Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / net / ethernet / intel / igb / e1000_phy.c
blob789de5b83aad94071aec54f04e7979e9cfd82d7c
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
34 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 u16 *phy_ctrl);
37 static s32 igb_wait_autoneg(struct e1000_hw *hw);
39 /* Cable length tables */
40 static const u16 e1000_m88_cable_length_table[] =
41 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
42 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
43 (sizeof(e1000_m88_cable_length_table) / \
44 sizeof(e1000_m88_cable_length_table[0]))
46 static const u16 e1000_igp_2_cable_length_table[] =
47 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
48 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
49 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
50 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
51 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
52 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
53 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
54 104, 109, 114, 118, 121, 124};
55 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
56 (sizeof(e1000_igp_2_cable_length_table) / \
57 sizeof(e1000_igp_2_cable_length_table[0]))
59 /**
60 * igb_check_reset_block - Check if PHY reset is blocked
61 * @hw: pointer to the HW structure
63 * Read the PHY management control register and check whether a PHY reset
64 * is blocked. If a reset is not blocked return 0, otherwise
65 * return E1000_BLK_PHY_RESET (12).
66 **/
67 s32 igb_check_reset_block(struct e1000_hw *hw)
69 u32 manc;
71 manc = rd32(E1000_MANC);
73 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
74 E1000_BLK_PHY_RESET : 0;
77 /**
78 * igb_get_phy_id - Retrieve the PHY ID and revision
79 * @hw: pointer to the HW structure
81 * Reads the PHY registers and stores the PHY ID and possibly the PHY
82 * revision in the hardware structure.
83 **/
84 s32 igb_get_phy_id(struct e1000_hw *hw)
86 struct e1000_phy_info *phy = &hw->phy;
87 s32 ret_val = 0;
88 u16 phy_id;
90 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 if (ret_val)
92 goto out;
94 phy->id = (u32)(phy_id << 16);
95 udelay(20);
96 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 if (ret_val)
98 goto out;
100 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
103 out:
104 return ret_val;
108 * igb_phy_reset_dsp - Reset PHY DSP
109 * @hw: pointer to the HW structure
111 * Reset the digital signal processor.
113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
115 s32 ret_val = 0;
117 if (!(hw->phy.ops.write_reg))
118 goto out;
120 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 if (ret_val)
122 goto out;
124 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
126 out:
127 return ret_val;
131 * igb_read_phy_reg_mdic - Read MDI control register
132 * @hw: pointer to the HW structure
133 * @offset: register offset to be read
134 * @data: pointer to the read data
136 * Reads the MDI control regsiter in the PHY at offset and stores the
137 * information read to data.
139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
141 struct e1000_phy_info *phy = &hw->phy;
142 u32 i, mdic = 0;
143 s32 ret_val = 0;
145 if (offset > MAX_PHY_REG_ADDRESS) {
146 hw_dbg("PHY Address %d is out of range\n", offset);
147 ret_val = -E1000_ERR_PARAM;
148 goto out;
152 * Set up Op-code, Phy Address, and register offset in the MDI
153 * Control register. The MAC will take care of interfacing with the
154 * PHY to retrieve the desired data.
156 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
157 (phy->addr << E1000_MDIC_PHY_SHIFT) |
158 (E1000_MDIC_OP_READ));
160 wr32(E1000_MDIC, mdic);
163 * Poll the ready bit to see if the MDI read completed
164 * Increasing the time out as testing showed failures with
165 * the lower time out
167 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
168 udelay(50);
169 mdic = rd32(E1000_MDIC);
170 if (mdic & E1000_MDIC_READY)
171 break;
173 if (!(mdic & E1000_MDIC_READY)) {
174 hw_dbg("MDI Read did not complete\n");
175 ret_val = -E1000_ERR_PHY;
176 goto out;
178 if (mdic & E1000_MDIC_ERROR) {
179 hw_dbg("MDI Error\n");
180 ret_val = -E1000_ERR_PHY;
181 goto out;
183 *data = (u16) mdic;
185 out:
186 return ret_val;
190 * igb_write_phy_reg_mdic - Write MDI control register
191 * @hw: pointer to the HW structure
192 * @offset: register offset to write to
193 * @data: data to write to register at offset
195 * Writes data to MDI control register in the PHY at offset.
