1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
36 char e1000_driver_name
[] = "e1000";
37 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version
[] = DRV_VERSION
;
40 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
91 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
93 int e1000_up(struct e1000_adapter
*adapter
);
94 void e1000_down(struct e1000_adapter
*adapter
);
95 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
96 void e1000_reset(struct e1000_adapter
*adapter
);
97 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
98 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
99 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
100 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
101 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*txdr
);
103 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rxdr
);
105 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
106 struct e1000_tx_ring
*tx_ring
);
107 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
108 struct e1000_rx_ring
*rx_ring
);
109 void e1000_update_stats(struct e1000_adapter
*adapter
);
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
114 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
115 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
116 static int e1000_sw_init(struct e1000_adapter
*adapter
);
117 static int e1000_open(struct net_device
*netdev
);
118 static int e1000_close(struct net_device
*netdev
);
119 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
120 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
121 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
124 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
125 struct e1000_tx_ring
*tx_ring
);
126 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
127 struct e1000_rx_ring
*rx_ring
);
128 static void e1000_set_rx_mode(struct net_device
*netdev
);
129 static void e1000_update_phy_info_task(struct work_struct
*work
);
130 static void e1000_watchdog(struct work_struct
*work
);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
);
132 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
133 struct net_device
*netdev
);
134 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
135 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
136 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
137 static irqreturn_t
e1000_intr(int irq
, void *data
);
138 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
139 struct e1000_tx_ring
*tx_ring
);
140 static int e1000_clean(struct napi_struct
*napi
, int budget
);
141 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
142 struct e1000_rx_ring
*rx_ring
,
143 int *work_done
, int work_to_do
);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
145 struct e1000_rx_ring
*rx_ring
,
146 int *work_done
, int work_to_do
);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
148 struct e1000_rx_ring
*rx_ring
,
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
151 struct e1000_rx_ring
*rx_ring
,
153 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
154 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
156 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
157 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
158 static void e1000_tx_timeout(struct net_device
*dev
);
159 static void e1000_reset_task(struct work_struct
*work
);
160 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
162 struct sk_buff
*skb
);
164 static bool e1000_vlan_used(struct e1000_adapter
*adapter
);
165 static void e1000_vlan_mode(struct net_device
*netdev
,
166 netdev_features_t features
);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter
*adapter
,
169 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
170 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
171 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
174 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
175 static int e1000_resume(struct pci_dev
*pdev
);
177 static void e1000_shutdown(struct pci_dev
*pdev
);
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void e1000_netpoll (struct net_device
*netdev
);
184 #define COPYBREAK_DEFAULT 256
185 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
186 module_param(copybreak
, uint
, 0644);
187 MODULE_PARM_DESC(copybreak
,
188 "Maximum size of packet that is copied to a new buffer on receive");
190 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
191 pci_channel_state_t state
);
192 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
193 static void e1000_io_resume(struct pci_dev
*pdev
);
195 static struct pci_error_handlers e1000_err_handler
= {
196 .error_detected
= e1000_io_error_detected
,
197 .slot_reset
= e1000_io_slot_reset
,
198 .resume
= e1000_io_resume
,
201 static struct pci_driver e1000_driver
= {
202 .name
= e1000_driver_name
,
203 .id_table
= e1000_pci_tbl
,
204 .probe
= e1000_probe
,
205 .remove
= __devexit_p(e1000_remove
),
207 /* Power Management Hooks */
208 .suspend
= e1000_suspend
,
209 .resume
= e1000_resume
,
211 .shutdown
= e1000_shutdown
,
212 .err_handler
= &e1000_err_handler
215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217 MODULE_LICENSE("GPL");
218 MODULE_VERSION(DRV_VERSION
);
220 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
221 module_param(debug
, int, 0);
222 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
225 * e1000_get_hw_dev - return device
226 * used by hardware layer to print debugging information
229 struct net_device
*e1000_get_hw_dev(struct e1000_hw
*hw
)
231 struct e1000_adapter
*adapter
= hw
->back
;
232 return adapter
->netdev
;
236 * e1000_init_module - Driver Registration Routine
238 * e1000_init_module is the first routine called when the driver is
239 * loaded. All it does is register with the PCI subsystem.
242 static int __init
e1000_init_module(void)
245 pr_info("%s - version %s\n", e1000_driver_string
, e1000_driver_version
);
247 pr_info("%s\n", e1000_copyright
);
249 ret
= pci_register_driver(&e1000_driver
);
250 if (copybreak
!= COPYBREAK_DEFAULT
) {
252 pr_info("copybreak disabled\n");
254 pr_info("copybreak enabled for "
255 "packets <= %u bytes\n", copybreak
);
260 module_init(e1000_init_module
);
263 * e1000_exit_module - Driver Exit Cleanup Routine
265 * e1000_exit_module is called just before the driver is removed
269 static void __exit
e1000_exit_module(void)
271 pci_unregister_driver(&e1000_driver
);
274 module_exit(e1000_exit_module
);
276 static int e1000_request_irq(struct e1000_adapter
*adapter
)
278 struct net_device
*netdev
= adapter
->netdev
;
279 irq_handler_t handler
= e1000_intr
;
280 int irq_flags
= IRQF_SHARED
;
283 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
286 e_err(probe
, "Unable to allocate interrupt Error: %d\n", err
);
292 static void e1000_free_irq(struct e1000_adapter
*adapter
)
294 struct net_device
*netdev
= adapter
->netdev
;
296 free_irq(adapter
->pdev
->irq
, netdev
);
300 * e1000_irq_disable - Mask off interrupt generation on the NIC
301 * @adapter: board private structure
304 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
306 struct e1000_hw
*hw
= &adapter
->hw
;
310 synchronize_irq(adapter
->pdev
->irq
);
314 * e1000_irq_enable - Enable default interrupt generation settings
315 * @adapter: board private structure
318 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
320 struct e1000_hw
*hw
= &adapter
->hw
;
322 ew32(IMS
, IMS_ENABLE_MASK
);
326 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
328 struct e1000_hw
*hw
= &adapter
->hw
;
329 struct net_device
*netdev
= adapter
->netdev
;
330 u16 vid
= hw
->mng_cookie
.vlan_id
;
331 u16 old_vid
= adapter
->mng_vlan_id
;
333 if (!e1000_vlan_used(adapter
))
336 if (!test_bit(vid
, adapter
->active_vlans
)) {
337 if (hw
->mng_cookie
.status
&
338 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
339 e1000_vlan_rx_add_vid(netdev
, vid
);
340 adapter
->mng_vlan_id
= vid
;
342 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
344 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
346 !test_bit(old_vid
, adapter
->active_vlans
))
347 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
349 adapter
->mng_vlan_id
= vid
;
353 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
355 struct e1000_hw
*hw
= &adapter
->hw
;
357 if (adapter
->en_mng_pt
) {
358 u32 manc
= er32(MANC
);
360 /* disable hardware interception of ARP */
361 manc
&= ~(E1000_MANC_ARP_EN
);
367 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
369 struct e1000_hw
*hw
= &adapter
->hw
;
371 if (adapter
->en_mng_pt
) {
372 u32 manc
= er32(MANC
);
374 /* re-enable hardware interception of ARP */
375 manc
|= E1000_MANC_ARP_EN
;
382 * e1000_configure - configure the hardware for RX and TX
383 * @adapter = private board structure
385 static void e1000_configure(struct e1000_adapter
*adapter
)
387 struct net_device
*netdev
= adapter
->netdev
;
390 e1000_set_rx_mode(netdev
);
392 e1000_restore_vlan(adapter
);
393 e1000_init_manageability(adapter
);
395 e1000_configure_tx(adapter
);
396 e1000_setup_rctl(adapter
);
397 e1000_configure_rx(adapter
);
398 /* call E1000_DESC_UNUSED which always leaves
399 * at least 1 descriptor unused to make sure
400 * next_to_use != next_to_clean */
401 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
402 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
403 adapter
->alloc_rx_buf(adapter
, ring
,
404 E1000_DESC_UNUSED(ring
));
408 int e1000_up(struct e1000_adapter
*adapter
)
410 struct e1000_hw
*hw
= &adapter
->hw
;
412 /* hardware has been reset, we need to reload some things */
413 e1000_configure(adapter
);
415 clear_bit(__E1000_DOWN
, &adapter
->flags
);
417 napi_enable(&adapter
->napi
);
419 e1000_irq_enable(adapter
);
421 netif_wake_queue(adapter
->netdev
);
423 /* fire a link change interrupt to start the watchdog */
424 ew32(ICS
, E1000_ICS_LSC
);
429 * e1000_power_up_phy - restore link in case the phy was powered down
430 * @adapter: address of board private structure
432 * The phy may be powered down to save power and turn off link when the
433 * driver is unloaded and wake on lan is not enabled (among others)
434 * *** this routine MUST be followed by a call to e1000_reset ***
438 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
440 struct e1000_hw
*hw
= &adapter
->hw
;
443 /* Just clear the power down bit to wake the phy back up */
444 if (hw
->media_type
== e1000_media_type_copper
) {
445 /* according to the manual, the phy will retain its
446 * settings across a power-down/up cycle */
447 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
448 mii_reg
&= ~MII_CR_POWER_DOWN
;
449 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
453 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
455 struct e1000_hw
*hw
= &adapter
->hw
;
457 /* Power down the PHY so no link is implied when interface is down *
458 * The PHY cannot be powered down if any of the following is true *
461 * (c) SoL/IDER session is active */
462 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
463 hw
->media_type
== e1000_media_type_copper
) {
466 switch (hw
->mac_type
) {
469 case e1000_82545_rev_3
:
472 case e1000_82546_rev_3
:
474 case e1000_82541_rev_2
:
476 case e1000_82547_rev_2
:
477 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
483 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
484 mii_reg
|= MII_CR_POWER_DOWN
;
485 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
492 static void e1000_down_and_stop(struct e1000_adapter
*adapter
)
494 set_bit(__E1000_DOWN
, &adapter
->flags
);
496 /* Only kill reset task if adapter is not resetting */
497 if (!test_bit(__E1000_RESETTING
, &adapter
->flags
))
498 cancel_work_sync(&adapter
->reset_task
);
500 cancel_delayed_work_sync(&adapter
->watchdog_task
);
501 cancel_delayed_work_sync(&adapter
->phy_info_task
);
502 cancel_delayed_work_sync(&adapter
->fifo_stall_task
);
505 void e1000_down(struct e1000_adapter
*adapter
)
507 struct e1000_hw
*hw
= &adapter
->hw
;
508 struct net_device
*netdev
= adapter
->netdev
;
512 /* disable receives in the hardware */
514 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
515 /* flush and sleep below */
517 netif_tx_disable(netdev
);
519 /* disable transmits in the hardware */
521 tctl
&= ~E1000_TCTL_EN
;
523 /* flush both disables and wait for them to finish */
527 napi_disable(&adapter
->napi
);
529 e1000_irq_disable(adapter
);
532 * Setting DOWN must be after irq_disable to prevent
533 * a screaming interrupt. Setting DOWN also prevents
534 * tasks from rescheduling.
536 e1000_down_and_stop(adapter
);
538 adapter
->link_speed
= 0;
539 adapter
->link_duplex
= 0;
540 netif_carrier_off(netdev
);
542 e1000_reset(adapter
);
543 e1000_clean_all_tx_rings(adapter
);
544 e1000_clean_all_rx_rings(adapter
);
547 static void e1000_reinit_safe(struct e1000_adapter
*adapter
)
549 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
551 mutex_lock(&adapter
->mutex
);
554 mutex_unlock(&adapter
->mutex
);
555 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
558 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
560 /* if rtnl_lock is not held the call path is bogus */
562 WARN_ON(in_interrupt());
563 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
567 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
570 void e1000_reset(struct e1000_adapter
*adapter
)
572 struct e1000_hw
*hw
= &adapter
->hw
;
573 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
574 bool legacy_pba_adjust
= false;
577 /* Repartition Pba for greater than 9k mtu
578 * To take effect CTRL.RST is required.
581 switch (hw
->mac_type
) {
582 case e1000_82542_rev2_0
:
583 case e1000_82542_rev2_1
:
588 case e1000_82541_rev_2
:
589 legacy_pba_adjust
= true;
593 case e1000_82545_rev_3
:
596 case e1000_82546_rev_3
:
600 case e1000_82547_rev_2
:
601 legacy_pba_adjust
= true;
604 case e1000_undefined
:
609 if (legacy_pba_adjust
) {
610 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
611 pba
-= 8; /* allocate more FIFO for Tx */
613 if (hw
->mac_type
== e1000_82547
) {
614 adapter
->tx_fifo_head
= 0;
615 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
616 adapter
->tx_fifo_size
=
617 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
618 atomic_set(&adapter
->tx_fifo_stall
, 0);
620 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
621 /* adjust PBA for jumbo frames */
624 /* To maintain wire speed transmits, the Tx FIFO should be
625 * large enough to accommodate two full transmit packets,
626 * rounded up to the next 1KB and expressed in KB. Likewise,
627 * the Rx FIFO should be large enough to accommodate at least
628 * one full receive packet and is similarly rounded up and
629 * expressed in KB. */
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space
= pba
>> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
636 * the tx fifo also stores 16 bytes of information about the tx
637 * but don't include ethernet FCS because hardware appends it
639 min_tx_space
= (hw
->max_frame_size
+
640 sizeof(struct e1000_tx_desc
) -
642 min_tx_space
= ALIGN(min_tx_space
, 1024);
644 /* software strips receive CRC, so leave room for it */
645 min_rx_space
= hw
->max_frame_size
;
646 min_rx_space
= ALIGN(min_rx_space
, 1024);
649 /* If current Tx allocation is less than the min Tx FIFO size,
650 * and the min Tx FIFO size is less than the current Rx FIFO
651 * allocation, take space away from current Rx allocation */
652 if (tx_space
< min_tx_space
&&
653 ((min_tx_space
- tx_space
) < pba
)) {
654 pba
= pba
- (min_tx_space
- tx_space
);
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw
->mac_type
) {
658 case e1000_82545
... e1000_82546_rev_3
:
659 pba
&= ~(E1000_PBA_8K
- 1);
665 /* if short on rx space, rx wins and must trump tx
666 * adjustment or use Early Receive if available */
667 if (pba
< min_rx_space
)
675 * flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
684 hwm
= min(((pba
<< 10) * 9 / 10),
685 ((pba
<< 10) - hw
->max_frame_size
));
687 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
688 hw
->fc_low_water
= hw
->fc_high_water
- 8;
689 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
691 hw
->fc
= hw
->original_fc
;
693 /* Allow time for pending master requests to run */
695 if (hw
->mac_type
>= e1000_82544
)
698 if (e1000_init_hw(hw
))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter
);
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw
->mac_type
>= e1000_82544
&&
705 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
706 u32 ctrl
= er32(CTRL
);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload */
710 ctrl
&= ~E1000_CTRL_SWDPIN3
;
714 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
715 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
717 e1000_reset_adaptive(hw
);
718 e1000_phy_get_info(hw
, &adapter
->phy_info
);
720 e1000_release_manageability(adapter
);
724 * Dump the eeprom for users having checksum issues
726 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
728 struct net_device
*netdev
= adapter
->netdev
;
729 struct ethtool_eeprom eeprom
;
730 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
733 u16 csum_old
, csum_new
= 0;
735 eeprom
.len
= ops
->get_eeprom_len(netdev
);
738 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
740 pr_err("Unable to allocate memory to dump EEPROM data\n");
744 ops
->get_eeprom(netdev
, &eeprom
, data
);
746 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
747 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
748 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
749 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
750 csum_new
= EEPROM_SUM
- csum_new
;
752 pr_err("/*********************/\n");
753 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old
);
754 pr_err("Calculated : 0x%04x\n", csum_new
);
756 pr_err("Offset Values\n");
757 pr_err("======== ======\n");
758 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
760 pr_err("Include this output when contacting your support provider.\n");
761 pr_err("This is not a software error! Something bad happened to\n");
762 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
763 pr_err("result in further problems, possibly loss of data,\n");
764 pr_err("corruption or system hangs!\n");
765 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
766 pr_err("which is invalid and requires you to set the proper MAC\n");
767 pr_err("address manually before continuing to enable this network\n");
768 pr_err("device. Please inspect the EEPROM dump and report the\n");
769 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
770 pr_err("/*********************/\n");
776 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
777 * @pdev: PCI device information struct
779 * Return true if an adapter needs ioport resources
781 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
783 switch (pdev
->device
) {
784 case E1000_DEV_ID_82540EM
:
785 case E1000_DEV_ID_82540EM_LOM
:
786 case E1000_DEV_ID_82540EP
:
787 case E1000_DEV_ID_82540EP_LOM
:
788 case E1000_DEV_ID_82540EP_LP
:
789 case E1000_DEV_ID_82541EI
:
790 case E1000_DEV_ID_82541EI_MOBILE
:
791 case E1000_DEV_ID_82541ER
:
792 case E1000_DEV_ID_82541ER_LOM
:
793 case E1000_DEV_ID_82541GI
:
794 case E1000_DEV_ID_82541GI_LF
:
795 case E1000_DEV_ID_82541GI_MOBILE
:
796 case E1000_DEV_ID_82544EI_COPPER
:
797 case E1000_DEV_ID_82544EI_FIBER
:
798 case E1000_DEV_ID_82544GC_COPPER
:
799 case E1000_DEV_ID_82544GC_LOM
:
800 case E1000_DEV_ID_82545EM_COPPER
:
801 case E1000_DEV_ID_82545EM_FIBER
:
802 case E1000_DEV_ID_82546EB_COPPER
:
803 case E1000_DEV_ID_82546EB_FIBER
:
804 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
811 static netdev_features_t
e1000_fix_features(struct net_device
*netdev
,
812 netdev_features_t features
)
815 * Since there is no support for separate rx/tx vlan accel
816 * enable/disable make sure tx flag is always in same state as rx.
