Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
blob08bdc33715eeabbb793b778fd98a4aafdc8c5bc5
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* e1000_82575
29 * e1000_82576
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
40 static s32 igb_get_invariants_82575(struct e1000_hw *);
41 static s32 igb_acquire_phy_82575(struct e1000_hw *);
42 static void igb_release_phy_82575(struct e1000_hw *);
43 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
44 static void igb_release_nvm_82575(struct e1000_hw *);
45 static s32 igb_check_for_link_82575(struct e1000_hw *);
46 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
47 static s32 igb_init_hw_82575(struct e1000_hw *);
48 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
49 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
50 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
51 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
52 static s32 igb_reset_hw_82575(struct e1000_hw *);
53 static s32 igb_reset_hw_82580(struct e1000_hw *);
54 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
55 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61 u16 *);
62 static s32 igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32 igb_reset_init_script_82575(struct e1000_hw *);
66 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] =
74 { 36, 72, 144, 1, 2, 4, 8, 16,
75 35, 70, 140 };
76 #define E1000_82580_RXPBS_TABLE_SIZE \
77 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
79 /**
80 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
81 * @hw: pointer to the HW structure
83 * Called to determine if the I2C pins are being used for I2C or as an
84 * external MDIO interface since the two options are mutually exclusive.
85 **/
86 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
88 u32 reg = 0;
89 bool ext_mdio = false;
91 switch (hw->mac.type) {
92 case e1000_82575:
93 case e1000_82576:
94 reg = rd32(E1000_MDIC);
95 ext_mdio = !!(reg & E1000_MDIC_DEST);
96 break;
97 case e1000_82580:
98 case e1000_i350:
99 reg = rd32(E1000_MDICNFG);
100 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101 break;
102 default:
103 break;
105 return ext_mdio;
108 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
110 struct e1000_phy_info *phy = &hw->phy;
111 struct e1000_nvm_info *nvm = &hw->nvm;
112 struct e1000_mac_info *mac = &hw->mac;
113 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
114 u32 eecd;
115 s32 ret_val;
116 u16 size;
117 u32 ctrl_ext = 0;
119 switch (hw->device_id) {
120 case E1000_DEV_ID_82575EB_COPPER:
121 case E1000_DEV_ID_82575EB_FIBER_SERDES:
122 case E1000_DEV_ID_82575GB_QUAD_COPPER:
123 mac->type = e1000_82575;
124 break;
125 case E1000_DEV_ID_82576:
126 case E1000_DEV_ID_82576_NS:
127 case E1000_DEV_ID_82576_NS_SERDES:
128 case E1000_DEV_ID_82576_FIBER:
129 case E1000_DEV_ID_82576_SERDES:
130 case E1000_DEV_ID_82576_QUAD_COPPER:
131 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
132 case E1000_DEV_ID_82576_SERDES_QUAD:
133 mac->type = e1000_82576;
134 break;
135 case E1000_DEV_ID_82580_COPPER:
136 case E1000_DEV_ID_82580_FIBER:
137 case E1000_DEV_ID_82580_QUAD_FIBER:
138 case E1000_DEV_ID_82580_SERDES:
139 case E1000_DEV_ID_82580_SGMII:
140 case E1000_DEV_ID_82580_COPPER_DUAL:
141 case E1000_DEV_ID_DH89XXCC_SGMII:
142 case E1000_DEV_ID_DH89XXCC_SERDES:
143 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
144 case E1000_DEV_ID_DH89XXCC_SFP:
145 mac->type = e1000_82580;
146 break;
147 case E1000_DEV_ID_I350_COPPER:
148 case E1000_DEV_ID_I350_FIBER:
149 case E1000_DEV_ID_I350_SERDES:
150 case E1000_DEV_ID_I350_SGMII:
151 mac->type = e1000_i350;
152 break;
153 default:
154 return -E1000_ERR_MAC_INIT;
155 break;
158 /* Set media type */
160 * The 82575 uses bits 22:23 for link mode. The mode can be changed
161 * based on the EEPROM. We cannot rely upon device ID. There
162 * is no distinguishable difference between fiber and internal
163 * SerDes mode on the 82575. There can be an external PHY attached
164 * on the SGMII interface. For this, we'll set sgmii_active to true.
166 phy->media_type = e1000_media_type_copper;
167 dev_spec->sgmii_active = false;
169 ctrl_ext = rd32(E1000_CTRL_EXT);
170 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
171 case E1000_CTRL_EXT_LINK_MODE_SGMII:
172 dev_spec->sgmii_active = true;
173 break;
174 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
175 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
176 hw->phy.media_type = e1000_media_type_internal_serdes;
177 break;
178 default:
179 break;
182 /* Set mta register count */
183 mac->mta_reg_count = 128;
184 /* Set rar entry count */
185 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
186 if (mac->type == e1000_82576)
187 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
188 if (mac->type == e1000_82580)
189 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
190 if (mac->type == e1000_i350)
191 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
192 /* reset */
193 if (mac->type >= e1000_82580)
194 mac->ops.reset_hw = igb_reset_hw_82580;
195 else
196 mac->ops.reset_hw = igb_reset_hw_82575;
197 /* Set if part includes ASF firmware */
198 mac->asf_firmware_present = true;
199 /* Set if manageability features are enabled. */
200 mac->arc_subsystem_valid =
201 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
202 ? true : false;
203 /* enable EEE on i350 parts */
204 if (mac->type == e1000_i350)
205 dev_spec->eee_disable = false;
206 else
207 dev_spec->eee_disable = true;
208 /* physical interface link setup */
209 mac->ops.setup_physical_interface =
210 (hw->phy.media_type == e1000_media_type_copper)
211 ? igb_setup_copper_link_82575
212 : igb_setup_serdes_link_82575;
214 /* NVM initialization */
215 eecd = rd32(E1000_EECD);
217 nvm->opcode_bits = 8;
218 nvm->delay_usec = 1;
219 switch (nvm->override) {
220 case e1000_nvm_override_spi_large:
221 nvm->page_size = 32;
222 nvm->address_bits = 16;
223 break;
224 case e1000_nvm_override_spi_small:
225 nvm->page_size = 8;
226 nvm->address_bits = 8;
227 break;
228 default:
229 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
230 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
231 break;
234 nvm->type = e1000_nvm_eeprom_spi;
236 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
237 E1000_EECD_SIZE_EX_SHIFT);
240 * Added to a constant, "size" becomes the left-shift value
241 * for setting word_size.
