Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
blobe2a80a283fd313e0e76fa87a8470c09b37415f27
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
59 #include "e1000.h"
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
114 #define E1000_ICH_RAR_ENTRIES 7
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
144 /* EMI Registers */
145 #define I82579_EMI_ADDR 0x10
146 #define I82579_EMI_DATA 0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
149 /* Strapping Option Register - RO */
150 #define E1000_STRAP 0x0000C
151 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
152 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
154 /* OEM Bits Phy Register */
155 #define HV_OEM_BITS PHY_REG(768, 25)
156 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
157 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
158 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
160 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
161 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
163 /* KMRN Mode Control */
164 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
165 #define HV_KMRN_MDIO_SLOW 0x0400
167 /* KMRN FIFO Control and Status */
168 #define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
169 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
170 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
172 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
173 /* Offset 04h HSFSTS */
174 union ich8_hws_flash_status {
175 struct ich8_hsfsts {
176 u16 flcdone :1; /* bit 0 Flash Cycle Done */
177 u16 flcerr :1; /* bit 1 Flash Cycle Error */
178 u16 dael :1; /* bit 2 Direct Access error Log */
179 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
180 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
181 u16 reserved1 :2; /* bit 13:6 Reserved */
182 u16 reserved2 :6; /* bit 13:6 Reserved */
183 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
184 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
185 } hsf_status;
186 u16 regval;
189 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
190 /* Offset 06h FLCTL */
191 union ich8_hws_flash_ctrl {
192 struct ich8_hsflctl {
193 u16 flcgo :1; /* 0 Flash Cycle Go */
194 u16 flcycle :2; /* 2:1 Flash Cycle */
195 u16 reserved :5; /* 7:3 Reserved */
196 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
197 u16 flockdn :6; /* 15:10 Reserved */
198 } hsf_ctrl;
199 u16 regval;
202 /* ICH Flash Region Access Permissions */
203 union ich8_hws_flash_regacc {
204 struct ich8_flracc {
205 u32 grra :8; /* 0:7 GbE region Read Access */
206 u32 grwa :8; /* 8:15 GbE region Write Access */
207 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
208 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
209 } hsf_flregacc;
210 u16 regval;
213 /* ICH Flash Protected Region */
214 union ich8_flash_protected_range {
215 struct ich8_pr {
216 u32 base:13; /* 0:12 Protected Range Base */
217 u32 reserved1:2; /* 13:14 Reserved */
218 u32 rpe:1; /* 15 Read Protection Enable */
219 u32 limit:13; /* 16:28 Protected Range Limit */
220 u32 reserved2:2; /* 29:30 Reserved */
221 u32 wpe:1; /* 31 Write Protection Enable */
222 } range;
223 u32 regval;
226 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
227 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
228 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
229 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
230 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
231 u32 offset, u8 byte);
232 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
233 u8 *data);
234 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
235 u16 *data);
236 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
237 u8 size, u16 *data);
238 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
239 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
240 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
245 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
246 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
247 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
248 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
249 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
250 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
251 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
252 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
253 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
254 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
255 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
256 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
257 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
259 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
261 return readw(hw->flash_address + reg);
264 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
266 return readl(hw->flash_address + reg);
269 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
271 writew(val, hw->flash_address + reg);
274 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
276 writel(val, hw->flash_address + reg);
279 #define er16flash(reg) __er16flash(hw, (reg))
280 #define er32flash(reg) __er32flash(hw, (reg))
281 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
282 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
284 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
286 u32 ctrl;
288 ctrl = er32(CTRL);
289 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
290 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
291 ew32(CTRL, ctrl);
292 e1e_flush();
293 udelay(10);
294 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
295 ew32(CTRL, ctrl);
299 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
300 * @hw: pointer to the HW structure
302 * Initialize family-specific PHY parameters and function pointers.
304 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
306 struct e1000_phy_info *phy = &hw->phy;
307 u32 fwsm;
308 s32 ret_val = 0;
310 phy->addr = 1;
311 phy->reset_delay_us = 100;
313 phy->ops.set_page = e1000_set_page_igp;
314 phy->ops.read_reg = e1000_read_phy_reg_hv;
315 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
316 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
317 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
318 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
319 phy->ops.write_reg = e1000_write_phy_reg_hv;
320 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
321 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
322 phy->ops.power_up = e1000_power_up_phy_copper;
323 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
324 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
327 * The MAC-PHY interconnect may still be in SMBus mode
328 * after Sx->S0. If the manageability engine (ME) is
329 * disabled, then toggle the LANPHYPC Value bit to force
330 * the interconnect to PCIe mode.
332 fwsm = er32(FWSM);
333 if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
334 e1000_toggle_lanphypc_value_ich8lan(hw);
335 msleep(50);
338 * Gate automatic PHY configuration by hardware on
339 * non-managed 82579
341 if (hw->mac.type == e1000_pch2lan)
342 e1000_gate_hw_phy_config_ich8lan(hw, true);
346 * Reset the PHY before any access to it. Doing so, ensures that
347 * the PHY is in a known good state before we read/write PHY registers.
348 * The generic reset is sufficient here, because we haven't determined
349 * the PHY type yet.
351 ret_val = e1000e_phy_hw_reset_generic(hw);
352 if (ret_val)
353 goto out;
355 /* Ungate automatic PHY configuration on non-managed 82579 */
356 if ((hw->mac.type == e1000_pch2lan) &&
357 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
358 usleep_range(10000, 20000);
359 e1000_gate_hw_phy_config_ich8lan(hw, false);
362 phy->id = e1000_phy_unknown;
363 switch (hw->mac.type) {
364 default:
365 ret_val = e1000e_get_phy_id(hw);
366 if (ret_val)
367 goto out;
368 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
369 break;
370 /* fall-through */
371 case e1000_pch2lan:
373 * In case the PHY needs to be in mdio slow mode,
374 * set slow mode and try to get the PHY id again.
376 ret_val = e1000_set_mdio_slow_mode_hv(hw);
377 if (ret_val)
378 goto out;
379 ret_val = e1000e_get_phy_id(hw);
380 if (ret_val)
381 goto out;
382 break;
384 phy->type = e1000e_get_phy_type_from_id(phy->id);
386 switch (phy->type) {
387 case e1000_phy_82577:
388 case e1000_phy_82579:
389 phy->ops.check_polarity = e1000_check_polarity_82577;
390 phy->ops.force_speed_duplex =
391 e1000_phy_force_speed_duplex_82577;
392 phy->ops.get_cable_length = e1000_get_cable_length_82577;
393 phy->ops.get_info = e1000_get_phy_info_82577;
394 phy->ops.commit = e1000e_phy_sw_reset;
395 break;
396 case e1000_phy_82578:
397 phy->ops.check_polarity = e1000_check_polarity_m88;
398 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
399 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
400 phy->ops.get_info = e1000e_get_phy_info_m88;
401 break;
402 default:
403 ret_val = -E1000_ERR_PHY;
404 break;
407 out:
408 return ret_val;
412 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
413 * @hw: pointer to the HW structure
415 * Initialize family-specific PHY parameters and function pointers.
417 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
419 struct e1000_phy_info *phy = &hw->phy;
420 s32 ret_val;
421 u16 i = 0;
423 phy->addr = 1;
424 phy->reset_delay_us = 100;
426 phy->ops.power_up = e1000_power_up_phy_copper;
427 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
430 * We may need to do this twice - once for IGP and if that fails,
431 * we'll set BM func pointers and try again
433 ret_val = e1000e_determine_phy_address(hw);
434 if (ret_val) {
435 phy->ops.write_reg = e1000e_write_phy_reg_bm;
436 phy->ops.read_reg = e1000e_read_phy_reg_bm;
437 ret_val = e1000e_determine_phy_address(hw);
438 if (ret_val) {
439 e_dbg("Cannot determine PHY addr. Erroring out\n");
440 return ret_val;
444 phy->id = 0;
445 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
446 (i++ < 100)) {
447 usleep_range(1000, 2000);
448 ret_val = e1000e_get_phy_id(hw);
449 if (ret_val)
450 return ret_val;
453 /* Verify phy id */
454 switch (phy->id) {
455 case IGP03E1000_E_PHY_ID:
456 phy->type = e1000_phy_igp_3;
457 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
459 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
460 phy->ops.get_info = e1000e_get_phy_info_igp;
461 phy->ops.check_polarity = e1000_check_polarity_igp;
462 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
463 break;
464 case IFE_E_PHY_ID:
465 case IFE_PLUS_E_PHY_ID:
466 case IFE_C_E_PHY_ID:
467 phy->type = e1000_phy_ife;
468 phy->autoneg_mask = E1000_ALL_NOT_GIG;
469 phy->ops.get_info = e1000_get_phy_info_ife;
470 phy->ops.check_polarity = e1000_check_polarity_ife;
471 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
472 break;
473 case BME1000_E_PHY_ID:
474 phy->type = e1000_phy_bm;
475 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
476 phy->ops.read_reg = e1000e_read_phy_reg_bm;
477 phy->ops.write_reg = e1000e_write_phy_reg_bm;
478 phy->ops.commit = e1000e_phy_sw_reset;
479 phy->ops.get_info = e1000e_get_phy_info_m88;
480 phy->ops.check_polarity = e1000_check_polarity_m88;
481 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
482 break;
483 default:
484 return -E1000_ERR_PHY;
485 break;
488 return 0;
492 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
493 * @hw: pointer to the HW structure
495 * Initialize family-specific NVM parameters and function
496 * pointers.
498 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
500 struct e1000_nvm_info *nvm = &hw->nvm;
501 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
502 u32 gfpreg, sector_base_addr, sector_end_addr;
503 u16 i;
505 /* Can't read flash registers if the register set isn't mapped. */
506 if (!hw->flash_address) {
507 e_dbg("ERROR: Flash registers not mapped\n");
508 return -E1000_ERR_CONFIG;
511 nvm->type = e1000_nvm_flash_sw;
513 gfpreg = er32flash(ICH_FLASH_GFPREG);
516 * sector_X_addr is a "sector"-aligned address (4096 bytes)
517 * Add 1 to sector_end_addr since this sector is included in
518 * the overall size.
520 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
521 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
523 /* flash_base_addr is byte-aligned */
524 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
527 * find total size of the NVM, then cut in half since the total
528 * size represents two separate NVM banks.
530 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
531 << FLASH_SECTOR_ADDR_SHIFT;
532 nvm->flash_bank_size /= 2;
533 /* Adjust to word count */
534 nvm->flash_bank_size /= sizeof(u16);
536 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
538 /* Clear shadow ram */
539 for (i = 0; i < nvm->word_size; i++) {
540 dev_spec->shadow_ram[i].modified = false;
541 dev_spec->shadow_ram[i].value = 0xFFFF;
544 return 0;
548 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
549 * @hw: pointer to the HW structure
551 * Initialize family-specific MAC parameters and function
552 * pointers.
554 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
556 struct e1000_hw *hw = &adapter->hw;
557 struct e1000_mac_info *mac = &hw->mac;
559 /* Set media type function pointer */
560 hw->phy.media_type = e1000_media_type_copper;
562 /* Set mta register count */
563 mac->mta_reg_count = 32;
564 /* Set rar entry count */
565 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566 if (mac->type == e1000_ich8lan)
567 mac->rar_entry_count--;
568 /* FWSM register */
569 mac->has_fwsm = true;
570 /* ARC subsystem not supported */
571 mac->arc_subsystem_valid = false;
572 /* Adaptive IFS supported */
573 mac->adaptive_ifs = true;
575 /* LED operations */
576 switch (mac->type) {
577 case e1000_ich8lan:
578 case e1000_ich9lan:
579 case e1000_ich10lan:
580 /* check management mode */
581 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582 /* ID LED init */
583 mac->ops.id_led_init = e1000e_id_led_init;
584 /* blink LED */
585 mac->ops.blink_led = e1000e_blink_led_generic;
586 /* setup LED */
587 mac->ops.setup_led = e1000e_setup_led_generic;
588 /* cleanup LED */
589 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590 /* turn on/off LED */
591 mac->ops.led_on = e1000_led_on_ich8lan;
592 mac->ops.led_off = e1000_led_off_ich8lan;
593 break;
594 case e1000_pchlan:
595 case e1000_pch2lan:
596 /* check management mode */
597 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598 /* ID LED init */
599 mac->ops.id_led_init = e1000_id_led_init_pchlan;
600 /* setup LED */
601 mac->ops.setup_led = e1000_setup_led_pchlan;
602 /* cleanup LED */
603 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604 /* turn on/off LED */
605 mac->ops.led_on = e1000_led_on_pchlan;
606 mac->ops.led_off = e1000_led_off_pchlan;
607 break;
608 default:
609 break;
612 /* Enable PCS Lock-loss workaround for ICH8 */
613 if (mac->type == e1000_ich8lan)
614 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
616 /* Gate automatic PHY configuration by hardware on managed 82579 */
617 if ((mac->type == e1000_pch2lan) &&
618 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619 e1000_gate_hw_phy_config_ich8lan(hw, true);
621 return 0;
625 * e1000_set_eee_pchlan - Enable/disable EEE support
626 * @hw: pointer to the HW structure
628 * Enable/disable EEE based on setting in dev_spec structure. The bits in
629 * the LPI Control register will remain set only if/when link is up.