818 if (features
& NETIF_F_HW_VLAN_RX
)
819 features
|= NETIF_F_HW_VLAN_TX
;
821 features
&= ~NETIF_F_HW_VLAN_TX
;
826 static int e1000_set_features(struct net_device
*netdev
,
827 netdev_features_t features
)
829 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
830 netdev_features_t changed
= features
^ netdev
->features
;
832 if (changed
& NETIF_F_HW_VLAN_RX
)
833 e1000_vlan_mode(netdev
, features
);
835 if (!(changed
& NETIF_F_RXCSUM
))
838 adapter
->rx_csum
= !!(features
& NETIF_F_RXCSUM
);
840 if (netif_running(netdev
))
841 e1000_reinit_locked(adapter
);
843 e1000_reset(adapter
);
848 static const struct net_device_ops e1000_netdev_ops
= {
849 .ndo_open
= e1000_open
,
850 .ndo_stop
= e1000_close
,
851 .ndo_start_xmit
= e1000_xmit_frame
,
852 .ndo_get_stats
= e1000_get_stats
,
853 .ndo_set_rx_mode
= e1000_set_rx_mode
,
854 .ndo_set_mac_address
= e1000_set_mac
,
855 .ndo_tx_timeout
= e1000_tx_timeout
,
856 .ndo_change_mtu
= e1000_change_mtu
,
857 .ndo_do_ioctl
= e1000_ioctl
,
858 .ndo_validate_addr
= eth_validate_addr
,
859 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
860 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
861 #ifdef CONFIG_NET_POLL_CONTROLLER
862 .ndo_poll_controller
= e1000_netpoll
,
864 .ndo_fix_features
= e1000_fix_features
,
865 .ndo_set_features
= e1000_set_features
,
869 * e1000_init_hw_struct - initialize members of hw struct
870 * @adapter: board private struct
871 * @hw: structure used by e1000_hw.c
873 * Factors out initialization of the e1000_hw struct to its own function
874 * that can be called very early at init (just after struct allocation).
875 * Fields are initialized based on PCI device information and
876 * OS network device settings (MTU size).
877 * Returns negative error codes if MAC type setup fails.
879 static int e1000_init_hw_struct(struct e1000_adapter
*adapter
,
882 struct pci_dev
*pdev
= adapter
->pdev
;
884 /* PCI config space info */
885 hw
->vendor_id
= pdev
->vendor
;
886 hw
->device_id
= pdev
->device
;
887 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
888 hw
->subsystem_id
= pdev
->subsystem_device
;
889 hw
->revision_id
= pdev
->revision
;
891 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
893 hw
->max_frame_size
= adapter
->netdev
->mtu
+
894 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
895 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
897 /* identify the MAC */
898 if (e1000_set_mac_type(hw
)) {
899 e_err(probe
, "Unknown MAC Type\n");
903 switch (hw
->mac_type
) {
908 case e1000_82541_rev_2
:
909 case e1000_82547_rev_2
:
910 hw
->phy_init_script
= 1;
914 e1000_set_media_type(hw
);
915 e1000_get_bus_info(hw
);
917 hw
->wait_autoneg_complete
= false;
918 hw
->tbi_compatibility_en
= true;
919 hw
->adaptive_ifs
= true;
923 if (hw
->media_type
== e1000_media_type_copper
) {
924 hw
->mdix
= AUTO_ALL_MODES
;
925 hw
->disable_polarity_correction
= false;
926 hw
->master_slave
= E1000_MASTER_SLAVE
;
933 * e1000_probe - Device Initialization Routine
934 * @pdev: PCI device information struct
935 * @ent: entry in e1000_pci_tbl
937 * Returns 0 on success, negative on failure
939 * e1000_probe initializes an adapter identified by a pci_dev structure.
940 * The OS initialization, configuring of the adapter private structure,
941 * and a hardware reset occur.
943 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
944 const struct pci_device_id
*ent
)
946 struct net_device
*netdev
;
947 struct e1000_adapter
*adapter
;
950 static int cards_found
= 0;
951 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
952 int i
, err
, pci_using_dac
;
955 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
956 int bars
, need_ioport
;
958 /* do not allocate ioport bars when not needed */
959 need_ioport
= e1000_is_need_ioport(pdev
);
961 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
962 err
= pci_enable_device(pdev
);
964 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
965 err
= pci_enable_device_mem(pdev
);
970 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
974 pci_set_master(pdev
);
975 err
= pci_save_state(pdev
);
977 goto err_alloc_etherdev
;
980 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
982 goto err_alloc_etherdev
;
984 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
986 pci_set_drvdata(pdev
, netdev
);
987 adapter
= netdev_priv(netdev
);
988 adapter
->netdev
= netdev
;
989 adapter
->pdev
= pdev
;
990 adapter
->msg_enable
= (1 << debug
) - 1;
991 adapter
->bars
= bars
;
992 adapter
->need_ioport
= need_ioport
;
998 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
1002 if (adapter
->need_ioport
) {
1003 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
1004 if (pci_resource_len(pdev
, i
) == 0)
1006 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
1007 hw
->io_base
= pci_resource_start(pdev
, i
);
1013 /* make ready for any if (hw->...) below */
1014 err
= e1000_init_hw_struct(adapter
, hw
);
1019 * there is a workaround being applied below that limits
1020 * 64-bit DMA addresses to 64-bit hardware. There are some
1021 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1024 if ((hw
->bus_type
== e1000_bus_type_pcix
) &&
1025 !dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
1027 * according to DMA-API-HOWTO, coherent calls will always
1028 * succeed if the set call did
1030 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
1033 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1035 pr_err("No usable DMA config, aborting\n");
1038 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1041 netdev
->netdev_ops
= &e1000_netdev_ops
;
1042 e1000_set_ethtool_ops(netdev
);
1043 netdev
->watchdog_timeo
= 5 * HZ
;
1044 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
1046 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1048 adapter
->bd_number
= cards_found
;
1050 /* setup the private structure */
1052 err
= e1000_sw_init(adapter
);
1057 if (hw
->mac_type
== e1000_ce4100
) {
1058 hw
->ce4100_gbe_mdio_base_virt
=
1059 ioremap(pci_resource_start(pdev
, BAR_1
),
1060 pci_resource_len(pdev
, BAR_1
));
1062 if (!hw
->ce4100_gbe_mdio_base_virt
)
1063 goto err_mdio_ioremap
;
1066 if (hw
->mac_type
>= e1000_82543
) {
1067 netdev
->hw_features
= NETIF_F_SG
|
1070 netdev
->features
= NETIF_F_HW_VLAN_TX
|
1071 NETIF_F_HW_VLAN_FILTER
;
1074 if ((hw
->mac_type
>= e1000_82544
) &&
1075 (hw
->mac_type
!= e1000_82547
))
1076 netdev
->hw_features
|= NETIF_F_TSO
;
1078 netdev
->features
|= netdev
->hw_features
;
1079 netdev
->hw_features
|= NETIF_F_RXCSUM
;
1081 if (pci_using_dac
) {
1082 netdev
->features
|= NETIF_F_HIGHDMA
;
1083 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
1086 netdev
->vlan_features
|= NETIF_F_TSO
;
1087 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1088 netdev
->vlan_features
|= NETIF_F_SG
;
1090 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
1092 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1094 /* initialize eeprom parameters */
1095 if (e1000_init_eeprom_params(hw
)) {
1096 e_err(probe
, "EEPROM initialization failed\n");
1100 /* before reading the EEPROM, reset the controller to
1101 * put the device in a known good starting state */
1105 /* make sure the EEPROM is good */
1106 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1107 e_err(probe
, "The EEPROM Checksum Is Not Valid\n");
1108 e1000_dump_eeprom(adapter
);
1110 * set MAC address to all zeroes to invalidate and temporary
1111 * disable this device for the user. This blocks regular
1112 * traffic while still permitting ethtool ioctls from reaching
1113 * the hardware as well as allowing the user to run the
1114 * interface after manually setting a hw addr using
1117 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1119 /* copy the MAC address out of the EEPROM */
1120 if (e1000_read_mac_addr(hw
))
1121 e_err(probe
, "EEPROM Read Error\n");
1123 /* don't block initalization here due to bad MAC address */
1124 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1125 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
1127 if (!is_valid_ether_addr(netdev
->perm_addr
))
1128 e_err(probe
, "Invalid MAC Address\n");
1131 INIT_DELAYED_WORK(&adapter
->watchdog_task
, e1000_watchdog
);
1132 INIT_DELAYED_WORK(&adapter
->fifo_stall_task
,
1133 e1000_82547_tx_fifo_stall_task
);
1134 INIT_DELAYED_WORK(&adapter
->phy_info_task
, e1000_update_phy_info_task
);
1135 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1137 e1000_check_options(adapter
);
1139 /* Initial Wake on LAN setting
1140 * If APM wake is enabled in the EEPROM,
1141 * enable the ACPI Magic Packet filter
1144 switch (hw
->mac_type
) {
1145 case e1000_82542_rev2_0
:
1146 case e1000_82542_rev2_1
:
1150 e1000_read_eeprom(hw
,
1151 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1152 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1155 case e1000_82546_rev_3
:
1156 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
1157 e1000_read_eeprom(hw
,
1158 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1163 e1000_read_eeprom(hw
,
1164 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1167 if (eeprom_data
& eeprom_apme_mask
)
1168 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1170 /* now that we have the eeprom settings, apply the special cases
1171 * where the eeprom may be wrong or the board simply won't support
1172 * wake on lan on a particular port */
1173 switch (pdev
->device
) {
1174 case E1000_DEV_ID_82546GB_PCIE
:
1175 adapter
->eeprom_wol
= 0;
1177 case E1000_DEV_ID_82546EB_FIBER
:
1178 case E1000_DEV_ID_82546GB_FIBER
:
1179 /* Wake events only supported on port A for dual fiber
1180 * regardless of eeprom setting */
1181 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1182 adapter
->eeprom_wol
= 0;
1184 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1185 /* if quad port adapter, disable WoL on all but port A */
1186 if (global_quad_port_a
!= 0)
1187 adapter
->eeprom_wol
= 0;
1189 adapter
->quad_port_a
= true;
1190 /* Reset for multiple quad port adapters */
1191 if (++global_quad_port_a
== 4)
1192 global_quad_port_a
= 0;
1196 /* initialize the wol settings based on the eeprom settings */
1197 adapter
->wol
= adapter
->eeprom_wol
;
1198 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1200 /* Auto detect PHY address */
1201 if (hw
->mac_type
== e1000_ce4100
) {
1202 for (i
= 0; i
< 32; i
++) {
1204 e1000_read_phy_reg(hw
, PHY_ID2
, &tmp
);
1205 if (tmp
== 0 || tmp
== 0xFF) {
1214 /* reset the hardware with the new settings */
1215 e1000_reset(adapter
);
1217 strcpy(netdev
->name
, "eth%d");
1218 err
= register_netdev(netdev
);
1222 e1000_vlan_filter_on_off(adapter
, false);
1224 /* print bus type/speed/width info */
1225 e_info(probe
, "(PCI%s:%dMHz:%d-bit) %pM\n",
1226 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1227 ((hw
->bus_speed
== e1000_bus_speed_133
) ? 133 :
1228 (hw
->bus_speed
== e1000_bus_speed_120
) ? 120 :
1229 (hw
->bus_speed
== e1000_bus_speed_100
) ? 100 :
1230 (hw
->bus_speed
== e1000_bus_speed_66
) ? 66 : 33),
1231 ((hw
->bus_width
== e1000_bus_width_64
) ? 64 : 32),
1234 /* carrier off reporting is important to ethtool even BEFORE open */
1235 netif_carrier_off(netdev
);
1237 e_info(probe
, "Intel(R) PRO/1000 Network Connection\n");
1244 e1000_phy_hw_reset(hw
);
1246 if (hw
->flash_address
)
1247 iounmap(hw
->flash_address
);
1248 kfree(adapter
->tx_ring
);
1249 kfree(adapter
->rx_ring
);
1253 iounmap(hw
->ce4100_gbe_mdio_base_virt
);
1254 iounmap(hw
->hw_addr
);
1256 free_netdev(netdev
);
1258 pci_release_selected_regions(pdev
, bars
);
1260 pci_disable_device(pdev
);
1265 * e1000_remove - Device Removal Routine
1266 * @pdev: PCI device information struct
1268 * e1000_remove is called by the PCI subsystem to alert the driver
1269 * that it should release a PCI device. The could be caused by a
1270 * Hot-Plug event, or because the driver is going to be removed from
1274 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1276 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1277 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1278 struct e1000_hw
*hw
= &adapter
->hw
;
1280 e1000_down_and_stop(adapter
);
1281 e1000_release_manageability(adapter
);
1283 unregister_netdev(netdev
);
1285 e1000_phy_hw_reset(hw
);
1287 kfree(adapter
->tx_ring
);
1288 kfree(adapter
->rx_ring
);
1290 if (hw
->mac_type
== e1000_ce4100
)
1291 iounmap(hw
->ce4100_gbe_mdio_base_virt
);
1292 iounmap(hw
->hw_addr
);
1293 if (hw
->flash_address
)
1294 iounmap(hw
->flash_address
);
1295 pci_release_selected_regions(pdev
, adapter
->bars
);
1297 free_netdev(netdev
);
1299 pci_disable_device(pdev
);
1303 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1304 * @adapter: board private structure to initialize
1306 * e1000_sw_init initializes the Adapter private data structure.
