1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
40 static s32
igb_get_invariants_82575(struct e1000_hw
*);
41 static s32
igb_acquire_phy_82575(struct e1000_hw
*);
42 static void igb_release_phy_82575(struct e1000_hw
*);
43 static s32
igb_acquire_nvm_82575(struct e1000_hw
*);
44 static void igb_release_nvm_82575(struct e1000_hw
*);
45 static s32
igb_check_for_link_82575(struct e1000_hw
*);
46 static s32
igb_get_cfg_done_82575(struct e1000_hw
*);
47 static s32
igb_init_hw_82575(struct e1000_hw
*);
48 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*);
49 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
*);
50 static s32
igb_read_phy_reg_82580(struct e1000_hw
*, u32
, u16
*);
51 static s32
igb_write_phy_reg_82580(struct e1000_hw
*, u32
, u16
);
52 static s32
igb_reset_hw_82575(struct e1000_hw
*);
53 static s32
igb_reset_hw_82580(struct e1000_hw
*);
54 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*, bool);
55 static s32
igb_setup_copper_link_82575(struct e1000_hw
*);
56 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*);
57 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*);
59 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*, u16
);
60 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*, u16
*,
62 static s32
igb_get_phy_id_82575(struct e1000_hw
*);
63 static void igb_release_swfw_sync_82575(struct e1000_hw
*, u16
);
64 static bool igb_sgmii_active_82575(struct e1000_hw
*);
65 static s32
igb_reset_init_script_82575(struct e1000_hw
*);
66 static s32
igb_read_mac_addr_82575(struct e1000_hw
*);
67 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
);
68 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
);
69 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
);
70 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
);
71 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
);
72 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
);
73 static const u16 e1000_82580_rxpbs_table
[] =
74 { 36, 72, 144, 1, 2, 4, 8, 16,
76 #define E1000_82580_RXPBS_TABLE_SIZE \
77 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
80 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
81 * @hw: pointer to the HW structure
83 * Called to determine if the I2C pins are being used for I2C or as an
84 * external MDIO interface since the two options are mutually exclusive.
86 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw
*hw
)
89 bool ext_mdio
= false;
91 switch (hw
->mac
.type
) {
94 reg
= rd32(E1000_MDIC
);
95 ext_mdio
= !!(reg
& E1000_MDIC_DEST
);
99 reg
= rd32(E1000_MDICNFG
);
100 ext_mdio
= !!(reg
& E1000_MDICNFG_EXT_MDIO
);
108 static s32
igb_get_invariants_82575(struct e1000_hw
*hw
)
110 struct e1000_phy_info
*phy
= &hw
->phy
;
111 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
112 struct e1000_mac_info
*mac
= &hw
->mac
;
113 struct e1000_dev_spec_82575
* dev_spec
= &hw
->dev_spec
._82575
;
119 switch (hw
->device_id
) {
120 case E1000_DEV_ID_82575EB_COPPER
:
121 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
122 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
123 mac
->type
= e1000_82575
;
125 case E1000_DEV_ID_82576
:
126 case E1000_DEV_ID_82576_NS
:
127 case E1000_DEV_ID_82576_NS_SERDES
:
128 case E1000_DEV_ID_82576_FIBER
:
129 case E1000_DEV_ID_82576_SERDES
:
130 case E1000_DEV_ID_82576_QUAD_COPPER
:
131 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
132 case E1000_DEV_ID_82576_SERDES_QUAD
:
133 mac
->type
= e1000_82576
;
135 case E1000_DEV_ID_82580_COPPER
:
136 case E1000_DEV_ID_82580_FIBER
:
137 case E1000_DEV_ID_82580_QUAD_FIBER
:
138 case E1000_DEV_ID_82580_SERDES
:
139 case E1000_DEV_ID_82580_SGMII
:
140 case E1000_DEV_ID_82580_COPPER_DUAL
:
141 case E1000_DEV_ID_DH89XXCC_SGMII
:
142 case E1000_DEV_ID_DH89XXCC_SERDES
:
143 case E1000_DEV_ID_DH89XXCC_BACKPLANE
:
144 case E1000_DEV_ID_DH89XXCC_SFP
:
145 mac
->type
= e1000_82580
;
147 case E1000_DEV_ID_I350_COPPER
:
148 case E1000_DEV_ID_I350_FIBER
:
149 case E1000_DEV_ID_I350_SERDES
:
150 case E1000_DEV_ID_I350_SGMII
:
151 mac
->type
= e1000_i350
;
154 return -E1000_ERR_MAC_INIT
;
160 * The 82575 uses bits 22:23 for link mode. The mode can be changed
161 * based on the EEPROM. We cannot rely upon device ID. There
162 * is no distinguishable difference between fiber and internal
163 * SerDes mode on the 82575. There can be an external PHY attached
164 * on the SGMII interface. For this, we'll set sgmii_active to true.
166 phy
->media_type
= e1000_media_type_copper
;
167 dev_spec
->sgmii_active
= false;
169 ctrl_ext
= rd32(E1000_CTRL_EXT
);
170 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
171 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
172 dev_spec
->sgmii_active
= true;
174 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
175 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
:
176 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
182 /* Set mta register count */
183 mac
->mta_reg_count
= 128;
184 /* Set rar entry count */
185 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82575
;
186 if (mac
->type
== e1000_82576
)
187 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82576
;
188 if (mac
->type
== e1000_82580
)
189 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82580
;
190 if (mac
->type
== e1000_i350
)
191 mac
->rar_entry_count
= E1000_RAR_ENTRIES_I350
;
193 if (mac
->type
>= e1000_82580
)
194 mac
->ops
.reset_hw
= igb_reset_hw_82580
;
196 mac
->ops
.reset_hw
= igb_reset_hw_82575
;
197 /* Set if part includes ASF firmware */
198 mac
->asf_firmware_present
= true;
199 /* Set if manageability features are enabled. */
200 mac
->arc_subsystem_valid
=
201 (rd32(E1000_FWSM
) & E1000_FWSM_MODE_MASK
)
203 /* enable EEE on i350 parts */
204 if (mac
->type
== e1000_i350
)
205 dev_spec
->eee_disable
= false;
207 dev_spec
->eee_disable
= true;
208 /* physical interface link setup */
209 mac
->ops
.setup_physical_interface
=
210 (hw
->phy
.media_type
== e1000_media_type_copper
)
211 ? igb_setup_copper_link_82575
212 : igb_setup_serdes_link_82575
;
214 /* NVM initialization */
215 eecd
= rd32(E1000_EECD
);
217 nvm
->opcode_bits
= 8;
219 switch (nvm
->override
) {
220 case e1000_nvm_override_spi_large
:
222 nvm
->address_bits
= 16;
224 case e1000_nvm_override_spi_small
:
226 nvm
->address_bits
= 8;
229 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
230 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
234 nvm
->type
= e1000_nvm_eeprom_spi
;
236 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
237 E1000_EECD_SIZE_EX_SHIFT
);
240 * Added to a constant, "size" becomes the left-shift value
241 * for setting word_size.
