, mac, &pi->link_config);
352 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
355 static inline void cxgb_disable_msi(struct adapter *adapter)
357 if (adapter->flags & USING_MSIX) {
358 pci_disable_msix(adapter->pdev);
359 adapter->flags &= ~USING_MSIX;
360 } else if (adapter->flags & USING_MSI) {
361 pci_disable_msi(adapter->pdev);
362 adapter->flags &= ~USING_MSI;
367 * Interrupt handler for asynchronous events used with MSI-X.
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
371 t3_slow_intr_handler(cookie);
372 return IRQ_HANDLED;
376 * Name the MSI-X interrupts.
378 static void name_msix_vecs(struct adapter *adap)
380 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
382 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383 adap->msix_info[0].desc[n] = 0;
385 for_each_port(adap, j) {
386 struct net_device *d = adap->port[j];
387 const struct port_info *pi = netdev_priv(d);
389 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390 snprintf(adap->msix_info[msi_idx].desc, n,
391 "%s-%d", d->name, pi->first_qset + i);
392 adap->msix_info[msi_idx].desc[n] = 0;
397 static int request_msix_data_irqs(struct adapter *adap)
399 int i, j, err, qidx = 0;
401 for_each_port(adap, i) {
402 int nqsets = adap2pinfo(adap, i)->nqsets;
404 for (j = 0; j < nqsets; ++j) {
405 err = request_irq(adap->msix_info[qidx + 1].vec,
406 t3_intr_handler(adap,
407 adap->sge.qs[qidx].
408 rspq.polling), 0,
409 adap->msix_info[qidx + 1].desc,
410 &adap->sge.qs[qidx]);
411 if (err) {
412 while (--qidx >= 0)
413 free_irq(adap->msix_info[qidx + 1].vec,
414 &adap->sge.qs[qidx]);
415 return err;
417 qidx++;
420 return 0;
423 static void free_irq_resources(struct adapter *adapter)
425 if (adapter->flags & USING_MSIX) {
426 int i, n = 0;
428 free_irq(adapter->msix_info[0].vec, adapter);
429 for_each_port(adapter, i)
430 n += adap2pinfo(adapter, i)->nqsets;
432 for (i = 0; i < n; ++i)
433 free_irq(adapter->msix_info[i + 1].vec,
434 &adapter->sge.qs[i]);
435 } else
436 free_irq(adapter->pdev->irq, adapter);
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440 unsigned long n)
442 int attempts = 10;
444 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445 if (!--attempts)
446 return -ETIMEDOUT;
447 msleep(10);
449 return 0;
452 static int init_tp_parity(struct adapter *adap)
454 int i;
455 struct sk_buff *skb;
456 struct cpl_set_tcb_field *greq;
457 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
459 t3_tp_set_offload_mode(adap, 1);
461 for (i = 0; i < 16; i++) {
462 struct cpl_smt_write_req *req;
464 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465 if (!skb)
466 skb = adap->nofail_skb;
467 if (!skb)
468 goto alloc_skb_fail;
470 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471 memset(req, 0, sizeof(*req));
472 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474 req->mtu_idx = NMTUS - 1;
475 req->iff = i;
476 t3_mgmt_tx(adap, skb);
477 if (skb == adap->nofail_skb) {
478 await_mgmt_replies(adap, cnt, i + 1);
479 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480 if (!adap->nofail_skb)
481 goto alloc_skb_fail;
485 for (i = 0; i < 2048; i++) {
486 struct cpl_l2t_write_req *req;
488 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489 if (!skb)
490 skb = adap->nofail_skb;
491 if (!skb)
492 goto alloc_skb_fail;
494 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495 memset(req, 0, sizeof(*req));
496 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498 req->params = htonl(V_L2T_W_IDX(i));
499 t3_mgmt_tx(adap, skb);
500 if (skb == adap->nofail_skb) {
501 await_mgmt_replies(adap, cnt, 16 + i + 1);
502 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503 if (!adap->nofail_skb)
504 goto alloc_skb_fail;
508 for (i = 0; i < 2048; i++) {
509 struct cpl_rte_write_req *req;
511 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512 if (!skb)
513 skb = adap->nofail_skb;
514 if (!skb)
515 goto alloc_skb_fail;
517 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518 memset(req, 0, sizeof(*req));
519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 t3_mgmt_tx(adap, skb);
523 if (skb == adap->nofail_skb) {
524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 if (!adap->nofail_skb)
527 goto alloc_skb_fail;
531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 if (!skb)
533 skb = adap->nofail_skb;
534 if (!skb)
535 goto alloc_skb_fail;
537 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538 memset(greq, 0, sizeof(*greq));
539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541 greq->mask = cpu_to_be64(1);
542 t3_mgmt_tx(adap, skb);
544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545 if (skb == adap->nofail_skb) {
546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
550 t3_tp_set_offload_mode(adap, 0);
551 return i;
553 alloc_skb_fail:
554 t3_tp_set_offload_mode(adap, 0);
555 return -ENOMEM;
559 * setup_rss - configure RSS
560 * @adap: the adapter
562 * Sets up RSS to distribute packets to multiple receive queues. We
563 * configure the RSS CPU lookup table to distribute to the number of HW
564 * receive queues, and the response queue lookup table to narrow that
565 * down to the response queues actually configured for each port.
566 * We always configure the RSS mapping for two ports since the mapping
567 * table has plenty of entries.
569 static void setup_rss(struct adapter *adap)
571 int i;
572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574 u8 cpus[SGE_QSETS + 1];
575 u16 rspq_map[RSS_TABLE_SIZE];
577 for (i = 0; i < SGE_QSETS; ++i)
578 cpus[i] = i;
579 cpus[SGE_QSETS] = 0xff; /* terminator */
581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582 rspq_map[i] = i % nq0;
583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
591 static void ring_dbs(struct adapter *adap)
593 int i, j;
595 for (i = 0; i < SGE_QSETS; i++) {
596 struct sge_qset *qs = &adap->sge.qs[i];
598 if (qs->adap)
599 for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
604 static void init_napi(struct adapter *adap)
606 int i;
608 for (i = 0; i < SGE_QSETS; i++) {
609 struct sge_qset *qs = &adap->sge.qs[i];
611 if (qs->adap)
612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 64);
617 * netif_napi_add() can be called only once per napi_struct because it
618 * adds each new napi_struct to a list. Be careful not to call it a
619 * second time, e.g., during EEH recovery, by making a note of it.
621 adap->flags |= NAPI_INIT;
625 * Wait until all NAPI handlers are descheduled. This includes the handlers of
626 * both netdevices representing interfaces and the dummy ones for the extra
627 * queues.
629 static void quiesce_rx(struct adapter *adap)
631 int i;
633 for (i = 0; i < SGE_QSETS; i++)
634 if (adap->sge.qs[i].adap)
635 napi_disable(&adap->sge.qs[i].napi);
638 static void enable_all_napi(struct adapter *adap)
640 int i;
641 for (i = 0; i < SGE_QSETS; i++)
642 if (adap->sge.qs[i].adap)
643 napi_enable(&adap->sge.qs[i].napi);
647 * setup_sge_qsets - configure SGE Tx/Rx/response queues
648 * @adap: the adapter
650 * Determines how many sets of SGE queues to use and initializes them.
651 * We support multiple queue sets per port if we have MSI-X, otherwise
652 * just one queue set per port.
654 static int setup_sge_qsets(struct adapter *adap)
656 int i, j, err, irq_idx = 0, qset_idx = 0;
657 unsigned int ntxq = SGE_TXQ_PER_SET;
659 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
660 irq_idx = -1;
662 for_each_port(adap, i) {
663 struct net_device *dev = adap->port[i];
664 struct port_info *pi = netdev_priv(dev);
666 pi->qs = &adap->sge.qs[pi->first_qset];
667 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
668 err = t3_sge_alloc_qset(adap, qset_idx, 1,
669 (adap->flags & USING_MSIX) ? qset_idx + 1 :
670 irq_idx,
671 &adap->params.sge.qset[qset_idx], ntxq, dev,
672 netdev_get_tx_queue(dev, j));
673 if (err) {
674 t3_free_sge_resources(adap);
675 return err;
680 return 0;
683 static ssize_t attr_show(struct device *d, char *buf,
684 ssize_t(*format) (struct net_device *, char *))
686 ssize_t len;
688 /* Synchronize with ioctls that may shut down the device */
689 rtnl_lock();
690 len = (*format) (to_net_dev(d), buf);
691 rtnl_unlock();
692 return len;
695 static ssize_t attr_store(struct device *d,
696 const char *buf, size_t len,
697 ssize_t(*set) (struct net_device *, unsigned int),
698 unsigned int min_val, unsigned int max_val)
700 char *endp;
701 ssize_t ret;
702 unsigned int val;
704 if (!capable(CAP_NET_ADMIN))
705 return -EPERM;
707 val = simple_strtoul(buf, &endp, 0);
708 if (endp == buf || val < min_val || val > max_val)
709 return -EINVAL;
711 rtnl_lock();
712 ret = (*set) (to_net_dev(d), val);
713 if (!ret)
714 ret = len;
715 rtnl_unlock();
716 return ret;
719 #define CXGB3_SHOW(name, val_expr) \
720 static ssize_t format_##name(struct net_device *dev, char *buf) \
722 struct port_info *pi = netdev_priv(dev); \
723 struct adapter *adap = pi->adapter; \
724 return sprintf(buf, "%u\n", val_expr); \
726 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
727 char *buf) \
729 return attr_show(d, buf, format_##name); \
732 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
734 struct port_info *pi = netdev_priv(dev);
735 struct adapter *adap = pi->adapter;
736 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
738 if (adap->flags & FULL_INIT_DONE)
739 return -EBUSY;
740 if (val && adap->params.rev == 0)
741 return -EINVAL;
742 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
743 min_tids)
744 return -EINVAL;
745 adap->params.mc5.nfilters = val;
746 return 0;
749 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
750 const char *buf, size_t len)
752 return attr_store(d, buf, len, set_nfilters, 0, ~0);
755 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
757 struct port_info *pi = netdev_priv(dev);
758 struct adapter *adap = pi->adapter;
760 if (adap->flags & FULL_INIT_DONE)
761 return -EBUSY;
762 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
763 MC5_MIN_TIDS)
764 return -EINVAL;
765 adap->params.mc5.nservers = val;
766 return 0;
769 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
770 const char *buf, size_t len)
772 return attr_store(d, buf, len, set_nservers, 0, ~0);
775 #define CXGB3_ATTR_R(name, val_expr) \
776 CXGB3_SHOW(name, val_expr) \
777 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
779 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
780 CXGB3_SHOW(name, val_expr) \
781 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
783 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
784 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
785 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
787 static struct attribute *cxgb3_attrs[] = {
788 &dev_attr_cam_size.attr,
789 &dev_attr_nfilters.attr,
790 &dev_attr_nservers.attr,
791 NULL
794 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
796 static ssize_t tm_attr_show(struct device *d,
797 char *buf, int sched)
799 struct port_info *pi = netdev_priv(to_net_dev(d));
800 struct adapter *adap = pi->adapter;
801 unsigned int v, addr, bpt, cpt;
802 ssize_t len;
804 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
805 rtnl_lock();
806 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
807 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
808 if (sched & 1)
809 v >>= 16;
810 bpt = (v >> 8) & 0xff;
811 cpt = v & 0xff;
812 if (!cpt)
813 len = sprintf(buf, "disabled\n");
814 else {
815 v = (adap->params.vpd.cclk * 1000) / cpt;
816 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
818 rtnl_unlock();
819 return len;
822 static ssize_t tm_attr_store(struct device *d,
823 const char *buf, size_t len, int sched)
825 struct port_info *pi = netdev_priv(to_net_dev(d));
826 struct adapter *adap = pi->adapter;
827 unsigned int val;
828 char *endp;
829 ssize_t ret;
831 if (!capable(CAP_NET_ADMIN))
832 return -EPERM;
834 val = simple_strtoul(buf, &endp, 0);
835 if (endp == buf || val > 10000000)
836 return -EINVAL;
838 rtnl_lock();
839 ret = t3_config_sched(adap, val, sched);
840 if (!ret)
841 ret = len;
842 rtnl_unlock();
843 return ret;
846 #define TM_ATTR(name, sched) \
847 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
848 char *buf) \
850 return tm_attr_show(d, buf, sched); \
852 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
853 const char *buf, size_t len) \
855 return tm_attr_store(d, buf, len, sched); \
857 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
859 TM_ATTR(sched0, 0);
860 TM_ATTR(sched1, 1);
861 TM_ATTR(sched2, 2);
862 TM_ATTR(sched3, 3);
863 TM_ATTR(sched4, 4);
864 TM_ATTR(sched5, 5);
865 TM_ATTR(sched6, 6);
866 TM_ATTR(sched7, 7);
868 static struct attribute *offload_attrs[] = {
869 &dev_attr_sched0.attr,
870 &dev_attr_sched1.attr,
871 &dev_attr_sched2.attr,
872 &dev_attr_sched3.attr,
873 &dev_attr_sched4.attr,
874 &dev_attr_sched5.attr,
875 &dev_attr_sched6.attr,
876 &dev_attr_sched7.attr,
877 NULL
880 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
883 * Sends an sk_buff to an offload queue driver
884 * after dealing with any active network taps.