631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
633 s32 ret_val = 0;
634 u16 phy_reg;
636 if (hw->phy.type != e1000_phy_82579)
637 goto out;
639 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640 if (ret_val)
641 goto out;
643 if (hw->dev_spec.ich8lan.eee_disable)
644 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645 else
646 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
648 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 out:
650 return ret_val;
654 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
655 * @hw: pointer to the HW structure
657 * Checks to see of the link status of the hardware has changed. If a
658 * change in link status has been detected, then we read the PHY registers
659 * to get the current speed/duplex if link exists.
661 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
663 struct e1000_mac_info *mac = &hw->mac;
664 s32 ret_val;
665 bool link;
666 u16 phy_reg;
669 * We only want to go out to the PHY registers to see if Auto-Neg
670 * has completed and/or if our link status has changed. The
671 * get_link_status flag is set upon receiving a Link Status
672 * Change or Rx Sequence Error interrupt.
674 if (!mac->get_link_status) {
675 ret_val = 0;
676 goto out;
680 * First we want to see if the MII Status Register reports
681 * link. If so, then we want to get the current speed/duplex
682 * of the PHY.
684 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
685 if (ret_val)
686 goto out;
688 if (hw->mac.type == e1000_pchlan) {
689 ret_val = e1000_k1_gig_workaround_hv(hw, link);
690 if (ret_val)
691 goto out;
694 if (!link)
695 goto out; /* No link detected */
697 mac->get_link_status = false;
699 switch (hw->mac.type) {
700 case e1000_pch2lan:
701 ret_val = e1000_k1_workaround_lv(hw);
702 if (ret_val)
703 goto out;
704 /* fall-thru */
705 case e1000_pchlan:
706 if (hw->phy.type == e1000_phy_82578) {
707 ret_val = e1000_link_stall_workaround_hv(hw);
708 if (ret_val)
709 goto out;
713 * Workaround for PCHx parts in half-duplex:
714 * Set the number of preambles removed from the packet
715 * when it is passed from the PHY to the MAC to prevent
716 * the MAC from misinterpreting the packet type.
718 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
719 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
721 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
722 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
724 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
725 break;
726 default:
727 break;
731 * Check if there was DownShift, must be checked
732 * immediately after link-up
734 e1000e_check_downshift(hw);
736 /* Enable/Disable EEE after link up */
737 ret_val = e1000_set_eee_pchlan(hw);
738 if (ret_val)
739 goto out;
742 * If we are forcing speed/duplex, then we simply return since
743 * we have already determined whether we have link or not.
745 if (!mac->autoneg) {
746 ret_val = -E1000_ERR_CONFIG;
747 goto out;
751 * Auto-Neg is enabled. Auto Speed Detection takes care
752 * of MAC speed/duplex configuration. So we only need to
753 * configure Collision Distance in the MAC.
755 e1000e_config_collision_dist(hw);
758 * Configure Flow Control now that Auto-Neg has completed.
759 * First, we need to restore the desired flow control
760 * settings because we may have had to re-autoneg with a
761 * different link partner.
763 ret_val = e1000e_config_fc_after_link_up(hw);
764 if (ret_val)
765 e_dbg("Error configuring flow control\n");
767 out:
768 return ret_val;
771 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
773 struct e1000_hw *hw = &adapter->hw;
774 s32 rc;
776 rc = e1000_init_mac_params_ich8lan(adapter);
777 if (rc)
778 return rc;
780 rc = e1000_init_nvm_params_ich8lan(hw);
781 if (rc)
782 return rc;
784 switch (hw->mac.type) {
785 case e1000_ich8lan:
786 case e1000_ich9lan:
787 case e1000_ich10lan:
788 rc = e1000_init_phy_params_ich8lan(hw);
789 break;
790 case e1000_pchlan:
791 case e1000_pch2lan:
792 rc = e1000_init_phy_params_pchlan(hw);
793 break;
794 default:
795 break;
797 if (rc)
798 return rc;
801 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
802 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
804 if ((adapter->hw.phy.type == e1000_phy_ife) ||
805 ((adapter->hw.mac.type >= e1000_pch2lan) &&
806 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
807 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
808 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
810 hw->mac.ops.blink_led = NULL;
813 if ((adapter->hw.mac.type == e1000_ich8lan) &&
814 (adapter->hw.phy.type != e1000_phy_ife))
815 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
817 /* Enable workaround for 82579 w/ ME enabled */
818 if ((adapter->hw.mac.type == e1000_pch2lan) &&
819 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
820 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
822 /* Disable EEE by default until IEEE802.3az spec is finalized */
823 if (adapter->flags2 & FLAG2_HAS_EEE)
824 adapter->hw.dev_spec.ich8lan.eee_disable = true;
826 return 0;
829 static DEFINE_MUTEX(nvm_mutex);
832 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
833 * @hw: pointer to the HW structure
835 * Acquires the mutex for performing NVM operations.
837 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
839 mutex_lock(&nvm_mutex);
841 return 0;
845 * e1000_release_nvm_ich8lan - Release NVM mutex
846 * @hw: pointer to the HW structure
848 * Releases the mutex used while performing NVM operations.
850 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
852 mutex_unlock(&nvm_mutex);
856 * e1000_acquire_swflag_ich8lan - Acquire software control flag
857 * @hw: pointer to the HW structure
859 * Acquires the software control flag for performing PHY and select
860 * MAC CSR accesses.
862 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
864 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
865 s32 ret_val = 0;
867 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
868 &hw->adapter->state)) {
869 e_dbg("contention for Phy access\n");
870 return -E1000_ERR_PHY;
873 while (timeout) {
874 extcnf_ctrl = er32(EXTCNF_CTRL);
875 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
876 break;
878 mdelay(1);
879 timeout--;
882 if (!timeout) {
883 e_dbg("SW has already locked the resource.\n");
884 ret_val = -E1000_ERR_CONFIG;
885 goto out;
888 timeout = SW_FLAG_TIMEOUT;
890 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
891 ew32(EXTCNF_CTRL, extcnf_ctrl);
893 while (timeout) {
894 extcnf_ctrl = er32(EXTCNF_CTRL);
895 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
896 break;
898 mdelay(1);
899 timeout--;
902 if (!timeout) {
903 e_dbg("Failed to acquire the semaphore, FW or HW has it: "
904 "FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
905 er32(FWSM), extcnf_ctrl);
906 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
907 ew32(EXTCNF_CTRL, extcnf_ctrl);
908 ret_val = -E1000_ERR_CONFIG;
909 goto out;
912 out:
913 if (ret_val)
914 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
916 return ret_val;
920 * e1000_release_swflag_ich8lan - Release software control flag
921 * @hw: pointer to the HW structure
923 * Releases the software control flag for performing PHY and select
924 * MAC CSR accesses.
926 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
928 u32 extcnf_ctrl;
930 extcnf_ctrl = er32(EXTCNF_CTRL);
932 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
933 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
934 ew32(EXTCNF_CTRL, extcnf_ctrl);
935 } else {
936 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
939 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
943 * e1000_check_mng_mode_ich8lan - Checks management mode
944 * @hw: pointer to the HW structure
946 * This checks if the adapter has any manageability enabled.
947 * This is a function pointer entry point only called by read/write
948 * routines for the PHY and NVM parts.
950 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
952 u32 fwsm;
954 fwsm = er32(FWSM);
955 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
956 ((fwsm & E1000_FWSM_MODE_MASK) ==
957 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
961 * e1000_check_mng_mode_pchlan - Checks management mode
962 * @hw: pointer to the HW structure
964 * This checks if the adapter has iAMT enabled.
965 * This is a function pointer entry point only called by read/write
966 * routines for the PHY and NVM parts.
968 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
970 u32 fwsm;
972 fwsm = er32(FWSM);
973 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
974 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
978 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
979 * @hw: pointer to the HW structure
981 * Checks if firmware is blocking the reset of the PHY.
982 * This is a function pointer entry point only called by
983 * reset routines.
985 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
987 u32 fwsm;
989 fwsm = er32(FWSM);
991 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
995 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
996 * @hw: pointer to the HW structure
998 * Assumes semaphore already acquired.
1001 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1003 u16 phy_data;
1004 u32 strap = er32(STRAP);
1005 s32 ret_val = 0;
1007 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1009 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1010 if (ret_val)
1011 goto out;
1013 phy_data &= ~HV_SMB_ADDR_MASK;
1014 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1015 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1016 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1018 out:
1019 return ret_val;
1023 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1024 * @hw: pointer to the HW structure
1026 * SW should configure the LCD from the NVM extended configuration region
1027 * as a workaround for certain parts.
1029 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1031 struct e1000_phy_info *phy = &hw->phy;
1032 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1033 s32 ret_val = 0;
1034 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1037 * Initialize the PHY from the NVM on ICH platforms. This
1038 * is needed due to an issue where the NVM configuration is
1039 * not properly autoloaded after power transitions.
1040 * Therefore, after each PHY reset, we will load the
1041 * configuration data out of the NVM manually.
1043 switch (hw->mac.type) {
1044 case e1000_ich8lan:
1045 if (phy->type != e1000_phy_igp_3)
1046 return ret_val;
1048 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1049 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1050 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1051 break;
1053 /* Fall-thru */
1054 case e1000_pchlan:
1055 case e1000_pch2lan:
1056 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1057 break;
1058 default:
1059 return ret_val;
1062 ret_val = hw->phy.ops.acquire(hw);
1063 if (ret_val)
1064 return ret_val;
1066 data = er32(FEXTNVM);
1067 if (!(data & sw_cfg_mask))
1068 goto out;
1071 * Make sure HW does not configure LCD from PHY
1072 * extended configuration before SW configuration
1074 data = er32(EXTCNF_CTRL);
1075 if (!(hw->mac.type == e1000_pch2lan)) {
1076 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1077 goto out;
1080 cnf_size = er32(EXTCNF_SIZE);
1081 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1082 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1083 if (!cnf_size)
1084 goto out;
1086 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1087 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1089 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1090 (hw->mac.type == e1000_pchlan)) ||
1091 (hw->mac.type == e1000_pch2lan)) {
1093 * HW configures the SMBus address and LEDs when the
1094 * OEM and LCD Write Enable bits are set in the NVM.
1095 * When both NVM bits are cleared, SW will configure
1096 * them instead.
1098 ret_val = e1000_write_smbus_addr(hw);
1099 if (ret_val)
1100 goto out;
1102 data = er32(LEDCTL);
1103 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1104 (u16)data);
1105 if (ret_val)
1106 goto out;
1109 /* Configure LCD from extended configuration region. */
1111 /* cnf_base_addr is in DWORD */
1112 word_addr = (u16)(cnf_base_addr << 1);
1114 for (i = 0; i < cnf_size; i++) {
1115 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1116 &reg_data);
1117 if (ret_val)
1118 goto out;
1120 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1121 1, &reg_addr);
1122 if (ret_val)
1123 goto out;
1125 /* Save off the PHY page for future writes. */
1126 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1127 phy_page = reg_data;
1128 continue;
1131 reg_addr &= PHY_REG_MASK;
1132 reg_addr |= phy_page;
1134 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1135 reg_data);
1136 if (ret_val)
1137 goto out;
1140 out:
1141 hw->phy.ops.release(hw);
1142 return ret_val;
1146 * e1000_k1_gig_workaround_hv - K1 Si workaround
1147 * @hw: pointer to the HW structure
1148 * @link: link up bool flag
1150 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1151 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1152 * If link is down, the function will restore the default K1 setting located
1153 * in the NVM.
1155 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1157 s32 ret_val = 0;
1158 u16 status_reg = 0;
1159 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1161 if (hw->mac.type != e1000_pchlan)
1162 goto out;
1164 /* Wrap the whole flow with the sw flag */
1165 ret_val = hw->phy.ops.acquire(hw);
1166 if (ret_val)
1167 goto out;
1169 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1170 if (link) {
1171 if (hw->phy.type == e1000_phy_82578) {
1172 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1173 &status_reg);
1174 if (ret_val)
1175 goto release;
1177 status_reg &= BM_CS_STATUS_LINK_UP |
1178 BM_CS_STATUS_RESOLVED |
1179 BM_CS_STATUS_SPEED_MASK;
1181 if (status_reg == (BM_CS_STATUS_LINK_UP |
1182 BM_CS_STATUS_RESOLVED |
1183 BM_CS_STATUS_SPEED_1000))
1184 k1_enable = false;
1187 if (hw->phy.type == e1000_phy_82577) {
1188 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1189 &status_reg);
1190 if (ret_val)
1191 goto release;
1193 status_reg &= HV_M_STATUS_LINK_UP |
1194 HV_M_STATUS_AUTONEG_COMPLETE |
1195 HV_M_STATUS_SPEED_MASK;
1197 if (status_reg == (HV_M_STATUS_LINK_UP |
1198 HV_M_STATUS_AUTONEG_COMPLETE |
1199 HV_M_STATUS_SPEED_1000))
1200 k1_enable = false;
1203 /* Link stall fix for link up */
1204 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1205 0x0100);
1206 if (ret_val)
1207 goto release;
1209 } else {
1210 /* Link stall fix for link down */
1211 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1212 0x4100);
1213 if (ret_val)
1214 goto release;
1217 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1219 release:
1220 hw->phy.ops.release(hw);
1221 out:
1222 return ret_val;
1226 * e1000_configure_k1_ich8lan - Configure K1 power state
1227 * @hw: pointer to the HW structure
1228 * @enable: K1 state to configure
1230 * Configure the K1 power state based on the provided parameter.