243 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
246 * Check for invalid size
248 if ((hw
->mac
.type
== e1000_82576
) && (size
> 15)) {
249 pr_notice("The NVM size is not valid, defaulting to 32K\n");
252 nvm
->word_size
= 1 << size
;
253 if (nvm
->word_size
== (1 << 15))
254 nvm
->page_size
= 128;
256 /* NVM Function Pointers */
257 nvm
->ops
.acquire
= igb_acquire_nvm_82575
;
258 if (nvm
->word_size
< (1 << 15))
259 nvm
->ops
.read
= igb_read_nvm_eerd
;
261 nvm
->ops
.read
= igb_read_nvm_spi
;
263 nvm
->ops
.release
= igb_release_nvm_82575
;
264 switch (hw
->mac
.type
) {
266 nvm
->ops
.validate
= igb_validate_nvm_checksum_82580
;
267 nvm
->ops
.update
= igb_update_nvm_checksum_82580
;
270 nvm
->ops
.validate
= igb_validate_nvm_checksum_i350
;
271 nvm
->ops
.update
= igb_update_nvm_checksum_i350
;
274 nvm
->ops
.validate
= igb_validate_nvm_checksum
;
275 nvm
->ops
.update
= igb_update_nvm_checksum
;
277 nvm
->ops
.write
= igb_write_nvm_spi
;
279 /* if part supports SR-IOV then initialize mailbox parameters */
283 igb_init_mbx_params_pf(hw
);
289 /* setup PHY parameters */
290 if (phy
->media_type
!= e1000_media_type_copper
) {
291 phy
->type
= e1000_phy_none
;
295 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
296 phy
->reset_delay_us
= 100;
298 ctrl_ext
= rd32(E1000_CTRL_EXT
);
300 /* PHY function pointers */
301 if (igb_sgmii_active_82575(hw
)) {
302 phy
->ops
.reset
= igb_phy_hw_reset_sgmii_82575
;
303 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
305 phy
->ops
.reset
= igb_phy_hw_reset
;
306 ctrl_ext
&= ~E1000_CTRL_I2C_ENA
;
309 wr32(E1000_CTRL_EXT
, ctrl_ext
);
310 igb_reset_mdicnfg_82580(hw
);
312 if (igb_sgmii_active_82575(hw
) && !igb_sgmii_uses_mdio_82575(hw
)) {
313 phy
->ops
.read_reg
= igb_read_phy_reg_sgmii_82575
;
314 phy
->ops
.write_reg
= igb_write_phy_reg_sgmii_82575
;
315 } else if (hw
->mac
.type
>= e1000_82580
) {
316 phy
->ops
.read_reg
= igb_read_phy_reg_82580
;
317 phy
->ops
.write_reg
= igb_write_phy_reg_82580
;
319 phy
->ops
.read_reg
= igb_read_phy_reg_igp
;
320 phy
->ops
.write_reg
= igb_write_phy_reg_igp
;
324 hw
->bus
.func
= (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) >>
325 E1000_STATUS_FUNC_SHIFT
;
327 /* Set phy->phy_addr and phy->id. */
328 ret_val
= igb_get_phy_id_82575(hw
);
332 /* Verify phy id and set remaining function pointers */
334 case I347AT4_E_PHY_ID
:
335 case M88E1112_E_PHY_ID
:
336 case M88E1111_I_PHY_ID
:
337 phy
->type
= e1000_phy_m88
;
338 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
340 if (phy
->id
== I347AT4_E_PHY_ID
||
341 phy
->id
== M88E1112_E_PHY_ID
)
342 phy
->ops
.get_cable_length
= igb_get_cable_length_m88_gen2
;
344 phy
->ops
.get_cable_length
= igb_get_cable_length_m88
;
346 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
348 case IGP03E1000_E_PHY_ID
:
349 phy
->type
= e1000_phy_igp_3
;
350 phy
->ops
.get_phy_info
= igb_get_phy_info_igp
;
351 phy
->ops
.get_cable_length
= igb_get_cable_length_igp_2
;
352 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_igp
;
353 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82575
;
354 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state
;
356 case I82580_I_PHY_ID
:
358 phy
->type
= e1000_phy_82580
;
359 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_82580
;
360 phy
->ops
.get_cable_length
= igb_get_cable_length_82580
;
361 phy
->ops
.get_phy_info
= igb_get_phy_info_82580
;
364 return -E1000_ERR_PHY
;
371 * igb_acquire_phy_82575 - Acquire rights to access PHY
372 * @hw: pointer to the HW structure
374 * Acquire access rights to the correct PHY. This is a
375 * function pointer entry point called by the api module.
377 static s32
igb_acquire_phy_82575(struct e1000_hw
*hw
)
379 u16 mask
= E1000_SWFW_PHY0_SM
;
381 if (hw
->bus
.func
== E1000_FUNC_1
)
382 mask
= E1000_SWFW_PHY1_SM
;
383 else if (hw
->bus
.func
== E1000_FUNC_2
)
384 mask
= E1000_SWFW_PHY2_SM
;
385 else if (hw
->bus
.func
== E1000_FUNC_3
)
386 mask
= E1000_SWFW_PHY3_SM
;
388 return igb_acquire_swfw_sync_82575(hw
, mask
);
392 * igb_release_phy_82575 - Release rights to access PHY
393 * @hw: pointer to the HW structure
395 * A wrapper to release access rights to the correct PHY. This is a
396 * function pointer entry point called by the api module.
398 static void igb_release_phy_82575(struct e1000_hw
*hw
)
400 u16 mask
= E1000_SWFW_PHY0_SM
;
402 if (hw
->bus
.func
== E1000_FUNC_1
)
403 mask
= E1000_SWFW_PHY1_SM
;
404 else if (hw
->bus
.func
== E1000_FUNC_2
)
405 mask
= E1000_SWFW_PHY2_SM
;
406 else if (hw
->bus
.func
== E1000_FUNC_3
)
407 mask
= E1000_SWFW_PHY3_SM
;
409 igb_release_swfw_sync_82575(hw
, mask
);
413 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
414 * @hw: pointer to the HW structure
415 * @offset: register offset to be read
416 * @data: pointer to the read data
418 * Reads the PHY register at offset using the serial gigabit media independent
419 * interface and stores the retrieved information in data.
421 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
424 s32 ret_val
= -E1000_ERR_PARAM
;
426 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
427 hw_dbg("PHY Address %u is out of range\n", offset
);
431 ret_val
= hw
->phy
.ops
.acquire(hw
);
435 ret_val
= igb_read_phy_reg_i2c(hw
, offset
, data
);
437 hw
->phy
.ops
.release(hw
);
444 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
445 * @hw: pointer to the HW structure
446 * @offset: register offset to write to
447 * @data: data to write at register offset
449 * Writes the data to PHY register at the offset using the serial gigabit
450 * media independent interface.