243 size += NVM_WORD_SIZE_BASE_SHIFT;
246 * Check for invalid size
248 if ((hw->mac.type == e1000_82576) && (size > 15)) {
249 pr_notice("The NVM size is not valid, defaulting to 32K\n");
250 size = 15;
252 nvm->word_size = 1 << size;
253 if (nvm->word_size == (1 << 15))
254 nvm->page_size = 128;
256 /* NVM Function Pointers */
257 nvm->ops.acquire = igb_acquire_nvm_82575;
258 if (nvm->word_size < (1 << 15))
259 nvm->ops.read = igb_read_nvm_eerd;
260 else
261 nvm->ops.read = igb_read_nvm_spi;
263 nvm->ops.release = igb_release_nvm_82575;
264 switch (hw->mac.type) {
265 case e1000_82580:
266 nvm->ops.validate = igb_validate_nvm_checksum_82580;
267 nvm->ops.update = igb_update_nvm_checksum_82580;
268 break;
269 case e1000_i350:
270 nvm->ops.validate = igb_validate_nvm_checksum_i350;
271 nvm->ops.update = igb_update_nvm_checksum_i350;
272 break;
273 default:
274 nvm->ops.validate = igb_validate_nvm_checksum;
275 nvm->ops.update = igb_update_nvm_checksum;
277 nvm->ops.write = igb_write_nvm_spi;
279 /* if part supports SR-IOV then initialize mailbox parameters */
280 switch (mac->type) {
281 case e1000_82576:
282 case e1000_i350:
283 igb_init_mbx_params_pf(hw);
284 break;
285 default:
286 break;
289 /* setup PHY parameters */
290 if (phy->media_type != e1000_media_type_copper) {
291 phy->type = e1000_phy_none;
292 return 0;
295 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
296 phy->reset_delay_us = 100;
298 ctrl_ext = rd32(E1000_CTRL_EXT);
300 /* PHY function pointers */
301 if (igb_sgmii_active_82575(hw)) {
302 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
303 ctrl_ext |= E1000_CTRL_I2C_ENA;
304 } else {
305 phy->ops.reset = igb_phy_hw_reset;
306 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
309 wr32(E1000_CTRL_EXT, ctrl_ext);
310 igb_reset_mdicnfg_82580(hw);
312 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
313 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
314 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
315 } else if (hw->mac.type >= e1000_82580) {
316 phy->ops.read_reg = igb_read_phy_reg_82580;
317 phy->ops.write_reg = igb_write_phy_reg_82580;
318 } else {
319 phy->ops.read_reg = igb_read_phy_reg_igp;
320 phy->ops.write_reg = igb_write_phy_reg_igp;
323 /* set lan id */
324 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
325 E1000_STATUS_FUNC_SHIFT;
327 /* Set phy->phy_addr and phy->id. */
328 ret_val = igb_get_phy_id_82575(hw);
329 if (ret_val)
330 return ret_val;
332 /* Verify phy id and set remaining function pointers */
333 switch (phy->id) {
334 case I347AT4_E_PHY_ID:
335 case M88E1112_E_PHY_ID:
336 case M88E1111_I_PHY_ID:
337 phy->type = e1000_phy_m88;
338 phy->ops.get_phy_info = igb_get_phy_info_m88;
340 if (phy->id == I347AT4_E_PHY_ID ||
341 phy->id == M88E1112_E_PHY_ID)
342 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
343 else
344 phy->ops.get_cable_length = igb_get_cable_length_m88;
346 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
347 break;
348 case IGP03E1000_E_PHY_ID:
349 phy->type = e1000_phy_igp_3;
350 phy->ops.get_phy_info = igb_get_phy_info_igp;
351 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
352 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
353 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
354 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
355 break;
356 case I82580_I_PHY_ID:
357 case I350_I_PHY_ID:
358 phy->type = e1000_phy_82580;
359 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
360 phy->ops.get_cable_length = igb_get_cable_length_82580;
361 phy->ops.get_phy_info = igb_get_phy_info_82580;
362 break;
363 default:
364 return -E1000_ERR_PHY;
367 return 0;
371 * igb_acquire_phy_82575 - Acquire rights to access PHY
372 * @hw: pointer to the HW structure
374 * Acquire access rights to the correct PHY. This is a
375 * function pointer entry point called by the api module.
377 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
379 u16 mask = E1000_SWFW_PHY0_SM;
381 if (hw->bus.func == E1000_FUNC_1)
382 mask = E1000_SWFW_PHY1_SM;
383 else if (hw->bus.func == E1000_FUNC_2)
384 mask = E1000_SWFW_PHY2_SM;
385 else if (hw->bus.func == E1000_FUNC_3)
386 mask = E1000_SWFW_PHY3_SM;
388 return igb_acquire_swfw_sync_82575(hw, mask);
392 * igb_release_phy_82575 - Release rights to access PHY
393 * @hw: pointer to the HW structure
395 * A wrapper to release access rights to the correct PHY. This is a
396 * function pointer entry point called by the api module.
398 static void igb_release_phy_82575(struct e1000_hw *hw)
400 u16 mask = E1000_SWFW_PHY0_SM;
402 if (hw->bus.func == E1000_FUNC_1)
403 mask = E1000_SWFW_PHY1_SM;
404 else if (hw->bus.func == E1000_FUNC_2)
405 mask = E1000_SWFW_PHY2_SM;
406 else if (hw->bus.func == E1000_FUNC_3)
407 mask = E1000_SWFW_PHY3_SM;
409 igb_release_swfw_sync_82575(hw, mask);
413 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
414 * @hw: pointer to the HW structure
415 * @offset: register offset to be read
416 * @data: pointer to the read data
418 * Reads the PHY register at offset using the serial gigabit media independent
419 * interface and stores the retrieved information in data.
421 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
422 u16 *data)
424 s32 ret_val = -E1000_ERR_PARAM;
426 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
427 hw_dbg("PHY Address %u is out of range\n", offset);
428 goto out;
431 ret_val = hw->phy.ops.acquire(hw);
432 if (ret_val)
433 goto out;
435 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
437 hw->phy.ops.release(hw);
439 out:
440 return ret_val;
444 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
445 * @hw: pointer to the HW structure
446 * @offset: register offset to write to
447 * @data: data to write at register offset
449 * Writes the data to PHY register at the offset using the serial gigabit
450 * media independent interface.
452 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
453 u16 data)
455 s32 ret_val = -E1000_ERR_PARAM;
458 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
459 hw_dbg("PHY Address %d is out of range\n", offset);
460 goto out;
463 ret_val = hw->phy.ops.acquire(hw);
464 if (ret_val)
465 goto out;
467 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
469 hw->phy.ops.release(hw);
471 out:
472 return ret_val;
476 * igb_get_phy_id_82575 - Retrieve PHY addr and id
477 * @hw: pointer to the HW structure
479 * Retrieves the PHY address and ID for both PHY's which do and do not use
480 * sgmi interface.
482 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
484 struct e1000_phy_info *phy = &hw->phy;
485 s32 ret_val = 0;
486 u16 phy_id;
487 u32 ctrl_ext;
488 u32 mdic;
491 * For SGMII PHYs, we try the list of possible addresses until
492 * we find one that works. For non-SGMII PHYs
493 * (e.g. integrated copper PHYs), an address of 1 should
494 * work. The result of this function should mean phy->phy_addr
495 * and phy->id are set correctly.