1307 * e1000_init_hw_struct MUST be called before this function
1310 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1312 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1314 adapter
->num_tx_queues
= 1;
1315 adapter
->num_rx_queues
= 1;
1317 if (e1000_alloc_queues(adapter
)) {
1318 e_err(probe
, "Unable to allocate memory for queues\n");
1322 /* Explicitly disable IRQ since the NIC can be in any state. */
1323 e1000_irq_disable(adapter
);
1325 spin_lock_init(&adapter
->stats_lock
);
1326 mutex_init(&adapter
->mutex
);
1328 set_bit(__E1000_DOWN
, &adapter
->flags
);
1334 * e1000_alloc_queues - Allocate memory for all rings
1335 * @adapter: board private structure to initialize
1337 * We allocate one ring per queue at run-time since we don't know the
1338 * number of queues at compile-time.
1341 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1343 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1344 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1345 if (!adapter
->tx_ring
)
1348 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1349 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1350 if (!adapter
->rx_ring
) {
1351 kfree(adapter
->tx_ring
);
1355 return E1000_SUCCESS
;
1359 * e1000_open - Called when a network interface is made active
1360 * @netdev: network interface device structure
1362 * Returns 0 on success, negative value on failure
1364 * The open entry point is called when a network interface is made
1365 * active by the system (IFF_UP). At this point all resources needed
1366 * for transmit and receive operations are allocated, the interrupt
1367 * handler is registered with the OS, the watchdog task is started,
1368 * and the stack is notified that the interface is ready.
1371 static int e1000_open(struct net_device
*netdev
)
1373 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1374 struct e1000_hw
*hw
= &adapter
->hw
;
1377 /* disallow open during test */
1378 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1381 netif_carrier_off(netdev
);
1383 /* allocate transmit descriptors */
1384 err
= e1000_setup_all_tx_resources(adapter
);
1388 /* allocate receive descriptors */
1389 err
= e1000_setup_all_rx_resources(adapter
);
1393 e1000_power_up_phy(adapter
);
1395 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1396 if ((hw
->mng_cookie
.status
&
1397 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1398 e1000_update_mng_vlan(adapter
);
1401 /* before we allocate an interrupt, we must be ready to handle it.
1402 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1403 * as soon as we call pci_request_irq, so we have to setup our
1404 * clean_rx handler before we do so. */
1405 e1000_configure(adapter
);
1407 err
= e1000_request_irq(adapter
);
1411 /* From here on the code is the same as e1000_up() */
1412 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1414 napi_enable(&adapter
->napi
);
1416 e1000_irq_enable(adapter
);
1418 netif_start_queue(netdev
);
1420 /* fire a link status change interrupt to start the watchdog */
1421 ew32(ICS
, E1000_ICS_LSC
);
1423 return E1000_SUCCESS
;
1426 e1000_power_down_phy(adapter
);
1427 e1000_free_all_rx_resources(adapter
);
1429 e1000_free_all_tx_resources(adapter
);
1431 e1000_reset(adapter
);
1437 * e1000_close - Disables a network interface
1438 * @netdev: network interface device structure
1440 * Returns 0, this is not allowed to fail
1442 * The close entry point is called when an interface is de-activated
1443 * by the OS. The hardware is still under the drivers control, but
1444 * needs to be disabled. A global MAC reset is issued to stop the
1445 * hardware, and all transmit and receive resources are freed.
1448 static int e1000_close(struct net_device
*netdev
)
1450 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1451 struct e1000_hw
*hw
= &adapter
->hw
;
1453 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1454 e1000_down(adapter
);
1455 e1000_power_down_phy(adapter
);
1456 e1000_free_irq(adapter
);
1458 e1000_free_all_tx_resources(adapter
);
1459 e1000_free_all_rx_resources(adapter
);
1461 /* kill manageability vlan ID if supported, but not if a vlan with
1462 * the same ID is registered on the host OS (let 8021q kill it) */
1463 if ((hw
->mng_cookie
.status
&
1464 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1465 !test_bit(adapter
->mng_vlan_id
, adapter
->active_vlans
)) {
1466 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1473 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1474 * @adapter: address of board private structure
1475 * @start: address of beginning of memory
1476 * @len: length of memory
1478 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1481 struct e1000_hw
*hw
= &adapter
->hw
;
1482 unsigned long begin
= (unsigned long)start
;
1483 unsigned long end
= begin
+ len
;
1485 /* First rev 82545 and 82546 need to not allow any memory
1486 * write location to cross 64k boundary due to errata 23 */
1487 if (hw
->mac_type
== e1000_82545
||
1488 hw
->mac_type
== e1000_ce4100
||
1489 hw
->mac_type
== e1000_82546
) {
1490 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1497 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1498 * @adapter: board private structure
1499 * @txdr: tx descriptor ring (for a specific queue) to setup
1501 * Return 0 on success, negative on failure
1504 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1505 struct e1000_tx_ring
*txdr
)
1507 struct pci_dev
*pdev
= adapter
->pdev
;
1510 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1511 txdr
->buffer_info
= vzalloc(size
);
1512 if (!txdr
->buffer_info
) {
1513 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1518 /* round up to nearest 4K */
1520 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1521 txdr
->size
= ALIGN(txdr
->size
, 4096);
1523 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1527 vfree(txdr
->buffer_info
);
1528 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1533 /* Fix for errata 23, can't cross 64kB boundary */
1534 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1535 void *olddesc
= txdr
->desc
;
1536 dma_addr_t olddma
= txdr
->dma
;
1537 e_err(tx_err
, "txdr align check failed: %u bytes at %p\n",
1538 txdr
->size
, txdr
->desc
);
1539 /* Try again, without freeing the previous */
1540 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
,
1541 &txdr
->dma
, GFP_KERNEL
);
1542 /* Failed allocation, critical failure */
1544 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1546 goto setup_tx_desc_die
;
1549 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1551 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
1553 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1555 e_err(probe
, "Unable to allocate aligned memory "
1556 "for the transmit descriptor ring\n");
1557 vfree(txdr
->buffer_info
);
1560 /* Free old allocation, new allocation was successful */
1561 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1565 memset(txdr
->desc
, 0, txdr
->size
);
1567 txdr
->next_to_use
= 0;
1568 txdr
->next_to_clean
= 0;
1574 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1575 * (Descriptors) for all queues
1576 * @adapter: board private structure
1578 * Return 0 on success, negative on failure
1581 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1585 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1586 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1588 e_err(probe
, "Allocation for Tx Queue %u failed\n", i
);
1589 for (i
-- ; i
>= 0; i
--)
1590 e1000_free_tx_resources(adapter
,
1591 &adapter
->tx_ring
[i
]);
1600 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1601 * @adapter: board private structure
1603 * Configure the Tx unit of the MAC after a reset.
1606 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1609 struct e1000_hw
*hw
= &adapter
->hw
;
1610 u32 tdlen
, tctl
, tipg
;
1613 /* Setup the HW Tx Head and Tail descriptor pointers */
1615 switch (adapter
->num_tx_queues
) {
1618 tdba
= adapter
->tx_ring
[0].dma
;
1619 tdlen
= adapter
->tx_ring
[0].count
*
1620 sizeof(struct e1000_tx_desc
);
1622 ew32(TDBAH
, (tdba
>> 32));
1623 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1626 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1627 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1631 /* Set the default values for the Tx Inter Packet Gap timer */
1632 if ((hw
->media_type
== e1000_media_type_fiber
||
1633 hw
->media_type
== e1000_media_type_internal_serdes
))
1634 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1636 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1638 switch (hw
->mac_type
) {
1639 case e1000_82542_rev2_0
:
1640 case e1000_82542_rev2_1
:
1641 tipg
= DEFAULT_82542_TIPG_IPGT
;
1642 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1643 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1646 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1647 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1650 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1651 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1654 /* Set the Tx Interrupt Delay register */
1656 ew32(TIDV
, adapter
->tx_int_delay
);
1657 if (hw
->mac_type
>= e1000_82540
)
1658 ew32(TADV
, adapter
->tx_abs_int_delay
);
1660 /* Program the Transmit Control Register */
1663 tctl
&= ~E1000_TCTL_CT
;
1664 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1665 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1667 e1000_config_collision_dist(hw
);
1669 /* Setup Transmit Descriptor Settings for eop descriptor */
1670 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1672 /* only set IDE if we are delaying interrupts using the timers */
1673 if (adapter
->tx_int_delay
)
1674 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1676 if (hw
->mac_type
< e1000_82543
)
1677 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1679 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1681 /* Cache if we're 82544 running in PCI-X because we'll
1682 * need this to apply a workaround later in the send path. */
1683 if (hw
->mac_type
== e1000_82544
&&
1684 hw
->bus_type
== e1000_bus_type_pcix
)
1685 adapter
->pcix_82544
= true;
1692 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1693 * @adapter: board private structure
1694 * @rxdr: rx descriptor ring (for a specific queue) to setup
1696 * Returns 0 on success, negative on failure
1699 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1700 struct e1000_rx_ring
*rxdr
)
1702 struct pci_dev
*pdev
= adapter
->pdev
;
1705 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1706 rxdr
->buffer_info
= vzalloc(size
);
1707 if (!rxdr
->buffer_info
) {
1708 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1713 desc_len
= sizeof(struct e1000_rx_desc
);
1715 /* Round up to nearest 4K */
1717 rxdr
->size
= rxdr
->count
* desc_len
;
1718 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1720 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1724 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1727 vfree(rxdr
->buffer_info
);
1731 /* Fix for errata 23, can't cross 64kB boundary */
1732 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1733 void *olddesc
= rxdr
->desc
;
1734 dma_addr_t olddma
= rxdr
->dma
;
1735 e_err(rx_err
, "rxdr align check failed: %u bytes at %p\n",
1736 rxdr
->size
, rxdr
->desc
);
1737 /* Try again, without freeing the previous */
1738 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
,
1739 &rxdr
->dma
, GFP_KERNEL
);
1740 /* Failed allocation, critical failure */
1742 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1744 e_err(probe
, "Unable to allocate memory for the Rx "
1745 "descriptor ring\n");
1746 goto setup_rx_desc_die
;
1749 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1751 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
1753 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1755 e_err(probe
, "Unable to allocate aligned memory for "
1756 "the Rx descriptor ring\n");
1757 goto setup_rx_desc_die
;
1759 /* Free old allocation, new allocation was successful */
1760 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1764 memset(rxdr
->desc
, 0, rxdr
->size
);
1766 rxdr
->next_to_clean
= 0;
1767 rxdr
->next_to_use
= 0;
1768 rxdr
->rx_skb_top
= NULL
;
1774 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1775 * (Descriptors) for all queues
1776 * @adapter: board private structure
1778 * Return 0 on success, negative on failure
1781 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1785 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1786 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1788 e_err(probe
, "Allocation for Rx Queue %u failed\n", i
);
1789 for (i
-- ; i
>= 0; i
--)
1790 e1000_free_rx_resources(adapter
,
1791 &adapter
->rx_ring
[i
]);
1800 * e1000_setup_rctl - configure the receive control registers
1801 * @adapter: Board private structure
1803 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1805 struct e1000_hw
*hw
= &adapter
->hw
;
1810 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1812 rctl
|= E1000_RCTL_BAM
| E1000_RCTL_LBM_NO
|
1813 E1000_RCTL_RDMTS_HALF
|
1814 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1816 if (hw
->tbi_compatibility_on
== 1)
1817 rctl
|= E1000_RCTL_SBP
;
1819 rctl
&= ~E1000_RCTL_SBP
;
1821 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1822 rctl
&= ~E1000_RCTL_LPE
;
1824 rctl
|= E1000_RCTL_LPE
;
1826 /* Setup buffer sizes */
1827 rctl
&= ~E1000_RCTL_SZ_4096
;
1828 rctl
|= E1000_RCTL_BSEX
;
1829 switch (adapter
->rx_buffer_len
) {
1830 case E1000_RXBUFFER_2048
:
1832 rctl
|= E1000_RCTL_SZ_2048
;
1833 rctl
&= ~E1000_RCTL_BSEX
;
1835 case E1000_RXBUFFER_4096
:
1836 rctl
|= E1000_RCTL_SZ_4096
;
1838 case E1000_RXBUFFER_8192
:
1839 rctl
|= E1000_RCTL_SZ_8192
;
1841 case E1000_RXBUFFER_16384
:
1842 rctl
|= E1000_RCTL_SZ_16384
;
1850 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1851 * @adapter: board private structure
1853 * Configure the Rx unit of the MAC after a reset.