452 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
455 s32 ret_val
= -E1000_ERR_PARAM
;
458 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
459 hw_dbg("PHY Address %d is out of range\n", offset
);
463 ret_val
= hw
->phy
.ops
.acquire(hw
);
467 ret_val
= igb_write_phy_reg_i2c(hw
, offset
, data
);
469 hw
->phy
.ops
.release(hw
);
476 * igb_get_phy_id_82575 - Retrieve PHY addr and id
477 * @hw: pointer to the HW structure
479 * Retrieves the PHY address and ID for both PHY's which do and do not use
482 static s32
igb_get_phy_id_82575(struct e1000_hw
*hw
)
484 struct e1000_phy_info
*phy
= &hw
->phy
;
491 * For SGMII PHYs, we try the list of possible addresses until
492 * we find one that works. For non-SGMII PHYs
493 * (e.g. integrated copper PHYs), an address of 1 should
494 * work. The result of this function should mean phy->phy_addr
495 * and phy->id are set correctly.
497 if (!(igb_sgmii_active_82575(hw
))) {
499 ret_val
= igb_get_phy_id(hw
);
503 if (igb_sgmii_uses_mdio_82575(hw
)) {
504 switch (hw
->mac
.type
) {
507 mdic
= rd32(E1000_MDIC
);
508 mdic
&= E1000_MDIC_PHY_MASK
;
509 phy
->addr
= mdic
>> E1000_MDIC_PHY_SHIFT
;
513 mdic
= rd32(E1000_MDICNFG
);
514 mdic
&= E1000_MDICNFG_PHY_MASK
;
515 phy
->addr
= mdic
>> E1000_MDICNFG_PHY_SHIFT
;
518 ret_val
= -E1000_ERR_PHY
;
522 ret_val
= igb_get_phy_id(hw
);
526 /* Power on sgmii phy if it is disabled */
527 ctrl_ext
= rd32(E1000_CTRL_EXT
);
528 wr32(E1000_CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_SDP3_DATA
);
533 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
534 * Therefore, we need to test 1-7
536 for (phy
->addr
= 1; phy
->addr
< 8; phy
->addr
++) {
537 ret_val
= igb_read_phy_reg_sgmii_82575(hw
, PHY_ID1
, &phy_id
);
539 hw_dbg("Vendor ID 0x%08X read at address %u\n",
542 * At the time of this writing, The M88 part is
543 * the only supported SGMII PHY product.
545 if (phy_id
== M88_VENDOR
)
548 hw_dbg("PHY address %u was unreadable\n", phy
->addr
);
552 /* A valid PHY type couldn't be found. */
553 if (phy
->addr
== 8) {
555 ret_val
= -E1000_ERR_PHY
;
558 ret_val
= igb_get_phy_id(hw
);
561 /* restore previous sfp cage power state */
562 wr32(E1000_CTRL_EXT
, ctrl_ext
);
569 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
570 * @hw: pointer to the HW structure
572 * Resets the PHY using the serial gigabit media independent interface.
574 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*hw
)
579 * This isn't a true "hard" reset, but is the only reset
580 * available to us at this time.
583 hw_dbg("Soft resetting SGMII attached PHY...\n");
586 * SFP documentation requires the following to configure the SPF module
587 * to work on SGMII. No further documentation is given.
589 ret_val
= hw
->phy
.ops
.write_reg(hw
, 0x1B, 0x8084);
593 ret_val
= igb_phy_sw_reset(hw
);
600 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
601 * @hw: pointer to the HW structure
602 * @active: true to enable LPLU, false to disable
604 * Sets the LPLU D0 state according to the active flag. When
605 * activating LPLU this function also disables smart speed
606 * and vice versa. LPLU will not be activated unless the
607 * device autonegotiation advertisement meets standards of
608 * either 10 or 10/100 or 10/100/1000 at all duplexes.
609 * This is a function pointer entry point only called by
610 * PHY setup routines.
612 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*hw
, bool active
)
614 struct e1000_phy_info
*phy
= &hw
->phy
;
618 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
623 data
|= IGP02E1000_PM_D0_LPLU
;
624 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
629 /* When LPLU is enabled, we should disable SmartSpeed */
630 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
632 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
633 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
638 data
&= ~IGP02E1000_PM_D0_LPLU
;
639 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
642 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
643 * during Dx states where the power conservation is most
644 * important. During driver activity we should enable
645 * SmartSpeed, so performance is maintained.
647 if (phy
->smart_speed
== e1000_smart_speed_on
) {
648 ret_val
= phy
->ops
.read_reg(hw
,
649 IGP01E1000_PHY_PORT_CONFIG
, &data
);
653 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
654 ret_val
= phy
->ops
.write_reg(hw
,
655 IGP01E1000_PHY_PORT_CONFIG
, data
);
658 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
659 ret_val
= phy
->ops
.read_reg(hw
,
660 IGP01E1000_PHY_PORT_CONFIG
, &data
);
664 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
665 ret_val
= phy
->ops
.write_reg(hw
,
666 IGP01E1000_PHY_PORT_CONFIG
, data
);
677 * igb_acquire_nvm_82575 - Request for access to EEPROM
678 * @hw: pointer to the HW structure
680 * Acquire the necessary semaphores for exclusive access to the EEPROM.
681 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
682 * Return successful if access grant bit set, else clear the request for
683 * EEPROM access and return -E1000_ERR_NVM (-1).
685 static s32
igb_acquire_nvm_82575(struct e1000_hw
*hw
)
689 ret_val
= igb_acquire_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
693 ret_val
= igb_acquire_nvm(hw
);
696 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
703 * igb_release_nvm_82575 - Release exclusive access to EEPROM
704 * @hw: pointer to the HW structure
706 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
707 * then release the semaphores acquired.
709 static void igb_release_nvm_82575(struct e1000_hw
*hw
)
712 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
716 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
717 * @hw: pointer to the HW structure
718 * @mask: specifies which semaphore to acquire
720 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
721 * will also specify which port we're acquiring the lock for.
723 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
727 u32 fwmask
= mask
<< 16;
729 s32 i
= 0, timeout
= 200; /* FIXME: find real value to use here */
731 while (i
< timeout
) {
732 if (igb_get_hw_semaphore(hw
)) {
733 ret_val
= -E1000_ERR_SWFW_SYNC
;
737 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
738 if (!(swfw_sync
& (fwmask
| swmask
)))
742 * Firmware currently using resource (fwmask)
743 * or other software thread using resource (swmask)
745 igb_put_hw_semaphore(hw
);
751 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
752 ret_val
= -E1000_ERR_SWFW_SYNC
;
757 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
759 igb_put_hw_semaphore(hw
);
766 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
767 * @hw: pointer to the HW structure
768 * @mask: specifies which semaphore to acquire
770 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
771 * will also specify which port we're releasing the lock for.
773 static void igb_release_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
777 while (igb_get_hw_semaphore(hw
) != 0);
780 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
782 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
784 igb_put_hw_semaphore(hw
);
788 * igb_get_cfg_done_82575 - Read config done bit
789 * @hw: pointer to the HW structure
791 * Read the management control register for the config done bit for
792 * completion status. NOTE: silicon which is EEPROM-less will fail trying
793 * to read the config done bit, so an error is *ONLY* logged and returns
794 * 0. If we were to return with error, EEPROM-less silicon
795 * would not be able to be reset or change link.