497 if (!(igb_sgmii_active_82575(hw))) {
498 phy->addr = 1;
499 ret_val = igb_get_phy_id(hw);
500 goto out;
503 if (igb_sgmii_uses_mdio_82575(hw)) {
504 switch (hw->mac.type) {
505 case e1000_82575:
506 case e1000_82576:
507 mdic = rd32(E1000_MDIC);
508 mdic &= E1000_MDIC_PHY_MASK;
509 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
510 break;
511 case e1000_82580:
512 case e1000_i350:
513 mdic = rd32(E1000_MDICNFG);
514 mdic &= E1000_MDICNFG_PHY_MASK;
515 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
516 break;
517 default:
518 ret_val = -E1000_ERR_PHY;
519 goto out;
520 break;
522 ret_val = igb_get_phy_id(hw);
523 goto out;
526 /* Power on sgmii phy if it is disabled */
527 ctrl_ext = rd32(E1000_CTRL_EXT);
528 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
529 wrfl();
530 msleep(300);
533 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
534 * Therefore, we need to test 1-7
536 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
537 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
538 if (ret_val == 0) {
539 hw_dbg("Vendor ID 0x%08X read at address %u\n",
540 phy_id, phy->addr);
542 * At the time of this writing, The M88 part is
543 * the only supported SGMII PHY product.
545 if (phy_id == M88_VENDOR)
546 break;
547 } else {
548 hw_dbg("PHY address %u was unreadable\n", phy->addr);
552 /* A valid PHY type couldn't be found. */
553 if (phy->addr == 8) {
554 phy->addr = 0;
555 ret_val = -E1000_ERR_PHY;
556 goto out;
557 } else {
558 ret_val = igb_get_phy_id(hw);
561 /* restore previous sfp cage power state */
562 wr32(E1000_CTRL_EXT, ctrl_ext);
564 out:
565 return ret_val;
569 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
570 * @hw: pointer to the HW structure
572 * Resets the PHY using the serial gigabit media independent interface.
574 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
576 s32 ret_val;
579 * This isn't a true "hard" reset, but is the only reset
580 * available to us at this time.
583 hw_dbg("Soft resetting SGMII attached PHY...\n");
586 * SFP documentation requires the following to configure the SPF module
587 * to work on SGMII. No further documentation is given.
589 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
590 if (ret_val)
591 goto out;
593 ret_val = igb_phy_sw_reset(hw);
595 out:
596 return ret_val;
600 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
601 * @hw: pointer to the HW structure
602 * @active: true to enable LPLU, false to disable
604 * Sets the LPLU D0 state according to the active flag. When
605 * activating LPLU this function also disables smart speed
606 * and vice versa. LPLU will not be activated unless the
607 * device autonegotiation advertisement meets standards of
608 * either 10 or 10/100 or 10/100/1000 at all duplexes.
609 * This is a function pointer entry point only called by
610 * PHY setup routines.
612 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
614 struct e1000_phy_info *phy = &hw->phy;
615 s32 ret_val;
616 u16 data;
618 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
619 if (ret_val)
620 goto out;
622 if (active) {
623 data |= IGP02E1000_PM_D0_LPLU;
624 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
625 data);
626 if (ret_val)
627 goto out;
629 /* When LPLU is enabled, we should disable SmartSpeed */
630 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
631 &data);
632 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
633 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
634 data);
635 if (ret_val)
636 goto out;
637 } else {
638 data &= ~IGP02E1000_PM_D0_LPLU;
639 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
640 data);
642 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
643 * during Dx states where the power conservation is most
644 * important. During driver activity we should enable
645 * SmartSpeed, so performance is maintained.
647 if (phy->smart_speed == e1000_smart_speed_on) {
648 ret_val = phy->ops.read_reg(hw,
649 IGP01E1000_PHY_PORT_CONFIG, &data);
650 if (ret_val)
651 goto out;
653 data |= IGP01E1000_PSCFR_SMART_SPEED;
654 ret_val = phy->ops.write_reg(hw,
655 IGP01E1000_PHY_PORT_CONFIG, data);
656 if (ret_val)
657 goto out;
658 } else if (phy->smart_speed == e1000_smart_speed_off) {
659 ret_val = phy->ops.read_reg(hw,
660 IGP01E1000_PHY_PORT_CONFIG, &data);
661 if (ret_val)
662 goto out;
664 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
665 ret_val = phy->ops.write_reg(hw,
666 IGP01E1000_PHY_PORT_CONFIG, data);
667 if (ret_val)
668 goto out;
672 out:
673 return ret_val;
677 * igb_acquire_nvm_82575 - Request for access to EEPROM
678 * @hw: pointer to the HW structure
680 * Acquire the necessary semaphores for exclusive access to the EEPROM.
681 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
682 * Return successful if access grant bit set, else clear the request for
683 * EEPROM access and return -E1000_ERR_NVM (-1).
685 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
687 s32 ret_val;
689 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
690 if (ret_val)
691 goto out;
693 ret_val = igb_acquire_nvm(hw);
695 if (ret_val)
696 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
698 out:
699 return ret_val;
703 * igb_release_nvm_82575 - Release exclusive access to EEPROM
704 * @hw: pointer to the HW structure
706 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
707 * then release the semaphores acquired.
709 static void igb_release_nvm_82575(struct e1000_hw *hw)
711 igb_release_nvm(hw);
712 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
716 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
717 * @hw: pointer to the HW structure
718 * @mask: specifies which semaphore to acquire
720 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
721 * will also specify which port we're acquiring the lock for.
723 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
725 u32 swfw_sync;
726 u32 swmask = mask;
727 u32 fwmask = mask << 16;
728 s32 ret_val = 0;
729 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
731 while (i < timeout) {
732 if (igb_get_hw_semaphore(hw)) {
733 ret_val = -E1000_ERR_SWFW_SYNC;
734 goto out;
737 swfw_sync = rd32(E1000_SW_FW_SYNC);
738 if (!(swfw_sync & (fwmask | swmask)))
739 break;
742 * Firmware currently using resource (fwmask)
743 * or other software thread using resource (swmask)
745 igb_put_hw_semaphore(hw);
746 mdelay(5);
747 i++;
750 if (i == timeout) {
751 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
752 ret_val = -E1000_ERR_SWFW_SYNC;
753 goto out;
756 swfw_sync |= swmask;
757 wr32(E1000_SW_FW_SYNC, swfw_sync);
759 igb_put_hw_semaphore(hw);
761 out:
762 return ret_val;
766 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
767 * @hw: pointer to the HW structure
768 * @mask: specifies which semaphore to acquire
770 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
771 * will also specify which port we're releasing the lock for.