886 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
888 int ret;
890 local_bh_disable();
891 ret = t3_offload_tx(tdev, skb);
892 local_bh_enable();
893 return ret;
896 static int write_smt_entry(struct adapter *adapter, int idx)
898 struct cpl_smt_write_req *req;
899 struct port_info *pi = netdev_priv(adapter->port[idx]);
900 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
902 if (!skb)
903 return -ENOMEM;
905 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
906 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
907 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
908 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
909 req->iff = idx;
910 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
911 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
912 skb->priority = 1;
913 offload_tx(&adapter->tdev, skb);
914 return 0;
917 static int init_smt(struct adapter *adapter)
919 int i;
921 for_each_port(adapter, i)
922 write_smt_entry(adapter, i);
923 return 0;
926 static void init_port_mtus(struct adapter *adapter)
928 unsigned int mtus = adapter->port[0]->mtu;
930 if (adapter->port[1])
931 mtus |= adapter->port[1]->mtu << 16;
932 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
935 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
936 int hi, int port)
938 struct sk_buff *skb;
939 struct mngt_pktsched_wr *req;
940 int ret;
942 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
943 if (!skb)
944 skb = adap->nofail_skb;
945 if (!skb)
946 return -ENOMEM;
948 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
949 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
950 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
951 req->sched = sched;
952 req->idx = qidx;
953 req->min = lo;
954 req->max = hi;
955 req->binding = port;
956 ret = t3_mgmt_tx(adap, skb);
957 if (skb == adap->nofail_skb) {
958 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
959 GFP_KERNEL);
960 if (!adap->nofail_skb)
961 ret = -ENOMEM;
964 return ret;
967 static int bind_qsets(struct adapter *adap)
969 int i, j, err = 0;
971 for_each_port(adap, i) {
972 const struct port_info *pi = adap2pinfo(adap, i);
974 for (j = 0; j < pi->nqsets; ++j) {
975 int ret = send_pktsched_cmd(adap, 1,
976 pi->first_qset + j, -1,
977 -1, i);
978 if (ret)
979 err = ret;
983 return err;
986 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
987 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
988 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
989 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
990 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
991 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
992 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
993 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
994 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
995 MODULE_FIRMWARE(FW_FNAME);
996 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
997 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
998 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
999 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1000 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1002 static inline const char *get_edc_fw_name(int edc_idx)
1004 const char *fw_name = NULL;
1006 switch (edc_idx) {
1007 case EDC_OPT_AEL2005:
1008 fw_name = AEL2005_OPT_EDC_NAME;
1009 break;
1010 case EDC_TWX_AEL2005:
1011 fw_name = AEL2005_TWX_EDC_NAME;
1012 break;
1013 case EDC_TWX_AEL2020:
1014 fw_name = AEL2020_TWX_EDC_NAME;
1015 break;
1017 return fw_name;
1020 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1022 struct adapter *adapter = phy->adapter;
1023 const struct firmware *fw;
1024 char buf[64];
1025 u32 csum;
1026 const __be32 *p;
1027 u16 *cache = phy->phy_cache;
1028 int i, ret;
1030 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1032 ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1033 if (ret < 0) {
1034 dev_err(&adapter->pdev->dev,
1035 "could not upgrade firmware: unable to load %s\n",
1036 buf);
1037 return ret;
1040 /* check size, take checksum in account */
1041 if (fw->size > size + 4) {
1042 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1043 (unsigned int)fw->size, size + 4);
1044 ret = -EINVAL;
1047 /* compute checksum */
1048 p = (const __be32 *)fw->data;
1049 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1050 csum += ntohl(p[i]);
1052 if (csum != 0xffffffff) {
1053 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1054 csum);
1055 ret = -EINVAL;
1058 for (i = 0; i < size / 4 ; i++) {
1059 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1060 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1063 release_firmware(fw);
1065 return ret;
1068 static int upgrade_fw(struct adapter *adap)
1070 int ret;
1071 const struct firmware *fw;
1072 struct device *dev = &adap->pdev->dev;
1074 ret = request_firmware(&fw, FW_FNAME, dev);
1075 if (ret < 0) {
1076 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1077 FW_FNAME);
1078 return ret;
1080 ret = t3_load_fw(adap, fw->data, fw->size);
1081 release_firmware(fw);
1083 if (ret == 0)
1084 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1085 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1086 else
1087 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1088 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1090 return ret;
1093 static inline char t3rev2char(struct adapter *adapter)
1095 char rev = 0;
1097 switch(adapter->params.rev) {
1098 case T3_REV_B:
1099 case T3_REV_B2:
1100 rev = 'b';
1101 break;
1102 case T3_REV_C:
1103 rev = 'c';
1104 break;
1106 return rev;
1109 static int update_tpsram(struct adapter *adap)
1111 const struct firmware *tpsram;
1112 char buf[64];
1113 struct device *dev = &adap->pdev->dev;
1114 int ret;
1115 char rev;
1117 rev = t3rev2char(adap);
1118 if (!rev)
1119 return 0;
1121 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1123 ret = request_firmware(&tpsram, buf, dev);
1124 if (ret < 0) {
1125 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1126 buf);
1127 return ret;
1130 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1131 if (ret)
1132 goto release_tpsram;
1134 ret = t3_set_proto_sram(adap, tpsram->data);
1135 if (ret == 0)
1136 dev_info(dev,
1137 "successful update of protocol engine "
1138 "to %d.%d.%d\n",
1139 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1140 else
1141 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1142 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1143 if (ret)
1144 dev_err(dev, "loading protocol SRAM failed\n");
1146 release_tpsram:
1147 release_firmware(tpsram);
1149 return ret;
1153 * cxgb_up - enable the adapter
1154 * @adapter: adapter being enabled
1156 * Called when the first port is enabled, this function performs the
1157 * actions necessary to make an adapter operational, such as completing
1158 * the initialization of HW modules, and enabling interrupts.
1160 * Must be called with the rtnl lock held.
1162 static int cxgb_up(struct adapter *adap)
1164 int err;
1166 if (!(adap->flags & FULL_INIT_DONE)) {
1167 err = t3_check_fw_version(adap);
1168 if (err == -EINVAL) {
1169 err = upgrade_fw(adap);
1170 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1171 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1172 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1175 err = t3_check_tpsram_version(adap);
1176 if (err == -EINVAL) {
1177 err = update_tpsram(adap);
1178 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1179 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1180 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1184 * Clear interrupts now to catch errors if t3_init_hw fails.
1185 * We clear them again later as initialization may trigger
1186 * conditions that can interrupt.
1188 t3_intr_clear(adap);
1190 err = t3_init_hw(adap, 0);
1191 if (err)
1192 goto out;
1194 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1195 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1197 err = setup_sge_qsets(adap);
1198 if (err)
1199 goto out;
1201 setup_rss(adap);
1202 if (!(adap->flags & NAPI_INIT))
1203 init_napi(adap);
1205 t3_start_sge_timers(adap);
1206 adap->flags |= FULL_INIT_DONE;
1209 t3_intr_clear(adap);
1211 if (adap->flags & USING_MSIX) {
1212 name_msix_vecs(adap);
1213 err = request_irq(adap->msix_info[0].vec,
1214 t3_async_intr_handler, 0,
1215 adap->msix_info[0].desc, adap);
1216 if (err)
1217 goto irq_err;
1219 err = request_msix_data_irqs(adap);
1220 if (err) {
1221 free_irq(adap->msix_info[0].vec, adap);
1222 goto irq_err;
1224 } else if ((err = request_irq(adap->pdev->irq,
1225 t3_intr_handler(adap,
1226 adap->sge.qs[0].rspq.
1227 polling),
1228 (adap->flags & USING_MSI) ?