797 static s32
igb_get_cfg_done_82575(struct e1000_hw
*hw
)
799 s32 timeout
= PHY_CFG_TIMEOUT
;
801 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
803 if (hw
->bus
.func
== 1)
804 mask
= E1000_NVM_CFG_DONE_PORT_1
;
805 else if (hw
->bus
.func
== E1000_FUNC_2
)
806 mask
= E1000_NVM_CFG_DONE_PORT_2
;
807 else if (hw
->bus
.func
== E1000_FUNC_3
)
808 mask
= E1000_NVM_CFG_DONE_PORT_3
;
811 if (rd32(E1000_EEMNGCTL
) & mask
)
817 hw_dbg("MNG configuration cycle has not completed.\n");
819 /* If EEPROM is not marked present, init the PHY manually */
820 if (((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0) &&
821 (hw
->phy
.type
== e1000_phy_igp_3
))
822 igb_phy_init_script_igp3(hw
);
828 * igb_check_for_link_82575 - Check for link
829 * @hw: pointer to the HW structure
831 * If sgmii is enabled, then use the pcs register to determine link, otherwise
832 * use the generic interface for determining link.
834 static s32
igb_check_for_link_82575(struct e1000_hw
*hw
)
839 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
840 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, &speed
,
843 * Use this flag to determine if link needs to be checked or
844 * not. If we have link clear the flag so that we do not
845 * continue to check for link.
847 hw
->mac
.get_link_status
= !hw
->mac
.serdes_has_link
;
849 ret_val
= igb_check_for_copper_link(hw
);
856 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
857 * @hw: pointer to the HW structure
859 void igb_power_up_serdes_link_82575(struct e1000_hw
*hw
)
864 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
865 !igb_sgmii_active_82575(hw
))
868 /* Enable PCS to turn on link */
869 reg
= rd32(E1000_PCS_CFG0
);
870 reg
|= E1000_PCS_CFG_PCS_EN
;
871 wr32(E1000_PCS_CFG0
, reg
);
873 /* Power up the laser */
874 reg
= rd32(E1000_CTRL_EXT
);
875 reg
&= ~E1000_CTRL_EXT_SDP3_DATA
;
876 wr32(E1000_CTRL_EXT
, reg
);
878 /* flush the write to verify completion */
884 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
885 * @hw: pointer to the HW structure
886 * @speed: stores the current speed
887 * @duplex: stores the current duplex
889 * Using the physical coding sub-layer (PCS), retrieve the current speed and
890 * duplex, then store the values in the pointers provided.
892 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*hw
, u16
*speed
,
895 struct e1000_mac_info
*mac
= &hw
->mac
;
898 /* Set up defaults for the return values of this function */
899 mac
->serdes_has_link
= false;
904 * Read the PCS Status register for link state. For non-copper mode,
905 * the status register is not accurate. The PCS status register is
908 pcs
= rd32(E1000_PCS_LSTAT
);
911 * The link up bit determines when link is up on autoneg. The sync ok
912 * gets set once both sides sync up and agree upon link. Stable link
913 * can be determined by checking for both link up and link sync ok
915 if ((pcs
& E1000_PCS_LSTS_LINK_OK
) && (pcs
& E1000_PCS_LSTS_SYNK_OK
)) {
916 mac
->serdes_has_link
= true;
918 /* Detect and store PCS speed */
919 if (pcs
& E1000_PCS_LSTS_SPEED_1000
) {
921 } else if (pcs
& E1000_PCS_LSTS_SPEED_100
) {
927 /* Detect and store PCS duplex */
928 if (pcs
& E1000_PCS_LSTS_DUPLEX_FULL
) {
929 *duplex
= FULL_DUPLEX
;
931 *duplex
= HALF_DUPLEX
;
939 * igb_shutdown_serdes_link_82575 - Remove link during power down
940 * @hw: pointer to the HW structure
942 * In the case of fiber serdes, shut down optics and PCS on driver unload
943 * when management pass thru is not enabled.
945 void igb_shutdown_serdes_link_82575(struct e1000_hw
*hw
)
949 if (hw
->phy
.media_type
!= e1000_media_type_internal_serdes
&&
950 igb_sgmii_active_82575(hw
))
953 if (!igb_enable_mng_pass_thru(hw
)) {
954 /* Disable PCS to turn off link */
955 reg
= rd32(E1000_PCS_CFG0
);
956 reg
&= ~E1000_PCS_CFG_PCS_EN
;
957 wr32(E1000_PCS_CFG0
, reg
);
959 /* shutdown the laser */
960 reg
= rd32(E1000_CTRL_EXT
);
961 reg
|= E1000_CTRL_EXT_SDP3_DATA
;
962 wr32(E1000_CTRL_EXT
, reg
);
964 /* flush the write to verify completion */
971 * igb_reset_hw_82575 - Reset hardware
972 * @hw: pointer to the HW structure
974 * This resets the hardware into a known state. This is a
975 * function pointer entry point called by the api module.
977 static s32
igb_reset_hw_82575(struct e1000_hw
*hw
)
983 * Prevent the PCI-E bus from sticking if there is no TLP connection
984 * on the last TLP read/write transaction when MAC is reset.
986 ret_val
= igb_disable_pcie_master(hw
);
988 hw_dbg("PCI-E Master disable polling has failed.\n");
990 /* set the completion timeout for interface */
991 ret_val
= igb_set_pcie_completion_timeout(hw
);
993 hw_dbg("PCI-E Set completion timeout has failed.\n");
996 hw_dbg("Masking off all interrupts\n");
997 wr32(E1000_IMC
, 0xffffffff);
1000 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1005 ctrl
= rd32(E1000_CTRL
);
1007 hw_dbg("Issuing a global reset to MAC\n");
1008 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
1010 ret_val
= igb_get_auto_rd_done(hw
);
1013 * When auto config read does not complete, do not
1014 * return with an error. This can happen in situations
1015 * where there is no eeprom and prevents getting link.
1017 hw_dbg("Auto Read Done did not complete\n");
1020 /* If EEPROM is not present, run manual init scripts */
1021 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1022 igb_reset_init_script_82575(hw
);
1024 /* Clear any pending interrupt events. */
1025 wr32(E1000_IMC
, 0xffffffff);
1026 icr
= rd32(E1000_ICR
);
1028 /* Install any alternate MAC address into RAR0 */
1029 ret_val
= igb_check_alt_mac_addr(hw
);
1035 * igb_init_hw_82575 - Initialize hardware
1036 * @hw: pointer to the HW structure
1038 * This inits the hardware readying it for operation.
1040 static s32
igb_init_hw_82575(struct e1000_hw
*hw
)
1042 struct e1000_mac_info
*mac
= &hw
->mac
;
1044 u16 i
, rar_count
= mac
->rar_entry_count
;
1046 /* Initialize identification LED */
1047 ret_val
= igb_id_led_init(hw
);
1049 hw_dbg("Error initializing identification LED\n");
1050 /* This is not fatal and we should not stop init due to this */
1053 /* Disabling VLAN filtering */
1054 hw_dbg("Initializing the IEEE VLAN\n");
1055 if (hw
->mac
.type
== e1000_i350
)
1056 igb_clear_vfta_i350(hw
);
1060 /* Setup the receive address */
1061 igb_init_rx_addrs(hw
, rar_count
);
1063 /* Zero out the Multicast HASH table */
1064 hw_dbg("Zeroing the MTA\n");
1065 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1066 array_wr32(E1000_MTA
, i
, 0);
1068 /* Zero out the Unicast HASH table */
1069 hw_dbg("Zeroing the UTA\n");
1070 for (i
= 0; i
< mac
->uta_reg_count
; i
++)
1071 array_wr32(E1000_UTA
, i
, 0);
1073 /* Setup link and flow control */
1074 ret_val
= igb_setup_link(hw
);
1077 * Clear all of the statistics registers (clear on read). It is
1078 * important that we do this after we have tried to establish link
1079 * because the symbol error count will increment wildly if there
1082 igb_clear_hw_cntrs_82575(hw
);
1088 * igb_setup_copper_link_82575 - Configure copper link settings
1089 * @hw: pointer to the HW structure
1091 * Configures the link for auto-neg or forced speed and duplex. Then we check
1092 * for link, once link is established calls to configure collision distance
1093 * and flow control are called.