197 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
199 struct e1000_phy_info *phy = &hw->phy;
200 u32 i, mdic = 0;
201 s32 ret_val = 0;
203 if (offset > MAX_PHY_REG_ADDRESS) {
204 hw_dbg("PHY Address %d is out of range\n", offset);
205 ret_val = -E1000_ERR_PARAM;
206 goto out;
210 * Set up Op-code, Phy Address, and register offset in the MDI
211 * Control register. The MAC will take care of interfacing with the
212 * PHY to retrieve the desired data.
214 mdic = (((u32)data) |
215 (offset << E1000_MDIC_REG_SHIFT) |
216 (phy->addr << E1000_MDIC_PHY_SHIFT) |
217 (E1000_MDIC_OP_WRITE));
219 wr32(E1000_MDIC, mdic);
222 * Poll the ready bit to see if the MDI read completed
223 * Increasing the time out as testing showed failures with
224 * the lower time out
226 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
227 udelay(50);
228 mdic = rd32(E1000_MDIC);
229 if (mdic & E1000_MDIC_READY)
230 break;
232 if (!(mdic & E1000_MDIC_READY)) {
233 hw_dbg("MDI Write did not complete\n");
234 ret_val = -E1000_ERR_PHY;
235 goto out;
237 if (mdic & E1000_MDIC_ERROR) {
238 hw_dbg("MDI Error\n");
239 ret_val = -E1000_ERR_PHY;
240 goto out;
243 out:
244 return ret_val;
248 * igb_read_phy_reg_i2c - Read PHY register using i2c
249 * @hw: pointer to the HW structure
250 * @offset: register offset to be read
251 * @data: pointer to the read data
253 * Reads the PHY register at offset using the i2c interface and stores the
254 * retrieved information in data.
256 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
258 struct e1000_phy_info *phy = &hw->phy;
259 u32 i, i2ccmd = 0;
263 * Set up Op-code, Phy Address, and register address in the I2CCMD
264 * register. The MAC will take care of interfacing with the
265 * PHY to retrieve the desired data.
267 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
268 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
269 (E1000_I2CCMD_OPCODE_READ));
271 wr32(E1000_I2CCMD, i2ccmd);
273 /* Poll the ready bit to see if the I2C read completed */
274 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
275 udelay(50);
276 i2ccmd = rd32(E1000_I2CCMD);
277 if (i2ccmd & E1000_I2CCMD_READY)
278 break;
280 if (!(i2ccmd & E1000_I2CCMD_READY)) {
281 hw_dbg("I2CCMD Read did not complete\n");
282 return -E1000_ERR_PHY;
284 if (i2ccmd & E1000_I2CCMD_ERROR) {
285 hw_dbg("I2CCMD Error bit set\n");
286 return -E1000_ERR_PHY;
289 /* Need to byte-swap the 16-bit value. */
290 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
292 return 0;
296 * igb_write_phy_reg_i2c - Write PHY register using i2c
297 * @hw: pointer to the HW structure
298 * @offset: register offset to write to
299 * @data: data to write at register offset
301 * Writes the data to PHY register at the offset using the i2c interface.
303 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
305 struct e1000_phy_info *phy = &hw->phy;
306 u32 i, i2ccmd = 0;
307 u16 phy_data_swapped;
309 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
310 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
311 hw_dbg("PHY I2C Address %d is out of range.\n",
312 hw->phy.addr);
313 return -E1000_ERR_CONFIG;
316 /* Swap the data bytes for the I2C interface */
317 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
320 * Set up Op-code, Phy Address, and register address in the I2CCMD
321 * register. The MAC will take care of interfacing with the
322 * PHY to retrieve the desired data.