1229 0 : IRQF_SHARED,
1230 adap->name, adap)))
1231 goto irq_err;
1233 enable_all_napi(adap);
1234 t3_sge_start(adap);
1235 t3_intr_enable(adap);
1237 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1238 is_offload(adap) && init_tp_parity(adap) == 0)
1239 adap->flags |= TP_PARITY_INIT;
1241 if (adap->flags & TP_PARITY_INIT) {
1242 t3_write_reg(adap, A_TP_INT_CAUSE,
1243 F_CMCACHEPERR | F_ARPLUTPERR);
1244 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1247 if (!(adap->flags & QUEUES_BOUND)) {
1248 int ret = bind_qsets(adap);
1250 if (ret < 0) {
1251 CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1252 t3_intr_disable(adap);
1253 free_irq_resources(adap);
1254 err = ret;
1255 goto out;
1257 adap->flags |= QUEUES_BOUND;
1260 out:
1261 return err;
1262 irq_err:
1263 CH_ERR(adap, "request_irq failed, err %d\n", err);
1264 goto out;
1268 * Release resources when all the ports and offloading have been stopped.
1270 static void cxgb_down(struct adapter *adapter, int on_wq)
1272 t3_sge_stop(adapter);
1273 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1274 t3_intr_disable(adapter);
1275 spin_unlock_irq(&adapter->work_lock);
1277 free_irq_resources(adapter);
1278 quiesce_rx(adapter);
1279 t3_sge_stop(adapter);
1280 if (!on_wq)
1281 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1284 static void schedule_chk_task(struct adapter *adap)
1286 unsigned int timeo;
1288 timeo = adap->params.linkpoll_period ?
1289 (HZ * adap->params.linkpoll_period) / 10 :
1290 adap->params.stats_update_period * HZ;
1291 if (timeo)
1292 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1295 static int offload_open(struct net_device *dev)
1297 struct port_info *pi = netdev_priv(dev);
1298 struct adapter *adapter = pi->adapter;
1299 struct t3cdev *tdev = dev2t3cdev(dev);
1300 int adap_up = adapter->open_device_map & PORT_MASK;
1301 int err;
1303 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1304 return 0;
1306 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1307 goto out;
1309 t3_tp_set_offload_mode(adapter, 1);
1310 tdev->lldev = adapter->port[0];
1311 err = cxgb3_offload_activate(adapter);
1312 if (err)
1313 goto out;
1315 init_port_mtus(adapter);
1316 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1317 adapter->params.b_wnd,
1318 adapter->params.rev == 0 ?
1319 adapter->port[0]->mtu : 0xffff);
1320 init_smt(adapter);
1322 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1323 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1325 /* Call back all registered clients */
1326 cxgb3_add_clients(tdev);
1328 out:
1329 /* restore them in case the offload module has changed them */
1330 if (err) {
1331 t3_tp_set_offload_mode(adapter, 0);
1332 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1333 cxgb3_set_dummy_ops(tdev);
1335 return err;
1338 static int offload_close(struct t3cdev *tdev)
1340 struct adapter *adapter = tdev2adap(tdev);
1341 struct t3c_data *td = T3C_DATA(tdev);
1343 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1344 return 0;
1346 /* Call back all registered clients */
1347 cxgb3_remove_clients(tdev);
1349 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1351 /* Flush work scheduled while releasing TIDs */
1352 flush_work_sync(&td->tid_release_task);
1354 tdev->lldev = NULL;
1355 cxgb3_set_dummy_ops(tdev);
1356 t3_tp_set_offload_mode(adapter, 0);
1357 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1359 if (!adapter->open_device_map)
1360 cxgb_down(adapter, 0);
1362 cxgb3_offload_deactivate(adapter);
1363 return 0;
1366 static int cxgb_open(struct net_device *dev)
1368 struct port_info *pi = netdev_priv(dev);
1369 struct adapter *adapter = pi->adapter;
1370 int other_ports = adapter->open_device_map & PORT_MASK;
1371 int err;
1373 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1374 return err;
1376 set_bit(pi->port_id, &adapter->open_device_map);
1377 if (is_offload(adapter) && !ofld_disable) {
1378 err = offload_open(dev);
1379 if (err)
1380 printk(KERN_WARNING
1381 "Could not initialize offload capabilities\n");
1384 netif_set_real_num_tx_queues(dev, pi->nqsets);
1385 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1386 if (err)
1387 return err;
1388 link_start(dev);
1389 t3_port_intr_enable(adapter, pi->port_id);
1390 netif_tx_start_all_queues(dev);
1391 if (!other_ports)
1392 schedule_chk_task(adapter);
1394 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1395 return 0;
1398 static int __cxgb_close(struct net_device *dev, int on_wq)
1400 struct port_info *pi = netdev_priv(dev);
1401 struct adapter *adapter = pi->adapter;
1404 if (!adapter->open_device_map)
1405 return 0;
1407 /* Stop link fault interrupts */
1408 t3_xgm_intr_disable(adapter, pi->port_id);
1409 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1411 t3_port_intr_disable(adapter, pi->port_id);
1412 netif_tx_stop_all_queues(dev);
1413 pi->phy.ops->power_down(&pi->phy, 1);
1414 netif_carrier_off(dev);
1415 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1417 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1418 clear_bit(pi->port_id, &adapter->open_device_map);
1419 spin_unlock_irq(&adapter->work_lock);
1421 if (!(adapter->open_device_map & PORT_MASK))
1422 cancel_delayed_work_sync(&adapter->adap_check_task);
1424 if (!adapter->open_device_map)
1425 cxgb_down(adapter, on_wq);
1427 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1428 return 0;
1431 static int cxgb_close(struct net_device *dev)
1433 return __cxgb_close(dev, 0);
1436 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1438 struct port_info *pi = netdev_priv(dev);
1439 struct adapter *adapter = pi->adapter;
1440 struct net_device_stats *ns = &pi->netstats;
1441 const struct mac_stats *pstats;
1443 spin_lock(&adapter->stats_lock);
1444 pstats = t3_mac_update_stats(&pi->mac);
1445 spin_unlock(&adapter->stats_lock);
1447 ns->tx_bytes = pstats->tx_octets;
1448 ns->tx_packets = pstats->tx_frames;
1449 ns->rx_bytes = pstats->rx_octets;
1450 ns->rx_packets = pstats->rx_frames;
1451 ns->multicast = pstats->rx_mcast_frames;
1453 ns->tx_errors = pstats->tx_underrun;
1454 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1455 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1456 pstats->rx_fifo_ovfl;
1458 /* detailed rx_errors */
1459 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1460 ns->rx_over_errors = 0;
1461 ns->rx_crc_errors = pstats->rx_fcs_errs;
1462 ns->rx_frame_errors = pstats->rx_symbol_errs;
1463 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1464 ns->rx_missed_errors = pstats->rx_cong_drops;
1466 /* detailed tx_errors */
1467 ns->tx_aborted_errors = 0;
1468 ns->tx_carrier_errors = 0;
1469 ns->tx_fifo_errors = pstats->tx_underrun;
1470 ns->tx_heartbeat_errors = 0;
1471 ns->tx_window_errors = 0;
1472 return ns;
1475 static u32 get_msglevel(struct net_device *dev)
1477 struct port_info *pi = netdev_priv(dev);
1478 struct adapter *adapter = pi->adapter;
1480 return adapter->msg_enable;
1483 static void set_msglevel(struct net_device *dev, u32 val)
1485 struct port_info *pi = netdev_priv(dev);
1486 struct adapter *adapter = pi->adapter;
1488 adapter->msg_enable = val;
1491 static char stats_strings[][ETH_GSTRING_LEN] = {
1492 "TxOctetsOK ",
1493 "TxFramesOK ",
1494 "TxMulticastFramesOK",
1495 "TxBroadcastFramesOK",
1496 "TxPauseFrames ",
1497 "TxUnderrun ",
1498 "TxExtUnderrun ",
1500 "TxFrames64 ",
1501 "TxFrames65To127 ",
1502 "TxFrames128To255 ",
1503 "TxFrames256To511 ",
1504 "TxFrames512To1023 ",
1505 "TxFrames1024To1518 ",
1506 "TxFrames1519ToMax ",
1508 "RxOctetsOK ",
1509 "RxFramesOK ",
1510 "RxMulticastFramesOK",
1511 "RxBroadcastFramesOK",
1512 "RxPauseFrames ",
1513 "RxFCSErrors ",
1514 "RxSymbolErrors ",
1515 "RxShortErrors ",
1516 "RxJabberErrors ",
1517 "RxLengthErrors ",
1518 "RxFIFOoverflow ",
1520 "RxFrames64 ",
1521 "RxFrames65To127 ",
1522 "RxFrames128To255 ",
1523 "RxFrames256To511 ",
1524 "RxFrames512To1023 ",
1525 "RxFrames1024To1518 ",
1526 "RxFrames1519ToMax ",
1528 "PhyFIFOErrors ",
1529 "TSO ",
1530 "VLANextractions ",
1531 "VLANinsertions ",
1532 "TxCsumOffload ",
1533 "RxCsumGood ",
1534 "LroAggregated ",
1535 "LroFlushed ",
1536 "LroNoDesc ",
1537 "RxDrops ",
1539 "CheckTXEnToggled ",
1540 "CheckResets ",
1542 "LinkFaults ",
1545 static int get_sset_count(struct net_device *dev, int sset)
1547 switch (sset) {
1548 case ETH_SS_STATS:
1549 return ARRAY_SIZE(stats_strings);
1550 default:
1551 return -EOPNOTSUPP;
1555 #define T3_REGMAP_SIZE (3 * 1024)
1557 static int get_regs_len(struct net_device *dev)
1559 return T3_REGMAP_SIZE;
1562 static int get_eeprom_len(struct net_device *dev)
1564 return EEPROMSIZE;
1567 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1569 struct port_info *pi = netdev_priv(dev);
1570 struct adapter *adapter = pi->adapter;
1571 u32 fw_vers = 0;
1572 u32 tp_vers = 0;
1574 spin_lock(&adapter->stats_lock);
1575 t3_get_fw_version(adapter, &fw_vers);
1576 t3_get_tp_version(adapter, &tp_vers);
1577 spin_unlock(&adapter->stats_lock);
1579 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1580 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1581 strlcpy(info->bus_info, pci_name(adapter->pdev),
1582 sizeof(info->bus_info));
1583 if (fw_vers)
1584 snprintf(info->fw_version, sizeof(info->fw_version),
1585 "%s %u.%u.%u TP %u.%u.%u",
1586 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1587 G_FW_VERSION_MAJOR(fw_vers),
1588 G_FW_VERSION_MINOR(fw_vers),
1589 G_FW_VERSION_MICRO(fw_vers),
1590 G_TP_VERSION_MAJOR(tp_vers),
1591 G_TP_VERSION_MINOR(tp_vers),
1592 G_TP_VERSION_MICRO(tp_vers));
1595 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1597 if (stringset == ETH_SS_STATS)
1598 memcpy(data, stats_strings, sizeof(stats_strings));
1601 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1602 struct port_info *p, int idx)
1604 int i;
1605 unsigned long tot = 0;
1607 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1608 tot += adapter->sge.qs[i].port_stats[idx];
1609 return tot;
1612 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1613 u64 *data)
1615 struct port_info *pi = netdev_priv(dev);
1616 struct adapter *adapter = pi->adapter;
1617 const struct mac_stats *s;
1619 spin_lock(&adapter->stats_lock);
1620 s = t3_mac_update_stats(&pi->mac);
1621 spin_unlock(&adapter->stats_lock);
1623 *data++ = s->tx_octets;
1624 *data++ = s->tx_frames;
1625 *data++ = s->tx_mcast_frames;
1626 *data++ = s->tx_bcast_frames;
1627 *data++ = s->tx_pause;
1628 *data++ = s->tx_underrun;
1629 *data++ = s->tx_fifo_urun;
1631 *data++ = s->tx_frames_64;
1632 *data++ = s->tx_frames_65_127;
1633 *data++ = s->tx_frames_128_255;
1634 *data++ = s->tx_frames_256_511;
1635 *data++ = s->tx_frames_512_1023;
1636 *data++ = s->tx_frames_1024_1518;
1637 *data++ = s->tx_frames_1519_max;
1639 *data++ = s->rx_octets;
1640 *data++ = s->rx_frames;
1641 *data++ = s->rx_mcast_frames;
1642 *data++ = s->rx_bcast_frames;
1643 *data++ = s->rx_pause;
1644 *data++ = s->rx_fcs_errs;
1645 *data++ = s->rx_symbol_errs;
1646 *data++ = s->rx_short;
1647 *data++ = s->rx_jabber;
1648 *data++ = s->rx_too_long;
1649 *data++ = s->rx_fifo_ovfl;
1651 *data++ = s->rx_frames_64;
1652 *data++ = s->rx_frames_65_127;
1653 *data++ = s->rx_frames_128_255;
1654 *data++ = s->rx_frames_256_511;
1655 *data++ = s->rx_frames_512_1023;
1656 *data++ = s->rx_frames_1024_1518;
1657 *data++ = s->rx_frames_1519_max;
1659 *data++ = pi->phy.fifo_errors;
1661 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1662 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1663 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1664 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1665 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1666 *data++ = 0;
1667 *data++ = 0;
1668 *data++ = 0;
1669 *data++ = s->rx_cong_drops;
1671 *data++ = s->num_toggled;
1672 *data++ = s->num_resets;
1674 *data++ = s->link_faults;
1677 static inline void reg_block_dump(struct adapter *ap, void *buf,
1678 unsigned int start, unsigned int end)
1680 u32 *p = buf + start;
1682 for (; start <= end; start += sizeof(u32))
1683 *p++ = t3_read_reg(ap, start);
1686 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1687 void *buf)
1689 struct port_info *pi = netdev_priv(dev);
1690 struct adapter *ap = pi->adapter;
1693 * Version scheme:
1694 * bits 0..9: chip version
1695 * bits 10..15: chip revision
1696 * bit 31: set for PCIe cards
1698 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1701 * We skip the MAC statistics registers because they are clear-on-read.