1231 * Assumes semaphore already acquired.
1233 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1235 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1237 s32 ret_val = 0;
1238 u32 ctrl_reg = 0;
1239 u32 ctrl_ext = 0;
1240 u32 reg = 0;
1241 u16 kmrn_reg = 0;
1243 ret_val = e1000e_read_kmrn_reg_locked(hw,
1244 E1000_KMRNCTRLSTA_K1_CONFIG,
1245 &kmrn_reg);
1246 if (ret_val)
1247 goto out;
1249 if (k1_enable)
1250 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1251 else
1252 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1254 ret_val = e1000e_write_kmrn_reg_locked(hw,
1255 E1000_KMRNCTRLSTA_K1_CONFIG,
1256 kmrn_reg);
1257 if (ret_val)
1258 goto out;
1260 udelay(20);
1261 ctrl_ext = er32(CTRL_EXT);
1262 ctrl_reg = er32(CTRL);
1264 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1265 reg |= E1000_CTRL_FRCSPD;
1266 ew32(CTRL, reg);
1268 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1269 e1e_flush();
1270 udelay(20);
1271 ew32(CTRL, ctrl_reg);
1272 ew32(CTRL_EXT, ctrl_ext);
1273 e1e_flush();
1274 udelay(20);
1276 out:
1277 return ret_val;
1281 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1282 * @hw: pointer to the HW structure
1283 * @d0_state: boolean if entering d0 or d3 device state
1285 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1286 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1287 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1289 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1291 s32 ret_val = 0;
1292 u32 mac_reg;
1293 u16 oem_reg;
1295 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1296 return ret_val;
1298 ret_val = hw->phy.ops.acquire(hw);
1299 if (ret_val)
1300 return ret_val;
1302 if (!(hw->mac.type == e1000_pch2lan)) {
1303 mac_reg = er32(EXTCNF_CTRL);
1304 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1305 goto out;
1308 mac_reg = er32(FEXTNVM);
1309 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1310 goto out;
1312 mac_reg = er32(PHY_CTRL);
1314 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1315 if (ret_val)
1316 goto out;
1318 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1320 if (d0_state) {
1321 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1322 oem_reg |= HV_OEM_BITS_GBE_DIS;
1324 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1325 oem_reg |= HV_OEM_BITS_LPLU;
1327 /* Set Restart auto-neg to activate the bits */
1328 if (!e1000_check_reset_block(hw))
1329 oem_reg |= HV_OEM_BITS_RESTART_AN;
1330 } else {
1331 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1332 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1333 oem_reg |= HV_OEM_BITS_GBE_DIS;
1335 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1336 E1000_PHY_CTRL_NOND0A_LPLU))
1337 oem_reg |= HV_OEM_BITS_LPLU;
1340 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1342 out:
1343 hw->phy.ops.release(hw);
1345 return ret_val;
1350 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1351 * @hw: pointer to the HW structure
1353 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1355 s32 ret_val;
1356 u16 data;
1358 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1359 if (ret_val)
1360 return ret_val;
1362 data |= HV_KMRN_MDIO_SLOW;
1364 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1366 return ret_val;
1370 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1371 * done after every PHY reset.
1373 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1375 s32 ret_val = 0;
1376 u16 phy_data;
1378 if (hw->mac.type != e1000_pchlan)
1379 return ret_val;
1381 /* Set MDIO slow mode before any other MDIO access */
1382 if (hw->phy.type == e1000_phy_82577) {
1383 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1384 if (ret_val)
1385 goto out;
1388 if (((hw->phy.type == e1000_phy_82577) &&
1389 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1390 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1391 /* Disable generation of early preamble */
1392 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1393 if (ret_val)
1394 return ret_val;
1396 /* Preamble tuning for SSC */
1397 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1398 if (ret_val)
1399 return ret_val;
1402 if (hw->phy.type == e1000_phy_82578) {
1404 * Return registers to default by doing a soft reset then
1405 * writing 0x3140 to the control register.
1407 if (hw->phy.revision < 2) {
1408 e1000e_phy_sw_reset(hw);
1409 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1413 /* Select page 0 */
1414 ret_val = hw->phy.ops.acquire(hw);
1415 if (ret_val)
1416 return ret_val;
1418 hw->phy.addr = 1;
1419 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1420 hw->phy.ops.release(hw);
1421 if (ret_val)
1422 goto out;
1425 * Configure the K1 Si workaround during phy reset assuming there is
1426 * link so that it disables K1 if link is in 1Gbps.
1428 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1429 if (ret_val)
1430 goto out;
1432 /* Workaround for link disconnects on a busy hub in half duplex */
1433 ret_val = hw->phy.ops.acquire(hw);
1434 if (ret_val)
1435 goto out;
1436 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1437 if (ret_val)
1438 goto release;
1439 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1440 phy_data & 0x00FF);
1441 release:
1442 hw->phy.ops.release(hw);
1443 out:
1444 return ret_val;
1448 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1449 * @hw: pointer to the HW structure
1451 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1453 u32 mac_reg;
1454 u16 i, phy_reg = 0;
1455 s32 ret_val;
1457 ret_val = hw->phy.ops.acquire(hw);
1458 if (ret_val)
1459 return;
1460 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1461 if (ret_val)
1462 goto release;
1464 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1465 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1466 mac_reg = er32(RAL(i));
1467 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1468 (u16)(mac_reg & 0xFFFF));
1469 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1470 (u16)((mac_reg >> 16) & 0xFFFF));
1472 mac_reg = er32(RAH(i));
1473 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1474 (u16)(mac_reg & 0xFFFF));
1475 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1476 (u16)((mac_reg & E1000_RAH_AV)
1477 >> 16));
1480 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1482 release:
1483 hw->phy.ops.release(hw);
1487 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1488 * with 82579 PHY
1489 * @hw: pointer to the HW structure
1490 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1492 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1494 s32 ret_val = 0;
1495 u16 phy_reg, data;
1496 u32 mac_reg;
1497 u16 i;
1499 if (hw->mac.type != e1000_pch2lan)
1500 goto out;
1502 /* disable Rx path while enabling/disabling workaround */
1503 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1504 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1505 if (ret_val)
1506 goto out;
1508 if (enable) {
1510 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1511 * SHRAL/H) and initial CRC values to the MAC
1513 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1514 u8 mac_addr[ETH_ALEN] = {0};
1515 u32 addr_high, addr_low;
1517 addr_high = er32(RAH(i));
1518 if (!(addr_high & E1000_RAH_AV))
1519 continue;
1520 addr_low = er32(RAL(i));
1521 mac_addr[0] = (addr_low & 0xFF);
1522 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1523 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1524 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1525 mac_addr[4] = (addr_high & 0xFF);
1526 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1528 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1531 /* Write Rx addresses to the PHY */
1532 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1534 /* Enable jumbo frame workaround in the MAC */
1535 mac_reg = er32(FFLT_DBG);
1536 mac_reg &= ~(1 << 14);
1537 mac_reg |= (7 << 15);
1538 ew32(FFLT_DBG, mac_reg);
1540 mac_reg = er32(RCTL);
1541 mac_reg |= E1000_RCTL_SECRC;
1542 ew32(RCTL, mac_reg);
1544 ret_val = e1000e_read_kmrn_reg(hw,
1545 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1546 &data);
1547 if (ret_val)
1548 goto out;
1549 ret_val = e1000e_write_kmrn_reg(hw,
1550 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1551 data | (1 << 0));
1552 if (ret_val)
1553 goto out;
1554 ret_val = e1000e_read_kmrn_reg(hw,
1555 E1000_KMRNCTRLSTA_HD_CTRL,
1556 &data);
1557 if (ret_val)
1558 goto out;
1559 data &= ~(0xF << 8);
1560 data |= (0xB << 8);
1561 ret_val = e1000e_write_kmrn_reg(hw,
1562 E1000_KMRNCTRLSTA_HD_CTRL,
1563 data);
1564 if (ret_val)
1565 goto out;
1567 /* Enable jumbo frame workaround in the PHY */
1568 e1e_rphy(hw, PHY_REG(769, 23), &data);
1569 data &= ~(0x7F << 5);
1570 data |= (0x37 << 5);
1571 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1572 if (ret_val)
1573 goto out;
1574 e1e_rphy(hw, PHY_REG(769, 16), &data);
1575 data &= ~(1 << 13);
1576 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1577 if (ret_val)
1578 goto out;
1579 e1e_rphy(hw, PHY_REG(776, 20), &data);
1580 data &= ~(0x3FF << 2);
1581 data |= (0x1A << 2);
1582 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1583 if (ret_val)
1584 goto out;
1585 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1586 if (ret_val)
1587 goto out;
1588 e1e_rphy(hw, HV_PM_CTRL, &data);
1589 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1590 if (ret_val)
1591 goto out;
1592 } else {
1593 /* Write MAC register values back to h/w defaults */
1594 mac_reg = er32(FFLT_DBG);
1595 mac_reg &= ~(0xF << 14);
1596 ew32(FFLT_DBG, mac_reg);
1598 mac_reg = er32(RCTL);
1599 mac_reg &= ~E1000_RCTL_SECRC;
1600 ew32(RCTL, mac_reg);
1602 ret_val = e1000e_read_kmrn_reg(hw,
1603 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1604 &data);
1605 if (ret_val)
1606 goto out;
1607 ret_val = e1000e_write_kmrn_reg(hw,
1608 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1609 data & ~(1 << 0));
1610 if (ret_val)
1611 goto out;
1612 ret_val = e1000e_read_kmrn_reg(hw,
1613 E1000_KMRNCTRLSTA_HD_CTRL,
1614 &data);
1615 if (ret_val)
1616 goto out;
1617 data &= ~(0xF << 8);
1618 data |= (0xB << 8);
1619 ret_val = e1000e_write_kmrn_reg(hw,
1620 E1000_KMRNCTRLSTA_HD_CTRL,
1621 data);
1622 if (ret_val)
1623 goto out;
1625 /* Write PHY register values back to h/w defaults */
1626 e1e_rphy(hw, PHY_REG(769, 23), &data);
1627 data &= ~(0x7F << 5);
1628 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1629 if (ret_val)
1630 goto out;
1631 e1e_rphy(hw, PHY_REG(769, 16), &data);
1632 data |= (1 << 13);
1633 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1634 if (ret_val)
1635 goto out;
1636 e1e_rphy(hw, PHY_REG(776, 20), &data);
1637 data &= ~(0x3FF << 2);
1638 data |= (0x8 << 2);
1639 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1640 if (ret_val)
1641 goto out;
1642 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1643 if (ret_val)
1644 goto out;
1645 e1e_rphy(hw, HV_PM_CTRL, &data);
1646 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1647 if (ret_val)
1648 goto out;
1651 /* re-enable Rx path after enabling/disabling workaround */
1652 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1654 out:
1655 return ret_val;
1659 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1660 * done after every PHY reset.
1662 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1664 s32 ret_val = 0;
1666 if (hw->mac.type != e1000_pch2lan)
1667 goto out;
1669 /* Set MDIO slow mode before any other MDIO access */
1670 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1672 out:
1673 return ret_val;
1677 * e1000_k1_gig_workaround_lv - K1 Si workaround
1678 * @hw: pointer to the HW structure
1680 * Workaround to set the K1 beacon duration for 82579 parts
1682 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1684 s32 ret_val = 0;
1685 u16 status_reg = 0;
1686 u32 mac_reg;
1687 u16 phy_reg;
1689 if (hw->mac.type != e1000_pch2lan)
1690 goto out;
1692 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1693 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1694 if (ret_val)
1695 goto out;
1697 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1698 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1699 mac_reg = er32(FEXTNVM4);
1700 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1702 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1703 if (ret_val)
1704 goto out;
1706 if (status_reg & HV_M_STATUS_SPEED_1000) {
1707 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1708 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1709 } else {
1710 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1711 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1713 ew32(FEXTNVM4, mac_reg);
1714 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1717 out:
1718 return ret_val;
1722 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1723 * @hw: pointer to the HW structure
1724 * @gate: boolean set to true to gate, false to ungate
1726 * Gate/ungate the automatic PHY configuration via hardware; perform
1727 * the configuration via software instead.