1095 static s32
igb_setup_copper_link_82575(struct e1000_hw
*hw
)
1100 ctrl
= rd32(E1000_CTRL
);
1101 ctrl
|= E1000_CTRL_SLU
;
1102 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1103 wr32(E1000_CTRL
, ctrl
);
1105 ret_val
= igb_setup_serdes_link_82575(hw
);
1109 if (igb_sgmii_active_82575(hw
) && !hw
->phy
.reset_disable
) {
1110 /* allow time for SFP cage time to power up phy */
1113 ret_val
= hw
->phy
.ops
.reset(hw
);
1115 hw_dbg("Error resetting the PHY.\n");
1119 switch (hw
->phy
.type
) {
1121 if (hw
->phy
.id
== I347AT4_E_PHY_ID
||
1122 hw
->phy
.id
== M88E1112_E_PHY_ID
)
1123 ret_val
= igb_copper_link_setup_m88_gen2(hw
);
1125 ret_val
= igb_copper_link_setup_m88(hw
);
1127 case e1000_phy_igp_3
:
1128 ret_val
= igb_copper_link_setup_igp(hw
);
1130 case e1000_phy_82580
:
1131 ret_val
= igb_copper_link_setup_82580(hw
);
1134 ret_val
= -E1000_ERR_PHY
;
1141 ret_val
= igb_setup_copper_link(hw
);
1147 * igb_setup_serdes_link_82575 - Setup link for serdes
1148 * @hw: pointer to the HW structure
1150 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1151 * used on copper connections where the serialized gigabit media independent
1152 * interface (sgmii), or serdes fiber is being used. Configures the link
1153 * for auto-negotiation or forces speed/duplex.
1155 static s32
igb_setup_serdes_link_82575(struct e1000_hw
*hw
)
1157 u32 ctrl_ext
, ctrl_reg
, reg
;
1159 s32 ret_val
= E1000_SUCCESS
;
1162 if ((hw
->phy
.media_type
!= e1000_media_type_internal_serdes
) &&
1163 !igb_sgmii_active_82575(hw
))
1168 * On the 82575, SerDes loopback mode persists until it is
1169 * explicitly turned off or a power cycle is performed. A read to
1170 * the register does not indicate its status. Therefore, we ensure
1171 * loopback mode is disabled during initialization.
1173 wr32(E1000_SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1175 /* power on the sfp cage if present */
1176 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1177 ctrl_ext
&= ~E1000_CTRL_EXT_SDP3_DATA
;
1178 wr32(E1000_CTRL_EXT
, ctrl_ext
);
1180 ctrl_reg
= rd32(E1000_CTRL
);
1181 ctrl_reg
|= E1000_CTRL_SLU
;
1183 if (hw
->mac
.type
== e1000_82575
|| hw
->mac
.type
== e1000_82576
) {
1184 /* set both sw defined pins */
1185 ctrl_reg
|= E1000_CTRL_SWDPIN0
| E1000_CTRL_SWDPIN1
;
1187 /* Set switch control to serdes energy detect */
1188 reg
= rd32(E1000_CONNSW
);
1189 reg
|= E1000_CONNSW_ENRGSRC
;
1190 wr32(E1000_CONNSW
, reg
);
1193 reg
= rd32(E1000_PCS_LCTL
);
1195 /* default pcs_autoneg to the same setting as mac autoneg */
1196 pcs_autoneg
= hw
->mac
.autoneg
;
1198 switch (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1199 case E1000_CTRL_EXT_LINK_MODE_SGMII
:
1200 /* sgmii mode lets the phy handle forcing speed/duplex */
1202 /* autoneg time out should be disabled for SGMII mode */
1203 reg
&= ~(E1000_PCS_LCTL_AN_TIMEOUT
);
1205 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX
:
1206 /* disable PCS autoneg and support parallel detect only */
1207 pcs_autoneg
= false;
1209 if (hw
->mac
.type
== e1000_82575
||
1210 hw
->mac
.type
== e1000_82576
) {
1211 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPAT
, 1, &data
);
1213 printk(KERN_DEBUG
"NVM Read Error\n\n");
1217 if (data
& E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT
)
1218 pcs_autoneg
= false;
1222 * non-SGMII modes only supports a speed of 1000/Full for the
1223 * link so it is best to just force the MAC and let the pcs
1224 * link either autoneg or be forced to 1000/Full
1226 ctrl_reg
|= E1000_CTRL_SPD_1000
| E1000_CTRL_FRCSPD
|
1227 E1000_CTRL_FD
| E1000_CTRL_FRCDPX
;
1229 /* set speed of 1000/Full if speed/duplex is forced */
1230 reg
|= E1000_PCS_LCTL_FSV_1000
| E1000_PCS_LCTL_FDV_FULL
;
1234 wr32(E1000_CTRL
, ctrl_reg
);
1237 * New SerDes mode allows for forcing speed or autonegotiating speed
1238 * at 1gb. Autoneg should be default set by most drivers. This is the
1239 * mode that will be compatible with older link partners and switches.
1240 * However, both are supported by the hardware and some drivers/tools.
1242 reg
&= ~(E1000_PCS_LCTL_AN_ENABLE
| E1000_PCS_LCTL_FLV_LINK_UP
|
1243 E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1246 * We force flow control to prevent the CTRL register values from being
1247 * overwritten by the autonegotiated flow control values
1249 reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1252 /* Set PCS register for autoneg */
1253 reg
|= E1000_PCS_LCTL_AN_ENABLE
| /* Enable Autoneg */
1254 E1000_PCS_LCTL_AN_RESTART
; /* Restart autoneg */
1255 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg
);
1257 /* Set PCS register for forced link */
1258 reg
|= E1000_PCS_LCTL_FSD
; /* Force Speed */
1260 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg
);
1263 wr32(E1000_PCS_LCTL
, reg
);
1265 if (!igb_sgmii_active_82575(hw
))
1266 igb_force_mac_fc(hw
);
1272 * igb_sgmii_active_82575 - Return sgmii state
1273 * @hw: pointer to the HW structure
1275 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1276 * which can be enabled for use in the embedded applications. Simply
1277 * return the current state of the sgmii interface.
1279 static bool igb_sgmii_active_82575(struct e1000_hw
*hw
)
1281 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
1282 return dev_spec
->sgmii_active
;
1286 * igb_reset_init_script_82575 - Inits HW defaults after reset
1287 * @hw: pointer to the HW structure
1289 * Inits recommended HW defaults after a reset when there is no EEPROM
1290 * detected. This is only for the 82575.