1702 * Also reading multi-register stats would need to synchronize with the
1703 * periodic mac stats accumulation. Hard to justify the complexity.
1705 memset(buf, 0, T3_REGMAP_SIZE);
1706 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1707 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1708 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1709 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1710 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1711 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1712 XGM_REG(A_XGM_SERDES_STAT3, 1));
1713 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1714 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1717 static int restart_autoneg(struct net_device *dev)
1719 struct port_info *p = netdev_priv(dev);
1721 if (!netif_running(dev))
1722 return -EAGAIN;
1723 if (p->link_config.autoneg != AUTONEG_ENABLE)
1724 return -EINVAL;
1725 p->phy.ops->autoneg_restart(&p->phy);
1726 return 0;
1729 static int set_phys_id(struct net_device *dev,
1730 enum ethtool_phys_id_state state)
1732 struct port_info *pi = netdev_priv(dev);
1733 struct adapter *adapter = pi->adapter;
1735 switch (state) {
1736 case ETHTOOL_ID_ACTIVE:
1737 return 1; /* cycle on/off once per second */
1739 case ETHTOOL_ID_OFF:
1740 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1741 break;
1743 case ETHTOOL_ID_ON:
1744 case ETHTOOL_ID_INACTIVE:
1745 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1746 F_GPIO0_OUT_VAL);
1749 return 0;
1752 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1754 struct port_info *p = netdev_priv(dev);
1756 cmd->supported = p->link_config.supported;
1757 cmd->advertising = p->link_config.advertising;
1759 if (netif_carrier_ok(dev)) {
1760 ethtool_cmd_speed_set(cmd, p->link_config.speed);
1761 cmd->duplex = p->link_config.duplex;
1762 } else {
1763 ethtool_cmd_speed_set(cmd, -1);
1764 cmd->duplex = -1;
1767 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1768 cmd->phy_address = p->phy.mdio.prtad;
1769 cmd->transceiver = XCVR_EXTERNAL;
1770 cmd->autoneg = p->link_config.autoneg;
1771 cmd->maxtxpkt = 0;
1772 cmd->maxrxpkt = 0;
1773 return 0;
1776 static int speed_duplex_to_caps(int speed, int duplex)
1778 int cap = 0;
1780 switch (speed) {
1781 case SPEED_10:
1782 if (duplex == DUPLEX_FULL)
1783 cap = SUPPORTED_10baseT_Full;
1784 else
1785 cap = SUPPORTED_10baseT_Half;
1786 break;
1787 case SPEED_100:
1788 if (duplex == DUPLEX_FULL)
1789 cap = SUPPORTED_100baseT_Full;
1790 else
1791 cap = SUPPORTED_100baseT_Half;
1792 break;
1793 case SPEED_1000:
1794 if (duplex == DUPLEX_FULL)
1795 cap = SUPPORTED_1000baseT_Full;
1796 else
1797 cap = SUPPORTED_1000baseT_Half;
1798 break;
1799 case SPEED_10000:
1800 if (duplex == DUPLEX_FULL)
1801 cap = SUPPORTED_10000baseT_Full;
1803 return cap;
1806 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1807 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1808 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1809 ADVERTISED_10000baseT_Full)
1811 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1813 struct port_info *p = netdev_priv(dev);
1814 struct link_config *lc = &p->link_config;
1816 if (!(lc->supported & SUPPORTED_Autoneg)) {
1818 * PHY offers a single speed/duplex. See if that's what's
1819 * being requested.
1821 if (cmd->autoneg == AUTONEG_DISABLE) {
1822 u32 speed = ethtool_cmd_speed(cmd);
1823 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1824 if (lc->supported & cap)
1825 return 0;
1827 return -EINVAL;
1830 if (cmd->autoneg == AUTONEG_DISABLE) {
1831 u32 speed = ethtool_cmd_speed(cmd);
1832 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1834 if (!(lc->supported & cap) || (speed == SPEED_1000))
1835 return -EINVAL;
1836 lc->requested_speed = speed;
1837 lc->requested_duplex = cmd->duplex;
1838 lc->advertising = 0;
1839 } else {
1840 cmd->advertising &= ADVERTISED_MASK;
1841 cmd->advertising &= lc->supported;
1842 if (!cmd->advertising)
1843 return -EINVAL;
1844 lc->requested_speed = SPEED_INVALID;
1845 lc->requested_duplex = DUPLEX_INVALID;
1846 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1848 lc->autoneg = cmd->autoneg;
1849 if (netif_running(dev))
1850 t3_link_start(&p->phy, &p->mac, lc);
1851 return 0;
1854 static void get_pauseparam(struct net_device *dev,
1855 struct ethtool_pauseparam *epause)
1857 struct port_info *p = netdev_priv(dev);
1859 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1860 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1861 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1864 static int set_pauseparam(struct net_device *dev,
1865 struct ethtool_pauseparam *epause)
1867 struct port_info *p = netdev_priv(dev);
1868 struct link_config *lc = &p->link_config;
1870 if (epause->autoneg == AUTONEG_DISABLE)
1871 lc->requested_fc = 0;
1872 else if (lc->supported & SUPPORTED_Autoneg)
1873 lc->requested_fc = PAUSE_AUTONEG;
1874 else
1875 return -EINVAL;
1877 if (epause->rx_pause)
1878 lc->requested_fc |= PAUSE_RX;
1879 if (epause->tx_pause)
1880 lc->requested_fc |= PAUSE_TX;
1881 if (lc->autoneg == AUTONEG_ENABLE) {
1882 if (netif_running(dev))
1883 t3_link_start(&p->phy, &p->mac, lc);
1884 } else {
1885 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1886 if (netif_running(dev))
1887 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1889 return 0;
1892 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1894 struct port_info *pi = netdev_priv(dev);
1895 struct adapter *adapter = pi->adapter;
1896 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1898 e->rx_max_pending = MAX_RX_BUFFERS;
1899 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1900 e->tx_max_pending = MAX_TXQ_ENTRIES;
1902 e->rx_pending = q->fl_size;
1903 e->rx_mini_pending = q->rspq_size;
1904 e->rx_jumbo_pending = q->jumbo_size;
1905 e->tx_pending = q->txq_size[0];
1908 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1910 struct port_info *pi = netdev_priv(dev);
1911 struct adapter *adapter = pi->adapter;
1912 struct qset_params *q;
1913 int i;
1915 if (e->rx_pending > MAX_RX_BUFFERS ||
1916 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1917 e->tx_pending > MAX_TXQ_ENTRIES ||
1918 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1919 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1920 e->rx_pending < MIN_FL_ENTRIES ||
1921 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1922 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1923 return -EINVAL;
1925 if (adapter->flags & FULL_INIT_DONE)
1926 return -EBUSY;
1928 q = &adapter->params.sge.qset[pi->first_qset];
1929 for (i = 0; i < pi->nqsets; ++i, ++q) {
1930 q->rspq_size = e->rx_mini_pending;
1931 q->fl_size = e->rx_pending;
1932 q->jumbo_size = e->rx_jumbo_pending;
1933 q->txq_size[0] = e->tx_pending;
1934 q->txq_size[1] = e->tx_pending;
1935 q->txq_size[2] = e->tx_pending;
1937 return 0;
1940 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1942 struct port_info *pi = netdev_priv(dev);
1943 struct adapter *adapter = pi->adapter;
1944 struct qset_params *qsp;
1945 struct sge_qset *qs;
1946 int i;
1948 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1949 return -EINVAL;
1951 for (i = 0; i < pi->nqsets; i++) {
1952 qsp = &adapter->params.sge.qset[i];
1953 qs = &adapter->sge.qs[i];
1954 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1955 t3_update_qset_coalesce(qs, qsp);
1958 return 0;
1961 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1963 struct port_info *pi = netdev_priv(dev);
1964 struct adapter *adapter = pi->adapter;
1965 struct qset_params *q = adapter->params.sge.qset;
1967 c->rx_coalesce_usecs = q->coalesce_usecs;
1968 return 0;
1971 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1972 u8 * data)
1974 struct port_info *pi = netdev_priv(dev);
1975 struct adapter *adapter = pi->adapter;
1976 int i, err = 0;
1978 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1979 if (!buf)
1980 return -ENOMEM;
1982 e->magic = EEPROM_MAGIC;
1983 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1984 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
1986 if (!err)
1987 memcpy(data, buf + e->offset, e->len);
1988 kfree(buf);
1989 return err;
1992 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1993 u8 * data)
1995 struct port_info *pi = netdev_priv(dev);
1996 struct adapter *adapter = pi->adapter;
1997 u32 aligned_offset, aligned_len;
1998 __le32 *p;
1999 u8 *buf;
2000 int err;
2002 if (eeprom->magic != EEPROM_MAGIC)
2003 return -EINVAL;
2005 aligned_offset = eeprom->offset & ~3;
2006 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2008 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2009 buf = kmalloc(aligned_len, GFP_KERNEL);
2010 if (!buf)
2011 return -ENOMEM;
2012 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2013 if (!err && aligned_len > 4)
2014 err = t3_seeprom_read(adapter,
2015 aligned_offset + aligned_len - 4,
2016 (__le32 *) & buf[aligned_len - 4]);
2017 if (err)
2018 goto out;
2019 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2020 } else
2021 buf = data;
2023 err = t3_seeprom_wp(adapter, 0);
2024 if (err)
2025 goto out;