1729 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1731 u32 extcnf_ctrl;
1733 if (hw->mac.type != e1000_pch2lan)
1734 return;
1736 extcnf_ctrl = er32(EXTCNF_CTRL);
1738 if (gate)
1739 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1740 else
1741 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1743 ew32(EXTCNF_CTRL, extcnf_ctrl);
1744 return;
1748 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1749 * @hw: pointer to the HW structure
1751 * Check the appropriate indication the MAC has finished configuring the
1752 * PHY after a software reset.
1754 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1756 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1758 /* Wait for basic configuration completes before proceeding */
1759 do {
1760 data = er32(STATUS);
1761 data &= E1000_STATUS_LAN_INIT_DONE;
1762 udelay(100);
1763 } while ((!data) && --loop);
1766 * If basic configuration is incomplete before the above loop
1767 * count reaches 0, loading the configuration from NVM will
1768 * leave the PHY in a bad state possibly resulting in no link.
1770 if (loop == 0)
1771 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1773 /* Clear the Init Done bit for the next init event */
1774 data = er32(STATUS);
1775 data &= ~E1000_STATUS_LAN_INIT_DONE;
1776 ew32(STATUS, data);
1780 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1781 * @hw: pointer to the HW structure
1783 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1785 s32 ret_val = 0;
1786 u16 reg;
1788 if (e1000_check_reset_block(hw))
1789 goto out;
1791 /* Allow time for h/w to get to quiescent state after reset */
1792 usleep_range(10000, 20000);
1794 /* Perform any necessary post-reset workarounds */
1795 switch (hw->mac.type) {
1796 case e1000_pchlan:
1797 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1798 if (ret_val)
1799 goto out;
1800 break;
1801 case e1000_pch2lan:
1802 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1803 if (ret_val)
1804 goto out;
1805 break;
1806 default:
1807 break;
1810 /* Clear the host wakeup bit after lcd reset */
1811 if (hw->mac.type >= e1000_pchlan) {
1812 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1813 reg &= ~BM_WUC_HOST_WU_BIT;
1814 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1817 /* Configure the LCD with the extended configuration region in NVM */
1818 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1819 if (ret_val)
1820 goto out;
1822 /* Configure the LCD with the OEM bits in NVM */
1823 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1825 if (hw->mac.type == e1000_pch2lan) {
1826 /* Ungate automatic PHY configuration on non-managed 82579 */
1827 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1828 usleep_range(10000, 20000);
1829 e1000_gate_hw_phy_config_ich8lan(hw, false);
1832 /* Set EEE LPI Update Timer to 200usec */
1833 ret_val = hw->phy.ops.acquire(hw);
1834 if (ret_val)
1835 goto out;
1836 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1837 I82579_LPI_UPDATE_TIMER);
1838 if (ret_val)
1839 goto release;
1840 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1841 0x1387);
1842 release:
1843 hw->phy.ops.release(hw);
1846 out:
1847 return ret_val;
1851 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1852 * @hw: pointer to the HW structure
1854 * Resets the PHY
1855 * This is a function pointer entry point called by drivers
1856 * or other shared routines.
1858 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1860 s32 ret_val = 0;
1862 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1863 if ((hw->mac.type == e1000_pch2lan) &&
1864 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1865 e1000_gate_hw_phy_config_ich8lan(hw, true);
1867 ret_val = e1000e_phy_hw_reset_generic(hw);
1868 if (ret_val)
1869 goto out;
1871 ret_val = e1000_post_phy_reset_ich8lan(hw);
1873 out:
1874 return ret_val;
1878 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1879 * @hw: pointer to the HW structure
1880 * @active: true to enable LPLU, false to disable
1882 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1883 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1884 * the phy speed. This function will manually set the LPLU bit and restart
1885 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1886 * since it configures the same bit.
1888 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1890 s32 ret_val = 0;
1891 u16 oem_reg;
1893 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1894 if (ret_val)
1895 goto out;
1897 if (active)
1898 oem_reg |= HV_OEM_BITS_LPLU;
1899 else
1900 oem_reg &= ~HV_OEM_BITS_LPLU;
1902 oem_reg |= HV_OEM_BITS_RESTART_AN;
1903 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1905 out:
1906 return ret_val;
1910 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1911 * @hw: pointer to the HW structure
1912 * @active: true to enable LPLU, false to disable
1914 * Sets the LPLU D0 state according to the active flag. When
1915 * activating LPLU this function also disables smart speed
1916 * and vice versa. LPLU will not be activated unless the
1917 * device autonegotiation advertisement meets standards of
1918 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1919 * This is a function pointer entry point only called by
1920 * PHY setup routines.
1922 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1924 struct e1000_phy_info *phy = &hw->phy;
1925 u32 phy_ctrl;
1926 s32 ret_val = 0;
1927 u16 data;
1929 if (phy->type == e1000_phy_ife)
1930 return ret_val;
1932 phy_ctrl = er32(PHY_CTRL);
1934 if (active) {
1935 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1936 ew32(PHY_CTRL, phy_ctrl);
1938 if (phy->type != e1000_phy_igp_3)
1939 return 0;
1942 * Call gig speed drop workaround on LPLU before accessing
1943 * any PHY registers
1945 if (hw->mac.type == e1000_ich8lan)
1946 e1000e_gig_downshift_workaround_ich8lan(hw);
1948 /* When LPLU is enabled, we should disable SmartSpeed */
1949 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1950 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1951 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1952 if (ret_val)
1953 return ret_val;
1954 } else {
1955 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1956 ew32(PHY_CTRL, phy_ctrl);
1958 if (phy->type != e1000_phy_igp_3)
1959 return 0;
1962 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1963 * during Dx states where the power conservation is most
1964 * important. During driver activity we should enable
1965 * SmartSpeed, so performance is maintained.
1967 if (phy->smart_speed == e1000_smart_speed_on) {
1968 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1969 &data);
1970 if (ret_val)
1971 return ret_val;
1973 data |= IGP01E1000_PSCFR_SMART_SPEED;
1974 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1975 data);
1976 if (ret_val)
1977 return ret_val;
1978 } else if (phy->smart_speed == e1000_smart_speed_off) {
1979 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1980 &data);
1981 if (ret_val)
1982 return ret_val;
1984 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1985 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1986 data);
1987 if (ret_val)
1988 return ret_val;
1992 return 0;
1996 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1997 * @hw: pointer to the HW structure
1998 * @active: true to enable LPLU, false to disable
2000 * Sets the LPLU D3 state according to the active flag. When
2001 * activating LPLU this function also disables smart speed
2002 * and vice versa. LPLU will not be activated unless the
2003 * device autonegotiation advertisement meets standards of
2004 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2005 * This is a function pointer entry point only called by
2006 * PHY setup routines.
2008 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2010 struct e1000_phy_info *phy = &hw->phy;
2011 u32 phy_ctrl;
2012 s32 ret_val;
2013 u16 data;
2015 phy_ctrl = er32(PHY_CTRL);
2017 if (!active) {
2018 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2019 ew32(PHY_CTRL, phy_ctrl);
2021 if (phy->type != e1000_phy_igp_3)
2022 return 0;
2025 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
2026 * during Dx states where the power conservation is most
2027 * important. During driver activity we should enable
2028 * SmartSpeed, so performance is maintained.
2030 if (phy->smart_speed == e1000_smart_speed_on) {
2031 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2032 &data);
2033 if (ret_val)
2034 return ret_val;
2036 data |= IGP01E1000_PSCFR_SMART_SPEED;
2037 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2038 data);
2039 if (ret_val)
2040 return ret_val;
2041 } else if (phy->smart_speed == e1000_smart_speed_off) {
2042 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2043 &data);
2044 if (ret_val)
2045 return ret_val;
2047 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2048 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2049 data);
2050 if (ret_val)
2051 return ret_val;
2053 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2054 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2055 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2056 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2057 ew32(PHY_CTRL, phy_ctrl);
2059 if (phy->type != e1000_phy_igp_3)
2060 return 0;
2063 * Call gig speed drop workaround on LPLU before accessing
2064 * any PHY registers
2066 if (hw->mac.type == e1000_ich8lan)
2067 e1000e_gig_downshift_workaround_ich8lan(hw);
2069 /* When LPLU is enabled, we should disable SmartSpeed */
2070 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2071 if (ret_val)
2072 return ret_val;
2074 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2075 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2078 return 0;
2082 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2083 * @hw: pointer to the HW structure
2084 * @bank: pointer to the variable that returns the active bank
2086 * Reads signature byte from the NVM using the flash access registers.
2087 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2089 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2091 u32 eecd;
2092 struct e1000_nvm_info *nvm = &hw->nvm;
2093 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2094 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2095 u8 sig_byte = 0;
2096 s32 ret_val = 0;
2098 switch (hw->mac.type) {
2099 case e1000_ich8lan:
2100 case e1000_ich9lan:
2101 eecd = er32(EECD);
2102 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2103 E1000_EECD_SEC1VAL_VALID_MASK) {
2104 if (eecd & E1000_EECD_SEC1VAL)
2105 *bank = 1;
2106 else
2107 *bank = 0;
2109 return 0;
2111 e_dbg("Unable to determine valid NVM bank via EEC - "
2112 "reading flash signature\n");
2113 /* fall-thru */
2114 default:
2115 /* set bank to 0 in case flash read fails */
2116 *bank = 0;
2118 /* Check bank 0 */
2119 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2120 &sig_byte);
2121 if (ret_val)
2122 return ret_val;
2123 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2124 E1000_ICH_NVM_SIG_VALUE) {
2125 *bank = 0;
2126 return 0;
2129 /* Check bank 1 */
2130 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2131 bank1_offset,
2132 &sig_byte);
2133 if (ret_val)
2134 return ret_val;
2135 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2136 E1000_ICH_NVM_SIG_VALUE) {
2137 *bank = 1;
2138 return 0;
2141 e_dbg("ERROR: No valid NVM bank present\n");
2142 return -E1000_ERR_NVM;
2145 return 0;
2149 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2150 * @hw: pointer to the HW structure
2151 * @offset: The offset (in bytes) of the word(s) to read.
2152 * @words: Size of data to read in words
2153 * @data: Pointer to the word(s) to read at offset.
2155 * Reads a word(s) from the NVM using the flash access registers.
2157 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2158 u16 *data)
2160 struct e1000_nvm_info *nvm = &hw->nvm;
2161 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2162 u32 act_offset;
2163 s32 ret_val = 0;
2164 u32 bank = 0;
2165 u16 i, word;
2167 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2168 (words == 0)) {
2169 e_dbg("nvm parameter(s) out of bounds\n");
2170 ret_val = -E1000_ERR_NVM;
2171 goto out;
2174 nvm->ops.acquire(hw);
2176 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2177 if (ret_val) {
2178 e_dbg("Could not detect valid bank, assuming bank 0\n");
2179 bank = 0;
2182 act_offset = (bank) ? nvm->flash_bank_size : 0;
2183 act_offset += offset;
2185 ret_val = 0;
2186 for (i = 0; i < words; i++) {
2187 if (dev_spec->shadow_ram[offset+i].modified) {
2188 data[i] = dev_spec->shadow_ram[offset+i].value;
2189 } else {
2190 ret_val = e1000_read_flash_word_ich8lan(hw,
2191 act_offset + i,
2192 &word);
2193 if (ret_val)
2194 break;
2195 data[i] = word;
2199 nvm->ops.release(hw);
2201 out:
2202 if (ret_val)
2203 e_dbg("NVM read error: %d\n", ret_val);
2205 return ret_val;
2209 * e1000_flash_cycle_init_ich8lan - Initialize flash
2210 * @hw: pointer to the HW structure
2212 * This function does initial flash setup so that a new read/write/erase cycle
2213 * can be started.
2215 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2217 union ich8_hws_flash_status hsfsts;
2218 s32 ret_val = -E1000_ERR_NVM;
2220 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2222 /* Check if the flash descriptor is valid */
2223 if (hsfsts.hsf_status.fldesvalid == 0) {
2224 e_dbg("Flash descriptor invalid. "
2225 "SW Sequencing must be used.\n");
2226 return -E1000_ERR_NVM;
2229 /* Clear FCERR and DAEL in hw status by writing 1 */
2230 hsfsts.hsf_status.flcerr = 1;
2231 hsfsts.hsf_status.dael = 1;
2233 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2236 * Either we should have a hardware SPI cycle in progress
2237 * bit to check against, in order to start a new cycle or
2238 * FDONE bit should be changed in the hardware so that it
2239 * is 1 after hardware reset, which can then be used as an
2240 * indication whether a cycle is in progress or has been
2241 * completed.
2244 if (hsfsts.hsf_status.flcinprog == 0) {
2246 * There is no cycle running at present,
2247 * so we can start a cycle.
2248 * Begin by setting Flash Cycle Done.
2250 hsfsts.hsf_status.flcdone = 1;
2251 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2252 ret_val = 0;
2253 } else {
2254 s32 i = 0;
2257 * Otherwise poll for sometime so the current
2258 * cycle has a chance to end before giving up.