1292 static s32
igb_reset_init_script_82575(struct e1000_hw
*hw
)
1294 if (hw
->mac
.type
== e1000_82575
) {
1295 hw_dbg("Running reset init script for 82575\n");
1296 /* SerDes configuration via SERDESCTRL */
1297 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x00, 0x0C);
1298 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x01, 0x78);
1299 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x1B, 0x23);
1300 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x23, 0x15);
1302 /* CCM configuration via CCMCTL register */
1303 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x14, 0x00);
1304 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x10, 0x00);
1306 /* PCIe lanes configuration */
1307 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x00, 0xEC);
1308 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x61, 0xDF);
1309 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x34, 0x05);
1310 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x2F, 0x81);
1312 /* PCIe PLL Configuration */
1313 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x02, 0x47);
1314 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x14, 0x00);
1315 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x10, 0x00);
1322 * igb_read_mac_addr_82575 - Read device MAC address
1323 * @hw: pointer to the HW structure
1325 static s32
igb_read_mac_addr_82575(struct e1000_hw
*hw
)
1330 * If there's an alternate MAC address place it in RAR0
1331 * so that it will override the Si installed default perm
1334 ret_val
= igb_check_alt_mac_addr(hw
);
1338 ret_val
= igb_read_mac_addr(hw
);
1345 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1346 * @hw: pointer to the HW structure
1348 * In the case of a PHY power down to save power, or to turn off link during a
1349 * driver unload, or wake on lan is not enabled, remove the link.
1351 void igb_power_down_phy_copper_82575(struct e1000_hw
*hw
)
1353 /* If the management interface is not enabled, then power down */
1354 if (!(igb_enable_mng_pass_thru(hw
) || igb_check_reset_block(hw
)))
1355 igb_power_down_phy_copper(hw
);
1359 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1360 * @hw: pointer to the HW structure
1362 * Clears the hardware counters by reading the counter registers.
1364 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*hw
)
1366 igb_clear_hw_cntrs_base(hw
);
1372 rd32(E1000_PRC1023
);
1373 rd32(E1000_PRC1522
);
1378 rd32(E1000_PTC1023
);
1379 rd32(E1000_PTC1522
);
1381 rd32(E1000_ALGNERRC
);
1384 rd32(E1000_CEXTERR
);
1395 rd32(E1000_ICRXPTC
);
1396 rd32(E1000_ICRXATC
);
1397 rd32(E1000_ICTXPTC
);
1398 rd32(E1000_ICTXATC
);
1399 rd32(E1000_ICTXQEC
);
1400 rd32(E1000_ICTXQMTC
);
1401 rd32(E1000_ICRXDMTC
);
1408 rd32(E1000_HTCBDPC
);
1413 rd32(E1000_LENERRS
);
1415 /* This register should not be read in copper configurations */
1416 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1417 igb_sgmii_active_82575(hw
))
1422 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1423 * @hw: pointer to the HW structure
1425 * After rx enable if managability is enabled then there is likely some
1426 * bad data at the start of the fifo and possibly in the DMA fifo. This
1427 * function clears the fifos and flushes any packets that came in as rx was
1430 void igb_rx_fifo_flush_82575(struct e1000_hw
*hw
)
1432 u32 rctl
, rlpml
, rxdctl
[4], rfctl
, temp_rctl
, rx_enabled
;
1435 if (hw
->mac
.type
!= e1000_82575
||
1436 !(rd32(E1000_MANC
) & E1000_MANC_RCV_TCO_EN
))
1439 /* Disable all RX queues */
1440 for (i
= 0; i
< 4; i
++) {
1441 rxdctl
[i
] = rd32(E1000_RXDCTL(i
));
1442 wr32(E1000_RXDCTL(i
),
1443 rxdctl
[i
] & ~E1000_RXDCTL_QUEUE_ENABLE
);
1445 /* Poll all queues to verify they have shut down */
1446 for (ms_wait
= 0; ms_wait
< 10; ms_wait
++) {
1449 for (i
= 0; i
< 4; i
++)
1450 rx_enabled
|= rd32(E1000_RXDCTL(i
));
1451 if (!(rx_enabled
& E1000_RXDCTL_QUEUE_ENABLE
))
1456 hw_dbg("Queue disable timed out after 10ms\n");
1458 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1459 * incoming packets are rejected. Set enable and wait 2ms so that
1460 * any packet that was coming in as RCTL.EN was set is flushed
1462 rfctl
= rd32(E1000_RFCTL
);
1463 wr32(E1000_RFCTL
, rfctl
& ~E1000_RFCTL_LEF
);
1465 rlpml
= rd32(E1000_RLPML
);
1466 wr32(E1000_RLPML
, 0);
1468 rctl
= rd32(E1000_RCTL
);
1469 temp_rctl
= rctl
& ~(E1000_RCTL_EN
| E1000_RCTL_SBP
);
1470 temp_rctl
|= E1000_RCTL_LPE
;
1472 wr32(E1000_RCTL
, temp_rctl
);
1473 wr32(E1000_RCTL
, temp_rctl
| E1000_RCTL_EN
);
1477 /* Enable RX queues that were previously enabled and restore our
1480 for (i
= 0; i
< 4; i
++)
1481 wr32(E1000_RXDCTL(i
), rxdctl
[i
]);
1482 wr32(E1000_RCTL
, rctl
);
1485 wr32(E1000_RLPML
, rlpml
);
1486 wr32(E1000_RFCTL
, rfctl
);
1488 /* Flush receive errors generated by workaround */
1495 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1496 * @hw: pointer to the HW structure
1498 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1499 * however the hardware default for these parts is 500us to 1ms which is less
1500 * than the 10ms recommended by the pci-e spec. To address this we need to
1501 * increase the value to either 10ms to 200ms for capability version 1 config,
1502 * or 16ms to 55ms for version 2.
1504 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
)
1506 u32 gcr
= rd32(E1000_GCR
);
1510 /* only take action if timeout value is defaulted to 0 */
1511 if (gcr
& E1000_GCR_CMPL_TMOUT_MASK
)
1515 * if capababilities version is type 1 we can write the
1516 * timeout of 10ms to 200ms through the GCR register
1518 if (!(gcr
& E1000_GCR_CAP_VER2
)) {
1519 gcr
|= E1000_GCR_CMPL_TMOUT_10ms
;
1524 * for version 2 capabilities we need to write the config space
1525 * directly in order to set the completion timeout value for
1528 ret_val
= igb_read_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1533 pcie_devctl2
|= PCIE_DEVICE_CONTROL2_16ms
;
1535 ret_val
= igb_write_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1538 /* disable completion timeout resend */
1539 gcr
&= ~E1000_GCR_CMPL_TMOUT_RESEND
;
1541 wr32(E1000_GCR
, gcr
);
1546 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1547 * @hw: pointer to the hardware struct
1548 * @enable: state to enter, either enabled or disabled
1549 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1551 * enables/disables L2 switch anti-spoofing functionality.