773 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
775 u32 swfw_sync;
777 while (igb_get_hw_semaphore(hw) != 0);
778 /* Empty */
780 swfw_sync = rd32(E1000_SW_FW_SYNC);
781 swfw_sync &= ~mask;
782 wr32(E1000_SW_FW_SYNC, swfw_sync);
784 igb_put_hw_semaphore(hw);
788 * igb_get_cfg_done_82575 - Read config done bit
789 * @hw: pointer to the HW structure
791 * Read the management control register for the config done bit for
792 * completion status. NOTE: silicon which is EEPROM-less will fail trying
793 * to read the config done bit, so an error is *ONLY* logged and returns
794 * 0. If we were to return with error, EEPROM-less silicon
795 * would not be able to be reset or change link.
797 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
799 s32 timeout = PHY_CFG_TIMEOUT;
800 s32 ret_val = 0;
801 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
803 if (hw->bus.func == 1)
804 mask = E1000_NVM_CFG_DONE_PORT_1;
805 else if (hw->bus.func == E1000_FUNC_2)
806 mask = E1000_NVM_CFG_DONE_PORT_2;
807 else if (hw->bus.func == E1000_FUNC_3)
808 mask = E1000_NVM_CFG_DONE_PORT_3;
810 while (timeout) {
811 if (rd32(E1000_EEMNGCTL) & mask)
812 break;
813 msleep(1);
814 timeout--;
816 if (!timeout)
817 hw_dbg("MNG configuration cycle has not completed.\n");
819 /* If EEPROM is not marked present, init the PHY manually */
820 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
821 (hw->phy.type == e1000_phy_igp_3))
822 igb_phy_init_script_igp3(hw);
824 return ret_val;
828 * igb_check_for_link_82575 - Check for link
829 * @hw: pointer to the HW structure
831 * If sgmii is enabled, then use the pcs register to determine link, otherwise
832 * use the generic interface for determining link.
834 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
836 s32 ret_val;
837 u16 speed, duplex;
839 if (hw->phy.media_type != e1000_media_type_copper) {
840 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
841 &duplex);
843 * Use this flag to determine if link needs to be checked or
844 * not. If we have link clear the flag so that we do not
845 * continue to check for link.
847 hw->mac.get_link_status = !hw->mac.serdes_has_link;
848 } else {
849 ret_val = igb_check_for_copper_link(hw);
852 return ret_val;
856 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
857 * @hw: pointer to the HW structure
859 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
861 u32 reg;
864 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
865 !igb_sgmii_active_82575(hw))
866 return;
868 /* Enable PCS to turn on link */
869 reg = rd32(E1000_PCS_CFG0);
870 reg |= E1000_PCS_CFG_PCS_EN;
871 wr32(E1000_PCS_CFG0, reg);
873 /* Power up the laser */
874 reg = rd32(E1000_CTRL_EXT);
875 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
876 wr32(E1000_CTRL_EXT, reg);
878 /* flush the write to verify completion */
879 wrfl();
880 msleep(1);
884 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
885 * @hw: pointer to the HW structure
886 * @speed: stores the current speed
887 * @duplex: stores the current duplex
889 * Using the physical coding sub-layer (PCS), retrieve the current speed and
890 * duplex, then store the values in the pointers provided.
892 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
893 u16 *duplex)
895 struct e1000_mac_info *mac = &hw->mac;
896 u32 pcs;
898 /* Set up defaults for the return values of this function */
899 mac->serdes_has_link = false;
900 *speed = 0;
901 *duplex = 0;
904 * Read the PCS Status register for link state. For non-copper mode,
905 * the status register is not accurate. The PCS status register is
906 * used instead.
908 pcs = rd32(E1000_PCS_LSTAT);
911 * The link up bit determines when link is up on autoneg. The sync ok
912 * gets set once both sides sync up and agree upon link. Stable link
913 * can be determined by checking for both link up and link sync ok
915 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
916 mac->serdes_has_link = true;
918 /* Detect and store PCS speed */
919 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
920 *speed = SPEED_1000;
921 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
922 *speed = SPEED_100;
923 } else {
924 *speed = SPEED_10;
927 /* Detect and store PCS duplex */
928 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
929 *duplex = FULL_DUPLEX;
930 } else {
931 *duplex = HALF_DUPLEX;
935 return 0;
939 * igb_shutdown_serdes_link_82575 - Remove link during power down
940 * @hw: pointer to the HW structure
942 * In the case of fiber serdes, shut down optics and PCS on driver unload
943 * when management pass thru is not enabled.
945 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
947 u32 reg;
949 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
950 igb_sgmii_active_82575(hw))
951 return;
953 if (!igb_enable_mng_pass_thru(hw)) {
954 /* Disable PCS to turn off link */
955 reg = rd32(E1000_PCS_CFG0);
956 reg &= ~E1000_PCS_CFG_PCS_EN;
957 wr32(E1000_PCS_CFG0, reg);
959 /* shutdown the laser */
960 reg = rd32(E1000_CTRL_EXT);
961 reg |= E1000_CTRL_EXT_SDP3_DATA;
962 wr32(E1000_CTRL_EXT, reg);
964 /* flush the write to verify completion */
965 wrfl();
966 msleep(1);
971 * igb_reset_hw_82575 - Reset hardware
972 * @hw: pointer to the HW structure
974 * This resets the hardware into a known state. This is a
975 * function pointer entry point called by the api module.
977 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
979 u32 ctrl, icr;
980 s32 ret_val;
983 * Prevent the PCI-E bus from sticking if there is no TLP connection
984 * on the last TLP read/write transaction when MAC is reset.
986 ret_val = igb_disable_pcie_master(hw);
987 if (ret_val)
988 hw_dbg("PCI-E Master disable polling has failed.\n");
990 /* set the completion timeout for interface */
991 ret_val = igb_set_pcie_completion_timeout(hw);
992 if (ret_val) {
993 hw_dbg("PCI-E Set completion timeout has failed.\n");
996 hw_dbg("Masking off all interrupts\n");
997 wr32(E1000_IMC, 0xffffffff);
999 wr32(E1000_RCTL, 0);
1000 wr32(E1000_TCTL, E1000_TCTL_PSP);
1001 wrfl();
1003 msleep(10);
1005 ctrl = rd32(E1000_CTRL);
1007 hw_dbg("Issuing a global reset to MAC\n");
1008 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1010 ret_val = igb_get_auto_rd_done(hw);
1011 if (ret_val) {
1013 * When auto config read does not complete, do not
1014 * return with an error. This can happen in situations
1015 * where there is no eeprom and prevents getting link.
1017 hw_dbg("Auto Read Done did not complete\n");
1020 /* If EEPROM is not present, run manual init scripts */
1021 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1022 igb_reset_init_script_82575(hw);
1024 /* Clear any pending interrupt events. */
1025 wr32(E1000_IMC, 0xffffffff);
1026 icr = rd32(E1000_ICR);
1028 /* Install any alternate MAC address into RAR0 */
1029 ret_val = igb_check_alt_mac_addr(hw);
1031 return ret_val;
1035 * igb_init_hw_82575 - Initialize hardware
1036 * @hw: pointer to the HW structure
1038 * This inits the hardware readying it for operation.