2260 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2261 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2262 if (hsfsts.hsf_status.flcinprog == 0) {
2263 ret_val = 0;
2264 break;
2266 udelay(1);
2268 if (ret_val == 0) {
2270 * Successful in waiting for previous cycle to timeout,
2271 * now set the Flash Cycle Done.
2273 hsfsts.hsf_status.flcdone = 1;
2274 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2275 } else {
2276 e_dbg("Flash controller busy, cannot get access\n");
2280 return ret_val;
2284 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2285 * @hw: pointer to the HW structure
2286 * @timeout: maximum time to wait for completion
2288 * This function starts a flash cycle and waits for its completion.
2290 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2292 union ich8_hws_flash_ctrl hsflctl;
2293 union ich8_hws_flash_status hsfsts;
2294 s32 ret_val = -E1000_ERR_NVM;
2295 u32 i = 0;
2297 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2298 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2299 hsflctl.hsf_ctrl.flcgo = 1;
2300 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2302 /* wait till FDONE bit is set to 1 */
2303 do {
2304 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2305 if (hsfsts.hsf_status.flcdone == 1)
2306 break;
2307 udelay(1);
2308 } while (i++ < timeout);
2310 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2311 return 0;
2313 return ret_val;
2317 * e1000_read_flash_word_ich8lan - Read word from flash
2318 * @hw: pointer to the HW structure
2319 * @offset: offset to data location
2320 * @data: pointer to the location for storing the data
2322 * Reads the flash word at offset into data. Offset is converted
2323 * to bytes before read.
2325 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2326 u16 *data)
2328 /* Must convert offset into bytes. */
2329 offset <<= 1;
2331 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2335 * e1000_read_flash_byte_ich8lan - Read byte from flash
2336 * @hw: pointer to the HW structure
2337 * @offset: The offset of the byte to read.
2338 * @data: Pointer to a byte to store the value read.
2340 * Reads a single byte from the NVM using the flash access registers.
2342 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2343 u8 *data)
2345 s32 ret_val;
2346 u16 word = 0;
2348 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2349 if (ret_val)
2350 return ret_val;
2352 *data = (u8)word;
2354 return 0;
2358 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2359 * @hw: pointer to the HW structure
2360 * @offset: The offset (in bytes) of the byte or word to read.
2361 * @size: Size of data to read, 1=byte 2=word
2362 * @data: Pointer to the word to store the value read.
2364 * Reads a byte or word from the NVM using the flash access registers.
2366 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2367 u8 size, u16 *data)
2369 union ich8_hws_flash_status hsfsts;
2370 union ich8_hws_flash_ctrl hsflctl;
2371 u32 flash_linear_addr;
2372 u32 flash_data = 0;
2373 s32 ret_val = -E1000_ERR_NVM;
2374 u8 count = 0;
2376 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2377 return -E1000_ERR_NVM;
2379 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2380 hw->nvm.flash_base_addr;
2382 do {
2383 udelay(1);
2384 /* Steps */
2385 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2386 if (ret_val != 0)
2387 break;
2389 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2390 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2391 hsflctl.hsf_ctrl.fldbcount = size - 1;
2392 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2393 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2395 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2397 ret_val = e1000_flash_cycle_ich8lan(hw,
2398 ICH_FLASH_READ_COMMAND_TIMEOUT);
2401 * Check if FCERR is set to 1, if set to 1, clear it
2402 * and try the whole sequence a few more times, else
2403 * read in (shift in) the Flash Data0, the order is
2404 * least significant byte first msb to lsb
2406 if (ret_val == 0) {
2407 flash_data = er32flash(ICH_FLASH_FDATA0);
2408 if (size == 1)
2409 *data = (u8)(flash_data & 0x000000FF);
2410 else if (size == 2)
2411 *data = (u16)(flash_data & 0x0000FFFF);
2412 break;
2413 } else {
2415 * If we've gotten here, then things are probably
2416 * completely hosed, but if the error condition is
2417 * detected, it won't hurt to give it another try...
2418 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2420 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2421 if (hsfsts.hsf_status.flcerr == 1) {
2422 /* Repeat for some time before giving up. */
2423 continue;
2424 } else if (hsfsts.hsf_status.flcdone == 0) {
2425 e_dbg("Timeout error - flash cycle "
2426 "did not complete.\n");
2427 break;
2430 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2432 return ret_val;
2436 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2437 * @hw: pointer to the HW structure
2438 * @offset: The offset (in bytes) of the word(s) to write.
2439 * @words: Size of data to write in words
2440 * @data: Pointer to the word(s) to write at offset.
2442 * Writes a byte or word to the NVM using the flash access registers.
2444 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2445 u16 *data)
2447 struct e1000_nvm_info *nvm = &hw->nvm;
2448 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2449 u16 i;
2451 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2452 (words == 0)) {
2453 e_dbg("nvm parameter(s) out of bounds\n");
2454 return -E1000_ERR_NVM;
2457 nvm->ops.acquire(hw);
2459 for (i = 0; i < words; i++) {
2460 dev_spec->shadow_ram[offset+i].modified = true;
2461 dev_spec->shadow_ram[offset+i].value = data[i];
2464 nvm->ops.release(hw);
2466 return 0;
2470 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2471 * @hw: pointer to the HW structure
2473 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2474 * which writes the checksum to the shadow ram. The changes in the shadow
2475 * ram are then committed to the EEPROM by processing each bank at a time
2476 * checking for the modified bit and writing only the pending changes.
2477 * After a successful commit, the shadow ram is cleared and is ready for
2478 * future writes.
2480 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2482 struct e1000_nvm_info *nvm = &hw->nvm;
2483 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2484 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2485 s32 ret_val;
2486 u16 data;
2488 ret_val = e1000e_update_nvm_checksum_generic(hw);
2489 if (ret_val)
2490 goto out;
2492 if (nvm->type != e1000_nvm_flash_sw)
2493 goto out;
2495 nvm->ops.acquire(hw);
2498 * We're writing to the opposite bank so if we're on bank 1,
2499 * write to bank 0 etc. We also need to erase the segment that
2500 * is going to be written
2502 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2503 if (ret_val) {
2504 e_dbg("Could not detect valid bank, assuming bank 0\n");
2505 bank = 0;
2508 if (bank == 0) {
2509 new_bank_offset = nvm->flash_bank_size;
2510 old_bank_offset = 0;
2511 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2512 if (ret_val)
2513 goto release;
2514 } else {
2515 old_bank_offset = nvm->flash_bank_size;
2516 new_bank_offset = 0;
2517 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2518 if (ret_val)
2519 goto release;
2522 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2524 * Determine whether to write the value stored
2525 * in the other NVM bank or a modified value stored
2526 * in the shadow RAM
2528 if (dev_spec->shadow_ram[i].modified) {
2529 data = dev_spec->shadow_ram[i].value;
2530 } else {
2531 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2532 old_bank_offset,
2533 &data);
2534 if (ret_val)
2535 break;
2539 * If the word is 0x13, then make sure the signature bits
2540 * (15:14) are 11b until the commit has completed.
2541 * This will allow us to write 10b which indicates the
2542 * signature is valid. We want to do this after the write
2543 * has completed so that we don't mark the segment valid
2544 * while the write is still in progress
2546 if (i == E1000_ICH_NVM_SIG_WORD)
2547 data |= E1000_ICH_NVM_SIG_MASK;
2549 /* Convert offset to bytes. */
2550 act_offset = (i + new_bank_offset) << 1;
2552 udelay(100);
2553 /* Write the bytes to the new bank. */
2554 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2555 act_offset,
2556 (u8)data);
2557 if (ret_val)
2558 break;
2560 udelay(100);
2561 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2562 act_offset + 1,
2563 (u8)(data >> 8));
2564 if (ret_val)
2565 break;
2569 * Don't bother writing the segment valid bits if sector
2570 * programming failed.
2572 if (ret_val) {
2573 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2574 e_dbg("Flash commit failed.\n");
2575 goto release;
2579 * Finally validate the new segment by setting bit 15:14
2580 * to 10b in word 0x13 , this can be done without an
2581 * erase as well since these bits are 11 to start with
2582 * and we need to change bit 14 to 0b
2584 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2585 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2586 if (ret_val)
2587 goto release;
2589 data &= 0xBFFF;
2590 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2591 act_offset * 2 + 1,
2592 (u8)(data >> 8));
2593 if (ret_val)
2594 goto release;
2597 * And invalidate the previously valid segment by setting
2598 * its signature word (0x13) high_byte to 0b. This can be
2599 * done without an erase because flash erase sets all bits
2600 * to 1's. We can write 1's to 0's without an erase
2602 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2603 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2604 if (ret_val)
2605 goto release;
2607 /* Great! Everything worked, we can now clear the cached entries. */
2608 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2609 dev_spec->shadow_ram[i].modified = false;
2610 dev_spec->shadow_ram[i].value = 0xFFFF;
2613 release:
2614 nvm->ops.release(hw);
2617 * Reload the EEPROM, or else modifications will not appear
2618 * until after the next adapter reset.
2620 if (!ret_val) {
2621 e1000e_reload_nvm(hw);
2622 usleep_range(10000, 20000);
2625 out:
2626 if (ret_val)
2627 e_dbg("NVM update error: %d\n", ret_val);
2629 return ret_val;
2633 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2634 * @hw: pointer to the HW structure
2636 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2637 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2638 * calculated, in which case we need to calculate the checksum and set bit 6.
2640 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2642 s32 ret_val;
2643 u16 data;
2646 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2647 * needs to be fixed. This bit is an indication that the NVM
2648 * was prepared by OEM software and did not calculate the
2649 * checksum...a likely scenario.
2651 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2652 if (ret_val)
2653 return ret_val;
2655 if ((data & 0x40) == 0) {
2656 data |= 0x40;
2657 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2658 if (ret_val)
2659 return ret_val;
2660 ret_val = e1000e_update_nvm_checksum(hw);
2661 if (ret_val)
2662 return ret_val;
2665 return e1000e_validate_nvm_checksum_generic(hw);
2669 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2670 * @hw: pointer to the HW structure
2672 * To prevent malicious write/erase of the NVM, set it to be read-only
2673 * so that the hardware ignores all write/erase cycles of the NVM via
2674 * the flash control registers. The shadow-ram copy of the NVM will
2675 * still be updated, however any updates to this copy will not stick
2676 * across driver reloads.
2678 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2680 struct e1000_nvm_info *nvm = &hw->nvm;
2681 union ich8_flash_protected_range pr0;
2682 union ich8_hws_flash_status hsfsts;
2683 u32 gfpreg;
2685 nvm->ops.acquire(hw);
2687 gfpreg = er32flash(ICH_FLASH_GFPREG);
2689 /* Write-protect GbE Sector of NVM */
2690 pr0.regval = er32flash(ICH_FLASH_PR0);
2691 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2692 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2693 pr0.range.wpe = true;
2694 ew32flash(ICH_FLASH_PR0, pr0.regval);
2697 * Lock down a subset of GbE Flash Control Registers, e.g.
2698 * PR0 to prevent the write-protection from being lifted.
2699 * Once FLOCKDN is set, the registers protected by it cannot
2700 * be written until FLOCKDN is cleared by a hardware reset.
2702 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2703 hsfsts.hsf_status.flockdn = true;
2704 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2706 nvm->ops.release(hw);
2710 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2711 * @hw: pointer to the HW structure
2712 * @offset: The offset (in bytes) of the byte/word to read.
2713 * @size: Size of data to read, 1=byte 2=word
2714 * @data: The byte(s) to write to the NVM.
2716 * Writes one/two bytes to the NVM using the flash access registers.
2718 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2719 u8 size, u16 data)
2721 union ich8_hws_flash_status hsfsts;
2722 union ich8_hws_flash_ctrl hsflctl;
2723 u32 flash_linear_addr;
2724 u32 flash_data = 0;
2725 s32 ret_val;
2726 u8 count = 0;
2728 if (size < 1 || size > 2 || data > size * 0xff ||
2729 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2730 return -E1000_ERR_NVM;
2732 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2733 hw->nvm.flash_base_addr;
2735 do {
2736 udelay(1);
2737 /* Steps */
2738 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2739 if (ret_val)
2740 break;
2742 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2743 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2744 hsflctl.hsf_ctrl.fldbcount = size -1;
2745 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2746 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2748 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2750 if (size == 1)
2751 flash_data = (u32)data & 0x00FF;
2752 else
2753 flash_data = (u32)data;
2755 ew32flash(ICH_FLASH_FDATA0, flash_data);
2758 * check if FCERR is set to 1 , if set to 1, clear it
2759 * and try the whole sequence a few more times else done
2761 ret_val = e1000_flash_cycle_ich8lan(hw,
2762 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2763 if (!ret_val)
2764 break;
2767 * If we're here, then things are most likely
2768 * completely hosed, but if the error condition
2769 * is detected, it won't hurt to give it another
2770 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2772 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2773 if (hsfsts.hsf_status.flcerr == 1)
2774 /* Repeat for some time before giving up. */
2775 continue;
2776 if (hsfsts.hsf_status.flcdone == 0) {
2777 e_dbg("Timeout error - flash cycle "
2778 "did not complete.");
2779 break;
2781 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2783 return ret_val;
2787 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2788 * @hw: pointer to the HW structure
2789 * @offset: The index of the byte to read.