2027 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2028 err = t3_seeprom_write(adapter, aligned_offset, *p);
2029 aligned_offset += 4;
2032 if (!err)
2033 err = t3_seeprom_wp(adapter, 1);
2034 out:
2035 if (buf != data)
2036 kfree(buf);
2037 return err;
2040 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2042 wol->supported = 0;
2043 wol->wolopts = 0;
2044 memset(&wol->sopass, 0, sizeof(wol->sopass));
2047 static const struct ethtool_ops cxgb_ethtool_ops = {
2048 .get_settings = get_settings,
2049 .set_settings = set_settings,
2050 .get_drvinfo = get_drvinfo,
2051 .get_msglevel = get_msglevel,
2052 .set_msglevel = set_msglevel,
2053 .get_ringparam = get_sge_param,
2054 .set_ringparam = set_sge_param,
2055 .get_coalesce = get_coalesce,
2056 .set_coalesce = set_coalesce,
2057 .get_eeprom_len = get_eeprom_len,
2058 .get_eeprom = get_eeprom,
2059 .set_eeprom = set_eeprom,
2060 .get_pauseparam = get_pauseparam,
2061 .set_pauseparam = set_pauseparam,
2062 .get_link = ethtool_op_get_link,
2063 .get_strings = get_strings,
2064 .set_phys_id = set_phys_id,
2065 .nway_reset = restart_autoneg,
2066 .get_sset_count = get_sset_count,
2067 .get_ethtool_stats = get_stats,
2068 .get_regs_len = get_regs_len,
2069 .get_regs = get_regs,
2070 .get_wol = get_wol,
2073 static int in_range(int val, int lo, int hi)
2075 return val < 0 || (val <= hi && val >= lo);
2078 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2080 struct port_info *pi = netdev_priv(dev);
2081 struct adapter *adapter = pi->adapter;
2082 u32 cmd;
2083 int ret;
2085 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2086 return -EFAULT;
2088 switch (cmd) {
2089 case CHELSIO_SET_QSET_PARAMS:{
2090 int i;
2091 struct qset_params *q;
2092 struct ch_qset_params t;
2093 int q1 = pi->first_qset;
2094 int nqsets = pi->nqsets;
2096 if (!capable(CAP_NET_ADMIN))
2097 return -EPERM;
2098 if (copy_from_user(&t, useraddr, sizeof(t)))
2099 return -EFAULT;
2100 if (t.qset_idx >= SGE_QSETS)
2101 return -EINVAL;
2102 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2103 !in_range(t.cong_thres, 0, 255) ||
2104 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2105 MAX_TXQ_ENTRIES) ||
2106 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2107 MAX_TXQ_ENTRIES) ||
2108 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2109 MAX_CTRL_TXQ_ENTRIES) ||
2110 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2111 MAX_RX_BUFFERS) ||
2112 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2113 MAX_RX_JUMBO_BUFFERS) ||
2114 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2115 MAX_RSPQ_ENTRIES))
2116 return -EINVAL;
2118 if ((adapter->flags & FULL_INIT_DONE) &&
2119 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2120 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2121 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2122 t.polling >= 0 || t.cong_thres >= 0))
2123 return -EBUSY;
2125 /* Allow setting of any available qset when offload enabled */
2126 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2127 q1 = 0;
2128 for_each_port(adapter, i) {
2129 pi = adap2pinfo(adapter, i);
2130 nqsets += pi->first_qset + pi->nqsets;
2134 if (t.qset_idx < q1)
2135 return -EINVAL;
2136 if (t.qset_idx > q1 + nqsets - 1)
2137 return -EINVAL;
2139 q = &adapter->params.sge.qset[t.qset_idx];
2141 if (t.rspq_size >= 0)
2142 q->rspq_size = t.rspq_size;
2143 if (t.fl_size[0] >= 0)
2144 q->fl_size = t.fl_size[0];
2145 if (t.fl_size[1] >= 0)
2146 q->jumbo_size = t.fl_size[1];
2147 if (t.txq_size[0] >= 0)
2148 q->txq_size[0] = t.txq_size[0];
2149 if (t.txq_size[1] >= 0)
2150 q->txq_size[1] = t.txq_size[1];
2151 if (t.txq_size[2] >= 0)
2152 q->txq_size[2] = t.txq_size[2];
2153 if (t.cong_thres >= 0)
2154 q->cong_thres = t.cong_thres;
2155 if (t.intr_lat >= 0) {
2156 struct sge_qset *qs =
2157 &adapter->sge.qs[t.qset_idx];
2159 q->coalesce_usecs = t.intr_lat;
2160 t3_update_qset_coalesce(qs, q);
2162 if (t.polling >= 0) {
2163 if (adapter->flags & USING_MSIX)
2164 q->polling = t.polling;
2165 else {
2166 /* No polling with INTx for T3A */
2167 if (adapter->params.rev == 0 &&
2168 !(adapter->flags & USING_MSI))
2169 t.polling = 0;
2171 for (i = 0; i < SGE_QSETS; i++) {
2172 q = &adapter->params.sge.
2173 qset[i];
2174 q->polling = t.polling;
2179 if (t.lro >= 0) {
2180 if (t.lro)
2181 dev->wanted_features |= NETIF_F_GRO;
2182 else
2183 dev->wanted_features &= ~NETIF_F_GRO;
2184 netdev_update_features(dev);
2187 break;
2189 case CHELSIO_GET_QSET_PARAMS:{
2190 struct qset_params *q;
2191 struct ch_qset_params t;
2192 int q1 = pi->first_qset;
2193 int nqsets = pi->nqsets;
2194 int i;
2196 if (copy_from_user(&t, useraddr, sizeof(t)))
2197 return -EFAULT;
2199 /* Display qsets for all ports when offload enabled */
2200 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2201 q1 = 0;
2202 for_each_port(adapter, i) {
2203 pi = adap2pinfo(adapter, i);
2204 nqsets = pi->first_qset + pi->nqsets;
2208 if (t.qset_idx >= nqsets)
2209 return -EINVAL;
2211 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2212 t.rspq_size = q->rspq_size;
2213 t.txq_size[0] = q->txq_size[0];
2214 t.txq_size[1] = q->txq_size[1];
2215 t.txq_size[2] = q->txq_size[2];
2216 t.fl_size[0] = q->fl_size;
2217 t.fl_size[1] = q->jumbo_size;
2218 t.polling = q->polling;
2219 t.lro = !!(dev->features & NETIF_F_GRO);
2220 t.intr_lat = q->coalesce_usecs;
2221 t.cong_thres = q->cong_thres;
2222 t.qnum = q1;
2224 if (adapter->flags & USING_MSIX)
2225 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2226 else
2227 t.vector = adapter->pdev->irq;
2229 if (copy_to_user(useraddr, &t, sizeof(t)))
2230 return -EFAULT;
2231 break;
2233 case CHELSIO_SET_QSET_NUM:{
2234 struct ch_reg edata;
2235 unsigned int i, first_qset = 0, other_qsets = 0;
2237 if (!capable(CAP_NET_ADMIN))
2238 return -EPERM;
2239 if (adapter->flags & FULL_INIT_DONE)
2240 return -EBUSY;
2241 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2242 return -EFAULT;
2243 if (edata.val < 1 ||
2244 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2245 return -EINVAL;
2247 for_each_port(adapter, i)
2248 if (adapter->port[i] && adapter->port[i] != dev)
2249 other_qsets += adap2pinfo(adapter, i)->nqsets;
2251 if (edata.val + other_qsets > SGE_QSETS)
2252 return -EINVAL;
2254 pi->nqsets = edata.val;
2256 for_each_port(adapter, i)
2257 if (adapter->port[i]) {
2258 pi = adap2pinfo(adapter, i);
2259 pi->first_qset = first_qset;
2260 first_qset += pi->nqsets;
2262 break;
2264 case CHELSIO_GET_QSET_NUM:{
2265 struct ch_reg edata;
2267 memset(&edata, 0, sizeof(struct ch_reg));
2269 edata.cmd = CHELSIO_GET_QSET_NUM;
2270 edata.val = pi->nqsets;
2271 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2272 return -EFAULT;
2273 break;
2275 case CHELSIO_LOAD_FW:{
2276 u8 *fw_data;
2277 struct ch_mem_range t;
2279 if (!capable(CAP_SYS_RAWIO))
2280 return -EPERM;
2281 if (copy_from_user(&t, useraddr, sizeof(t)))
2282 return -EFAULT;
2283 /* Check t.len sanity ? */
2284 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2285 if (IS_ERR(fw_data))
2286 return PTR_ERR(fw_data);
2288 ret = t3_load_fw(adapter, fw_data, t.len);
2289 kfree(fw_data);
2290 if (ret)
2291 return ret;
2292 break;
2294 case CHELSIO_SETMTUTAB:{
2295 struct ch_mtus m;
2296 int i;
2298 if (!is_offload(adapter))
2299 return -EOPNOTSUPP;
2300 if (!capable(CAP_NET_ADMIN))
2301 return -EPERM;
2302 if (offload_running(adapter))
2303 return -EBUSY;
2304 if (copy_from_user(&m, useraddr, sizeof(m)))
2305 return -EFAULT;
2306 if (m.nmtus != NMTUS)
2307 return -EINVAL;
2308 if (m.mtus[0] < 81) /* accommodate SACK */
2309 return -EINVAL;
2311 /* MTUs must be in ascending order */
2312 for (i = 1; i < NMTUS; ++i)
2313 if (m.mtus[i] < m.mtus[i - 1])
2314 return -EINVAL;
2316 memcpy(adapter->params.mtus, m.mtus,
2317 sizeof(adapter->params.mtus));
2318 break;
2320 case CHELSIO_GET_PM:{
2321 struct tp_params *p = &adapter->params.tp;
2322 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2324 if (!is_offload(adapter))
2325 return -EOPNOTSUPP;
2326 m.tx_pg_sz = p->tx_pg_size;
2327 m.tx_num_pg = p->tx_num_pgs;
2328 m.rx_pg_sz = p->rx_pg_size;
2329 m.rx_num_pg = p->rx_num_pgs;
2330 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2331 if (copy_to_user(useraddr, &m, sizeof(m)))
2332 return -EFAULT;
2333 break;
2335 case CHELSIO_SET_PM:{
2336 struct ch_pm m;
2337 struct tp_params *p = &adapter->params.tp;
2339 if (!is_offload(adapter))
2340 return -EOPNOTSUPP;
2341 if (!capable(CAP_NET_ADMIN))
2342 return -EPERM;
2343 if (adapter->flags & FULL_INIT_DONE)
2344 return -EBUSY;
2345 if (copy_from_user(&m, useraddr, sizeof(m)))
2346 return -EFAULT;
2347 if (!is_power_of_2(m.rx_pg_sz) ||
2348 !is_power_of_2(m.tx_pg_sz))
2349 return -EINVAL; /* not power of 2 */
2350 if (!(m.rx_pg_sz & 0x14000))
2351 return -EINVAL; /* not 16KB or 64KB */
2352 if (!(m.tx_pg_sz & 0x1554000))
2353 return -EINVAL;
2354 if (m.tx_num_pg == -1)
2355 m.tx_num_pg = p->tx_num_pgs;
2356 if (m.rx_num_pg == -1)
2357 m.rx_num_pg = p->rx_num_pgs;
2358 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2359 return -EINVAL;