1040 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1042 struct e1000_mac_info *mac = &hw->mac;
1043 s32 ret_val;
1044 u16 i, rar_count = mac->rar_entry_count;
1046 /* Initialize identification LED */
1047 ret_val = igb_id_led_init(hw);
1048 if (ret_val) {
1049 hw_dbg("Error initializing identification LED\n");
1050 /* This is not fatal and we should not stop init due to this */
1053 /* Disabling VLAN filtering */
1054 hw_dbg("Initializing the IEEE VLAN\n");
1055 if (hw->mac.type == e1000_i350)
1056 igb_clear_vfta_i350(hw);
1057 else
1058 igb_clear_vfta(hw);
1060 /* Setup the receive address */
1061 igb_init_rx_addrs(hw, rar_count);
1063 /* Zero out the Multicast HASH table */
1064 hw_dbg("Zeroing the MTA\n");
1065 for (i = 0; i < mac->mta_reg_count; i++)
1066 array_wr32(E1000_MTA, i, 0);
1068 /* Zero out the Unicast HASH table */
1069 hw_dbg("Zeroing the UTA\n");
1070 for (i = 0; i < mac->uta_reg_count; i++)
1071 array_wr32(E1000_UTA, i, 0);
1073 /* Setup link and flow control */
1074 ret_val = igb_setup_link(hw);
1077 * Clear all of the statistics registers (clear on read). It is
1078 * important that we do this after we have tried to establish link
1079 * because the symbol error count will increment wildly if there
1080 * is no link.
1082 igb_clear_hw_cntrs_82575(hw);
1084 return ret_val;
1088 * igb_setup_copper_link_82575 - Configure copper link settings
1089 * @hw: pointer to the HW structure
1091 * Configures the link for auto-neg or forced speed and duplex. Then we check
1092 * for link, once link is established calls to configure collision distance
1093 * and flow control are called.
1095 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1097 u32 ctrl;
1098 s32 ret_val;
1100 ctrl = rd32(E1000_CTRL);
1101 ctrl |= E1000_CTRL_SLU;
1102 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1103 wr32(E1000_CTRL, ctrl);
1105 ret_val = igb_setup_serdes_link_82575(hw);
1106 if (ret_val)
1107 goto out;
1109 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1110 /* allow time for SFP cage time to power up phy */
1111 msleep(300);
1113 ret_val = hw->phy.ops.reset(hw);
1114 if (ret_val) {
1115 hw_dbg("Error resetting the PHY.\n");
1116 goto out;
1119 switch (hw->phy.type) {
1120 case e1000_phy_m88:
1121 if (hw->phy.id == I347AT4_E_PHY_ID ||
1122 hw->phy.id == M88E1112_E_PHY_ID)
1123 ret_val = igb_copper_link_setup_m88_gen2(hw);
1124 else
1125 ret_val = igb_copper_link_setup_m88(hw);
1126 break;
1127 case e1000_phy_igp_3:
1128 ret_val = igb_copper_link_setup_igp(hw);
1129 break;
1130 case e1000_phy_82580:
1131 ret_val = igb_copper_link_setup_82580(hw);
1132 break;
1133 default:
1134 ret_val = -E1000_ERR_PHY;
1135 break;
1138 if (ret_val)
1139 goto out;
1141 ret_val = igb_setup_copper_link(hw);
1142 out:
1143 return ret_val;
1147 * igb_setup_serdes_link_82575 - Setup link for serdes
1148 * @hw: pointer to the HW structure
1150 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1151 * used on copper connections where the serialized gigabit media independent
1152 * interface (sgmii), or serdes fiber is being used. Configures the link
1153 * for auto-negotiation or forces speed/duplex.
1155 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1157 u32 ctrl_ext, ctrl_reg, reg;
1158 bool pcs_autoneg;
1159 s32 ret_val = E1000_SUCCESS;
1160 u16 data;
1162 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1163 !igb_sgmii_active_82575(hw))
1164 return ret_val;
1168 * On the 82575, SerDes loopback mode persists until it is
1169 * explicitly turned off or a power cycle is performed. A read to
1170 * the register does not indicate its status. Therefore, we ensure
1171 * loopback mode is disabled during initialization.
1173 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1175 /* power on the sfp cage if present */
1176 ctrl_ext = rd32(E1000_CTRL_EXT);
1177 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1178 wr32(E1000_CTRL_EXT, ctrl_ext);
1180 ctrl_reg = rd32(E1000_CTRL);
1181 ctrl_reg |= E1000_CTRL_SLU;
1183 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1184 /* set both sw defined pins */
1185 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1187 /* Set switch control to serdes energy detect */
1188 reg = rd32(E1000_CONNSW);
1189 reg |= E1000_CONNSW_ENRGSRC;
1190 wr32(E1000_CONNSW, reg);
1193 reg = rd32(E1000_PCS_LCTL);
1195 /* default pcs_autoneg to the same setting as mac autoneg */
1196 pcs_autoneg = hw->mac.autoneg;
1198 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1199 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1200 /* sgmii mode lets the phy handle forcing speed/duplex */
1201 pcs_autoneg = true;
1202 /* autoneg time out should be disabled for SGMII mode */
1203 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1204 break;
1205 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1206 /* disable PCS autoneg and support parallel detect only */
1207 pcs_autoneg = false;
1208 default:
1209 if (hw->mac.type == e1000_82575 ||
1210 hw->mac.type == e1000_82576) {
1211 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1212 if (ret_val) {
1213 printk(KERN_DEBUG "NVM Read Error\n\n");
1214 return ret_val;
1217 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1218 pcs_autoneg = false;
1222 * non-SGMII modes only supports a speed of 1000/Full for the
1223 * link so it is best to just force the MAC and let the pcs
1224 * link either autoneg or be forced to 1000/Full
1226 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1227 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1229 /* set speed of 1000/Full if speed/duplex is forced */
1230 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1231 break;
1234 wr32(E1000_CTRL, ctrl_reg);
1237 * New SerDes mode allows for forcing speed or autonegotiating speed
1238 * at 1gb. Autoneg should be default set by most drivers. This is the
1239 * mode that will be compatible with older link partners and switches.
1240 * However, both are supported by the hardware and some drivers/tools.
1242 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1243 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1246 * We force flow control to prevent the CTRL register values from being
1247 * overwritten by the autonegotiated flow control values
1249 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1251 if (pcs_autoneg) {
1252 /* Set PCS register for autoneg */
1253 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1254 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1255 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1256 } else {
1257 /* Set PCS register for forced link */
1258 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1260 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1263 wr32(E1000_PCS_LCTL, reg);
1265 if (!igb_sgmii_active_82575(hw))
1266 igb_force_mac_fc(hw);
1268 return ret_val;
1272 * igb_sgmii_active_82575 - Return sgmii state
1273 * @hw: pointer to the HW structure
1275 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1276 * which can be enabled for use in the embedded applications. Simply
1277 * return the current state of the sgmii interface.