1856 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1859 struct e1000_hw
*hw
= &adapter
->hw
;
1860 u32 rdlen
, rctl
, rxcsum
;
1862 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1863 rdlen
= adapter
->rx_ring
[0].count
*
1864 sizeof(struct e1000_rx_desc
);
1865 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1866 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1868 rdlen
= adapter
->rx_ring
[0].count
*
1869 sizeof(struct e1000_rx_desc
);
1870 adapter
->clean_rx
= e1000_clean_rx_irq
;
1871 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1874 /* disable receives while setting up the descriptors */
1876 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1878 /* set the Receive Delay Timer Register */
1879 ew32(RDTR
, adapter
->rx_int_delay
);
1881 if (hw
->mac_type
>= e1000_82540
) {
1882 ew32(RADV
, adapter
->rx_abs_int_delay
);
1883 if (adapter
->itr_setting
!= 0)
1884 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 * the Base and Length of the Rx Descriptor Ring */
1889 switch (adapter
->num_rx_queues
) {
1892 rdba
= adapter
->rx_ring
[0].dma
;
1894 ew32(RDBAH
, (rdba
>> 32));
1895 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1898 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1899 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1903 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1904 if (hw
->mac_type
>= e1000_82543
) {
1905 rxcsum
= er32(RXCSUM
);
1906 if (adapter
->rx_csum
)
1907 rxcsum
|= E1000_RXCSUM_TUOFL
;
1909 /* don't need to clear IPPCSE as it defaults to 0 */
1910 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1911 ew32(RXCSUM
, rxcsum
);
1914 /* Enable Receives */
1915 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
1919 * e1000_free_tx_resources - Free Tx Resources per Queue
1920 * @adapter: board private structure
1921 * @tx_ring: Tx descriptor ring for a specific queue
1923 * Free all transmit software resources
1926 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1927 struct e1000_tx_ring
*tx_ring
)
1929 struct pci_dev
*pdev
= adapter
->pdev
;
1931 e1000_clean_tx_ring(adapter
, tx_ring
);
1933 vfree(tx_ring
->buffer_info
);
1934 tx_ring
->buffer_info
= NULL
;
1936 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1939 tx_ring
->desc
= NULL
;
1943 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944 * @adapter: board private structure
1946 * Free all transmit software resources
1949 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1953 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1954 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1957 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1958 struct e1000_buffer
*buffer_info
)
1960 if (buffer_info
->dma
) {
1961 if (buffer_info
->mapped_as_page
)
1962 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1963 buffer_info
->length
, DMA_TO_DEVICE
);
1965 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1966 buffer_info
->length
,
1968 buffer_info
->dma
= 0;
1970 if (buffer_info
->skb
) {
1971 dev_kfree_skb_any(buffer_info
->skb
);
1972 buffer_info
->skb
= NULL
;
1974 buffer_info
->time_stamp
= 0;
1975 /* buffer_info must be completely set up in the transmit path */
1979 * e1000_clean_tx_ring - Free Tx Buffers
1980 * @adapter: board private structure
1981 * @tx_ring: ring to be cleaned
1984 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1985 struct e1000_tx_ring
*tx_ring
)
1987 struct e1000_hw
*hw
= &adapter
->hw
;
1988 struct e1000_buffer
*buffer_info
;
1992 /* Free all the Tx ring sk_buffs */
1994 for (i
= 0; i
< tx_ring
->count
; i
++) {
1995 buffer_info
= &tx_ring
->buffer_info
[i
];
1996 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1999 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2000 memset(tx_ring
->buffer_info
, 0, size
);
2002 /* Zero out the descriptor ring */
2004 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2006 tx_ring
->next_to_use
= 0;
2007 tx_ring
->next_to_clean
= 0;
2008 tx_ring
->last_tx_tso
= false;
2010 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
2011 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
2015 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2016 * @adapter: board private structure
2019 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2023 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2024 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2028 * e1000_free_rx_resources - Free Rx Resources
2029 * @adapter: board private structure
2030 * @rx_ring: ring to clean the resources from
2032 * Free all receive software resources
2035 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2036 struct e1000_rx_ring
*rx_ring
)
2038 struct pci_dev
*pdev
= adapter
->pdev
;
2040 e1000_clean_rx_ring(adapter
, rx_ring
);
2042 vfree(rx_ring
->buffer_info
);
2043 rx_ring
->buffer_info
= NULL
;
2045 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2048 rx_ring
->desc
= NULL
;
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2055 * Free all receive software resources
2058 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2062 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2063 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2067 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2068 * @adapter: board private structure
2069 * @rx_ring: ring to free buffers from
2072 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2073 struct e1000_rx_ring
*rx_ring
)
2075 struct e1000_hw
*hw
= &adapter
->hw
;
2076 struct e1000_buffer
*buffer_info
;
2077 struct pci_dev
*pdev
= adapter
->pdev
;
2081 /* Free all the Rx ring sk_buffs */
2082 for (i
= 0; i
< rx_ring
->count
; i
++) {
2083 buffer_info
= &rx_ring
->buffer_info
[i
];
2084 if (buffer_info
->dma
&&
2085 adapter
->clean_rx
== e1000_clean_rx_irq
) {
2086 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
2087 buffer_info
->length
,
2089 } else if (buffer_info
->dma
&&
2090 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
2091 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
2092 buffer_info
->length
,
2096 buffer_info
->dma
= 0;
2097 if (buffer_info
->page
) {
2098 put_page(buffer_info
->page
);
2099 buffer_info
->page
= NULL
;
2101 if (buffer_info
->skb
) {
2102 dev_kfree_skb(buffer_info
->skb
);
2103 buffer_info
->skb
= NULL
;
2107 /* there also may be some cached data from a chained receive */
2108 if (rx_ring
->rx_skb_top
) {
2109 dev_kfree_skb(rx_ring
->rx_skb_top
);
2110 rx_ring
->rx_skb_top
= NULL
;
2113 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2114 memset(rx_ring
->buffer_info
, 0, size
);
2116 /* Zero out the descriptor ring */
2117 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2119 rx_ring
->next_to_clean
= 0;
2120 rx_ring
->next_to_use
= 0;
2122 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2123 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2127 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2128 * @adapter: board private structure
2131 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2135 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2136 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2139 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2140 * and memory write and invalidate disabled for certain operations
2142 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2144 struct e1000_hw
*hw
= &adapter
->hw
;
2145 struct net_device
*netdev
= adapter
->netdev
;
2148 e1000_pci_clear_mwi(hw
);
2151 rctl
|= E1000_RCTL_RST
;
2153 E1000_WRITE_FLUSH();
2156 if (netif_running(netdev
))
2157 e1000_clean_all_rx_rings(adapter
);
2160 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2162 struct e1000_hw
*hw
= &adapter
->hw
;
2163 struct net_device
*netdev
= adapter
->netdev
;
2167 rctl
&= ~E1000_RCTL_RST
;
2169 E1000_WRITE_FLUSH();
2172 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2173 e1000_pci_set_mwi(hw
);
2175 if (netif_running(netdev
)) {
2176 /* No need to loop, because 82542 supports only 1 queue */
2177 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2178 e1000_configure_rx(adapter
);
2179 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2184 * e1000_set_mac - Change the Ethernet Address of the NIC
2185 * @netdev: network interface device structure
2186 * @p: pointer to an address structure
2188 * Returns 0 on success, negative on failure
2191 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2193 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2194 struct e1000_hw
*hw
= &adapter
->hw
;
2195 struct sockaddr
*addr
= p
;
2197 if (!is_valid_ether_addr(addr
->sa_data
))
2198 return -EADDRNOTAVAIL
;
2200 /* 82542 2.0 needs to be in reset to write receive address registers */
2202 if (hw
->mac_type
== e1000_82542_rev2_0
)
2203 e1000_enter_82542_rst(adapter
);
2205 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2206 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2208 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2210 if (hw
->mac_type
== e1000_82542_rev2_0
)
2211 e1000_leave_82542_rst(adapter
);
2217 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2218 * @netdev: network interface device structure
2220 * The set_rx_mode entry point is called whenever the unicast or multicast
2221 * address lists or the network interface flags are updated. This routine is
2222 * responsible for configuring the hardware for proper unicast, multicast,
2223 * promiscuous mode, and all-multi behavior.
2226 static void e1000_set_rx_mode(struct net_device
*netdev
)
2228 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2229 struct e1000_hw
*hw
= &adapter
->hw
;
2230 struct netdev_hw_addr
*ha
;
2231 bool use_uc
= false;
2234 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2235 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2236 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2239 e_err(probe
, "memory allocation failed\n");
2243 /* Check for Promiscuous and All Multicast modes */
2247 if (netdev
->flags
& IFF_PROMISC
) {
2248 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2249 rctl
&= ~E1000_RCTL_VFE
;
2251 if (netdev
->flags
& IFF_ALLMULTI
)
2252 rctl
|= E1000_RCTL_MPE
;
2254 rctl
&= ~E1000_RCTL_MPE
;
2255 /* Enable VLAN filter if there is a VLAN */
2256 if (e1000_vlan_used(adapter
))
2257 rctl
|= E1000_RCTL_VFE
;
2260 if (netdev_uc_count(netdev
) > rar_entries
- 1) {
2261 rctl
|= E1000_RCTL_UPE
;
2262 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2263 rctl
&= ~E1000_RCTL_UPE
;
2269 /* 82542 2.0 needs to be in reset to write receive address registers */
2271 if (hw
->mac_type
== e1000_82542_rev2_0
)
2272 e1000_enter_82542_rst(adapter
);
2274 /* load the first 14 addresses into the exact filters 1-14. Unicast
2275 * addresses take precedence to avoid disabling unicast filtering
2278 * RAR 0 is used for the station MAC address
2279 * if there are not 14 addresses, go ahead and clear the filters
2283 netdev_for_each_uc_addr(ha
, netdev
) {
2284 if (i
== rar_entries
)
2286 e1000_rar_set(hw
, ha
->addr
, i
++);
2289 netdev_for_each_mc_addr(ha
, netdev
) {
2290 if (i
== rar_entries
) {
2291 /* load any remaining addresses into the hash table */
2292 u32 hash_reg
, hash_bit
, mta
;
2293 hash_value
= e1000_hash_mc_addr(hw
, ha
->addr
);
2294 hash_reg
= (hash_value
>> 5) & 0x7F;
2295 hash_bit
= hash_value
& 0x1F;
2296 mta
= (1 << hash_bit
);
2297 mcarray
[hash_reg
] |= mta
;
2299 e1000_rar_set(hw
, ha
->addr
, i
++);
2303 for (; i
< rar_entries
; i
++) {
2304 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2305 E1000_WRITE_FLUSH();
2306 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2307 E1000_WRITE_FLUSH();
2310 /* write the hash table completely, write from bottom to avoid
2311 * both stupid write combining chipsets, and flushing each write */
2312 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2314 * If we are on an 82544 has an errata where writing odd
2315 * offsets overwrites the previous even offset, but writing
2316 * backwards over the range solves the issue by always
2317 * writing the odd offset first
2319 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2321 E1000_WRITE_FLUSH();
2323 if (hw
->mac_type
== e1000_82542_rev2_0
)
2324 e1000_leave_82542_rst(adapter
);
2330 * e1000_update_phy_info_task - get phy info
2331 * @work: work struct contained inside adapter struct
2333 * Need to wait a few seconds after link up to get diagnostic information from
2336 static void e1000_update_phy_info_task(struct work_struct
*work
)
2338 struct e1000_adapter
*adapter
= container_of(work
,
2339 struct e1000_adapter
,
2340 phy_info_task
.work
);
2341 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
2343 mutex_lock(&adapter
->mutex
);
2344 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2345 mutex_unlock(&adapter
->mutex
);
2349 * e1000_82547_tx_fifo_stall_task - task to complete work
2350 * @work: work struct contained inside adapter struct
2352 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
)
2354 struct e1000_adapter
*adapter
= container_of(work
,
2355 struct e1000_adapter
,
2356 fifo_stall_task
.work
);
2357 struct e1000_hw
*hw
= &adapter
->hw
;
2358 struct net_device
*netdev
= adapter
->netdev
;
2361 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
2363 mutex_lock(&adapter
->mutex
);
2364 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2365 if ((er32(TDT
) == er32(TDH
)) &&
2366 (er32(TDFT
) == er32(TDFH
)) &&
2367 (er32(TDFTS
) == er32(TDFHS
))) {
2369 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2370 ew32(TDFT
, adapter
->tx_head_addr
);
2371 ew32(TDFH
, adapter
->tx_head_addr
);
2372 ew32(TDFTS
, adapter
->tx_head_addr
);
2373 ew32(TDFHS
, adapter
->tx_head_addr
);
2375 E1000_WRITE_FLUSH();
2377 adapter
->tx_fifo_head
= 0;
2378 atomic_set(&adapter
->tx_fifo_stall
, 0);
2379 netif_wake_queue(netdev
);
2380 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2381 schedule_delayed_work(&adapter
->fifo_stall_task
, 1);
2384 mutex_unlock(&adapter
->mutex
);
2387 bool e1000_has_link(struct e1000_adapter
*adapter
)
2389 struct e1000_hw
*hw
= &adapter
->hw
;
2390 bool link_active
= false;
2392 /* get_link_status is set on LSC (link status) interrupt or rx
2393 * sequence error interrupt (except on intel ce4100).
2394 * get_link_status will stay false until the
2395 * e1000_check_for_link establishes link for copper adapters
2398 switch (hw
->media_type
) {
2399 case e1000_media_type_copper
:
2400 if (hw
->mac_type
== e1000_ce4100
)
2401 hw
->get_link_status
= 1;
2402 if (hw
->get_link_status
) {
2403 e1000_check_for_link(hw
);
2404 link_active
= !hw
->get_link_status
;
2409 case e1000_media_type_fiber
:
2410 e1000_check_for_link(hw
);
2411 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2413 case e1000_media_type_internal_serdes
:
2414 e1000_check_for_link(hw
);
2415 link_active
= hw
->serdes_has_link
;
2425 * e1000_watchdog - work function
2426 * @work: work struct contained inside adapter struct
2428 static void e1000_watchdog(struct work_struct
*work
)
2430 struct e1000_adapter
*adapter
= container_of(work
,
2431 struct e1000_adapter
,
2432 watchdog_task
.work
);
2433 struct e1000_hw
*hw
= &adapter
->hw
;
2434 struct net_device
*netdev
= adapter
->netdev
;
2435 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2438 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
2441 mutex_lock(&adapter
->mutex
);
2442 link
= e1000_has_link(adapter
);
2443 if ((netif_carrier_ok(netdev
)) && link
)
2447 if (!netif_carrier_ok(netdev
)) {
2450 /* update snapshot of PHY registers on LSC */
2451 e1000_get_speed_and_duplex(hw
,
2452 &adapter
->link_speed
,
2453 &adapter
->link_duplex
);
2456 pr_info("%s NIC Link is Up %d Mbps %s, "
2457 "Flow Control: %s\n",
2459 adapter
->link_speed
,
2460 adapter
->link_duplex
== FULL_DUPLEX
?
2461 "Full Duplex" : "Half Duplex",
2462 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2463 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2464 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2465 E1000_CTRL_TFCE
) ? "TX" : "None")));
2467 /* adjust timeout factor according to speed/duplex */
2468 adapter
->tx_timeout_factor
= 1;
2469 switch (adapter
->link_speed
) {
2472 adapter
->tx_timeout_factor
= 16;
2476 /* maybe add some timeout factor ? */
2480 /* enable transmits in the hardware */
2482 tctl
|= E1000_TCTL_EN
;
2485 netif_carrier_on(netdev
);
2486 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2487 schedule_delayed_work(&adapter
->phy_info_task
,
2489 adapter
->smartspeed
= 0;
2492 if (netif_carrier_ok(netdev
)) {
2493 adapter
->link_speed
= 0;
2494 adapter
->link_duplex
= 0;
2495 pr_info("%s NIC Link is Down\n",
2497 netif_carrier_off(netdev
);
2499 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2500 schedule_delayed_work(&adapter
->phy_info_task
,
2504 e1000_smartspeed(adapter
);
2508 e1000_update_stats(adapter
);
2510 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2511 adapter
->tpt_old
= adapter
->stats
.tpt
;
2512 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2513 adapter
->colc_old
= adapter
->stats
.colc
;
2515 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2516 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2517 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2518 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2520 e1000_update_adaptive(hw
);
2522 if (!netif_carrier_ok(netdev
)) {
2523 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2524 /* We've lost link, so the controller stops DMA,
2525 * but we've got queued Tx work that's never going
2526 * to get done, so reset controller to flush Tx.