1553 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw
*hw
, bool enable
, int pf
)
1557 switch (hw
->mac
.type
) {
1560 dtxswc
= rd32(E1000_DTXSWC
);
1562 dtxswc
|= (E1000_DTXSWC_MAC_SPOOF_MASK
|
1563 E1000_DTXSWC_VLAN_SPOOF_MASK
);
1564 /* The PF can spoof - it has to in order to
1565 * support emulation mode NICs */
1566 dtxswc
^= (1 << pf
| 1 << (pf
+ MAX_NUM_VFS
));
1568 dtxswc
&= ~(E1000_DTXSWC_MAC_SPOOF_MASK
|
1569 E1000_DTXSWC_VLAN_SPOOF_MASK
);
1571 wr32(E1000_DTXSWC
, dtxswc
);
1579 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1580 * @hw: pointer to the hardware struct
1581 * @enable: state to enter, either enabled or disabled
1583 * enables/disables L2 switch loopback functionality.
1585 void igb_vmdq_set_loopback_pf(struct e1000_hw
*hw
, bool enable
)
1589 switch (hw
->mac
.type
) {
1591 dtxswc
= rd32(E1000_DTXSWC
);
1593 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1595 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1596 wr32(E1000_DTXSWC
, dtxswc
);
1599 dtxswc
= rd32(E1000_TXSWC
);
1601 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1603 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1604 wr32(E1000_TXSWC
, dtxswc
);
1607 /* Currently no other hardware supports loopback */
1615 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1616 * @hw: pointer to the hardware struct
1617 * @enable: state to enter, either enabled or disabled
1619 * enables/disables replication of packets across multiple pools.
1621 void igb_vmdq_set_replication_pf(struct e1000_hw
*hw
, bool enable
)
1623 u32 vt_ctl
= rd32(E1000_VT_CTL
);
1626 vt_ctl
|= E1000_VT_CTL_VM_REPL_EN
;
1628 vt_ctl
&= ~E1000_VT_CTL_VM_REPL_EN
;
1630 wr32(E1000_VT_CTL
, vt_ctl
);
1634 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1635 * @hw: pointer to the HW structure
1636 * @offset: register offset to be read
1637 * @data: pointer to the read data
1639 * Reads the MDI control register in the PHY at offset and stores the
1640 * information read to data.
1642 static s32
igb_read_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
1647 ret_val
= hw
->phy
.ops
.acquire(hw
);
1651 ret_val
= igb_read_phy_reg_mdic(hw
, offset
, data
);
1653 hw
->phy
.ops
.release(hw
);
1660 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1661 * @hw: pointer to the HW structure
1662 * @offset: register offset to write to
1663 * @data: data to write to register at offset
1665 * Writes data to MDI control register in the PHY at offset.
1667 static s32
igb_write_phy_reg_82580(struct e1000_hw
*hw
, u32 offset
, u16 data
)
1672 ret_val
= hw
->phy
.ops
.acquire(hw
);
1676 ret_val
= igb_write_phy_reg_mdic(hw
, offset
, data
);
1678 hw
->phy
.ops
.release(hw
);
1685 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1686 * @hw: pointer to the HW structure
1688 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1689 * the values found in the EEPROM. This addresses an issue in which these
1690 * bits are not restored from EEPROM after reset.
1692 static s32
igb_reset_mdicnfg_82580(struct e1000_hw
*hw
)
1698 if (hw
->mac
.type
!= e1000_82580
)
1700 if (!igb_sgmii_active_82575(hw
))
1703 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
+
1704 NVM_82580_LAN_FUNC_OFFSET(hw
->bus
.func
), 1,
1707 hw_dbg("NVM Read Error\n");
1711 mdicnfg
= rd32(E1000_MDICNFG
);
1712 if (nvm_data
& NVM_WORD24_EXT_MDIO
)
1713 mdicnfg
|= E1000_MDICNFG_EXT_MDIO
;
1714 if (nvm_data
& NVM_WORD24_COM_MDIO
)
1715 mdicnfg
|= E1000_MDICNFG_COM_MDIO
;
1716 wr32(E1000_MDICNFG
, mdicnfg
);
1722 * igb_reset_hw_82580 - Reset hardware
1723 * @hw: pointer to the HW structure
1725 * This resets function or entire device (all ports, etc.)
1728 static s32
igb_reset_hw_82580(struct e1000_hw
*hw
)
1731 /* BH SW mailbox bit in SW_FW_SYNC */
1732 u16 swmbsw_mask
= E1000_SW_SYNCH_MB
;
1734 bool global_device_reset
= hw
->dev_spec
._82575
.global_device_reset
;
1737 hw
->dev_spec
._82575
.global_device_reset
= false;
1739 /* Get current control state. */
1740 ctrl
= rd32(E1000_CTRL
);
1743 * Prevent the PCI-E bus from sticking if there is no TLP connection
1744 * on the last TLP read/write transaction when MAC is reset.
1746 ret_val
= igb_disable_pcie_master(hw
);
1748 hw_dbg("PCI-E Master disable polling has failed.\n");
1750 hw_dbg("Masking off all interrupts\n");
1751 wr32(E1000_IMC
, 0xffffffff);
1752 wr32(E1000_RCTL
, 0);
1753 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
1758 /* Determine whether or not a global dev reset is requested */
1759 if (global_device_reset
&&
1760 igb_acquire_swfw_sync_82575(hw
, swmbsw_mask
))
1761 global_device_reset
= false;
1763 if (global_device_reset
&&
1764 !(rd32(E1000_STATUS
) & E1000_STAT_DEV_RST_SET
))
1765 ctrl
|= E1000_CTRL_DEV_RST
;
1767 ctrl
|= E1000_CTRL_RST
;
1769 wr32(E1000_CTRL
, ctrl
);
1772 /* Add delay to insure DEV_RST has time to complete */
1773 if (global_device_reset
)
1776 ret_val
= igb_get_auto_rd_done(hw
);
1779 * When auto config read does not complete, do not
1780 * return with an error. This can happen in situations
1781 * where there is no eeprom and prevents getting link.
1783 hw_dbg("Auto Read Done did not complete\n");
1786 /* If EEPROM is not present, run manual init scripts */
1787 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
1788 igb_reset_init_script_82575(hw
);
1790 /* clear global device reset status bit */
1791 wr32(E1000_STATUS
, E1000_STAT_DEV_RST_SET
);
1793 /* Clear any pending interrupt events. */
1794 wr32(E1000_IMC
, 0xffffffff);
1795 icr
= rd32(E1000_ICR
);
1797 ret_val
= igb_reset_mdicnfg_82580(hw
);
1799 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1801 /* Install any alternate MAC address into RAR0 */
1802 ret_val
= igb_check_alt_mac_addr(hw
);
1804 /* Release semaphore */
1805 if (global_device_reset
)
1806 igb_release_swfw_sync_82575(hw
, swmbsw_mask
);
1812 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1813 * @data: data received by reading RXPBS register
1815 * The 82580 uses a table based approach for packet buffer allocation sizes.