2790 * @data: The byte to write to the NVM.
2792 * Writes a single byte to the NVM using the flash access registers.
2794 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2795 u8 data)
2797 u16 word = (u16)data;
2799 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2803 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2804 * @hw: pointer to the HW structure
2805 * @offset: The offset of the byte to write.
2806 * @byte: The byte to write to the NVM.
2808 * Writes a single byte to the NVM using the flash access registers.
2809 * Goes through a retry algorithm before giving up.
2811 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2812 u32 offset, u8 byte)
2814 s32 ret_val;
2815 u16 program_retries;
2817 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2818 if (!ret_val)
2819 return ret_val;
2821 for (program_retries = 0; program_retries < 100; program_retries++) {
2822 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2823 udelay(100);
2824 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2825 if (!ret_val)
2826 break;
2828 if (program_retries == 100)
2829 return -E1000_ERR_NVM;
2831 return 0;
2835 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2836 * @hw: pointer to the HW structure
2837 * @bank: 0 for first bank, 1 for second bank, etc.
2839 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2840 * bank N is 4096 * N + flash_reg_addr.
2842 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2844 struct e1000_nvm_info *nvm = &hw->nvm;
2845 union ich8_hws_flash_status hsfsts;
2846 union ich8_hws_flash_ctrl hsflctl;
2847 u32 flash_linear_addr;
2848 /* bank size is in 16bit words - adjust to bytes */
2849 u32 flash_bank_size = nvm->flash_bank_size * 2;
2850 s32 ret_val;
2851 s32 count = 0;
2852 s32 j, iteration, sector_size;
2854 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2857 * Determine HW Sector size: Read BERASE bits of hw flash status
2858 * register
2859 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2860 * consecutive sectors. The start index for the nth Hw sector
2861 * can be calculated as = bank * 4096 + n * 256
2862 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2863 * The start index for the nth Hw sector can be calculated
2864 * as = bank * 4096
2865 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2866 * (ich9 only, otherwise error condition)
2867 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2869 switch (hsfsts.hsf_status.berasesz) {
2870 case 0:
2871 /* Hw sector size 256 */
2872 sector_size = ICH_FLASH_SEG_SIZE_256;
2873 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2874 break;
2875 case 1:
2876 sector_size = ICH_FLASH_SEG_SIZE_4K;
2877 iteration = 1;
2878 break;
2879 case 2:
2880 sector_size = ICH_FLASH_SEG_SIZE_8K;
2881 iteration = 1;
2882 break;
2883 case 3:
2884 sector_size = ICH_FLASH_SEG_SIZE_64K;
2885 iteration = 1;
2886 break;
2887 default:
2888 return -E1000_ERR_NVM;
2891 /* Start with the base address, then add the sector offset. */
2892 flash_linear_addr = hw->nvm.flash_base_addr;
2893 flash_linear_addr += (bank) ? flash_bank_size : 0;
2895 for (j = 0; j < iteration ; j++) {
2896 do {
2897 /* Steps */
2898 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2899 if (ret_val)
2900 return ret_val;
2903 * Write a value 11 (block Erase) in Flash
2904 * Cycle field in hw flash control
2906 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2907 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2908 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2911 * Write the last 24 bits of an index within the
2912 * block into Flash Linear address field in Flash
2913 * Address.
2915 flash_linear_addr += (j * sector_size);
2916 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2918 ret_val = e1000_flash_cycle_ich8lan(hw,
2919 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2920 if (ret_val == 0)
2921 break;
2924 * Check if FCERR is set to 1. If 1,
2925 * clear it and try the whole sequence
2926 * a few more times else Done
2928 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2929 if (hsfsts.hsf_status.flcerr == 1)
2930 /* repeat for some time before giving up */
2931 continue;
2932 else if (hsfsts.hsf_status.flcdone == 0)
2933 return ret_val;
2934 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2937 return 0;
2941 * e1000_valid_led_default_ich8lan - Set the default LED settings
2942 * @hw: pointer to the HW structure
2943 * @data: Pointer to the LED settings
2945 * Reads the LED default settings from the NVM to data. If the NVM LED
2946 * settings is all 0's or F's, set the LED default to a valid LED default
2947 * setting.
2949 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2951 s32 ret_val;
2953 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2954 if (ret_val) {
2955 e_dbg("NVM Read Error\n");
2956 return ret_val;
2959 if (*data == ID_LED_RESERVED_0000 ||
2960 *data == ID_LED_RESERVED_FFFF)
2961 *data = ID_LED_DEFAULT_ICH8LAN;
2963 return 0;
2967 * e1000_id_led_init_pchlan - store LED configurations
2968 * @hw: pointer to the HW structure
2970 * PCH does not control LEDs via the LEDCTL register, rather it uses
2971 * the PHY LED configuration register.
2973 * PCH also does not have an "always on" or "always off" mode which
2974 * complicates the ID feature. Instead of using the "on" mode to indicate
2975 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2976 * use "link_up" mode. The LEDs will still ID on request if there is no
2977 * link based on logic in e1000_led_[on|off]_pchlan().
2979 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2981 struct e1000_mac_info *mac = &hw->mac;
2982 s32 ret_val;
2983 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2984 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2985 u16 data, i, temp, shift;
2987 /* Get default ID LED modes */
2988 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2989 if (ret_val)
2990 goto out;
2992 mac->ledctl_default = er32(LEDCTL);
2993 mac->ledctl_mode1 = mac->ledctl_default;
2994 mac->ledctl_mode2 = mac->ledctl_default;
2996 for (i = 0; i < 4; i++) {
2997 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2998 shift = (i * 5);
2999 switch (temp) {
3000 case ID_LED_ON1_DEF2:
3001 case ID_LED_ON1_ON2:
3002 case ID_LED_ON1_OFF2:
3003 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3004 mac->ledctl_mode1 |= (ledctl_on << shift);
3005 break;
3006 case ID_LED_OFF1_DEF2:
3007 case ID_LED_OFF1_ON2:
3008 case ID_LED_OFF1_OFF2:
3009 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3010 mac->ledctl_mode1 |= (ledctl_off << shift);
3011 break;
3012 default:
3013 /* Do nothing */
3014 break;
3016 switch (temp) {
3017 case ID_LED_DEF1_ON2:
3018 case ID_LED_ON1_ON2:
3019 case ID_LED_OFF1_ON2:
3020 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3021 mac->ledctl_mode2 |= (ledctl_on << shift);
3022 break;
3023 case ID_LED_DEF1_OFF2:
3024 case ID_LED_ON1_OFF2:
3025 case ID_LED_OFF1_OFF2:
3026 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3027 mac->ledctl_mode2 |= (ledctl_off << shift);
3028 break;
3029 default:
3030 /* Do nothing */
3031 break;
3035 out:
3036 return ret_val;
3040 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3041 * @hw: pointer to the HW structure
3043 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3044 * register, so the the bus width is hard coded.
3046 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3048 struct e1000_bus_info *bus = &hw->bus;
3049 s32 ret_val;
3051 ret_val = e1000e_get_bus_info_pcie(hw);
3054 * ICH devices are "PCI Express"-ish. They have
3055 * a configuration space, but do not contain
3056 * PCI Express Capability registers, so bus width
3057 * must be hardcoded.
3059 if (bus->width == e1000_bus_width_unknown)
3060 bus->width = e1000_bus_width_pcie_x1;
3062 return ret_val;
3066 * e1000_reset_hw_ich8lan - Reset the hardware
3067 * @hw: pointer to the HW structure
3069 * Does a full reset of the hardware which includes a reset of the PHY and
3070 * MAC.
3072 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3074 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3075 u16 reg;
3076 u32 ctrl, kab;
3077 s32 ret_val;
3080 * Prevent the PCI-E bus from sticking if there is no TLP connection
3081 * on the last TLP read/write transaction when MAC is reset.
3083 ret_val = e1000e_disable_pcie_master(hw);
3084 if (ret_val)
3085 e_dbg("PCI-E Master disable polling has failed.\n");
3087 e_dbg("Masking off all interrupts\n");
3088 ew32(IMC, 0xffffffff);
3091 * Disable the Transmit and Receive units. Then delay to allow
3092 * any pending transactions to complete before we hit the MAC
3093 * with the global reset.
3095 ew32(RCTL, 0);
3096 ew32(TCTL, E1000_TCTL_PSP);
3097 e1e_flush();
3099 usleep_range(10000, 20000);
3101 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3102 if (hw->mac.type == e1000_ich8lan) {
3103 /* Set Tx and Rx buffer allocation to 8k apiece. */
3104 ew32(PBA, E1000_PBA_8K);
3105 /* Set Packet Buffer Size to 16k. */
3106 ew32(PBS, E1000_PBS_16K);
3109 if (hw->mac.type == e1000_pchlan) {
3110 /* Save the NVM K1 bit setting*/
3111 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3112 if (ret_val)
3113 return ret_val;
3115 if (reg & E1000_NVM_K1_ENABLE)
3116 dev_spec->nvm_k1_enabled = true;
3117 else
3118 dev_spec->nvm_k1_enabled = false;
3121 ctrl = er32(CTRL);
3123 if (!e1000_check_reset_block(hw)) {
3125 * Full-chip reset requires MAC and PHY reset at the same
3126 * time to make sure the interface between MAC and the
3127 * external PHY is reset.
3129 ctrl |= E1000_CTRL_PHY_RST;
3132 * Gate automatic PHY configuration by hardware on
3133 * non-managed 82579
3135 if ((hw->mac.type == e1000_pch2lan) &&
3136 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3137 e1000_gate_hw_phy_config_ich8lan(hw, true);
3139 ret_val = e1000_acquire_swflag_ich8lan(hw);
3140 e_dbg("Issuing a global reset to ich8lan\n");
3141 ew32(CTRL, (ctrl | E1000_CTRL_RST));
3142 /* cannot issue a flush here because it hangs the hardware */
3143 msleep(20);
3145 if (!ret_val)
3146 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3148 if (ctrl & E1000_CTRL_PHY_RST) {
3149 ret_val = hw->phy.ops.get_cfg_done(hw);
3150 if (ret_val)
3151 goto out;
3153 ret_val = e1000_post_phy_reset_ich8lan(hw);
3154 if (ret_val)
3155 goto out;
3159 * For PCH, this write will make sure that any noise
3160 * will be detected as a CRC error and be dropped rather than show up
3161 * as a bad packet to the DMA engine.
3163 if (hw->mac.type == e1000_pchlan)
3164 ew32(CRC_OFFSET, 0x65656565);
3166 ew32(IMC, 0xffffffff);
3167 er32(ICR);
3169 kab = er32(KABGTXD);
3170 kab |= E1000_KABGTXD_BGSQLBIAS;
3171 ew32(KABGTXD, kab);
3173 out:
3174 return ret_val;
3178 * e1000_init_hw_ich8lan - Initialize the hardware
3179 * @hw: pointer to the HW structure
3181 * Prepares the hardware for transmit and receive by doing the following:
3182 * - initialize hardware bits
3183 * - initialize LED identification
3184 * - setup receive address registers
3185 * - setup flow control
3186 * - setup transmit descriptors
3187 * - clear statistics
3189 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3191 struct e1000_mac_info *mac = &hw->mac;
3192 u32 ctrl_ext, txdctl, snoop;
3193 s32 ret_val;
3194 u16 i;
3196 e1000_initialize_hw_bits_ich8lan(hw);
3198 /* Initialize identification LED */
3199 ret_val = mac->ops.id_led_init(hw);
3200 if (ret_val)
3201 e_dbg("Error initializing identification LED\n");
3202 /* This is not fatal and we should not stop init due to this */
3204 /* Setup the receive address. */
3205 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3207 /* Zero out the Multicast HASH table */
3208 e_dbg("Zeroing the MTA\n");
3209 for (i = 0; i < mac->mta_reg_count; i++)
3210 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3213 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3214 * the ME. Disable wakeup by clearing the host wakeup bit.
3215 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3217 if (hw->phy.type == e1000_phy_82578) {
3218 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3219 i &= ~BM_WUC_HOST_WU_BIT;
3220 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3221 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3222 if (ret_val)
3223 return ret_val;
3226 /* Setup link and flow control */
3227 ret_val = e1000_setup_link_ich8lan(hw);
3229 /* Set the transmit descriptor write-back policy for both queues */
3230 txdctl = er32(TXDCTL(0));
3231 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3232 E1000_TXDCTL_FULL_TX_DESC_WB;
3233 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3234 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3235 ew32(TXDCTL(0), txdctl);
3236 txdctl = er32(TXDCTL(1));
3237 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3238 E1000_TXDCTL_FULL_TX_DESC_WB;
3239 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3240 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3241 ew32(TXDCTL(1), txdctl);
3244 * ICH8 has opposite polarity of no_snoop bits.
3245 * By default, we should use snoop behavior.