324 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
325 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
326 E1000_I2CCMD_OPCODE_WRITE |
327 phy_data_swapped);
329 wr32(E1000_I2CCMD, i2ccmd);
331 /* Poll the ready bit to see if the I2C read completed */
332 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
333 udelay(50);
334 i2ccmd = rd32(E1000_I2CCMD);
335 if (i2ccmd & E1000_I2CCMD_READY)
336 break;
338 if (!(i2ccmd & E1000_I2CCMD_READY)) {
339 hw_dbg("I2CCMD Write did not complete\n");
340 return -E1000_ERR_PHY;
342 if (i2ccmd & E1000_I2CCMD_ERROR) {
343 hw_dbg("I2CCMD Error bit set\n");
344 return -E1000_ERR_PHY;
347 return 0;
351 * igb_read_phy_reg_igp - Read igp PHY register
352 * @hw: pointer to the HW structure
353 * @offset: register offset to be read
354 * @data: pointer to the read data
356 * Acquires semaphore, if necessary, then reads the PHY register at offset
357 * and storing the retrieved information in data. Release any acquired
358 * semaphores before exiting.
360 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
362 s32 ret_val = 0;
364 if (!(hw->phy.ops.acquire))
365 goto out;
367 ret_val = hw->phy.ops.acquire(hw);
368 if (ret_val)
369 goto out;
371 if (offset > MAX_PHY_MULTI_PAGE_REG) {
372 ret_val = igb_write_phy_reg_mdic(hw,
373 IGP01E1000_PHY_PAGE_SELECT,
374 (u16)offset);
375 if (ret_val) {
376 hw->phy.ops.release(hw);
377 goto out;
381 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
382 data);
384 hw->phy.ops.release(hw);
386 out:
387 return ret_val;
391 * igb_write_phy_reg_igp - Write igp PHY register
392 * @hw: pointer to the HW structure
393 * @offset: register offset to write to
394 * @data: data to write at register offset
396 * Acquires semaphore, if necessary, then writes the data to PHY register
397 * at the offset. Release any acquired semaphores before exiting.
399 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
401 s32 ret_val = 0;
403 if (!(hw->phy.ops.acquire))
404 goto out;
406 ret_val = hw->phy.ops.acquire(hw);
407 if (ret_val)
408 goto out;
410 if (offset > MAX_PHY_MULTI_PAGE_REG) {
411 ret_val = igb_write_phy_reg_mdic(hw,
412 IGP01E1000_PHY_PAGE_SELECT,
413 (u16)offset);
414 if (ret_val) {
415 hw->phy.ops.release(hw);
416 goto out;
420 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
421 data);
423 hw->phy.ops.release(hw);
425 out:
426 return ret_val;
430 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
431 * @hw: pointer to the HW structure
433 * Sets up Carrier-sense on Transmit and downshift values.
435 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
437 struct e1000_phy_info *phy = &hw->phy;
438 s32 ret_val;
439 u16 phy_data;
442 if (phy->reset_disable) {
443 ret_val = 0;
444 goto out;
447 if (phy->type == e1000_phy_82580) {
448 ret_val = hw->phy.ops.reset(hw);
449 if (ret_val) {
450 hw_dbg("Error resetting the PHY.\n");
451 goto out;
455 /* Enable CRS on TX. This must be set for half-duplex operation. */
456 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
457 if (ret_val)
458 goto out;
460 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
462 /* Enable downshift */
463 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
465 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
467 out:
468 return ret_val;
472 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
473 * @hw: pointer to the HW structure
475 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
476 * and downshift values are set also.