1279 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1281 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1282 return dev_spec->sgmii_active;
1286 * igb_reset_init_script_82575 - Inits HW defaults after reset
1287 * @hw: pointer to the HW structure
1289 * Inits recommended HW defaults after a reset when there is no EEPROM
1290 * detected. This is only for the 82575.
1292 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1294 if (hw->mac.type == e1000_82575) {
1295 hw_dbg("Running reset init script for 82575\n");
1296 /* SerDes configuration via SERDESCTRL */
1297 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1298 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1299 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1300 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1302 /* CCM configuration via CCMCTL register */
1303 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1304 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1306 /* PCIe lanes configuration */
1307 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1308 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1309 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1310 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1312 /* PCIe PLL Configuration */
1313 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1314 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1315 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1318 return 0;
1322 * igb_read_mac_addr_82575 - Read device MAC address
1323 * @hw: pointer to the HW structure
1325 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1327 s32 ret_val = 0;
1330 * If there's an alternate MAC address place it in RAR0
1331 * so that it will override the Si installed default perm
1332 * address.
1334 ret_val = igb_check_alt_mac_addr(hw);
1335 if (ret_val)
1336 goto out;
1338 ret_val = igb_read_mac_addr(hw);
1340 out:
1341 return ret_val;
1345 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1346 * @hw: pointer to the HW structure
1348 * In the case of a PHY power down to save power, or to turn off link during a
1349 * driver unload, or wake on lan is not enabled, remove the link.
1351 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1353 /* If the management interface is not enabled, then power down */
1354 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1355 igb_power_down_phy_copper(hw);
1359 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1360 * @hw: pointer to the HW structure
1362 * Clears the hardware counters by reading the counter registers.
1364 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1366 igb_clear_hw_cntrs_base(hw);
1368 rd32(E1000_PRC64);
1369 rd32(E1000_PRC127);
1370 rd32(E1000_PRC255);
1371 rd32(E1000_PRC511);
1372 rd32(E1000_PRC1023);
1373 rd32(E1000_PRC1522);
1374 rd32(E1000_PTC64);
1375 rd32(E1000_PTC127);
1376 rd32(E1000_PTC255);
1377 rd32(E1000_PTC511);
1378 rd32(E1000_PTC1023);
1379 rd32(E1000_PTC1522);
1381 rd32(E1000_ALGNERRC);
1382 rd32(E1000_RXERRC);
1383 rd32(E1000_TNCRS);
1384 rd32(E1000_CEXTERR);
1385 rd32(E1000_TSCTC);
1386 rd32(E1000_TSCTFC);
1388 rd32(E1000_MGTPRC);
1389 rd32(E1000_MGTPDC);
1390 rd32(E1000_MGTPTC);
1392 rd32(E1000_IAC);
1393 rd32(E1000_ICRXOC);
1395 rd32(E1000_ICRXPTC);
1396 rd32(E1000_ICRXATC);
1397 rd32(E1000_ICTXPTC);
1398 rd32(E1000_ICTXATC);
1399 rd32(E1000_ICTXQEC);
1400 rd32(E1000_ICTXQMTC);
1401 rd32(E1000_ICRXDMTC);
1403 rd32(E1000_CBTMPC);
1404 rd32(E1000_HTDPMC);
1405 rd32(E1000_CBRMPC);
1406 rd32(E1000_RPTHC);
1407 rd32(E1000_HGPTC);
1408 rd32(E1000_HTCBDPC);
1409 rd32(E1000_HGORCL);
1410 rd32(E1000_HGORCH);
1411 rd32(E1000_HGOTCL);
1412 rd32(E1000_HGOTCH);
1413 rd32(E1000_LENERRS);
1415 /* This register should not be read in copper configurations */
1416 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1417 igb_sgmii_active_82575(hw))
1418 rd32(E1000_SCVPC);
1422 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1423 * @hw: pointer to the HW structure
1425 * After rx enable if managability is enabled then there is likely some
1426 * bad data at the start of the fifo and possibly in the DMA fifo. This
1427 * function clears the fifos and flushes any packets that came in as rx was
1428 * being enabled.
1430 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1432 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1433 int i, ms_wait;
1435 if (hw->mac.type != e1000_82575 ||
1436 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1437 return;
1439 /* Disable all RX queues */
1440 for (i = 0; i < 4; i++) {
1441 rxdctl[i] = rd32(E1000_RXDCTL(i));
1442 wr32(E1000_RXDCTL(i),
1443 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1445 /* Poll all queues to verify they have shut down */
1446 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1447 msleep(1);
1448 rx_enabled = 0;
1449 for (i = 0; i < 4; i++)
1450 rx_enabled |= rd32(E1000_RXDCTL(i));
1451 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1452 break;
1455 if (ms_wait == 10)
1456 hw_dbg("Queue disable timed out after 10ms\n");
1458 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1459 * incoming packets are rejected. Set enable and wait 2ms so that
1460 * any packet that was coming in as RCTL.EN was set is flushed
1462 rfctl = rd32(E1000_RFCTL);
1463 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1465 rlpml = rd32(E1000_RLPML);
1466 wr32(E1000_RLPML, 0);
1468 rctl = rd32(E1000_RCTL);
1469 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1470 temp_rctl |= E1000_RCTL_LPE;
1472 wr32(E1000_RCTL, temp_rctl);
1473 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1474 wrfl();
1475 msleep(2);
1477 /* Enable RX queues that were previously enabled and restore our
1478 * previous state
1480 for (i = 0; i < 4; i++)
1481 wr32(E1000_RXDCTL(i), rxdctl[i]);
1482 wr32(E1000_RCTL, rctl);
1483 wrfl();
1485 wr32(E1000_RLPML, rlpml);
1486 wr32(E1000_RFCTL, rfctl);
1488 /* Flush receive errors generated by workaround */
1489 rd32(E1000_ROC);
1490 rd32(E1000_RNBC);
1491 rd32(E1000_MPC);
1495 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1496 * @hw: pointer to the HW structure
1498 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1499 * however the hardware default for these parts is 500us to 1ms which is less
1500 * than the 10ms recommended by the pci-e spec. To address this we need to
1501 * increase the value to either 10ms to 200ms for capability version 1 config,
1502 * or 16ms to 55ms for version 2.
1504 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1506 u32 gcr = rd32(E1000_GCR);
1507 s32 ret_val = 0;
1508 u16 pcie_devctl2;
1510 /* only take action if timeout value is defaulted to 0 */
1511 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1512 goto out;
1515 * if capababilities version is type 1 we can write the
1516 * timeout of 10ms to 200ms through the GCR register
1518 if (!(gcr & E1000_GCR_CAP_VER2)) {
1519 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1520 goto out;
1524 * for version 2 capabilities we need to write the config space
1525 * directly in order to set the completion timeout value for
1526 * 16ms to 55ms
1528 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1529 &pcie_devctl2);
1530 if (ret_val)
1531 goto out;
1533 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1535 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1536 &pcie_devctl2);
1537 out:
1538 /* disable completion timeout resend */
1539 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1541 wr32(E1000_GCR, gcr);
1542 return ret_val;
1546 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1547 * @hw: pointer to the hardware struct
1548 * @enable: state to enter, either enabled or disabled
1549 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1551 * enables/disables L2 switch anti-spoofing functionality.