3247 if (mac->type == e1000_ich8lan)
3248 snoop = PCIE_ICH8_SNOOP_ALL;
3249 else
3250 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3251 e1000e_set_pcie_no_snoop(hw, snoop);
3253 ctrl_ext = er32(CTRL_EXT);
3254 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3255 ew32(CTRL_EXT, ctrl_ext);
3258 * Clear all of the statistics registers (clear on read). It is
3259 * important that we do this after we have tried to establish link
3260 * because the symbol error count will increment wildly if there
3261 * is no link.
3263 e1000_clear_hw_cntrs_ich8lan(hw);
3265 return 0;
3268 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3269 * @hw: pointer to the HW structure
3271 * Sets/Clears required hardware bits necessary for correctly setting up the
3272 * hardware for transmit and receive.
3274 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3276 u32 reg;
3278 /* Extended Device Control */
3279 reg = er32(CTRL_EXT);
3280 reg |= (1 << 22);
3281 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3282 if (hw->mac.type >= e1000_pchlan)
3283 reg |= E1000_CTRL_EXT_PHYPDEN;
3284 ew32(CTRL_EXT, reg);
3286 /* Transmit Descriptor Control 0 */
3287 reg = er32(TXDCTL(0));
3288 reg |= (1 << 22);
3289 ew32(TXDCTL(0), reg);
3291 /* Transmit Descriptor Control 1 */
3292 reg = er32(TXDCTL(1));
3293 reg |= (1 << 22);
3294 ew32(TXDCTL(1), reg);
3296 /* Transmit Arbitration Control 0 */
3297 reg = er32(TARC(0));
3298 if (hw->mac.type == e1000_ich8lan)
3299 reg |= (1 << 28) | (1 << 29);
3300 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3301 ew32(TARC(0), reg);
3303 /* Transmit Arbitration Control 1 */
3304 reg = er32(TARC(1));
3305 if (er32(TCTL) & E1000_TCTL_MULR)
3306 reg &= ~(1 << 28);
3307 else
3308 reg |= (1 << 28);
3309 reg |= (1 << 24) | (1 << 26) | (1 << 30);
3310 ew32(TARC(1), reg);
3312 /* Device Status */
3313 if (hw->mac.type == e1000_ich8lan) {
3314 reg = er32(STATUS);
3315 reg &= ~(1 << 31);
3316 ew32(STATUS, reg);
3320 * work-around descriptor data corruption issue during nfs v2 udp
3321 * traffic, just disable the nfs filtering capability
3323 reg = er32(RFCTL);
3324 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3325 ew32(RFCTL, reg);
3329 * e1000_setup_link_ich8lan - Setup flow control and link settings
3330 * @hw: pointer to the HW structure
3332 * Determines which flow control settings to use, then configures flow
3333 * control. Calls the appropriate media-specific link configuration
3334 * function. Assuming the adapter has a valid link partner, a valid link
3335 * should be established. Assumes the hardware has previously been reset
3336 * and the transmitter and receiver are not enabled.
3338 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3340 s32 ret_val;
3342 if (e1000_check_reset_block(hw))
3343 return 0;
3346 * ICH parts do not have a word in the NVM to determine
3347 * the default flow control setting, so we explicitly
3348 * set it to full.
3350 if (hw->fc.requested_mode == e1000_fc_default) {
3351 /* Workaround h/w hang when Tx flow control enabled */
3352 if (hw->mac.type == e1000_pchlan)
3353 hw->fc.requested_mode = e1000_fc_rx_pause;
3354 else
3355 hw->fc.requested_mode = e1000_fc_full;
3359 * Save off the requested flow control mode for use later. Depending
3360 * on the link partner's capabilities, we may or may not use this mode.
3362 hw->fc.current_mode = hw->fc.requested_mode;
3364 e_dbg("After fix-ups FlowControl is now = %x\n",
3365 hw->fc.current_mode);
3367 /* Continue to configure the copper link. */
3368 ret_val = e1000_setup_copper_link_ich8lan(hw);
3369 if (ret_val)
3370 return ret_val;
3372 ew32(FCTTV, hw->fc.pause_time);
3373 if ((hw->phy.type == e1000_phy_82578) ||
3374 (hw->phy.type == e1000_phy_82579) ||
3375 (hw->phy.type == e1000_phy_82577)) {
3376 ew32(FCRTV_PCH, hw->fc.refresh_time);
3378 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3379 hw->fc.pause_time);
3380 if (ret_val)
3381 return ret_val;
3384 return e1000e_set_fc_watermarks(hw);
3388 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3389 * @hw: pointer to the HW structure
3391 * Configures the kumeran interface to the PHY to wait the appropriate time
3392 * when polling the PHY, then call the generic setup_copper_link to finish
3393 * configuring the copper link.
3395 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3397 u32 ctrl;
3398 s32 ret_val;
3399 u16 reg_data;
3401 ctrl = er32(CTRL);
3402 ctrl |= E1000_CTRL_SLU;
3403 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3404 ew32(CTRL, ctrl);
3407 * Set the mac to wait the maximum time between each iteration
3408 * and increase the max iterations when polling the phy;
3409 * this fixes erroneous timeouts at 10Mbps.
3411 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3412 if (ret_val)
3413 return ret_val;
3414 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3415 &reg_data);
3416 if (ret_val)
3417 return ret_val;
3418 reg_data |= 0x3F;
3419 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3420 reg_data);
3421 if (ret_val)
3422 return ret_val;
3424 switch (hw->phy.type) {
3425 case e1000_phy_igp_3:
3426 ret_val = e1000e_copper_link_setup_igp(hw);
3427 if (ret_val)
3428 return ret_val;
3429 break;
3430 case e1000_phy_bm:
3431 case e1000_phy_82578:
3432 ret_val = e1000e_copper_link_setup_m88(hw);
3433 if (ret_val)
3434 return ret_val;
3435 break;
3436 case e1000_phy_82577:
3437 case e1000_phy_82579:
3438 ret_val = e1000_copper_link_setup_82577(hw);
3439 if (ret_val)
3440 return ret_val;
3441 break;
3442 case e1000_phy_ife:
3443 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3444 if (ret_val)
3445 return ret_val;
3447 reg_data &= ~IFE_PMC_AUTO_MDIX;
3449 switch (hw->phy.mdix) {
3450 case 1:
3451 reg_data &= ~IFE_PMC_FORCE_MDIX;
3452 break;
3453 case 2:
3454 reg_data |= IFE_PMC_FORCE_MDIX;
3455 break;
3456 case 0:
3457 default:
3458 reg_data |= IFE_PMC_AUTO_MDIX;
3459 break;
3461 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3462 if (ret_val)
3463 return ret_val;
3464 break;
3465 default:
3466 break;
3468 return e1000e_setup_copper_link(hw);
3472 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3473 * @hw: pointer to the HW structure
3474 * @speed: pointer to store current link speed
3475 * @duplex: pointer to store the current link duplex
3477 * Calls the generic get_speed_and_duplex to retrieve the current link
3478 * information and then calls the Kumeran lock loss workaround for links at
3479 * gigabit speeds.
3481 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3482 u16 *duplex)
3484 s32 ret_val;
3486 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3487 if (ret_val)
3488 return ret_val;
3490 if ((hw->mac.type == e1000_ich8lan) &&
3491 (hw->phy.type == e1000_phy_igp_3) &&
3492 (*speed == SPEED_1000)) {
3493 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3496 return ret_val;
3500 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3501 * @hw: pointer to the HW structure
3503 * Work-around for 82566 Kumeran PCS lock loss:
3504 * On link status change (i.e. PCI reset, speed change) and link is up and
3505 * speed is gigabit-
3506 * 0) if workaround is optionally disabled do nothing
3507 * 1) wait 1ms for Kumeran link to come up
3508 * 2) check Kumeran Diagnostic register PCS lock loss bit
3509 * 3) if not set the link is locked (all is good), otherwise...
3510 * 4) reset the PHY
3511 * 5) repeat up to 10 times
3512 * Note: this is only called for IGP3 copper when speed is 1gb.
3514 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3516 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3517 u32 phy_ctrl;
3518 s32 ret_val;
3519 u16 i, data;
3520 bool link;
3522 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3523 return 0;
3526 * Make sure link is up before proceeding. If not just return.
3527 * Attempting this while link is negotiating fouled up link
3528 * stability
3530 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3531 if (!link)
3532 return 0;
3534 for (i = 0; i < 10; i++) {
3535 /* read once to clear */
3536 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3537 if (ret_val)
3538 return ret_val;
3539 /* and again to get new status */
3540 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3541 if (ret_val)
3542 return ret_val;
3544 /* check for PCS lock */
3545 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3546 return 0;
3548 /* Issue PHY reset */
3549 e1000_phy_hw_reset(hw);
3550 mdelay(5);
3552 /* Disable GigE link negotiation */
3553 phy_ctrl = er32(PHY_CTRL);
3554 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3555 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3556 ew32(PHY_CTRL, phy_ctrl);
3559 * Call gig speed drop workaround on Gig disable before accessing
3560 * any PHY registers
3562 e1000e_gig_downshift_workaround_ich8lan(hw);
3564 /* unable to acquire PCS lock */
3565 return -E1000_ERR_PHY;
3569 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3570 * @hw: pointer to the HW structure
3571 * @state: boolean value used to set the current Kumeran workaround state
3573 * If ICH8, set the current Kumeran workaround state (enabled - true
3574 * /disabled - false).
3576 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3577 bool state)
3579 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3581 if (hw->mac.type != e1000_ich8lan) {
3582 e_dbg("Workaround applies to ICH8 only.\n");
3583 return;
3586 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3590 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3591 * @hw: pointer to the HW structure
3593 * Workaround for 82566 power-down on D3 entry:
3594 * 1) disable gigabit link
3595 * 2) write VR power-down enable
3596 * 3) read it back
3597 * Continue if successful, else issue LCD reset and repeat
3599 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3601 u32 reg;
3602 u16 data;
3603 u8 retry = 0;
3605 if (hw->phy.type != e1000_phy_igp_3)
3606 return;
3608 /* Try the workaround twice (if needed) */
3609 do {
3610 /* Disable link */
3611 reg = er32(PHY_CTRL);
3612 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3613 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3614 ew32(PHY_CTRL, reg);
3617 * Call gig speed drop workaround on Gig disable before
3618 * accessing any PHY registers
3620 if (hw->mac.type == e1000_ich8lan)
3621 e1000e_gig_downshift_workaround_ich8lan(hw);
3623 /* Write VR power-down enable */
3624 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3625 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3626 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3628 /* Read it back and test */
3629 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3630 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3631 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3632 break;
3634 /* Issue PHY reset and repeat at most one more time */
3635 reg = er32(CTRL);
3636 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3637 retry++;
3638 } while (retry);
3642 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3643 * @hw: pointer to the HW structure
3645 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3646 * LPLU, Gig disable, MDIC PHY reset):
3647 * 1) Set Kumeran Near-end loopback
3648 * 2) Clear Kumeran Near-end loopback
3649 * Should only be called for ICH8[m] devices with any 1G Phy.
3651 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3653 s32 ret_val;
3654 u16 reg_data;
3656 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3657 return;
3659 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3660 &reg_data);
3661 if (ret_val)
3662 return;
3663 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3664 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3665 reg_data);
3666 if (ret_val)
3667 return;
3668 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3669 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3670 reg_data);
3674 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3675 * @hw: pointer to the HW structure
3677 * During S0 to Sx transition, it is possible the link remains at gig
3678 * instead of negotiating to a lower speed. Before going to Sx, set
3679 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3680 * to a lower speed. For PCH and newer parts, the OEM bits PHY register
3681 * (LED, GbE disable and LPLU configurations) also needs to be written.
3683 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3685 u32 phy_ctrl;
3686 s32 ret_val;
3688 phy_ctrl = er32(PHY_CTRL);
3689 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3690 ew32(PHY_CTRL, phy_ctrl);
3692 if (hw->mac.type == e1000_ich8lan)
3693 e1000e_gig_downshift_workaround_ich8lan(hw);
3695 if (hw->mac.type >= e1000_pchlan) {
3696 e1000_oem_bits_config_ich8lan(hw, false);
3697 e1000_phy_hw_reset_ich8lan(hw);
3698 ret_val = hw->phy.ops.acquire(hw);
3699 if (ret_val)
3700 return;
3701 e1000_write_smbus_addr(hw);
3702 hw->phy.ops.release(hw);
3707 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3708 * @hw: pointer to the HW structure
3710 * During Sx to S0 transitions on non-managed devices or managed devices
3711 * on which PHY resets are not blocked, if the PHY registers cannot be
3712 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
3713 * the PHY.