478 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
480 struct e1000_phy_info *phy = &hw->phy;
481 s32 ret_val;
482 u16 phy_data;
484 if (phy->reset_disable) {
485 ret_val = 0;
486 goto out;
489 /* Enable CRS on TX. This must be set for half-duplex operation. */
490 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
491 if (ret_val)
492 goto out;
494 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
497 * Options:
498 * MDI/MDI-X = 0 (default)
499 * 0 - Auto for all speeds
500 * 1 - MDI mode
501 * 2 - MDI-X mode
502 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
504 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
506 switch (phy->mdix) {
507 case 1:
508 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
509 break;
510 case 2:
511 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
512 break;
513 case 3:
514 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
515 break;
516 case 0:
517 default:
518 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
519 break;
523 * Options:
524 * disable_polarity_correction = 0 (default)
525 * Automatic Correction for Reversed Cable Polarity
526 * 0 - Disabled
527 * 1 - Enabled
529 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
530 if (phy->disable_polarity_correction == 1)
531 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
533 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
534 if (ret_val)
535 goto out;
537 if (phy->revision < E1000_REVISION_4) {
539 * Force TX_CLK in the Extended PHY Specific Control Register
540 * to 25MHz clock.
542 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
543 &phy_data);
544 if (ret_val)
545 goto out;
547 phy_data |= M88E1000_EPSCR_TX_CLK_25;
549 if ((phy->revision == E1000_REVISION_2) &&
550 (phy->id == M88E1111_I_PHY_ID)) {
551 /* 82573L PHY - set the downshift counter to 5x. */
552 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
553 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
554 } else {
555 /* Configure Master and Slave downshift values */
556 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
557 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
558 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
559 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
561 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
562 phy_data);
563 if (ret_val)
564 goto out;
567 /* Commit the changes. */
568 ret_val = igb_phy_sw_reset(hw);
569 if (ret_val) {
570 hw_dbg("Error committing the PHY changes\n");
571 goto out;
574 out:
575 return ret_val;
579 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
580 * @hw: pointer to the HW structure
582 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
583 * Also enables and sets the downshift parameters.
585 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
587 struct e1000_phy_info *phy = &hw->phy;
588 s32 ret_val;
589 u16 phy_data;
591 if (phy->reset_disable) {
592 ret_val = 0;
593 goto out;
596 /* Enable CRS on Tx. This must be set for half-duplex operation. */
597 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
598 if (ret_val)
599 goto out;
602 * Options:
603 * MDI/MDI-X = 0 (default)
604 * 0 - Auto for all speeds
605 * 1 - MDI mode
606 * 2 - MDI-X mode
607 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
609 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
611 switch (phy->mdix) {
612 case 1:
613 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
614 break;
615 case 2:
616 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
617 break;
618 case 3:
619 /* M88E1112 does not support this mode) */
620 if (phy->id != M88E1112_E_PHY_ID) {
621 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
622 break;
624 case 0:
625 default:
626 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
627 break;
631 * Options:
632 * disable_polarity_correction = 0 (default)
633 * Automatic Correction for Reversed Cable Polarity
634 * 0 - Disabled
635 * 1 - Enabled
637 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
638 if (phy->disable_polarity_correction == 1)
639 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
641 /* Enable downshift and setting it to X6 */
642 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
643 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
644 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
646 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
647 if (ret_val)
648 goto out;
650 /* Commit the changes. */
651 ret_val = igb_phy_sw_reset(hw);
652 if (ret_val) {
653 hw_dbg("Error committing the PHY changes\n");
654 goto out;
657 out:
658 return ret_val;
662 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
663 * @hw: pointer to the HW structure
665 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
666 * igp PHY's.
668 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
670 struct e1000_phy_info *phy = &hw->phy;
671 s32 ret_val;
672 u16 data;
674 if (phy->reset_disable) {
675 ret_val = 0;
676 goto out;
679 ret_val = phy->ops.reset(hw);
680 if (ret_val) {
681 hw_dbg("Error resetting the PHY.\n");
682 goto out;
686 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
687 * timeout issues when LFS is enabled.
689 msleep(100);
692 * The NVM settings will configure LPLU in D3 for
693 * non-IGP1 PHYs.