1553 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1555 u32 dtxswc;
1557 switch (hw->mac.type) {
1558 case e1000_82576:
1559 case e1000_i350:
1560 dtxswc = rd32(E1000_DTXSWC);
1561 if (enable) {
1562 dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1563 E1000_DTXSWC_VLAN_SPOOF_MASK);
1564 /* The PF can spoof - it has to in order to
1565 * support emulation mode NICs */
1566 dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1567 } else {
1568 dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1569 E1000_DTXSWC_VLAN_SPOOF_MASK);
1571 wr32(E1000_DTXSWC, dtxswc);
1572 break;
1573 default:
1574 break;
1579 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1580 * @hw: pointer to the hardware struct
1581 * @enable: state to enter, either enabled or disabled
1583 * enables/disables L2 switch loopback functionality.
1585 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1587 u32 dtxswc;
1589 switch (hw->mac.type) {
1590 case e1000_82576:
1591 dtxswc = rd32(E1000_DTXSWC);
1592 if (enable)
1593 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1594 else
1595 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1596 wr32(E1000_DTXSWC, dtxswc);
1597 break;
1598 case e1000_i350:
1599 dtxswc = rd32(E1000_TXSWC);
1600 if (enable)
1601 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1602 else
1603 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1604 wr32(E1000_TXSWC, dtxswc);
1605 break;
1606 default:
1607 /* Currently no other hardware supports loopback */
1608 break;
1615 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1616 * @hw: pointer to the hardware struct
1617 * @enable: state to enter, either enabled or disabled
1619 * enables/disables replication of packets across multiple pools.
1621 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1623 u32 vt_ctl = rd32(E1000_VT_CTL);
1625 if (enable)
1626 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1627 else
1628 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1630 wr32(E1000_VT_CTL, vt_ctl);
1634 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1635 * @hw: pointer to the HW structure
1636 * @offset: register offset to be read
1637 * @data: pointer to the read data
1639 * Reads the MDI control register in the PHY at offset and stores the
1640 * information read to data.
1642 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1644 s32 ret_val;
1647 ret_val = hw->phy.ops.acquire(hw);
1648 if (ret_val)
1649 goto out;
1651 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1653 hw->phy.ops.release(hw);
1655 out:
1656 return ret_val;
1660 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1661 * @hw: pointer to the HW structure
1662 * @offset: register offset to write to
1663 * @data: data to write to register at offset
1665 * Writes data to MDI control register in the PHY at offset.
1667 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1669 s32 ret_val;
1672 ret_val = hw->phy.ops.acquire(hw);
1673 if (ret_val)
1674 goto out;
1676 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1678 hw->phy.ops.release(hw);
1680 out:
1681 return ret_val;
1685 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1686 * @hw: pointer to the HW structure
1688 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1689 * the values found in the EEPROM. This addresses an issue in which these
1690 * bits are not restored from EEPROM after reset.
1692 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1694 s32 ret_val = 0;
1695 u32 mdicnfg;
1696 u16 nvm_data = 0;
1698 if (hw->mac.type != e1000_82580)
1699 goto out;
1700 if (!igb_sgmii_active_82575(hw))
1701 goto out;
1703 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1704 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1705 &nvm_data);
1706 if (ret_val) {
1707 hw_dbg("NVM Read Error\n");
1708 goto out;
1711 mdicnfg = rd32(E1000_MDICNFG);
1712 if (nvm_data & NVM_WORD24_EXT_MDIO)
1713 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1714 if (nvm_data & NVM_WORD24_COM_MDIO)
1715 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1716 wr32(E1000_MDICNFG, mdicnfg);
1717 out:
1718 return ret_val;
1722 * igb_reset_hw_82580 - Reset hardware
1723 * @hw: pointer to the HW structure
1725 * This resets function or entire device (all ports, etc.)
1726 * to a known state.
1728 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1730 s32 ret_val = 0;
1731 /* BH SW mailbox bit in SW_FW_SYNC */
1732 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1733 u32 ctrl, icr;
1734 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1737 hw->dev_spec._82575.global_device_reset = false;
1739 /* Get current control state. */
1740 ctrl = rd32(E1000_CTRL);
1743 * Prevent the PCI-E bus from sticking if there is no TLP connection
1744 * on the last TLP read/write transaction when MAC is reset.
1746 ret_val = igb_disable_pcie_master(hw);
1747 if (ret_val)
1748 hw_dbg("PCI-E Master disable polling has failed.\n");
1750 hw_dbg("Masking off all interrupts\n");
1751 wr32(E1000_IMC, 0xffffffff);
1752 wr32(E1000_RCTL, 0);
1753 wr32(E1000_TCTL, E1000_TCTL_PSP);
1754 wrfl();
1756 msleep(10);
1758 /* Determine whether or not a global dev reset is requested */
1759 if (global_device_reset &&
1760 igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1761 global_device_reset = false;
1763 if (global_device_reset &&
1764 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1765 ctrl |= E1000_CTRL_DEV_RST;
1766 else
1767 ctrl |= E1000_CTRL_RST;
1769 wr32(E1000_CTRL, ctrl);
1770 wrfl();
1772 /* Add delay to insure DEV_RST has time to complete */
1773 if (global_device_reset)
1774 msleep(5);
1776 ret_val = igb_get_auto_rd_done(hw);
1777 if (ret_val) {
1779 * When auto config read does not complete, do not
1780 * return with an error. This can happen in situations
1781 * where there is no eeprom and prevents getting link.
1783 hw_dbg("Auto Read Done did not complete\n");
1786 /* If EEPROM is not present, run manual init scripts */
1787 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1788 igb_reset_init_script_82575(hw);
1790 /* clear global device reset status bit */
1791 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1793 /* Clear any pending interrupt events. */
1794 wr32(E1000_IMC, 0xffffffff);
1795 icr = rd32(E1000_ICR);
1797 ret_val = igb_reset_mdicnfg_82580(hw);
1798 if (ret_val)
1799 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1801 /* Install any alternate MAC address into RAR0 */
1802 ret_val = igb_check_alt_mac_addr(hw);
1804 /* Release semaphore */
1805 if (global_device_reset)
1806 igb_release_swfw_sync_82575(hw, swmbsw_mask);
1808 return ret_val;
1812 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1813 * @data: data received by reading RXPBS register
1815 * The 82580 uses a table based approach for packet buffer allocation sizes.