2360 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2361 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2362 return -EINVAL;
2363 p->rx_pg_size = m.rx_pg_sz;
2364 p->tx_pg_size = m.tx_pg_sz;
2365 p->rx_num_pgs = m.rx_num_pg;
2366 p->tx_num_pgs = m.tx_num_pg;
2367 break;
2369 case CHELSIO_GET_MEM:{
2370 struct ch_mem_range t;
2371 struct mc7 *mem;
2372 u64 buf[32];
2374 if (!is_offload(adapter))
2375 return -EOPNOTSUPP;
2376 if (!(adapter->flags & FULL_INIT_DONE))
2377 return -EIO; /* need the memory controllers */
2378 if (copy_from_user(&t, useraddr, sizeof(t)))
2379 return -EFAULT;
2380 if ((t.addr & 7) || (t.len & 7))
2381 return -EINVAL;
2382 if (t.mem_id == MEM_CM)
2383 mem = &adapter->cm;
2384 else if (t.mem_id == MEM_PMRX)
2385 mem = &adapter->pmrx;
2386 else if (t.mem_id == MEM_PMTX)
2387 mem = &adapter->pmtx;
2388 else
2389 return -EINVAL;
2392 * Version scheme:
2393 * bits 0..9: chip version
2394 * bits 10..15: chip revision
2396 t.version = 3 | (adapter->params.rev << 10);
2397 if (copy_to_user(useraddr, &t, sizeof(t)))
2398 return -EFAULT;
2401 * Read 256 bytes at a time as len can be large and we don't
2402 * want to use huge intermediate buffers.
2404 useraddr += sizeof(t); /* advance to start of buffer */
2405 while (t.len) {
2406 unsigned int chunk =
2407 min_t(unsigned int, t.len, sizeof(buf));
2409 ret =
2410 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2411 buf);
2412 if (ret)
2413 return ret;
2414 if (copy_to_user(useraddr, buf, chunk))
2415 return -EFAULT;
2416 useraddr += chunk;
2417 t.addr += chunk;
2418 t.len -= chunk;
2420 break;
2422 case CHELSIO_SET_TRACE_FILTER:{
2423 struct ch_trace t;
2424 const struct trace_params *tp;
2426 if (!capable(CAP_NET_ADMIN))
2427 return -EPERM;
2428 if (!offload_running(adapter))
2429 return -EAGAIN;
2430 if (copy_from_user(&t, useraddr, sizeof(t)))
2431 return -EFAULT;
2433 tp = (const struct trace_params *)&t.sip;
2434 if (t.config_tx)
2435 t3_config_trace_filter(adapter, tp, 0,
2436 t.invert_match,
2437 t.trace_tx);
2438 if (t.config_rx)
2439 t3_config_trace_filter(adapter, tp, 1,
2440 t.invert_match,
2441 t.trace_rx);
2442 break;
2444 default:
2445 return -EOPNOTSUPP;
2447 return 0;
2450 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2452 struct mii_ioctl_data *data = if_mii(req);
2453 struct port_info *pi = netdev_priv(dev);
2454 struct adapter *adapter = pi->adapter;
2456 switch (cmd) {
2457 case SIOCGMIIREG:
2458 case SIOCSMIIREG:
2459 /* Convert phy_id from older PRTAD/DEVAD format */
2460 if (is_10G(adapter) &&
2461 !mdio_phy_id_is_c45(data->phy_id) &&
2462 (data->phy_id & 0x1f00) &&
2463 !(data->phy_id & 0xe0e0))
2464 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2465 data->phy_id & 0x1f);
2466 /* FALLTHRU */
2467 case SIOCGMIIPHY:
2468 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2469 case SIOCCHIOCTL:
2470 return cxgb_extension_ioctl(dev, req->ifr_data);
2471 default:
2472 return -EOPNOTSUPP;
2476 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2478 struct port_info *pi = netdev_priv(dev);
2479 struct adapter *adapter = pi->adapter;
2480 int ret;
2482 if (new_mtu < 81) /* accommodate SACK */
2483 return -EINVAL;
2484 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2485 return ret;
2486 dev->mtu = new_mtu;
2487 init_port_mtus(adapter);
2488 if (adapter->params.rev == 0 && offload_running(adapter))
2489 t3_load_mtus(adapter, adapter->params.mtus,
2490 adapter->params.a_wnd, adapter->params.b_wnd,
2491 adapter->port[0]->mtu);
2492 return 0;
2495 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2497 struct port_info *pi = netdev_priv(dev);
2498 struct adapter *adapter = pi->adapter;
2499 struct sockaddr *addr = p;
2501 if (!is_valid_ether_addr(addr->sa_data))
2502 return -EINVAL;
2504 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2505 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2506 if (offload_running(adapter))
2507 write_smt_entry(adapter, pi->port_id);
2508 return 0;
2512 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2513 * @adap: the adapter
2514 * @p: the port
2516 * Ensures that current Rx processing on any of the queues associated with
2517 * the given port completes before returning. We do this by acquiring and
2518 * releasing the locks of the response queues associated with the port.
2520 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2522 int i;
2524 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2525 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2527 spin_lock_irq(&q->lock);
2528 spin_unlock_irq(&q->lock);
2532 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
2534 struct port_info *pi = netdev_priv(dev);
2535 struct adapter *adapter = pi->adapter;
2537 if (adapter->params.rev > 0) {
2538 t3_set_vlan_accel(adapter, 1 << pi->port_id,
2539 features & NETIF_F_HW_VLAN_RX);
2540 } else {
2541 /* single control for all ports */
2542 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_RX;
2544 for_each_port(adapter, i)
2545 have_vlans |=
2546 adapter->port[i]->features & NETIF_F_HW_VLAN_RX;
2548 t3_set_vlan_accel(adapter, 1, have_vlans);
2550 t3_synchronize_rx(adapter, pi);
2553 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2554 netdev_features_t features)
2557 * Since there is no support for separate rx/tx vlan accel
2558 * enable/disable make sure tx flag is always in same state as rx.
2560 if (features & NETIF_F_HW_VLAN_RX)
2561 features |= NETIF_F_HW_VLAN_TX;
2562 else
2563 features &= ~NETIF_F_HW_VLAN_TX;
2565 return features;
2568 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2570 netdev_features_t changed = dev->features ^ features;
2572 if (changed & NETIF_F_HW_VLAN_RX)
2573 cxgb_vlan_mode(dev, features);
2575 return 0;
2578 #ifdef CONFIG_NET_POLL_CONTROLLER
2579 static void cxgb_netpoll(struct net_device *dev)
2581 struct port_info *pi = netdev_priv(dev);
2582 struct adapter *adapter = pi->adapter;
2583 int qidx;
2585 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2586 struct sge_qset *qs = &adapter->sge.qs[qidx];
2587 void *source;
2589 if (adapter->flags & USING_MSIX)
2590 source = qs;
2591 else
2592 source = adapter;
2594 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2597 #endif
2600 * Periodic accumulation of MAC statistics.
2602 static void mac_stats_update(struct adapter *adapter)
2604 int i;
2606 for_each_port(adapter, i) {
2607 struct net_device *dev = adapter->port[i];
2608 struct port_info *p = netdev_priv(dev);
2610 if (netif_running(dev)) {
2611 spin_lock(&adapter->stats_lock);
2612 t3_mac_update_stats(&p->mac);
2613 spin_unlock(&adapter->stats_lock);
2618 static void check_link_status(struct adapter *adapter)
2620 int i;
2622 for_each_port(adapter, i) {
2623 struct net_device *dev = adapter->port[i];
2624 struct port_info *p = netdev_priv(dev);
2625 int link_fault;
2627 spin_lock_irq(&adapter->work_lock);
2628 link_fault = p->link_fault;
2629 spin_unlock_irq(&adapter->work_lock);
2631 if (link_fault) {
2632 t3_link_fault(adapter, i);
2633 continue;
2636 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2637 t3_xgm_intr_disable(adapter, i);
2638 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2640 t3_link_changed(adapter, i);
2641 t3_xgm_intr_enable(adapter, i);
2646 static void check_t3b2_mac(struct adapter *adapter)
2648 int i;
2650 if (!rtnl_trylock()) /* synchronize with ifdown */
2651 return;
2653 for_each_port(adapter, i) {
2654 struct net_device *dev = adapter->port[i];
2655 struct port_info *p = netdev_priv(dev);
2656 int status;
2658 if (!netif_running(dev))
2659 continue;
2661 status = 0;
2662 if (netif_running(dev) && netif_carrier_ok(dev))
2663 status = t3b2_mac_watchdog_task(&p->mac);
2664 if (status == 1)
2665 p->mac.stats.num_toggled++;
2666 else if (status == 2) {
2667 struct cmac *mac = &p->mac;
2669 t3_mac_set_mtu(mac, dev->mtu);
2670 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2671 cxgb_set_rxmode(dev);
2672 t3_link_start(&p->phy, mac, &p->link_config);
2673 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2674 t3_port_intr_enable(adapter, p->port_id);
2675 p->mac.stats.num_resets++;
2678 rtnl_unlock();
2682 static void t3_adap_check_task(struct work_struct *work)
2684 struct adapter *adapter = container_of(work, struct adapter,
2685 adap_check_task.work);
2686 const struct adapter_params *p = &adapter->params;
2687 int port;
2688 unsigned int v, status, reset;
2690 adapter->check_task_cnt++;
2692 check_link_status(adapter);
2694 /* Accumulate MAC stats if needed */
2695 if (!p->linkpoll_period ||
2696 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2697 p->stats_update_period) {
2698 mac_stats_update(adapter);
2699 adapter->check_task_cnt = 0;
2702 if (p->rev == T3_REV_B2)
2703 check_t3b2_mac(adapter);
2706 * Scan the XGMAC's to check for various conditions which we want to
2707 * monitor in a periodic polling manner rather than via an interrupt
2708 * condition. This is used for conditions which would otherwise flood
2709 * the system with interrupts and we only really need to know that the
2710 * conditions are "happening" ... For each condition we count the
2711 * detection of the condition and reset it for the next polling loop.