2527 * (Do the reset outside of interrupt context). */
2528 adapter
->tx_timeout_count
++;
2529 schedule_work(&adapter
->reset_task
);
2530 /* exit immediately since reset is imminent */
2535 /* Simple mode for Interrupt Throttle Rate (ITR) */
2536 if (hw
->mac_type
>= e1000_82540
&& adapter
->itr_setting
== 4) {
2538 * Symmetric Tx/Rx gets a reduced ITR=2000;
2539 * Total asymmetrical Tx or Rx gets ITR=8000;
2540 * everyone else is between 2000-8000.
2542 u32 goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2543 u32 dif
= (adapter
->gotcl
> adapter
->gorcl
?
2544 adapter
->gotcl
- adapter
->gorcl
:
2545 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2546 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2548 ew32(ITR
, 1000000000 / (itr
* 256));
2551 /* Cause software interrupt to ensure rx ring is cleaned */
2552 ew32(ICS
, E1000_ICS_RXDMT0
);
2554 /* Force detection of hung controller every watchdog period */
2555 adapter
->detect_tx_hung
= true;
2557 /* Reschedule the task */
2558 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2559 schedule_delayed_work(&adapter
->watchdog_task
, 2 * HZ
);
2562 mutex_unlock(&adapter
->mutex
);
2565 enum latency_range
{
2569 latency_invalid
= 255
2573 * e1000_update_itr - update the dynamic ITR value based on statistics
2574 * @adapter: pointer to adapter
2575 * @itr_setting: current adapter->itr
2576 * @packets: the number of packets during this measurement interval
2577 * @bytes: the number of bytes during this measurement interval
2579 * Stores a new ITR value based on packets and byte
2580 * counts during the last interrupt. The advantage of per interrupt
2581 * computation is faster updates and more accurate ITR for the current
2582 * traffic pattern. Constants in this function were computed
2583 * based on theoretical maximum wire speed and thresholds were set based
2584 * on testing data as well as attempting to minimize response time
2585 * while increasing bulk throughput.
2586 * this functionality is controlled by the InterruptThrottleRate module
2587 * parameter (see e1000_param.c)
2589 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2590 u16 itr_setting
, int packets
, int bytes
)
2592 unsigned int retval
= itr_setting
;
2593 struct e1000_hw
*hw
= &adapter
->hw
;
2595 if (unlikely(hw
->mac_type
< e1000_82540
))
2596 goto update_itr_done
;
2599 goto update_itr_done
;
2601 switch (itr_setting
) {
2602 case lowest_latency
:
2603 /* jumbo frames get bulk treatment*/
2604 if (bytes
/packets
> 8000)
2605 retval
= bulk_latency
;
2606 else if ((packets
< 5) && (bytes
> 512))
2607 retval
= low_latency
;
2609 case low_latency
: /* 50 usec aka 20000 ints/s */
2610 if (bytes
> 10000) {
2611 /* jumbo frames need bulk latency setting */
2612 if (bytes
/packets
> 8000)
2613 retval
= bulk_latency
;
2614 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2615 retval
= bulk_latency
;
2616 else if ((packets
> 35))
2617 retval
= lowest_latency
;
2618 } else if (bytes
/packets
> 2000)
2619 retval
= bulk_latency
;
2620 else if (packets
<= 2 && bytes
< 512)
2621 retval
= lowest_latency
;
2623 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2624 if (bytes
> 25000) {
2626 retval
= low_latency
;
2627 } else if (bytes
< 6000) {
2628 retval
= low_latency
;
2637 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2639 struct e1000_hw
*hw
= &adapter
->hw
;
2641 u32 new_itr
= adapter
->itr
;
2643 if (unlikely(hw
->mac_type
< e1000_82540
))
2646 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2647 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2653 adapter
->tx_itr
= e1000_update_itr(adapter
,
2655 adapter
->total_tx_packets
,
2656 adapter
->total_tx_bytes
);
2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2659 adapter
->tx_itr
= low_latency
;
2661 adapter
->rx_itr
= e1000_update_itr(adapter
,
2663 adapter
->total_rx_packets
,
2664 adapter
->total_rx_bytes
);
2665 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2666 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2667 adapter
->rx_itr
= low_latency
;
2669 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2671 switch (current_itr
) {
2672 /* counts and packets in update_itr are dependent on these numbers */
2673 case lowest_latency
:
2677 new_itr
= 20000; /* aka hwitr = ~200 */
2687 if (new_itr
!= adapter
->itr
) {
2688 /* this attempts to bias the interrupt rate towards Bulk
2689 * by adding intermediate steps when interrupt rate is
2691 new_itr
= new_itr
> adapter
->itr
?
2692 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2694 adapter
->itr
= new_itr
;
2695 ew32(ITR
, 1000000000 / (new_itr
* 256));
2699 #define E1000_TX_FLAGS_CSUM 0x00000001
2700 #define E1000_TX_FLAGS_VLAN 0x00000002
2701 #define E1000_TX_FLAGS_TSO 0x00000004
2702 #define E1000_TX_FLAGS_IPV4 0x00000008
2703 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2704 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2706 static int e1000_tso(struct e1000_adapter
*adapter
,
2707 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2709 struct e1000_context_desc
*context_desc
;
2710 struct e1000_buffer
*buffer_info
;
2713 u16 ipcse
= 0, tucse
, mss
;
2714 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2717 if (skb_is_gso(skb
)) {
2718 if (skb_header_cloned(skb
)) {
2719 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2724 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2725 mss
= skb_shinfo(skb
)->gso_size
;
2726 if (skb
->protocol
== htons(ETH_P_IP
)) {
2727 struct iphdr
*iph
= ip_hdr(skb
);
2730 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2734 cmd_length
= E1000_TXD_CMD_IP
;
2735 ipcse
= skb_transport_offset(skb
) - 1;
2736 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2737 ipv6_hdr(skb
)->payload_len
= 0;
2738 tcp_hdr(skb
)->check
=
2739 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2740 &ipv6_hdr(skb
)->daddr
,
2744 ipcss
= skb_network_offset(skb
);
2745 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2746 tucss
= skb_transport_offset(skb
);
2747 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2750 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2751 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2753 i
= tx_ring
->next_to_use
;
2754 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2755 buffer_info
= &tx_ring
->buffer_info
[i
];
2757 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2758 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2759 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2760 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2761 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2762 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2763 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2764 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2765 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2767 buffer_info
->time_stamp
= jiffies
;
2768 buffer_info
->next_to_watch
= i
;
2770 if (++i
== tx_ring
->count
) i
= 0;
2771 tx_ring
->next_to_use
= i
;
2778 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2779 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2781 struct e1000_context_desc
*context_desc
;
2782 struct e1000_buffer
*buffer_info
;
2785 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2787 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2790 switch (skb
->protocol
) {
2791 case cpu_to_be16(ETH_P_IP
):
2792 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2793 cmd_len
|= E1000_TXD_CMD_TCP
;
2795 case cpu_to_be16(ETH_P_IPV6
):
2796 /* XXX not handling all IPV6 headers */
2797 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2798 cmd_len
|= E1000_TXD_CMD_TCP
;
2801 if (unlikely(net_ratelimit()))
2802 e_warn(drv
, "checksum_partial proto=%x!\n",
2807 css
= skb_checksum_start_offset(skb
);
2809 i
= tx_ring
->next_to_use
;
2810 buffer_info
= &tx_ring
->buffer_info
[i
];
2811 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2813 context_desc
->lower_setup
.ip_config
= 0;
2814 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2815 context_desc
->upper_setup
.tcp_fields
.tucso
=
2816 css
+ skb
->csum_offset
;
2817 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2818 context_desc
->tcp_seg_setup
.data
= 0;
2819 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2821 buffer_info
->time_stamp
= jiffies
;
2822 buffer_info
->next_to_watch
= i
;
2824 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2825 tx_ring
->next_to_use
= i
;
2830 #define E1000_MAX_TXD_PWR 12
2831 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2833 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2834 struct e1000_tx_ring
*tx_ring
,
2835 struct sk_buff
*skb
, unsigned int first
,
2836 unsigned int max_per_txd
, unsigned int nr_frags
,
2839 struct e1000_hw
*hw
= &adapter
->hw
;
2840 struct pci_dev
*pdev
= adapter
->pdev
;
2841 struct e1000_buffer
*buffer_info
;
2842 unsigned int len
= skb_headlen(skb
);
2843 unsigned int offset
= 0, size
, count
= 0, i
;
2844 unsigned int f
, bytecount
, segs
;
2846 i
= tx_ring
->next_to_use
;
2849 buffer_info
= &tx_ring
->buffer_info
[i
];
2850 size
= min(len
, max_per_txd
);
2851 /* Workaround for Controller erratum --
2852 * descriptor for non-tso packet in a linear SKB that follows a
2853 * tso gets written back prematurely before the data is fully
2854 * DMA'd to the controller */
2855 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2857 tx_ring
->last_tx_tso
= false;
2861 /* Workaround for premature desc write-backs
2862 * in TSO mode. Append 4-byte sentinel desc */
2863 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2865 /* work-around for errata 10 and it applies
2866 * to all controllers in PCI-X mode
2867 * The fix is to make sure that the first descriptor of a
2868 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2871 (size
> 2015) && count
== 0))
2874 /* Workaround for potential 82544 hang in PCI-X. Avoid
2875 * terminating buffers within evenly-aligned dwords. */
2876 if (unlikely(adapter
->pcix_82544
&&
2877 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2881 buffer_info
->length
= size
;
2882 /* set time_stamp *before* dma to help avoid a possible race */
2883 buffer_info
->time_stamp
= jiffies
;
2884 buffer_info
->mapped_as_page
= false;
2885 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
2887 size
, DMA_TO_DEVICE
);
2888 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2890 buffer_info
->next_to_watch
= i
;
2897 if (unlikely(i
== tx_ring
->count
))
2902 for (f
= 0; f
< nr_frags
; f
++) {
2903 const struct skb_frag_struct
*frag
;
2905 frag
= &skb_shinfo(skb
)->frags
[f
];
2906 len
= skb_frag_size(frag
);
2910 unsigned long bufend
;
2912 if (unlikely(i
== tx_ring
->count
))
2915 buffer_info
= &tx_ring
->buffer_info
[i
];
2916 size
= min(len
, max_per_txd
);
2917 /* Workaround for premature desc write-backs
2918 * in TSO mode. Append 4-byte sentinel desc */
2919 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2921 /* Workaround for potential 82544 hang in PCI-X.
2922 * Avoid terminating buffers within evenly-aligned
2924 bufend
= (unsigned long)
2925 page_to_phys(skb_frag_page(frag
));
2926 bufend
+= offset
+ size
- 1;
2927 if (unlikely(adapter
->pcix_82544
&&
2932 buffer_info
->length
= size
;
2933 buffer_info
->time_stamp
= jiffies
;
2934 buffer_info
->mapped_as_page
= true;
2935 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
2936 offset
, size
, DMA_TO_DEVICE
);
2937 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2939 buffer_info
->next_to_watch
= i
;
2947 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
2948 /* multiply data chunks by size of headers */
2949 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
2951 tx_ring
->buffer_info
[i
].skb
= skb
;
2952 tx_ring
->buffer_info
[i
].segs
= segs
;
2953 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
2954 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2959 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2960 buffer_info
->dma
= 0;
2966 i
+= tx_ring
->count
;
2968 buffer_info
= &tx_ring
->buffer_info
[i
];
2969 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2975 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2976 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2979 struct e1000_hw
*hw
= &adapter
->hw
;
2980 struct e1000_tx_desc
*tx_desc
= NULL
;
2981 struct e1000_buffer
*buffer_info
;
2982 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2985 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2986 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2988 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2990 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2991 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2994 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2995 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2996 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2999 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3000 txd_lower
|= E1000_TXD_CMD_VLE
;
3001 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3004 i
= tx_ring
->next_to_use
;
3007 buffer_info
= &tx_ring
->buffer_info
[i
];
3008 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3009 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3010 tx_desc
->lower
.data
=
3011 cpu_to_le32(txd_lower
| buffer_info
->length
);
3012 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3013 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3016 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3018 /* Force memory writes to complete before letting h/w
3019 * know there are new descriptors to fetch. (Only
3020 * applicable for weak-ordered memory model archs,
3021 * such as IA-64). */
3024 tx_ring
->next_to_use
= i
;
3025 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
3026 /* we need this if more than one processor can write to our tail
3027 * at a time, it syncronizes IO on IA64/Altix systems */
3032 * 82547 workaround to avoid controller hang in half-duplex environment.
3033 * The workaround is to avoid queuing a large packet that would span
3034 * the internal Tx FIFO ring boundary by notifying the stack to resend
3035 * the packet at a later time. This gives the Tx FIFO an opportunity to
3036 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3037 * to the beginning of the Tx FIFO.