3715 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3717 u32 fwsm;
3719 if (hw->mac.type != e1000_pch2lan)
3720 return;
3722 fwsm = er32(FWSM);
3723 if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
3724 u16 phy_id1, phy_id2;
3725 s32 ret_val;
3727 ret_val = hw->phy.ops.acquire(hw);
3728 if (ret_val) {
3729 e_dbg("Failed to acquire PHY semaphore in resume\n");
3730 return;
3733 /* Test access to the PHY registers by reading the ID regs */
3734 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3735 if (ret_val)
3736 goto release;
3737 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3738 if (ret_val)
3739 goto release;
3741 if (hw->phy.id == ((u32)(phy_id1 << 16) |
3742 (u32)(phy_id2 & PHY_REVISION_MASK)))
3743 goto release;
3745 e1000_toggle_lanphypc_value_ich8lan(hw);
3747 hw->phy.ops.release(hw);
3748 msleep(50);
3749 e1000_phy_hw_reset(hw);
3750 msleep(50);
3751 return;
3754 release:
3755 hw->phy.ops.release(hw);
3757 return;
3761 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3762 * @hw: pointer to the HW structure
3764 * Return the LED back to the default configuration.
3766 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3768 if (hw->phy.type == e1000_phy_ife)
3769 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3771 ew32(LEDCTL, hw->mac.ledctl_default);
3772 return 0;
3776 * e1000_led_on_ich8lan - Turn LEDs on
3777 * @hw: pointer to the HW structure
3779 * Turn on the LEDs.
3781 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3783 if (hw->phy.type == e1000_phy_ife)
3784 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3785 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3787 ew32(LEDCTL, hw->mac.ledctl_mode2);
3788 return 0;
3792 * e1000_led_off_ich8lan - Turn LEDs off
3793 * @hw: pointer to the HW structure
3795 * Turn off the LEDs.
3797 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3799 if (hw->phy.type == e1000_phy_ife)
3800 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3801 (IFE_PSCL_PROBE_MODE |
3802 IFE_PSCL_PROBE_LEDS_OFF));
3804 ew32(LEDCTL, hw->mac.ledctl_mode1);
3805 return 0;
3809 * e1000_setup_led_pchlan - Configures SW controllable LED
3810 * @hw: pointer to the HW structure
3812 * This prepares the SW controllable LED for use.
3814 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3816 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3820 * e1000_cleanup_led_pchlan - Restore the default LED operation
3821 * @hw: pointer to the HW structure
3823 * Return the LED back to the default configuration.
3825 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3827 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3831 * e1000_led_on_pchlan - Turn LEDs on
3832 * @hw: pointer to the HW structure
3834 * Turn on the LEDs.
3836 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3838 u16 data = (u16)hw->mac.ledctl_mode2;
3839 u32 i, led;
3842 * If no link, then turn LED on by setting the invert bit
3843 * for each LED that's mode is "link_up" in ledctl_mode2.
3845 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3846 for (i = 0; i < 3; i++) {
3847 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3848 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3849 E1000_LEDCTL_MODE_LINK_UP)
3850 continue;
3851 if (led & E1000_PHY_LED0_IVRT)
3852 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3853 else
3854 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3858 return e1e_wphy(hw, HV_LED_CONFIG, data);
3862 * e1000_led_off_pchlan - Turn LEDs off
3863 * @hw: pointer to the HW structure
3865 * Turn off the LEDs.
3867 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3869 u16 data = (u16)hw->mac.ledctl_mode1;
3870 u32 i, led;
3873 * If no link, then turn LED off by clearing the invert bit
3874 * for each LED that's mode is "link_up" in ledctl_mode1.
3876 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3877 for (i = 0; i < 3; i++) {
3878 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3879 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3880 E1000_LEDCTL_MODE_LINK_UP)
3881 continue;
3882 if (led & E1000_PHY_LED0_IVRT)
3883 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3884 else
3885 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3889 return e1e_wphy(hw, HV_LED_CONFIG, data);
3893 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3894 * @hw: pointer to the HW structure
3896 * Read appropriate register for the config done bit for completion status
3897 * and configure the PHY through s/w for EEPROM-less parts.
3899 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3900 * config done bit, so only an error is logged and continues. If we were
3901 * to return with error, EEPROM-less silicon would not be able to be reset
3902 * or change link.
3904 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3906 s32 ret_val = 0;
3907 u32 bank = 0;
3908 u32 status;
3910 e1000e_get_cfg_done(hw);
3912 /* Wait for indication from h/w that it has completed basic config */
3913 if (hw->mac.type >= e1000_ich10lan) {
3914 e1000_lan_init_done_ich8lan(hw);
3915 } else {
3916 ret_val = e1000e_get_auto_rd_done(hw);
3917 if (ret_val) {
3919 * When auto config read does not complete, do not
3920 * return with an error. This can happen in situations
3921 * where there is no eeprom and prevents getting link.
3923 e_dbg("Auto Read Done did not complete\n");
3924 ret_val = 0;
3928 /* Clear PHY Reset Asserted bit */
3929 status = er32(STATUS);
3930 if (status & E1000_STATUS_PHYRA)
3931 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3932 else
3933 e_dbg("PHY Reset Asserted not set - needs delay\n");
3935 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3936 if (hw->mac.type <= e1000_ich9lan) {
3937 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3938 (hw->phy.type == e1000_phy_igp_3)) {
3939 e1000e_phy_init_script_igp3(hw);
3941 } else {
3942 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3943 /* Maybe we should do a basic PHY config */
3944 e_dbg("EEPROM not present\n");
3945 ret_val = -E1000_ERR_CONFIG;
3949 return ret_val;
3953 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3954 * @hw: pointer to the HW structure
3956 * In the case of a PHY power down to save power, or to turn off link during a
3957 * driver unload, or wake on lan is not enabled, remove the link.
3959 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3961 /* If the management interface is not enabled, then power down */
3962 if (!(hw->mac.ops.check_mng_mode(hw) ||
3963 hw->phy.ops.check_reset_block(hw)))
3964 e1000_power_down_phy_copper(hw);
3968 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3969 * @hw: pointer to the HW structure
3971 * Clears hardware counters specific to the silicon family and calls
3972 * clear_hw_cntrs_generic to clear all general purpose counters.
3974 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3976 u16 phy_data;
3977 s32 ret_val;
3979 e1000e_clear_hw_cntrs_base(hw);
3981 er32(ALGNERRC);
3982 er32(RXERRC);
3983 er32(TNCRS);
3984 er32(CEXTERR);
3985 er32(TSCTC);
3986 er32(TSCTFC);
3988 er32(MGTPRC);
3989 er32(MGTPDC);
3990 er32(MGTPTC);
3992 er32(IAC);
3993 er32(ICRXOC);
3995 /* Clear PHY statistics registers */
3996 if ((hw->phy.type == e1000_phy_82578) ||
3997 (hw->phy.type == e1000_phy_82579) ||
3998 (hw->phy.type == e1000_phy_82577)) {
3999 ret_val = hw->phy.ops.acquire(hw);
4000 if (ret_val)
4001 return;
4002 ret_val = hw->phy.ops.set_page(hw,
4003 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4004 if (ret_val)
4005 goto release;
4006 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4007 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4008 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4009 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4010 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4011 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4012 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4013 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4014 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4015 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4016 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4017 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4018 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4019 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4020 release:
4021 hw->phy.ops.release(hw);
4025 static const struct e1000_mac_operations ich8_mac_ops = {
4026 .id_led_init = e1000e_id_led_init,
4027 /* check_mng_mode dependent on mac type */
4028 .check_for_link = e1000_check_for_copper_link_ich8lan,
4029 /* cleanup_led dependent on mac type */
4030 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4031 .get_bus_info = e1000_get_bus_info_ich8lan,
4032 .set_lan_id = e1000_set_lan_id_single_port,
4033 .get_link_up_info = e1000_get_link_up_info_ich8lan,
4034 /* led_on dependent on mac type */
4035 /* led_off dependent on mac type */
4036 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
4037 .reset_hw = e1000_reset_hw_ich8lan,
4038 .init_hw = e1000_init_hw_ich8lan,
4039 .setup_link = e1000_setup_link_ich8lan,
4040 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4041 /* id_led_init dependent on mac type */
4044 static const struct e1000_phy_operations ich8_phy_ops = {
4045 .acquire = e1000_acquire_swflag_ich8lan,
4046 .check_reset_block = e1000_check_reset_block_ich8lan,
4047 .commit = NULL,
4048 .get_cfg_done = e1000_get_cfg_done_ich8lan,
4049 .get_cable_length = e1000e_get_cable_length_igp_2,
4050 .read_reg = e1000e_read_phy_reg_igp,
4051 .release = e1000_release_swflag_ich8lan,
4052 .reset = e1000_phy_hw_reset_ich8lan,
4053 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4054 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
4055 .write_reg = e1000e_write_phy_reg_igp,
4058 static const struct e1000_nvm_operations ich8_nvm_ops = {
4059 .acquire = e1000_acquire_nvm_ich8lan,
4060 .read = e1000_read_nvm_ich8lan,
4061 .release = e1000_release_nvm_ich8lan,
4062 .update = e1000_update_nvm_checksum_ich8lan,
4063 .valid_led_default = e1000_valid_led_default_ich8lan,
4064 .validate = e1000_validate_nvm_checksum_ich8lan,
4065 .write = e1000_write_nvm_ich8lan,
4068 const struct e1000_info e1000_ich8_info = {
4069 .mac = e1000_ich8lan,
4070 .flags = FLAG_HAS_WOL
4071 | FLAG_IS_ICH
4072 | FLAG_HAS_CTRLEXT_ON_LOAD
4073 | FLAG_HAS_AMT
4074 | FLAG_HAS_FLASH
4075 | FLAG_APME_IN_WUC,
4076 .pba = 8,
4077 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
4078 .get_variants = e1000_get_variants_ich8lan,
4079 .mac_ops = &ich8_mac_ops,
4080 .phy_ops = &ich8_phy_ops,
4081 .nvm_ops = &ich8_nvm_ops,
4084 const struct e1000_info e1000_ich9_info = {
4085 .mac = e1000_ich9lan,
4086 .flags = FLAG_HAS_JUMBO_FRAMES
4087 | FLAG_IS_ICH
4088 | FLAG_HAS_WOL
4089 | FLAG_HAS_CTRLEXT_ON_LOAD
4090 | FLAG_HAS_AMT
4091 | FLAG_HAS_ERT
4092 | FLAG_HAS_FLASH
4093 | FLAG_APME_IN_WUC,
4094 .pba = 10,
4095 .max_hw_frame_size = DEFAULT_JUMBO,
4096 .get_variants = e1000_get_variants_ich8lan,
4097 .mac_ops = &ich8_mac_ops,
4098 .phy_ops = &ich8_phy_ops,
4099 .nvm_ops = &ich8_nvm_ops,
4102 const struct e1000_info e1000_ich10_info = {
4103 .mac = e1000_ich10lan,
4104 .flags = FLAG_HAS_JUMBO_FRAMES
4105 | FLAG_IS_ICH
4106 | FLAG_HAS_WOL
4107 | FLAG_HAS_CTRLEXT_ON_LOAD
4108 | FLAG_HAS_AMT
4109 | FLAG_HAS_ERT
4110 | FLAG_HAS_FLASH
4111 | FLAG_APME_IN_WUC,
4112 .pba = 10,
4113 .max_hw_frame_size = DEFAULT_JUMBO,
4114 .get_variants = e1000_get_variants_ich8lan,
4115 .mac_ops = &ich8_mac_ops,
4116 .phy_ops = &ich8_phy_ops,
4117 .nvm_ops = &ich8_nvm_ops,
4120 const struct e1000_info e1000_pch_info = {
4121 .mac = e1000_pchlan,
4122 .flags = FLAG_IS_ICH
4123 | FLAG_HAS_WOL
4124 | FLAG_HAS_CTRLEXT_ON_LOAD
4125 | FLAG_HAS_AMT
4126 | FLAG_HAS_FLASH
4127 | FLAG_HAS_JUMBO_FRAMES
4128 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4129 | FLAG_APME_IN_WUC,
4130 .flags2 = FLAG2_HAS_PHY_STATS,
4131 .pba = 26,
4132 .max_hw_frame_size = 4096,
4133 .get_variants = e1000_get_variants_ich8lan,
4134 .mac_ops = &ich8_mac_ops,
4135 .phy_ops = &ich8_phy_ops,
4136 .nvm_ops = &ich8_nvm_ops,
4139 const struct e1000_info e1000_pch2_info = {
4140 .mac = e1000_pch2lan,
4141 .flags = FLAG_IS_ICH
4142 | FLAG_HAS_WOL
4143 | FLAG_HAS_CTRLEXT_ON_LOAD
4144 | FLAG_HAS_AMT
4145 | FLAG_HAS_FLASH
4146 | FLAG_HAS_JUMBO_FRAMES
4147 | FLAG_APME_IN_WUC,
4148 .flags2 = FLAG2_HAS_PHY_STATS
4149 | FLAG2_HAS_EEE,
4150 .pba = 26,
4151 .max_hw_frame_size = DEFAULT_JUMBO,
4152 .get_variants = e1000_get_variants_ich8lan,
4153 .mac_ops = &ich8_mac_ops,
4154 .phy_ops = &ich8_phy_ops,
4155 .nvm_ops = &ich8_nvm_ops,