1816 * This function converts the retrieved value into the correct table value
1817 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1818 * 0x0 36 72 144 1 2 4 8 16
1819 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1821 u16 igb_rxpbs_adjust_82580(u32 data)
1823 u16 ret_val = 0;
1825 if (data < E1000_82580_RXPBS_TABLE_SIZE)
1826 ret_val = e1000_82580_rxpbs_table[data];
1828 return ret_val;
1832 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
1833 * checksum
1834 * @hw: pointer to the HW structure
1835 * @offset: offset in words of the checksum protected region
1837 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1838 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
1840 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
1841 u16 offset)
1843 s32 ret_val = 0;
1844 u16 checksum = 0;
1845 u16 i, nvm_data;
1847 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
1848 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1849 if (ret_val) {
1850 hw_dbg("NVM Read Error\n");
1851 goto out;
1853 checksum += nvm_data;
1856 if (checksum != (u16) NVM_SUM) {
1857 hw_dbg("NVM Checksum Invalid\n");
1858 ret_val = -E1000_ERR_NVM;
1859 goto out;
1862 out:
1863 return ret_val;
1867 * igb_update_nvm_checksum_with_offset - Update EEPROM
1868 * checksum
1869 * @hw: pointer to the HW structure
1870 * @offset: offset in words of the checksum protected region
1872 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
1873 * up to the checksum. Then calculates the EEPROM checksum and writes the
1874 * value to the EEPROM.
1876 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1878 s32 ret_val;
1879 u16 checksum = 0;
1880 u16 i, nvm_data;
1882 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
1883 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1884 if (ret_val) {
1885 hw_dbg("NVM Read Error while updating checksum.\n");
1886 goto out;
1888 checksum += nvm_data;
1890 checksum = (u16) NVM_SUM - checksum;
1891 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
1892 &checksum);
1893 if (ret_val)
1894 hw_dbg("NVM Write Error while updating checksum.\n");
1896 out:
1897 return ret_val;
1901 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1902 * @hw: pointer to the HW structure
1904 * Calculates the EEPROM section checksum by reading/adding each word of
1905 * the EEPROM and then verifies that the sum of the EEPROM is
1906 * equal to 0xBABA.
1908 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
1910 s32 ret_val = 0;
1911 u16 eeprom_regions_count = 1;
1912 u16 j, nvm_data;
1913 u16 nvm_offset;
1915 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1916 if (ret_val) {
1917 hw_dbg("NVM Read Error\n");
1918 goto out;
1921 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
1922 /* if checksums compatibility bit is set validate checksums
1923 * for all 4 ports. */
1924 eeprom_regions_count = 4;
1927 for (j = 0; j < eeprom_regions_count; j++) {
1928 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1929 ret_val = igb_validate_nvm_checksum_with_offset(hw,
1930 nvm_offset);
1931 if (ret_val != 0)
1932 goto out;
1935 out:
1936 return ret_val;
1940 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
1941 * @hw: pointer to the HW structure
1943 * Updates the EEPROM section checksums for all 4 ports by reading/adding
1944 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
1945 * checksum and writes the value to the EEPROM.
1947 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
1949 s32 ret_val;
1950 u16 j, nvm_data;
1951 u16 nvm_offset;
1953 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1954 if (ret_val) {
1955 hw_dbg("NVM Read Error while updating checksum"
1956 " compatibility bit.\n");
1957 goto out;
1960 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
1961 /* set compatibility bit to validate checksums appropriately */
1962 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
1963 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
1964 &nvm_data);
1965 if (ret_val) {
1966 hw_dbg("NVM Write Error while updating checksum"
1967 " compatibility bit.\n");
1968 goto out;
1972 for (j = 0; j < 4; j++) {
1973 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1974 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
1975 if (ret_val)
1976 goto out;
1979 out:
1980 return ret_val;
1984 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1985 * @hw: pointer to the HW structure
1987 * Calculates the EEPROM section checksum by reading/adding each word of
1988 * the EEPROM and then verifies that the sum of the EEPROM is
1989 * equal to 0xBABA.
1991 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
1993 s32 ret_val = 0;
1994 u16 j;
1995 u16 nvm_offset;
1997 for (j = 0; j < 4; j++) {
1998 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1999 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2000 nvm_offset);
2001 if (ret_val != 0)
2002 goto out;
2005 out:
2006 return ret_val;
2010 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2011 * @hw: pointer to the HW structure
2013 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2014 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2015 * checksum and writes the value to the EEPROM.
2017 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2019 s32 ret_val = 0;
2020 u16 j;
2021 u16 nvm_offset;
2023 for (j = 0; j < 4; j++) {
2024 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2025 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2026 if (ret_val != 0)
2027 goto out;
2030 out:
2031 return ret_val;
2035 * igb_set_eee_i350 - Enable/disable EEE support
2036 * @hw: pointer to the HW structure
2038 * Enable/disable EEE based on setting in dev_spec structure.
2041 s32 igb_set_eee_i350(struct e1000_hw *hw)
2043 s32 ret_val = 0;
2044 u32 ipcnfg, eeer, ctrl_ext;
2046 ctrl_ext = rd32(E1000_CTRL_EXT);
2047 if ((hw->mac.type != e1000_i350) ||
2048 (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2049 goto out;
2050 ipcnfg = rd32(E1000_IPCNFG);
2051 eeer = rd32(E1000_EEER);
2053 /* enable or disable per user setting */
2054 if (!(hw->dev_spec._82575.eee_disable)) {
2055 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2056 E1000_IPCNFG_EEE_100M_AN);
2057 eeer |= (E1000_EEER_TX_LPI_EN |
2058 E1000_EEER_RX_LPI_EN |
2059 E1000_EEER_LPI_FC);
2061 } else {
2062 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2063 E1000_IPCNFG_EEE_100M_AN);
2064 eeer &= ~(E1000_EEER_TX_LPI_EN |
2065 E1000_EEER_RX_LPI_EN |
2066 E1000_EEER_LPI_FC);
2068 wr32(E1000_IPCNFG, ipcnfg);
2069 wr32(E1000_EEER, eeer);
2070 out:
2072 return ret_val;
2075 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2076 .init_hw = igb_init_hw_82575,
2077 .check_for_link = igb_check_for_link_82575,
2078 .rar_set = igb_rar_set,
2079 .read_mac_addr = igb_read_mac_addr_82575,
2080 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2083 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2084 .acquire = igb_acquire_phy_82575,
2085 .get_cfg_done = igb_get_cfg_done_82575,
2086 .release = igb_release_phy_82575,
2089 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2090 .acquire = igb_acquire_nvm_82575,
2091 .read = igb_read_nvm_eerd,
2092 .release = igb_release_nvm_82575,
2093 .write = igb_write_nvm_spi,
2096 const struct e1000_info e1000_82575_info = {
2097 .get_invariants = igb_get_invariants_82575,
2098 .mac_ops = &e1000_mac_ops_82575,
2099 .phy_ops = &e1000_phy_ops_82575,
2100 .nvm_ops = &e1000_nvm_ops_82575,