3040 #define E1000_FIFO_HDR 0x10
3041 #define E1000_82547_PAD_LEN 0x3E0
3043 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
3044 struct sk_buff
*skb
)
3046 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3047 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3049 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3051 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3052 goto no_fifo_stall_required
;
3054 if (atomic_read(&adapter
->tx_fifo_stall
))
3057 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3058 atomic_set(&adapter
->tx_fifo_stall
, 1);
3062 no_fifo_stall_required
:
3063 adapter
->tx_fifo_head
+= skb_fifo_len
;
3064 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3065 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3069 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3071 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3072 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3074 netif_stop_queue(netdev
);
3075 /* Herbert's original patch had:
3076 * smp_mb__after_netif_stop_queue();
3077 * but since that doesn't exist yet, just open code it. */
3080 /* We need to check again in a case another CPU has just
3081 * made room available. */
3082 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3086 netif_start_queue(netdev
);
3087 ++adapter
->restart_queue
;
3091 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3092 struct e1000_tx_ring
*tx_ring
, int size
)
3094 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3096 return __e1000_maybe_stop_tx(netdev
, size
);
3099 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3100 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
3101 struct net_device
*netdev
)
3103 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3104 struct e1000_hw
*hw
= &adapter
->hw
;
3105 struct e1000_tx_ring
*tx_ring
;
3106 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3107 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3108 unsigned int tx_flags
= 0;
3109 unsigned int len
= skb_headlen(skb
);
3110 unsigned int nr_frags
;
3116 /* This goes back to the question of how to logically map a tx queue
3117 * to a flow. Right now, performance is impacted slightly negatively
3118 * if using multiple tx queues. If the stack breaks away from a
3119 * single qdisc implementation, we can look at this again. */
3120 tx_ring
= adapter
->tx_ring
;
3122 if (unlikely(skb
->len
<= 0)) {
3123 dev_kfree_skb_any(skb
);
3124 return NETDEV_TX_OK
;
3127 mss
= skb_shinfo(skb
)->gso_size
;
3128 /* The controller does a simple calculation to
3129 * make sure there is enough room in the FIFO before
3130 * initiating the DMA for each buffer. The calc is:
3131 * 4 = ceil(buffer len/mss). To make sure we don't
3132 * overrun the FIFO, adjust the max buffer len if mss
3136 max_per_txd
= min(mss
<< 2, max_per_txd
);
3137 max_txd_pwr
= fls(max_per_txd
) - 1;
3139 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3140 if (skb
->data_len
&& hdr_len
== len
) {
3141 switch (hw
->mac_type
) {
3142 unsigned int pull_size
;
3144 /* Make sure we have room to chop off 4 bytes,
3145 * and that the end alignment will work out to
3146 * this hardware's requirements
3147 * NOTE: this is a TSO only workaround
3148 * if end byte alignment not correct move us
3149 * into the next dword */
3150 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3153 pull_size
= min((unsigned int)4, skb
->data_len
);
3154 if (!__pskb_pull_tail(skb
, pull_size
)) {
3155 e_err(drv
, "__pskb_pull_tail "
3157 dev_kfree_skb_any(skb
);
3158 return NETDEV_TX_OK
;
3160 len
= skb_headlen(skb
);
3169 /* reserve a descriptor for the offload context */
3170 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3174 /* Controller Erratum workaround */
3175 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3178 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3180 if (adapter
->pcix_82544
)
3183 /* work-around for errata 10 and it applies to all controllers
3184 * in PCI-X mode, so add one more descriptor to the count
3186 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3190 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3191 for (f
= 0; f
< nr_frags
; f
++)
3192 count
+= TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
3194 if (adapter
->pcix_82544
)
3197 /* need: count + 2 desc gap to keep tail from touching
3198 * head, otherwise try next time */
3199 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3200 return NETDEV_TX_BUSY
;
3202 if (unlikely((hw
->mac_type
== e1000_82547
) &&
3203 (e1000_82547_fifo_workaround(adapter
, skb
)))) {
3204 netif_stop_queue(netdev
);
3205 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3206 schedule_delayed_work(&adapter
->fifo_stall_task
, 1);
3207 return NETDEV_TX_BUSY
;
3210 if (vlan_tx_tag_present(skb
)) {
3211 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3212 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3215 first
= tx_ring
->next_to_use
;
3217 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3219 dev_kfree_skb_any(skb
);
3220 return NETDEV_TX_OK
;
3224 if (likely(hw
->mac_type
!= e1000_82544
))
3225 tx_ring
->last_tx_tso
= true;
3226 tx_flags
|= E1000_TX_FLAGS_TSO
;
3227 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3228 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3230 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3231 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3233 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3237 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3238 /* Make sure there is space in the ring for the next send. */
3239 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3242 dev_kfree_skb_any(skb
);
3243 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3244 tx_ring
->next_to_use
= first
;
3247 return NETDEV_TX_OK
;
3251 * e1000_tx_timeout - Respond to a Tx Hang
3252 * @netdev: network interface device structure
3255 static void e1000_tx_timeout(struct net_device
*netdev
)
3257 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3259 /* Do the reset outside of interrupt context */
3260 adapter
->tx_timeout_count
++;
3261 schedule_work(&adapter
->reset_task
);
3264 static void e1000_reset_task(struct work_struct
*work
)
3266 struct e1000_adapter
*adapter
=
3267 container_of(work
, struct e1000_adapter
, reset_task
);
3269 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
3271 e1000_reinit_safe(adapter
);
3275 * e1000_get_stats - Get System Network Statistics
3276 * @netdev: network interface device structure
3278 * Returns the address of the device statistics structure.
3279 * The statistics are actually updated from the watchdog.
3282 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3284 /* only return the current stats */
3285 return &netdev
->stats
;
3289 * e1000_change_mtu - Change the Maximum Transfer Unit
3290 * @netdev: network interface device structure
3291 * @new_mtu: new value for maximum frame size
3293 * Returns 0 on success, negative on failure
3296 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3298 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3299 struct e1000_hw
*hw
= &adapter
->hw
;
3300 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3302 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3303 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3304 e_err(probe
, "Invalid MTU setting\n");
3308 /* Adapter-specific max frame size limits. */
3309 switch (hw
->mac_type
) {
3310 case e1000_undefined
... e1000_82542_rev2_1
:
3311 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3312 e_err(probe
, "Jumbo Frames not supported.\n");
3317 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3321 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3323 /* e1000_down has a dependency on max_frame_size */
3324 hw
->max_frame_size
= max_frame
;
3325 if (netif_running(netdev
))
3326 e1000_down(adapter
);
3328 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3329 * means we reserve 2 more, this pushes us to allocate from the next
3331 * i.e. RXBUFFER_2048 --> size-4096 slab
3332 * however with the new *_jumbo_rx* routines, jumbo receives will use
3333 * fragmented skbs */
3335 if (max_frame
<= E1000_RXBUFFER_2048
)
3336 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3338 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3339 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3340 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3341 adapter
->rx_buffer_len
= PAGE_SIZE
;
3344 /* adjust allocation if LPE protects us, and we aren't using SBP */
3345 if (!hw
->tbi_compatibility_on
&&
3346 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3347 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3348 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3350 pr_info("%s changing MTU from %d to %d\n",
3351 netdev
->name
, netdev
->mtu
, new_mtu
);
3352 netdev
->mtu
= new_mtu
;
3354 if (netif_running(netdev
))
3357 e1000_reset(adapter
);
3359 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3365 * e1000_update_stats - Update the board statistics counters
3366 * @adapter: board private structure
3369 void e1000_update_stats(struct e1000_adapter
*adapter
)
3371 struct net_device
*netdev
= adapter
->netdev
;
3372 struct e1000_hw
*hw
= &adapter
->hw
;
3373 struct pci_dev
*pdev
= adapter
->pdev
;
3374 unsigned long flags
;
3377 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3380 * Prevent stats update while adapter is being reset, or if the pci
3381 * connection is down.
3383 if (adapter
->link_speed
== 0)
3385 if (pci_channel_offline(pdev
))
3388 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3390 /* these counters are modified from e1000_tbi_adjust_stats,
3391 * called from the interrupt context, so they must only
3392 * be written while holding adapter->stats_lock
3395 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3396 adapter
->stats
.gprc
+= er32(GPRC
);
3397 adapter
->stats
.gorcl
+= er32(GORCL
);
3398 adapter
->stats
.gorch
+= er32(GORCH
);
3399 adapter
->stats
.bprc
+= er32(BPRC
);
3400 adapter
->stats
.mprc
+= er32(MPRC
);
3401 adapter
->stats
.roc
+= er32(ROC
);
3403 adapter
->stats
.prc64
+= er32(PRC64
);
3404 adapter
->stats
.prc127
+= er32(PRC127
);
3405 adapter
->stats
.prc255
+= er32(PRC255
);
3406 adapter
->stats
.prc511
+= er32(PRC511
);
3407 adapter
->stats
.prc1023
+= er32(PRC1023
);
3408 adapter
->stats
.prc1522
+= er32(PRC1522
);
3410 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3411 adapter
->stats
.mpc
+= er32(MPC
);
3412 adapter
->stats
.scc
+= er32(SCC
);
3413 adapter
->stats
.ecol
+= er32(ECOL
);
3414 adapter
->stats
.mcc
+= er32(MCC
);
3415 adapter
->stats
.latecol
+= er32(LATECOL
);
3416 adapter
->stats
.dc
+= er32(DC
);
3417 adapter
->stats
.sec
+= er32(SEC
);
3418 adapter
->stats
.rlec
+= er32(RLEC
);
3419 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3420 adapter
->stats
.xontxc
+= er32(XONTXC
);
3421 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3422 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3423 adapter
->stats
.fcruc
+= er32(FCRUC
);
3424 adapter
->stats
.gptc
+= er32(GPTC
);
3425 adapter
->stats
.gotcl
+= er32(GOTCL
);
3426 adapter
->stats
.gotch
+= er32(GOTCH
);
3427 adapter
->stats
.rnbc
+= er32(RNBC
);
3428 adapter
->stats
.ruc
+= er32(RUC
);
3429 adapter
->stats
.rfc
+= er32(RFC
);
3430 adapter
->stats
.rjc
+= er32(RJC
);
3431 adapter
->stats
.torl
+= er32(TORL
);
3432 adapter
->stats
.torh
+= er32(TORH
);
3433 adapter
->stats
.totl
+= er32(TOTL
);
3434 adapter
->stats
.toth
+= er32(TOTH
);
3435 adapter
->stats
.tpr
+= er32(TPR
);
3437 adapter
->stats
.ptc64
+= er32(PTC64
);
3438 adapter
->stats
.ptc127
+= er32(PTC127
);
3439 adapter
->stats
.ptc255
+= er32(PTC255
);
3440 adapter
->stats
.ptc511
+= er32(PTC511
);
3441 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3442 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3444 adapter
->stats
.mptc
+= er32(MPTC
);
3445 adapter
->stats
.bptc
+= er32(BPTC
);
3447 /* used for adaptive IFS */
3449 hw
->tx_packet_delta
= er32(TPT
);
3450 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3451 hw
->collision_delta
= er32(COLC
);
3452 adapter
->stats
.colc
+= hw
->collision_delta
;
3454 if (hw
->mac_type
>= e1000_82543
) {
3455 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3456 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3457 adapter
->stats
.tncrs
+= er32(TNCRS
);
3458 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3459 adapter
->stats
.tsctc
+= er32(TSCTC
);
3460 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3463 /* Fill out the OS statistics structure */
3464 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3465 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3469 /* RLEC on some newer hardware can be incorrect so build
3470 * our own version based on RUC and ROC */
3471 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3472 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3473 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3474 adapter
->stats
.cexterr
;
3475 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3476 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3477 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3478 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3479 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3482 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3483 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3484 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3485 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3486 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3487 if (hw
->bad_tx_carr_stats_fd
&&
3488 adapter
->link_duplex
== FULL_DUPLEX
) {
3489 netdev
->stats
.tx_carrier_errors
= 0;
3490 adapter
->stats
.tncrs
= 0;
3493 /* Tx Dropped needs to be maintained elsewhere */
3496 if (hw
->media_type
== e1000_media_type_copper
) {
3497 if ((adapter
->link_speed
== SPEED_1000
) &&
3498 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3499 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3500 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3503 if ((hw
->mac_type
<= e1000_82546
) &&
3504 (hw
->phy_type
== e1000_phy_m88
) &&
3505 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3506 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3509 /* Management Stats */
3510 if (hw
->has_smbus
) {
3511 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3512 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3513 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3516 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3520 * e1000_intr - Interrupt Handler
3521 * @irq: interrupt number
3522 * @data: pointer to a network interface device structure
3525 static irqreturn_t
e1000_intr(int irq
, void *data
)
3527 struct net_device
*netdev
= data
;
3528 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3529 struct e1000_hw
*hw
= &adapter
->hw
;
3530 u32 icr
= er32(ICR
);
3532 if (unlikely((!icr
)))
3533 return IRQ_NONE
; /* Not our interrupt */
3536 * we might have caused the interrupt, but the above
3537 * read cleared it, and just in case the driver is
3538 * down there is nothing to do so return handled
3540 if (unlikely(test_bit(__E1000_DOWN
, &adapter
->flags
)))
3543 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3544 hw
->get_link_status
= 1;
3545 /* guard against interrupt when we're going down */
3546 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3547 schedule_delayed_work(&adapter
->watchdog_task
, 1);
3550 /* disable interrupts, without the synchronize_irq bit */
3552 E1000_WRITE_FLUSH();
3554 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3555 adapter
->total_tx_bytes
= 0;
3556 adapter
->total_tx_packets
= 0;
3557 adapter
->total_rx_bytes
= 0;
3558 adapter
->total_rx_packets
= 0;
3559 __napi_schedule(&adapter
->napi
);
3561 /* this really should not happen! if it does it is basically a
3562 * bug, but not a hard error, so enable ints and continue */
3563 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3564 e1000_irq_enable(adapter
);
3571 * e1000_clean - NAPI Rx polling callback
3572 * @adapter: board private structure
3574 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3576 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3577 int tx_clean_complete
= 0, work_done
= 0;
3579 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3581 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3583 if (!tx_clean_complete
)
3586 /* If budget not fully consumed, exit the polling mode */
3587 if (work_done
< budget
) {
3588 if (likely(adapter
->itr_setting
& 3))
3589 e1000_set_itr(adapter
);
3590 napi_complete(napi
);
3591 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3592 e1000_irq_enable(adapter
);
3599 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3600 * @adapter: board private structure
3602 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3603 struct e1000_tx_ring
*tx_ring
)
3605 struct e1000_hw
*hw
= &adapter
->hw
;
3606 struct net_device
*netdev
= adapter
->netdev
;
3607 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3608 struct e1000_buffer
*buffer_info
;
3609 unsigned int i
, eop
;
3610 unsigned int count
= 0;
3611 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3613 i
= tx_ring
->next_to_clean
;
3614 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3615 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3617 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3618 (count
< tx_ring
->count
)) {
3619 bool cleaned
= false;
3620 rmb(); /* read buffer_info after eop_desc */
3621 for ( ; !cleaned
; count
++) {
3622 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3623 buffer_info
= &tx_ring
->buffer_info
[i
];
3624 cleaned
= (i
== eop
);
3627 total_tx_packets
+= buffer_info
->segs
;
3628 total_tx_bytes
+= buffer_info
->bytecount
;
3630 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3631 tx_desc
->upper
.data
= 0;
3633 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3636 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3637 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3640 tx_ring
->next_to_clean
= i
;
3642 #define TX_WAKE_THRESHOLD 32
3643 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3644 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3645 /* Make sure that anybody stopping the queue after this
3646 * sees the new next_to_clean.