2713 for_each_port(adapter, port) {
2714 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2715 u32 cause;
2717 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2718 reset = 0;
2719 if (cause & F_RXFIFO_OVERFLOW) {
2720 mac->stats.rx_fifo_ovfl++;
2721 reset |= F_RXFIFO_OVERFLOW;
2724 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2728 * We do the same as above for FL_EMPTY interrupts.
2730 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2731 reset = 0;
2733 if (status & F_FLEMPTY) {
2734 struct sge_qset *qs = &adapter->sge.qs[0];
2735 int i = 0;
2737 reset |= F_FLEMPTY;
2739 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2740 0xffff;
2742 while (v) {
2743 qs->fl[i].empty += (v & 1);
2744 if (i)
2745 qs++;
2746 i ^= 1;
2747 v >>= 1;
2751 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2753 /* Schedule the next check update if any port is active. */
2754 spin_lock_irq(&adapter->work_lock);
2755 if (adapter->open_device_map & PORT_MASK)
2756 schedule_chk_task(adapter);
2757 spin_unlock_irq(&adapter->work_lock);
2760 static void db_full_task(struct work_struct *work)
2762 struct adapter *adapter = container_of(work, struct adapter,
2763 db_full_task);
2765 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2768 static void db_empty_task(struct work_struct *work)
2770 struct adapter *adapter = container_of(work, struct adapter,
2771 db_empty_task);
2773 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2776 static void db_drop_task(struct work_struct *work)
2778 struct adapter *adapter = container_of(work, struct adapter,
2779 db_drop_task);
2780 unsigned long delay = 1000;
2781 unsigned short r;
2783 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2786 * Sleep a while before ringing the driver qset dbs.
2787 * The delay is between 1000-2023 usecs.
2789 get_random_bytes(&r, 2);
2790 delay += r & 1023;
2791 set_current_state(TASK_UNINTERRUPTIBLE);
2792 schedule_timeout(usecs_to_jiffies(delay));
2793 ring_dbs(adapter);
2797 * Processes external (PHY) interrupts in process context.
2799 static void ext_intr_task(struct work_struct *work)
2801 struct adapter *adapter = container_of(work, struct adapter,
2802 ext_intr_handler_task);
2803 int i;
2805 /* Disable link fault interrupts */
2806 for_each_port(adapter, i) {
2807 struct net_device *dev = adapter->port[i];
2808 struct port_info *p = netdev_priv(dev);
2810 t3_xgm_intr_disable(adapter, i);
2811 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2814 /* Re-enable link fault interrupts */
2815 t3_phy_intr_handler(adapter);
2817 for_each_port(adapter, i)
2818 t3_xgm_intr_enable(adapter, i);
2820 /* Now reenable external interrupts */
2821 spin_lock_irq(&adapter->work_lock);
2822 if (adapter->slow_intr_mask) {
2823 adapter->slow_intr_mask |= F_T3DBG;
2824 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2825 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2826 adapter->slow_intr_mask);
2828 spin_unlock_irq(&adapter->work_lock);
2832 * Interrupt-context handler for external (PHY) interrupts.
2834 void t3_os_ext_intr_handler(struct adapter *adapter)
2837 * Schedule a task to handle external interrupts as they may be slow
2838 * and we use a mutex to protect MDIO registers. We disable PHY
2839 * interrupts in the meantime and let the task reenable them when
2840 * it's done.
2842 spin_lock(&adapter->work_lock);
2843 if (adapter->slow_intr_mask) {
2844 adapter->slow_intr_mask &= ~F_T3DBG;
2845 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2846 adapter->slow_intr_mask);
2847 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2849 spin_unlock(&adapter->work_lock);
2852 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2854 struct net_device *netdev = adapter->port[port_id];
2855 struct port_info *pi = netdev_priv(netdev);
2857 spin_lock(&adapter->work_lock);
2858 pi->link_fault = 1;
2859 spin_unlock(&adapter->work_lock);
2862 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2864 int i, ret = 0;
2866 if (is_offload(adapter) &&
2867 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2868 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2869 offload_close(&adapter->tdev);
2872 /* Stop all ports */
2873 for_each_port(adapter, i) {
2874 struct net_device *netdev = adapter->port[i];
2876 if (netif_running(netdev))
2877 __cxgb_close(netdev, on_wq);
2880 /* Stop SGE timers */
2881 t3_stop_sge_timers(adapter);
2883 adapter->flags &= ~FULL_INIT_DONE;
2885 if (reset)
2886 ret = t3_reset_adapter(adapter);
2888 pci_disable_device(adapter->pdev);
2890 return ret;
2893 static int t3_reenable_adapter(struct adapter *adapter)
2895 if (pci_enable_device(adapter->pdev)) {
2896 dev_err(&adapter->pdev->dev,
2897 "Cannot re-enable PCI device after reset.\n");
2898 goto err;
2900 pci_set_master(adapter->pdev);
2901 pci_restore_state(adapter->pdev);
2902 pci_save_state(adapter->pdev);
2904 /* Free sge resources */
2905 t3_free_sge_resources(adapter);
2907 if (t3_replay_prep_adapter(adapter))
2908 goto err;
2910 return 0;
2911 err:
2912 return -1;
2915 static void t3_resume_ports(struct adapter *adapter)
2917 int i;
2919 /* Restart the ports */
2920 for_each_port(adapter, i) {
2921 struct net_device *netdev = adapter->port[i];
2923 if (netif_running(netdev)) {
2924 if (cxgb_open(netdev)) {
2925 dev_err(&adapter->pdev->dev,
2926 "can't bring device back up"
2927 " after reset\n");
2928 continue;
2933 if (is_offload(adapter) && !ofld_disable)
2934 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2938 * processes a fatal error.
2939 * Bring the ports down, reset the chip, bring the ports back up.
2941 static void fatal_error_task(struct work_struct *work)
2943 struct adapter *adapter = container_of(work, struct adapter,
2944 fatal_error_handler_task);
2945 int err = 0;
2947 rtnl_lock();
2948 err = t3_adapter_error(adapter, 1, 1);
2949 if (!err)
2950 err = t3_reenable_adapter(adapter);
2951 if (!err)
2952 t3_resume_ports(adapter);
2954 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2955 rtnl_unlock();
2958 void t3_fatal_err(struct adapter *adapter)
2960 unsigned int fw_status[4];
2962 if (adapter->flags & FULL_INIT_DONE) {
2963 t3_sge_stop(adapter);
2964 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2965 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2966 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2967 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2969 spin_lock(&adapter->work_lock);
2970 t3_intr_disable(adapter);
2971 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2972 spin_unlock(&adapter->work_lock);
2974 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2975 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2976 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2977 fw_status[0], fw_status[1],
2978 fw_status[2], fw_status[3]);
2982 * t3_io_error_detected - called when PCI error is detected
2983 * @pdev: Pointer to PCI device
2984 * @state: The current pci connection state
2986 * This function is called after a PCI bus error affecting
2987 * this device has been detected.
2989 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2990 pci_channel_state_t state)
2992 struct adapter *adapter = pci_get_drvdata(pdev);
2994 if (state == pci_channel_io_perm_failure)
2995 return PCI_ERS_RESULT_DISCONNECT;
2997 t3_adapter_error(adapter, 0, 0);
2999 /* Request a slot reset. */
3000 return PCI_ERS_RESULT_NEED_RESET;
3004 * t3_io_slot_reset - called after the pci bus has been reset.
3005 * @pdev: Pointer to PCI device
3007 * Restart the card from scratch, as if from a cold-boot.
3009 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3011 struct adapter *adapter = pci_get_drvdata(pdev);
3013 if (!t3_reenable_adapter(adapter))
3014 return PCI_ERS_RESULT_RECOVERED;
3016 return PCI_ERS_RESULT_DISCONNECT;
3020 * t3_io_resume - called when traffic can start flowing again.
3021 * @pdev: Pointer to PCI device
3023 * This callback is called when the error recovery driver tells us that
3024 * its OK to resume normal operation.
3026 static void t3_io_resume(struct pci_dev *pdev)
3028 struct adapter *adapter = pci_get_drvdata(pdev);
3030 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3031 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3033 t3_resume_ports(adapter);
3036 static struct pci_error_handlers t3_err_handler = {
3037 .error_detected = t3_io_error_detected,
3038 .slot_reset = t3_io_slot_reset,
3039 .resume = t3_io_resume,
3043 * Set the number of qsets based on the number of CPUs and the number of ports,
3044 * not to exceed the number of available qsets, assuming there are enough qsets
3045 * per port in HW.