1816 * This function converts the retrieved value into the correct table value
1817 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1818 * 0x0 36 72 144 1 2 4 8 16
1819 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1821 u16
igb_rxpbs_adjust_82580(u32 data
)
1825 if (data
< E1000_82580_RXPBS_TABLE_SIZE
)
1826 ret_val
= e1000_82580_rxpbs_table
[data
];
1832 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
1834 * @hw: pointer to the HW structure
1835 * @offset: offset in words of the checksum protected region
1837 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1838 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
1840 static s32
igb_validate_nvm_checksum_with_offset(struct e1000_hw
*hw
,
1847 for (i
= offset
; i
< ((NVM_CHECKSUM_REG
+ offset
) + 1); i
++) {
1848 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
1850 hw_dbg("NVM Read Error\n");
1853 checksum
+= nvm_data
;
1856 if (checksum
!= (u16
) NVM_SUM
) {
1857 hw_dbg("NVM Checksum Invalid\n");
1858 ret_val
= -E1000_ERR_NVM
;
1867 * igb_update_nvm_checksum_with_offset - Update EEPROM
1869 * @hw: pointer to the HW structure
1870 * @offset: offset in words of the checksum protected region
1872 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
1873 * up to the checksum. Then calculates the EEPROM checksum and writes the
1874 * value to the EEPROM.
1876 static s32
igb_update_nvm_checksum_with_offset(struct e1000_hw
*hw
, u16 offset
)
1882 for (i
= offset
; i
< (NVM_CHECKSUM_REG
+ offset
); i
++) {
1883 ret_val
= hw
->nvm
.ops
.read(hw
, i
, 1, &nvm_data
);
1885 hw_dbg("NVM Read Error while updating checksum.\n");
1888 checksum
+= nvm_data
;
1890 checksum
= (u16
) NVM_SUM
- checksum
;
1891 ret_val
= hw
->nvm
.ops
.write(hw
, (NVM_CHECKSUM_REG
+ offset
), 1,
1894 hw_dbg("NVM Write Error while updating checksum.\n");
1901 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1902 * @hw: pointer to the HW structure
1904 * Calculates the EEPROM section checksum by reading/adding each word of
1905 * the EEPROM and then verifies that the sum of the EEPROM is
1908 static s32
igb_validate_nvm_checksum_82580(struct e1000_hw
*hw
)
1911 u16 eeprom_regions_count
= 1;
1915 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
1917 hw_dbg("NVM Read Error\n");
1921 if (nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) {
1922 /* if checksums compatibility bit is set validate checksums
1923 * for all 4 ports. */
1924 eeprom_regions_count
= 4;
1927 for (j
= 0; j
< eeprom_regions_count
; j
++) {
1928 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1929 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
1940 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
1941 * @hw: pointer to the HW structure
1943 * Updates the EEPROM section checksums for all 4 ports by reading/adding
1944 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
1945 * checksum and writes the value to the EEPROM.
1947 static s32
igb_update_nvm_checksum_82580(struct e1000_hw
*hw
)
1953 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_COMPATIBILITY_REG_3
, 1, &nvm_data
);
1955 hw_dbg("NVM Read Error while updating checksum"
1956 " compatibility bit.\n");
1960 if ((nvm_data
& NVM_COMPATIBILITY_BIT_MASK
) == 0) {
1961 /* set compatibility bit to validate checksums appropriately */
1962 nvm_data
= nvm_data
| NVM_COMPATIBILITY_BIT_MASK
;
1963 ret_val
= hw
->nvm
.ops
.write(hw
, NVM_COMPATIBILITY_REG_3
, 1,
1966 hw_dbg("NVM Write Error while updating checksum"
1967 " compatibility bit.\n");
1972 for (j
= 0; j
< 4; j
++) {
1973 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1974 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
1984 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1985 * @hw: pointer to the HW structure
1987 * Calculates the EEPROM section checksum by reading/adding each word of
1988 * the EEPROM and then verifies that the sum of the EEPROM is
1991 static s32
igb_validate_nvm_checksum_i350(struct e1000_hw
*hw
)
1997 for (j
= 0; j
< 4; j
++) {
1998 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
1999 ret_val
= igb_validate_nvm_checksum_with_offset(hw
,
2010 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2011 * @hw: pointer to the HW structure
2013 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2014 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2015 * checksum and writes the value to the EEPROM.
2017 static s32
igb_update_nvm_checksum_i350(struct e1000_hw
*hw
)
2023 for (j
= 0; j
< 4; j
++) {
2024 nvm_offset
= NVM_82580_LAN_FUNC_OFFSET(j
);
2025 ret_val
= igb_update_nvm_checksum_with_offset(hw
, nvm_offset
);
2035 * igb_set_eee_i350 - Enable/disable EEE support
2036 * @hw: pointer to the HW structure
2038 * Enable/disable EEE based on setting in dev_spec structure.
2041 s32
igb_set_eee_i350(struct e1000_hw
*hw
)
2044 u32 ipcnfg
, eeer
, ctrl_ext
;
2046 ctrl_ext
= rd32(E1000_CTRL_EXT
);
2047 if ((hw
->mac
.type
!= e1000_i350
) ||
2048 (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
))
2050 ipcnfg
= rd32(E1000_IPCNFG
);
2051 eeer
= rd32(E1000_EEER
);
2053 /* enable or disable per user setting */
2054 if (!(hw
->dev_spec
._82575
.eee_disable
)) {
2055 ipcnfg
|= (E1000_IPCNFG_EEE_1G_AN
|
2056 E1000_IPCNFG_EEE_100M_AN
);
2057 eeer
|= (E1000_EEER_TX_LPI_EN
|
2058 E1000_EEER_RX_LPI_EN
|
2062 ipcnfg
&= ~(E1000_IPCNFG_EEE_1G_AN
|
2063 E1000_IPCNFG_EEE_100M_AN
);
2064 eeer
&= ~(E1000_EEER_TX_LPI_EN
|
2065 E1000_EEER_RX_LPI_EN
|
2068 wr32(E1000_IPCNFG
, ipcnfg
);
2069 wr32(E1000_EEER
, eeer
);
2075 static struct e1000_mac_operations e1000_mac_ops_82575
= {
2076 .init_hw
= igb_init_hw_82575
,
2077 .check_for_link
= igb_check_for_link_82575
,
2078 .rar_set
= igb_rar_set
,
2079 .read_mac_addr
= igb_read_mac_addr_82575
,
2080 .get_speed_and_duplex
= igb_get_speed_and_duplex_copper
,
2083 static struct e1000_phy_operations e1000_phy_ops_82575
= {
2084 .acquire
= igb_acquire_phy_82575
,
2085 .get_cfg_done
= igb_get_cfg_done_82575
,
2086 .release
= igb_release_phy_82575
,
2089 static struct e1000_nvm_operations e1000_nvm_ops_82575
= {
2090 .acquire
= igb_acquire_nvm_82575
,
2091 .read
= igb_read_nvm_eerd
,
2092 .release
= igb_release_nvm_82575
,
2093 .write
= igb_write_nvm_spi
,
2096 const struct e1000_info e1000_82575_info
= {
2097 .get_invariants
= igb_get_invariants_82575
,
2098 .mac_ops
= &e1000_mac_ops_82575
,
2099 .phy_ops
= &e1000_phy_ops_82575
,
2100 .nvm_ops
= &e1000_nvm_ops_82575
,