3650 if (netif_queue_stopped(netdev
) &&
3651 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3652 netif_wake_queue(netdev
);
3653 ++adapter
->restart_queue
;
3657 if (adapter
->detect_tx_hung
) {
3658 /* Detect a transmit hang in hardware, this serializes the
3659 * check with the clearing of time_stamp and movement of i */
3660 adapter
->detect_tx_hung
= false;
3661 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3662 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3663 (adapter
->tx_timeout_factor
* HZ
)) &&
3664 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3666 /* detected Tx unit hang */
3667 e_err(drv
, "Detected Tx Unit Hang\n"
3671 " next_to_use <%x>\n"
3672 " next_to_clean <%x>\n"
3673 "buffer_info[next_to_clean]\n"
3674 " time_stamp <%lx>\n"
3675 " next_to_watch <%x>\n"
3677 " next_to_watch.status <%x>\n",
3678 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3679 sizeof(struct e1000_tx_ring
)),
3680 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3681 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3682 tx_ring
->next_to_use
,
3683 tx_ring
->next_to_clean
,
3684 tx_ring
->buffer_info
[eop
].time_stamp
,
3687 eop_desc
->upper
.fields
.status
);
3688 netif_stop_queue(netdev
);
3691 adapter
->total_tx_bytes
+= total_tx_bytes
;
3692 adapter
->total_tx_packets
+= total_tx_packets
;
3693 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3694 netdev
->stats
.tx_packets
+= total_tx_packets
;
3695 return count
< tx_ring
->count
;
3699 * e1000_rx_checksum - Receive Checksum Offload for 82543
3700 * @adapter: board private structure
3701 * @status_err: receive descriptor status and error fields
3702 * @csum: receive descriptor csum field
3703 * @sk_buff: socket buffer with received data
3706 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3707 u32 csum
, struct sk_buff
*skb
)
3709 struct e1000_hw
*hw
= &adapter
->hw
;
3710 u16 status
= (u16
)status_err
;
3711 u8 errors
= (u8
)(status_err
>> 24);
3713 skb_checksum_none_assert(skb
);
3715 /* 82543 or newer only */
3716 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3717 /* Ignore Checksum bit is set */
3718 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3719 /* TCP/UDP checksum error bit is set */
3720 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3721 /* let the stack verify checksum errors */
3722 adapter
->hw_csum_err
++;
3725 /* TCP/UDP Checksum has not been calculated */
3726 if (!(status
& E1000_RXD_STAT_TCPCS
))
3729 /* It must be a TCP or UDP packet with a valid checksum */
3730 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3731 /* TCP checksum is good */
3732 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3734 adapter
->hw_csum_good
++;
3738 * e1000_consume_page - helper function
3740 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3745 skb
->data_len
+= length
;
3746 skb
->truesize
+= PAGE_SIZE
;
3750 * e1000_receive_skb - helper function to handle rx indications
3751 * @adapter: board private structure
3752 * @status: descriptor status field as written by hardware
3753 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3754 * @skb: pointer to sk_buff to be indicated to stack
3756 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3757 __le16 vlan
, struct sk_buff
*skb
)
3759 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
3761 if (status
& E1000_RXD_STAT_VP
) {
3762 u16 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
3764 __vlan_hwaccel_put_tag(skb
, vid
);
3766 napi_gro_receive(&adapter
->napi
, skb
);
3770 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3771 * @adapter: board private structure
3772 * @rx_ring: ring to clean
3773 * @work_done: amount of napi work completed this call
3774 * @work_to_do: max amount of work allowed for this call to do
3776 * the return value indicates whether actual cleaning was done, there
3777 * is no guarantee that everything was cleaned
3779 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
3780 struct e1000_rx_ring
*rx_ring
,
3781 int *work_done
, int work_to_do
)
3783 struct e1000_hw
*hw
= &adapter
->hw
;
3784 struct net_device
*netdev
= adapter
->netdev
;
3785 struct pci_dev
*pdev
= adapter
->pdev
;
3786 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3787 struct e1000_buffer
*buffer_info
, *next_buffer
;
3788 unsigned long irq_flags
;
3791 int cleaned_count
= 0;
3792 bool cleaned
= false;
3793 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3795 i
= rx_ring
->next_to_clean
;
3796 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3797 buffer_info
= &rx_ring
->buffer_info
[i
];
3799 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3800 struct sk_buff
*skb
;
3803 if (*work_done
>= work_to_do
)
3806 rmb(); /* read descriptor and rx_buffer_info after status DD */
3808 status
= rx_desc
->status
;
3809 skb
= buffer_info
->skb
;
3810 buffer_info
->skb
= NULL
;
3812 if (++i
== rx_ring
->count
) i
= 0;
3813 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3816 next_buffer
= &rx_ring
->buffer_info
[i
];
3820 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
3821 buffer_info
->length
, DMA_FROM_DEVICE
);
3822 buffer_info
->dma
= 0;
3824 length
= le16_to_cpu(rx_desc
->length
);
3826 /* errors is only valid for DD + EOP descriptors */
3827 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
3828 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
3829 u8 last_byte
= *(skb
->data
+ length
- 1);
3830 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3832 spin_lock_irqsave(&adapter
->stats_lock
,
3834 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3836 spin_unlock_irqrestore(&adapter
->stats_lock
,
3840 /* recycle both page and skb */
3841 buffer_info
->skb
= skb
;
3842 /* an error means any chain goes out the window
3844 if (rx_ring
->rx_skb_top
)
3845 dev_kfree_skb(rx_ring
->rx_skb_top
);
3846 rx_ring
->rx_skb_top
= NULL
;
3851 #define rxtop rx_ring->rx_skb_top
3852 if (!(status
& E1000_RXD_STAT_EOP
)) {
3853 /* this descriptor is only the beginning (or middle) */
3855 /* this is the beginning of a chain */
3857 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
3860 /* this is the middle of a chain */
3861 skb_fill_page_desc(rxtop
,
3862 skb_shinfo(rxtop
)->nr_frags
,
3863 buffer_info
->page
, 0, length
);
3864 /* re-use the skb, only consumed the page */
3865 buffer_info
->skb
= skb
;
3867 e1000_consume_page(buffer_info
, rxtop
, length
);
3871 /* end of the chain */
3872 skb_fill_page_desc(rxtop
,
3873 skb_shinfo(rxtop
)->nr_frags
,
3874 buffer_info
->page
, 0, length
);
3875 /* re-use the current skb, we only consumed the
3877 buffer_info
->skb
= skb
;
3880 e1000_consume_page(buffer_info
, skb
, length
);
3882 /* no chain, got EOP, this buf is the packet
3883 * copybreak to save the put_page/alloc_page */
3884 if (length
<= copybreak
&&
3885 skb_tailroom(skb
) >= length
) {
3887 vaddr
= kmap_atomic(buffer_info
->page
,
3888 KM_SKB_DATA_SOFTIRQ
);
3889 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
3890 kunmap_atomic(vaddr
,
3891 KM_SKB_DATA_SOFTIRQ
);
3892 /* re-use the page, so don't erase
3893 * buffer_info->page */
3894 skb_put(skb
, length
);
3896 skb_fill_page_desc(skb
, 0,
3897 buffer_info
->page
, 0,
3899 e1000_consume_page(buffer_info
, skb
,
3905 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3906 e1000_rx_checksum(adapter
,
3908 ((u32
)(rx_desc
->errors
) << 24),
3909 le16_to_cpu(rx_desc
->csum
), skb
);
3911 pskb_trim(skb
, skb
->len
- 4);
3913 /* probably a little skewed due to removing CRC */
3914 total_rx_bytes
+= skb
->len
;
3917 /* eth type trans needs skb->data to point to something */
3918 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
3919 e_err(drv
, "pskb_may_pull failed.\n");
3924 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3927 rx_desc
->status
= 0;
3929 /* return some buffers to hardware, one at a time is too slow */
3930 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3931 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3935 /* use prefetched values */
3937 buffer_info
= next_buffer
;
3939 rx_ring
->next_to_clean
= i
;
3941 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3943 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3945 adapter
->total_rx_packets
+= total_rx_packets
;
3946 adapter
->total_rx_bytes
+= total_rx_bytes
;
3947 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3948 netdev
->stats
.rx_packets
+= total_rx_packets
;
3953 * this should improve performance for small packets with large amounts
3954 * of reassembly being done in the stack
3956 static void e1000_check_copybreak(struct net_device
*netdev
,
3957 struct e1000_buffer
*buffer_info
,
3958 u32 length
, struct sk_buff
**skb
)
3960 struct sk_buff
*new_skb
;
3962 if (length
> copybreak
)
3965 new_skb
= netdev_alloc_skb_ip_align(netdev
, length
);
3969 skb_copy_to_linear_data_offset(new_skb
, -NET_IP_ALIGN
,
3970 (*skb
)->data
- NET_IP_ALIGN
,
3971 length
+ NET_IP_ALIGN
);
3972 /* save the skb in buffer_info as good */
3973 buffer_info
->skb
= *skb
;
3978 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3979 * @adapter: board private structure
3980 * @rx_ring: ring to clean
3981 * @work_done: amount of napi work completed this call
3982 * @work_to_do: max amount of work allowed for this call to do
3984 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3985 struct e1000_rx_ring
*rx_ring
,
3986 int *work_done
, int work_to_do
)
3988 struct e1000_hw
*hw
= &adapter
->hw
;
3989 struct net_device
*netdev
= adapter
->netdev
;
3990 struct pci_dev
*pdev
= adapter
->pdev
;
3991 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3992 struct e1000_buffer
*buffer_info
, *next_buffer
;
3993 unsigned long flags
;
3996 int cleaned_count
= 0;
3997 bool cleaned
= false;
3998 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4000 i
= rx_ring
->next_to_clean
;
4001 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4002 buffer_info
= &rx_ring
->buffer_info
[i
];
4004 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4005 struct sk_buff
*skb
;
4008 if (*work_done
>= work_to_do
)
4011 rmb(); /* read descriptor and rx_buffer_info after status DD */
4013 status
= rx_desc
->status
;
4014 skb
= buffer_info
->skb
;
4015 buffer_info
->skb
= NULL
;
4017 prefetch(skb
->data
- NET_IP_ALIGN
);
4019 if (++i
== rx_ring
->count
) i
= 0;
4020 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4023 next_buffer
= &rx_ring
->buffer_info
[i
];
4027 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4028 buffer_info
->length
, DMA_FROM_DEVICE
);
4029 buffer_info
->dma
= 0;
4031 length
= le16_to_cpu(rx_desc
->length
);
4032 /* !EOP means multiple descriptors were used to store a single
4033 * packet, if thats the case we need to toss it. In fact, we
4034 * to toss every packet with the EOP bit clear and the next
4035 * frame that _does_ have the EOP bit set, as it is by
4036 * definition only a frame fragment
4038 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
4039 adapter
->discarding
= true;
4041 if (adapter
->discarding
) {
4042 /* All receives must fit into a single buffer */
4043 e_dbg("Receive packet consumed multiple buffers\n");
4045 buffer_info
->skb
= skb
;
4046 if (status
& E1000_RXD_STAT_EOP
)
4047 adapter
->discarding
= false;
4051 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4052 u8 last_byte
= *(skb
->data
+ length
- 1);
4053 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4055 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4056 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4058 spin_unlock_irqrestore(&adapter
->stats_lock
,
4063 buffer_info
->skb
= skb
;
4068 /* adjust length to remove Ethernet CRC, this must be
4069 * done after the TBI_ACCEPT workaround above */
4072 /* probably a little skewed due to removing CRC */
4073 total_rx_bytes
+= length
;
4076 e1000_check_copybreak(netdev
, buffer_info
, length
, &skb
);
4078 skb_put(skb
, length
);
4080 /* Receive Checksum Offload */
4081 e1000_rx_checksum(adapter
,
4083 ((u32
)(rx_desc
->errors
) << 24),
4084 le16_to_cpu(rx_desc
->csum
), skb
);
4086 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4089 rx_desc
->status
= 0;
4091 /* return some buffers to hardware, one at a time is too slow */
4092 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4093 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4097 /* use prefetched values */
4099 buffer_info
= next_buffer
;
4101 rx_ring
->next_to_clean
= i
;
4103 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4105 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4107 adapter
->total_rx_packets
+= total_rx_packets
;
4108 adapter
->total_rx_bytes
+= total_rx_bytes
;
4109 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
4110 netdev
->stats
.rx_packets
+= total_rx_packets
;
4115 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4116 * @adapter: address of board private structure
4117 * @rx_ring: pointer to receive ring structure
4118 * @cleaned_count: number of buffers to allocate this pass
4122 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
4123 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
4125 struct net_device
*netdev
= adapter
->netdev
;
4126 struct pci_dev
*pdev
= adapter
->pdev
;
4127 struct e1000_rx_desc
*rx_desc
;
4128 struct e1000_buffer
*buffer_info
;
4129 struct sk_buff
*skb
;
4131 unsigned int bufsz
= 256 - 16 /*for skb_reserve */ ;
4133 i
= rx_ring
->next_to_use
;
4134 buffer_info
= &rx_ring
->buffer_info
[i
];
4136 while (cleaned_count
--) {
4137 skb
= buffer_info
->skb
;
4143 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4144 if (unlikely(!skb
)) {
4145 /* Better luck next round */
4146 adapter
->alloc_rx_buff_failed
++;
4150 /* Fix for errata 23, can't cross 64kB boundary */
4151 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4152 struct sk_buff
*oldskb
= skb
;
4153 e_err(rx_err
, "skb align check failed: %u bytes at "
4154 "%p\n", bufsz
, skb
->data
);
4155 /* Try again, without freeing the previous */
4156 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4157 /* Failed allocation, critical failure */
4159 dev_kfree_skb(oldskb
);
4160 adapter
->alloc_rx_buff_failed
++;
4164 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4167 dev_kfree_skb(oldskb
);
4168 break; /* while (cleaned_count--) */
4171 /* Use new allocation */
4172 dev_kfree_skb(oldskb
);
4174 buffer_info
->skb
= skb
;
4175 buffer_info
->length
= adapter
->rx_buffer_len
;
4177 /* allocate a new page if necessary */
4178 if (!buffer_info
->page
) {
4179 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4180 if (unlikely(!buffer_info
->page
)) {
4181 adapter
->alloc_rx_buff_failed
++;
4186 if (!buffer_info
->dma
) {
4187 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
4188 buffer_info
->page
, 0,
4189 buffer_info
->length
,
4191 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4192 put_page(buffer_info
->page
);
4194 buffer_info
->page
= NULL
;
4195 buffer_info
->skb
= NULL
;
4196 buffer_info
->dma
= 0;
4197 adapter
->alloc_rx_buff_failed
++;
4198 break; /* while !buffer_info->skb */
4202 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4203 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4205 if (unlikely(++i
== rx_ring
->count
))
4207 buffer_info
= &rx_ring
->buffer_info
[i
];
4210 if (likely(rx_ring
->next_to_use
!= i
)) {
4211 rx_ring
->next_to_use
= i
;
4212 if (unlikely(i
-- == 0))
4213 i
= (rx_ring
->count
- 1);
4215 /* Force memory writes to complete before letting h/w
4216 * know there are new descriptors to fetch. (Only
4217 * applicable for weak-ordered memory model archs,
4218 * such as IA-64). */
4220 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4225 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4226 * @adapter: address of board private structure
4229 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4230 struct e1000_rx_ring
*rx_ring
,
4233 struct e1000_hw
*hw
= &adapter
->hw
;
4234 struct net_device
*netdev
= adapter
->netdev
;
4235 struct pci_dev
*pdev
= adapter
->pdev
;
4236 struct e1000_rx_desc
*rx_desc
;
4237 struct e1000_buffer
*buffer_info
;
4238 struct sk_buff
*skb
;
4240 unsigned int bufsz
= adapter
->rx_buffer_len
;
4242 i
= rx_ring
->next_to_use
;
4243 buffer_info
= &rx_ring
->buffer_info
[i
];
4245 while (cleaned_count
--) {
4246 skb
= buffer_info
->skb
;
4252 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4253 if (unlikely(!skb
)) {
4254 /* Better luck next round */
4255 adapter