3047 static void set_nqsets(struct adapter *adap)
3049 int i, j = 0;
3050 int num_cpus = num_online_cpus();
3051 int hwports = adap->params.nports;
3052 int nqsets = adap->msix_nvectors - 1;
3054 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3055 if (hwports == 2 &&
3056 (hwports * nqsets > SGE_QSETS ||
3057 num_cpus >= nqsets / hwports))
3058 nqsets /= hwports;
3059 if (nqsets > num_cpus)
3060 nqsets = num_cpus;
3061 if (nqsets < 1 || hwports == 4)
3062 nqsets = 1;
3063 } else
3064 nqsets = 1;
3066 for_each_port(adap, i) {
3067 struct port_info *pi = adap2pinfo(adap, i);
3069 pi->first_qset = j;
3070 pi->nqsets = nqsets;
3071 j = pi->first_qset + nqsets;
3073 dev_info(&adap->pdev->dev,
3074 "Port %d using %d queue sets.\n", i, nqsets);
3078 static int __devinit cxgb_enable_msix(struct adapter *adap)
3080 struct msix_entry entries[SGE_QSETS + 1];
3081 int vectors;
3082 int i, err;
3084 vectors = ARRAY_SIZE(entries);
3085 for (i = 0; i < vectors; ++i)
3086 entries[i].entry = i;
3088 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3089 vectors = err;
3091 if (err < 0)
3092 pci_disable_msix(adap->pdev);
3094 if (!err && vectors < (adap->params.nports + 1)) {
3095 pci_disable_msix(adap->pdev);
3096 err = -1;
3099 if (!err) {
3100 for (i = 0; i < vectors; ++i)
3101 adap->msix_info[i].vec = entries[i].vector;
3102 adap->msix_nvectors = vectors;
3105 return err;
3108 static void __devinit print_port_info(struct adapter *adap,
3109 const struct adapter_info *ai)
3111 static const char *pci_variant[] = {
3112 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3115 int i;
3116 char buf[80];
3118 if (is_pcie(adap))
3119 snprintf(buf, sizeof(buf), "%s x%d",
3120 pci_variant[adap->params.pci.variant],
3121 adap->params.pci.width);
3122 else
3123 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3124 pci_variant[adap->params.pci.variant],
3125 adap->params.pci.speed, adap->params.pci.width);
3127 for_each_port(adap, i) {
3128 struct net_device *dev = adap->port[i];
3129 const struct port_info *pi = netdev_priv(dev);
3131 if (!test_bit(i, &adap->registered_device_map))
3132 continue;
3133 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3134 dev->name, ai->desc, pi->phy.desc,
3135 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3136 (adap->flags & USING_MSIX) ? " MSI-X" :
3137 (adap->flags & USING_MSI) ? " MSI" : "");
3138 if (adap->name == dev->name && adap->params.vpd.mclk)
3139 printk(KERN_INFO
3140 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3141 adap->name, t3_mc7_size(&adap->cm) >> 20,
3142 t3_mc7_size(&adap->pmtx) >> 20,
3143 t3_mc7_size(&adap->pmrx) >> 20,
3144 adap->params.vpd.sn);
3148 static const struct net_device_ops cxgb_netdev_ops = {
3149 .ndo_open = cxgb_open,
3150 .ndo_stop = cxgb_close,
3151 .ndo_start_xmit = t3_eth_xmit,
3152 .ndo_get_stats = cxgb_get_stats,
3153 .ndo_validate_addr = eth_validate_addr,
3154 .ndo_set_rx_mode = cxgb_set_rxmode,
3155 .ndo_do_ioctl = cxgb_ioctl,
3156 .ndo_change_mtu = cxgb_change_mtu,
3157 .ndo_set_mac_address = cxgb_set_mac_addr,
3158 .ndo_fix_features = cxgb_fix_features,
3159 .ndo_set_features = cxgb_set_features,
3160 #ifdef CONFIG_NET_POLL_CONTROLLER
3161 .ndo_poll_controller = cxgb_netpoll,
3162 #endif
3165 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3167 struct port_info *pi = netdev_priv(dev);
3169 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3170 pi->iscsic.mac_addr[3] |= 0x80;
3173 static int __devinit init_one(struct pci_dev *pdev,
3174 const struct pci_device_id *ent)
3176 static int version_printed;
3178 int i, err, pci_using_dac = 0;
3179 resource_size_t mmio_start, mmio_len;
3180 const struct adapter_info *ai;
3181 struct adapter *adapter = NULL;
3182 struct port_info *pi;
3184 if (!version_printed) {
3185 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3186 ++version_printed;
3189 if (!cxgb3_wq) {
3190 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3191 if (!cxgb3_wq) {
3192 printk(KERN_ERR DRV_NAME
3193 ": cannot initialize work queue\n");
3194 return -ENOMEM;
3198 err = pci_enable_device(pdev);
3199 if (err) {
3200 dev_err(&pdev->dev, "cannot enable PCI device\n");
3201 goto out;
3204 err = pci_request_regions(pdev, DRV_NAME);
3205 if (err) {
3206 /* Just info, some other driver may have claimed the device. */
3207 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3208 goto out_disable_device;
3211 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3212 pci_using_dac = 1;
3213 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3214 if (err) {
3215 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3216 "coherent allocations\n");
3217 goto out_release_regions;
3219 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3220 dev_err(&pdev->dev, "no usable DMA configuration\n");
3221 goto out_release_regions;
3224 pci_set_master(pdev);
3225 pci_save_state(pdev);
3227 mmio_start = pci_resource_start(pdev, 0);
3228 mmio_len = pci_resource_len(pdev, 0);
3229 ai = t3_get_adapter_info(ent->driver_data);
3231 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3232 if (!adapter) {
3233 err = -ENOMEM;
3234 goto out_release_regions;
3237 adapter->nofail_skb =
3238 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3239 if (!adapter->nofail_skb) {
3240 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3241 err = -ENOMEM;
3242 goto out_free_adapter;
3245 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3246 if (!adapter->regs) {
3247 dev_err(&pdev->dev, "cannot map device registers\n");
3248 err = -ENOMEM;
3249 goto out_free_adapter;
3252 adapter->pdev = pdev;
3253 adapter->name = pci_name(pdev);
3254 adapter->msg_enable = dflt_msg_enable;
3255 adapter->mmio_len = mmio_len;
3257 mutex_init(&adapter->mdio_lock);
3258 spin_lock_init(&adapter->work_lock);
3259 spin_lock_init(&adapter->stats_lock);
3261 INIT_LIST_HEAD(&adapter->adapter_list);
3262 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3263 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3265 INIT_WORK(&adapter->db_full_task, db_full_task);
3266 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3267 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3269 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3271 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3272 struct net_device *netdev;
3274 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3275 if (!netdev) {
3276 err = -ENOMEM;
3277 goto out_free_dev;
3280 SET_NETDEV_DEV(netdev, &pdev->dev);
3282 adapter->port[i] = netdev;
3283 pi = netdev_priv(netdev);
3284 pi->adapter = adapter;
3285 pi->port_id = i;
3286 netif_carrier_off(netdev);
3287 netdev->irq = pdev->irq;
3288 netdev->mem_start = mmio_start;
3289 netdev->mem_end = mmio_start + mmio_len - 1;
3290 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3291 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_RX;
3292 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_TX;
3293 if (pci_using_dac)
3294 netdev->features |= NETIF_F_HIGHDMA;
3296 netdev->netdev_ops = &cxgb_netdev_ops;
3297 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3300 pci_set_drvdata(pdev, adapter);
3301 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3302 err = -ENODEV;
3303 goto out_free_dev;
3307 * The card is now ready to go. If any errors occur during device
3308 * registration we do not fail the whole card but rather proceed only
3309 * with the ports we manage to register successfully. However we must
3310 * register at least one net device.
3312 for_each_port(adapter, i) {
3313 err = register_netdev(adapter->port[i]);
3314 if (err)
3315 dev_warn(&pdev->dev,
3316 "cannot register net device %s, skipping\n",
3317 adapter->port[i]->name);
3318 else {
3320 * Change the name we use for messages to the name of
3321 * the first successfully registered interface.
3323 if (!adapter->registered_device_map)
3324 adapter->name = adapter->port[i]->name;
3326 __set_bit(i, &adapter->registered_device_map);
3329 if (!adapter->registered_device_map) {
3330 dev_err(&pdev->dev, "could not register any net devices\n");
3331 goto out_free_dev;
3334 for_each_port(adapter, i)
3335 cxgb3_init_iscsi_mac(adapter->port[i]);
3337 /* Driver's ready. Reflect it on LEDs */
3338 t3_led_ready(adapter);
3340 if (is_offload(adapter)) {
3341 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3342 cxgb3_adapter_ofld(adapter);
3345 /* See what interrupts we'll be using */
3346 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3347 adapter->flags |= USING_MSIX;
3348 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3349 adapter->flags |= USING_MSI;
3351 set_nqsets(adapter);
3353 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3354 &cxgb3_attr_group);
3356 for_each_port(adapter, i)
3357 cxgb_vlan_mode(adapter->port[i], adapter->port[i]->features);
3359 print_port_info(adapter, ai);
3360 return 0;
3362 out_free_dev:
3363 iounmap(adapter->regs);
3364 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3365 if (adapter->port[i])
3366 free_netdev(adapter->port[i]);
3368 out_free_adapter:
3369 kfree(adapter);
3371 out_release_regions:
3372 pci_release_regions(pdev);
3373 out_disable_device:
3374 pci_disable_device(pdev);
3375 pci_set_drvdata(pdev, NULL);
3376 out:
3377 return err;
3380 static void __devexit remove_one(struct pci_dev *pdev)
3382 struct adapter *adapter = pci_get_drvdata(pdev);
3384 if (adapter) {
3385 int i;
3387 t3_sge_stop(adapter);
3388 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3389 &cxgb3_attr_group);
3391 if (is_offload(adapter)) {
3392 cxgb3_adapter_unofld(adapter);
3393 if (test_bit(OFFLOAD_DEVMAP_BIT,
3394 &adapter->open_device_map))
3395 offload_close(&adapter->tdev);
3398 for_each_port(adapter, i)
3399 if (test_bit(i, &adapter->registered_device_map))
3400 unregister_netdev(adapter->port[i]);
3402 t3_stop_sge_timers(adapter);
3403 t3_free_sge_resources(adapter);
3404 cxgb_disable_msi(adapter);
3406 for_each_port(adapter, i)
3407 if (adapter->port[i])
3408 free_netdev(adapter->port[i]);
3410 iounmap(adapter->regs);
3411 if (adapter->nofail_skb)
3412 kfree_skb(adapter->nofail_skb);
3413 kfree(adapter);
3414 pci_release_regions(pdev);
3415 pci_disable_device(pdev);
3416 pci_set_drvdata(pdev, NULL);
3420 static struct pci_driver driver = {
3421 .name = DRV_NAME,
3422 .id_table = cxgb3_pci_tbl,
3423 .probe = init_one,
3424 .remove = __devexit_p(remove_one),
3425 .err_handler = &t3_err_handler,
3428 static int __init cxgb3_init_module(void)
3430 int ret;
3432 cxgb3_offload_init();
3434 ret = pci_register_driver(&driver);
3435 return ret;
3438 static void __exit cxgb3_cleanup_module(void)
3440 pci_unregister_driver(&driver);
3441 if (cxgb3_wq)
3442 destroy_workqueue(cxgb3_wq);
3445 module_init(cxgb3_init_module);
3446 module_exit(cxgb3_cleanup_module);