->alloc_rx_buff_failed
++;
4259 /* Fix for errata 23, can't cross 64kB boundary */
4260 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4261 struct sk_buff
*oldskb
= skb
;
4262 e_err(rx_err
, "skb align check failed: %u bytes at "
4263 "%p\n", bufsz
, skb
->data
);
4264 /* Try again, without freeing the previous */
4265 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4266 /* Failed allocation, critical failure */
4268 dev_kfree_skb(oldskb
);
4269 adapter
->alloc_rx_buff_failed
++;
4273 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4276 dev_kfree_skb(oldskb
);
4277 adapter
->alloc_rx_buff_failed
++;
4278 break; /* while !buffer_info->skb */
4281 /* Use new allocation */
4282 dev_kfree_skb(oldskb
);
4284 buffer_info
->skb
= skb
;
4285 buffer_info
->length
= adapter
->rx_buffer_len
;
4287 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4289 buffer_info
->length
,
4291 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4293 buffer_info
->skb
= NULL
;
4294 buffer_info
->dma
= 0;
4295 adapter
->alloc_rx_buff_failed
++;
4296 break; /* while !buffer_info->skb */
4300 * XXX if it was allocated cleanly it will never map to a
4304 /* Fix for errata 23, can't cross 64kB boundary */
4305 if (!e1000_check_64k_bound(adapter
,
4306 (void *)(unsigned long)buffer_info
->dma
,
4307 adapter
->rx_buffer_len
)) {
4308 e_err(rx_err
, "dma align check failed: %u bytes at "
4309 "%p\n", adapter
->rx_buffer_len
,
4310 (void *)(unsigned long)buffer_info
->dma
);
4312 buffer_info
->skb
= NULL
;
4314 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4315 adapter
->rx_buffer_len
,
4317 buffer_info
->dma
= 0;
4319 adapter
->alloc_rx_buff_failed
++;
4320 break; /* while !buffer_info->skb */
4322 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4323 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4325 if (unlikely(++i
== rx_ring
->count
))
4327 buffer_info
= &rx_ring
->buffer_info
[i
];
4330 if (likely(rx_ring
->next_to_use
!= i
)) {
4331 rx_ring
->next_to_use
= i
;
4332 if (unlikely(i
-- == 0))
4333 i
= (rx_ring
->count
- 1);
4335 /* Force memory writes to complete before letting h/w
4336 * know there are new descriptors to fetch. (Only
4337 * applicable for weak-ordered memory model archs,
4338 * such as IA-64). */
4340 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4345 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4349 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4351 struct e1000_hw
*hw
= &adapter
->hw
;
4355 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4356 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4359 if (adapter
->smartspeed
== 0) {
4360 /* If Master/Slave config fault is asserted twice,
4361 * we assume back-to-back */
4362 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4363 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4364 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4365 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4366 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4367 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4368 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4369 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4371 adapter
->smartspeed
++;
4372 if (!e1000_phy_setup_autoneg(hw
) &&
4373 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4375 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4376 MII_CR_RESTART_AUTO_NEG
);
4377 e1000_write_phy_reg(hw
, PHY_CTRL
,
4382 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4383 /* If still no link, perhaps using 2/3 pair cable */
4384 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4385 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4386 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4387 if (!e1000_phy_setup_autoneg(hw
) &&
4388 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4389 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4390 MII_CR_RESTART_AUTO_NEG
);
4391 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4394 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4395 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4396 adapter
->smartspeed
= 0;
4406 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4412 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4425 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4428 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4429 struct e1000_hw
*hw
= &adapter
->hw
;
4430 struct mii_ioctl_data
*data
= if_mii(ifr
);
4433 unsigned long flags
;
4435 if (hw
->media_type
!= e1000_media_type_copper
)
4440 data
->phy_id
= hw
->phy_addr
;
4443 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4444 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4446 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4449 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4452 if (data
->reg_num
& ~(0x1F))
4454 mii_reg
= data
->val_in
;
4455 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4456 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4458 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4461 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4462 if (hw
->media_type
== e1000_media_type_copper
) {
4463 switch (data
->reg_num
) {
4465 if (mii_reg
& MII_CR_POWER_DOWN
)
4467 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4469 hw
->autoneg_advertised
= 0x2F;
4474 else if (mii_reg
& 0x2000)
4478 retval
= e1000_set_spd_dplx(
4486 if (netif_running(adapter
->netdev
))
4487 e1000_reinit_locked(adapter
);
4489 e1000_reset(adapter
);
4491 case M88E1000_PHY_SPEC_CTRL
:
4492 case M88E1000_EXT_PHY_SPEC_CTRL
:
4493 if (e1000_phy_reset(hw
))
4498 switch (data
->reg_num
) {
4500 if (mii_reg
& MII_CR_POWER_DOWN
)
4502 if (netif_running(adapter
->netdev
))
4503 e1000_reinit_locked(adapter
);
4505 e1000_reset(adapter
);
4513 return E1000_SUCCESS
;
4516 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4518 struct e1000_adapter
*adapter
= hw
->back
;
4519 int ret_val
= pci_set_mwi(adapter
->pdev
);
4522 e_err(probe
, "Error in setting MWI\n");
4525 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4527 struct e1000_adapter
*adapter
= hw
->back
;
4529 pci_clear_mwi(adapter
->pdev
);
4532 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4534 struct e1000_adapter
*adapter
= hw
->back
;
4535 return pcix_get_mmrbc(adapter
->pdev
);
4538 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4540 struct e1000_adapter
*adapter
= hw
->back
;
4541 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4544 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4549 static bool e1000_vlan_used(struct e1000_adapter
*adapter
)
4553 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4558 static void __e1000_vlan_mode(struct e1000_adapter
*adapter
,
4559 netdev_features_t features
)
4561 struct e1000_hw
*hw
= &adapter
->hw
;
4565 if (features
& NETIF_F_HW_VLAN_RX
) {
4566 /* enable VLAN tag insert/strip */
4567 ctrl
|= E1000_CTRL_VME
;
4569 /* disable VLAN tag insert/strip */
4570 ctrl
&= ~E1000_CTRL_VME
;
4574 static void e1000_vlan_filter_on_off(struct e1000_adapter
*adapter
,
4577 struct e1000_hw
*hw
= &adapter
->hw
;
4580 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4581 e1000_irq_disable(adapter
);
4583 __e1000_vlan_mode(adapter
, adapter
->netdev
->features
);
4585 /* enable VLAN receive filtering */
4587 rctl
&= ~E1000_RCTL_CFIEN
;
4588 if (!(adapter
->netdev
->flags
& IFF_PROMISC
))
4589 rctl
|= E1000_RCTL_VFE
;
4591 e1000_update_mng_vlan(adapter
);
4593 /* disable VLAN receive filtering */
4595 rctl
&= ~E1000_RCTL_VFE
;
4599 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4600 e1000_irq_enable(adapter
);
4603 static void e1000_vlan_mode(struct net_device
*netdev
,
4604 netdev_features_t features
)
4606 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4608 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4609 e1000_irq_disable(adapter
);
4611 __e1000_vlan_mode(adapter
, features
);
4613 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4614 e1000_irq_enable(adapter
);
4617 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4619 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4620 struct e1000_hw
*hw
= &adapter
->hw
;
4623 if ((hw
->mng_cookie
.status
&
4624 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4625 (vid
== adapter
->mng_vlan_id
))
4628 if (!e1000_vlan_used(adapter
))
4629 e1000_vlan_filter_on_off(adapter
, true);
4631 /* add VID to filter table */
4632 index
= (vid
>> 5) & 0x7F;
4633 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4634 vfta
|= (1 << (vid
& 0x1F));
4635 e1000_write_vfta(hw
, index
, vfta
);
4637 set_bit(vid
, adapter
->active_vlans
);
4642 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4644 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4645 struct e1000_hw
*hw
= &adapter
->hw
;
4648 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4649 e1000_irq_disable(adapter
);
4650 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4651 e1000_irq_enable(adapter
);
4653 /* remove VID from filter table */
4654 index
= (vid
>> 5) & 0x7F;
4655 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4656 vfta
&= ~(1 << (vid
& 0x1F));
4657 e1000_write_vfta(hw
, index
, vfta
);
4659 clear_bit(vid
, adapter
->active_vlans
);
4661 if (!e1000_vlan_used(adapter
))
4662 e1000_vlan_filter_on_off(adapter
, false);
4667 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4671 if (!e1000_vlan_used(adapter
))
4674 e1000_vlan_filter_on_off(adapter
, true);
4675 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4676 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4679 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
4681 struct e1000_hw
*hw
= &adapter
->hw
;
4685 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4686 * for the switch() below to work */
4687 if ((spd
& 1) || (dplx
& ~1))
4690 /* Fiber NICs only allow 1000 gbps Full duplex */
4691 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4692 spd
!= SPEED_1000
&&
4693 dplx
!= DUPLEX_FULL
)
4696 switch (spd
+ dplx
) {
4697 case SPEED_10
+ DUPLEX_HALF
:
4698 hw
->forced_speed_duplex
= e1000_10_half
;
4700 case SPEED_10
+ DUPLEX_FULL
:
4701 hw
->forced_speed_duplex
= e1000_10_full
;
4703 case SPEED_100
+ DUPLEX_HALF
:
4704 hw
->forced_speed_duplex
= e1000_100_half
;
4706 case SPEED_100
+ DUPLEX_FULL
:
4707 hw
->forced_speed_duplex
= e1000_100_full
;
4709 case SPEED_1000
+ DUPLEX_FULL
:
4711 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4713 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4720 e_err(probe
, "Unsupported Speed/Duplex configuration\n");
4724 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4726 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4727 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4728 struct e1000_hw
*hw
= &adapter
->hw
;
4729 u32 ctrl
, ctrl_ext
, rctl
, status
;
4730 u32 wufc
= adapter
->wol
;
4735 netif_device_detach(netdev
);
4737 if (netif_running(netdev
)) {
4738 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4739 e1000_down(adapter
);
4743 retval
= pci_save_state(pdev
);
4748 status
= er32(STATUS
);
4749 if (status
& E1000_STATUS_LU
)
4750 wufc
&= ~E1000_WUFC_LNKC
;
4753 e1000_setup_rctl(adapter
);
4754 e1000_set_rx_mode(netdev
);
4758 /* turn on all-multi mode if wake on multicast is enabled */
4759 if (wufc
& E1000_WUFC_MC
)
4760 rctl
|= E1000_RCTL_MPE
;
4762 /* enable receives in the hardware */
4763 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
4765 if (hw
->mac_type
>= e1000_82540
) {
4767 /* advertise wake from D3Cold */
4768 #define E1000_CTRL_ADVD3WUC 0x00100000
4769 /* phy power management enable */
4770 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4771 ctrl
|= E1000_CTRL_ADVD3WUC
|
4772 E1000_CTRL_EN_PHY_PWR_MGMT
;
4776 if (hw
->media_type
== e1000_media_type_fiber
||
4777 hw
->media_type
== e1000_media_type_internal_serdes
) {
4778 /* keep the laser running in D3 */
4779 ctrl_ext
= er32(CTRL_EXT
);
4780 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4781 ew32(CTRL_EXT
, ctrl_ext
);
4784 ew32(WUC
, E1000_WUC_PME_EN
);
4791 e1000_release_manageability(adapter
);
4793 *enable_wake
= !!wufc
;
4795 /* make sure adapter isn't asleep if manageability is enabled */
4796 if (adapter
->en_mng_pt
)
4797 *enable_wake
= true;
4799 if (netif_running(netdev
))
4800 e1000_free_irq(adapter
);
4802 pci_disable_device(pdev
);
4808 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4813 retval
= __e1000_shutdown(pdev
, &wake
);
4818 pci_prepare_to_sleep(pdev
);
4820 pci_wake_from_d3(pdev
, false);
4821 pci_set_power_state(pdev
, PCI_D3hot
);
4827 static int e1000_resume(struct pci_dev
*pdev
)
4829 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4830 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4831 struct e1000_hw
*hw
= &adapter
->hw
;
4834 pci_set_power_state(pdev
, PCI_D0
);
4835 pci_restore_state(pdev
);
4836 pci_save_state(pdev
);
4838 if (adapter
->need_ioport
)
4839 err
= pci_enable_device(pdev
);
4841 err
= pci_enable_device_mem(pdev
);
4843 pr_err("Cannot enable PCI device from suspend\n");
4846 pci_set_master(pdev
);
4848 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4849 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4851 if (netif_running(netdev
)) {
4852 err
= e1000_request_irq(adapter
);
4857 e1000_power_up_phy(adapter
);
4858 e1000_reset(adapter
);
4861 e1000_init_manageability(adapter
);
4863 if (netif_running(netdev
))
4866 netif_device_attach(netdev
);
4872 static void e1000_shutdown(struct pci_dev
*pdev
)
4876 __e1000_shutdown(pdev
, &wake
);
4878 if (system_state
== SYSTEM_POWER_OFF
) {
4879 pci_wake_from_d3(pdev
, wake
);
4880 pci_set_power_state(pdev
, PCI_D3hot
);
4884 #ifdef CONFIG_NET_POLL_CONTROLLER
4886 * Polling 'interrupt' - used by things like netconsole to send skbs
4887 * without having to re-enable interrupts. It's not called while
4888 * the interrupt routine is executing.
4890 static void e1000_netpoll(struct net_device
*netdev
)
4892 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4894 disable_irq(adapter
->pdev
->irq
);
4895 e1000_intr(adapter
->pdev
->irq
, netdev
);
4896 enable_irq(adapter
->pdev
->irq
);
4901 * e1000_io_error_detected - called when PCI error is detected
4902 * @pdev: Pointer to PCI device
4903 * @state: The current pci connection state
4905 * This function is called after a PCI bus error affecting
4906 * this device has been detected.
4908 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4909 pci_channel_state_t state
)
4911 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4912 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4914 netif_device_detach(netdev
);
4916 if (state
== pci_channel_io_perm_failure
)
4917 return PCI_ERS_RESULT_DISCONNECT
;
4919 if (netif_running(netdev
))
4920 e1000_down(adapter
);
4921 pci_disable_device(pdev
);
4923 /* Request a slot slot reset. */
4924 return PCI_ERS_RESULT_NEED_RESET
;
4928 * e1000_io_slot_reset - called after the pci bus has been reset.
4929 * @pdev: Pointer to PCI device
4931 * Restart the card from scratch, as if from a cold-boot. Implementation
4932 * resembles the first-half of the e1000_resume routine.
4934 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4936 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4937 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4938 struct e1000_hw
*hw
= &adapter
->hw
;
4941 if (adapter
->need_ioport
)
4942 err
= pci_enable_device(pdev
);
4944 err
= pci_enable_device_mem(pdev
);
4946 pr_err("Cannot re-enable PCI device after reset.\n");
4947 return PCI_ERS_RESULT_DISCONNECT
;
4949 pci_set_master(pdev
);
4951 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4952 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4954 e1000_reset(adapter
);
4957 return PCI_ERS_RESULT_RECOVERED
;
4961 * e1000_io_resume - called when traffic can start flowing again.
4962 * @pdev: Pointer to PCI device
4964 * This callback is called when the error recovery driver tells us that
4965 * its OK to resume normal operation. Implementation resembles the
4966 * second-half of the e1000_resume routine.
4968 static void e1000_io_resume(struct pci_dev
*pdev
)
4970 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4971 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4973 e1000_init_manageability(adapter
);
4975 if (netif_running(netdev
)) {
4976 if (e1000_up(adapter
)) {
4977 pr_info("can't bring device back up after reset\n");
4982 netif_device_attach(netdev
);