695 if (phy->type == e1000_phy_igp) {
696 /* disable lplu d3 during driver init */
697 if (phy->ops.set_d3_lplu_state)
698 ret_val = phy->ops.set_d3_lplu_state(hw, false);
699 if (ret_val) {
700 hw_dbg("Error Disabling LPLU D3\n");
701 goto out;
705 /* disable lplu d0 during driver init */
706 ret_val = phy->ops.set_d0_lplu_state(hw, false);
707 if (ret_val) {
708 hw_dbg("Error Disabling LPLU D0\n");
709 goto out;
711 /* Configure mdi-mdix settings */
712 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
713 if (ret_val)
714 goto out;
716 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
718 switch (phy->mdix) {
719 case 1:
720 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
721 break;
722 case 2:
723 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
724 break;
725 case 0:
726 default:
727 data |= IGP01E1000_PSCR_AUTO_MDIX;
728 break;
730 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
731 if (ret_val)
732 goto out;
734 /* set auto-master slave resolution settings */
735 if (hw->mac.autoneg) {
737 * when autonegotiation advertisement is only 1000Mbps then we
738 * should disable SmartSpeed and enable Auto MasterSlave
739 * resolution as hardware default.
741 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
742 /* Disable SmartSpeed */
743 ret_val = phy->ops.read_reg(hw,
744 IGP01E1000_PHY_PORT_CONFIG,
745 &data);
746 if (ret_val)
747 goto out;
749 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
750 ret_val = phy->ops.write_reg(hw,
751 IGP01E1000_PHY_PORT_CONFIG,
752 data);
753 if (ret_val)
754 goto out;
756 /* Set auto Master/Slave resolution process */
757 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
758 if (ret_val)
759 goto out;
761 data &= ~CR_1000T_MS_ENABLE;
762 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
763 if (ret_val)
764 goto out;
767 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
768 if (ret_val)
769 goto out;
771 /* load defaults for future use */
772 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
773 ((data & CR_1000T_MS_VALUE) ?
774 e1000_ms_force_master :
775 e1000_ms_force_slave) :
776 e1000_ms_auto;
778 switch (phy->ms_type) {
779 case e1000_ms_force_master:
780 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
781 break;
782 case e1000_ms_force_slave:
783 data |= CR_1000T_MS_ENABLE;
784 data &= ~(CR_1000T_MS_VALUE);
785 break;
786 case e1000_ms_auto:
787 data &= ~CR_1000T_MS_ENABLE;
788 default:
789 break;
791 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
792 if (ret_val)
793 goto out;
796 out:
797 return ret_val;
801 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
802 * @hw: pointer to the HW structure
804 * Performs initial bounds checking on autoneg advertisement parameter, then
805 * configure to advertise the full capability. Setup the PHY to autoneg
806 * and restart the negotiation process between the link partner. If
807 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
809 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
811 struct e1000_phy_info *phy = &hw->phy;
812 s32 ret_val;
813 u16 phy_ctrl;
816 * Perform some bounds checking on the autoneg advertisement
817 * parameter.
819 phy->autoneg_advertised &= phy->autoneg_mask;
822 * If autoneg_advertised is zero, we assume it was not defaulted
823 * by the calling code so we set to advertise full capability.
825 if (phy->autoneg_advertised == 0)
826 phy->autoneg_advertised = phy->autoneg_mask;
828 hw_dbg("Reconfiguring auto-neg advertisement params\n");
829 ret_val = igb_phy_setup_autoneg(hw);
830 if (ret_val) {
831 hw_dbg("Error Setting up Auto-Negotiation\n");
832 goto out;
834 hw_dbg("Restarting Auto-Neg\n");
837 * Restart auto-negotiation by setting the Auto Neg Enable bit and
838 * the Auto Neg Restart bit in the PHY control register.
840 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
841 if (ret_val)
842 goto out;
844 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
845 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
846 if (ret_val)
847 goto out;
850 * Does the user want to wait for Auto-Neg to complete here, or
851 * check at a later time (for example, callback routine).
853 if (phy->autoneg_wait_to_complete) {
854 ret_val = igb_wait_autoneg(hw);
855 if (ret_val) {
856 hw_dbg("Error while waiting for "
857 "autoneg to complete\n");
858 goto out;
862 hw->mac.get_link_status = true;
864 out:
865 return ret_val;
869 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
870 * @hw: pointer to the HW structure
872 * Reads the MII auto-neg advertisement register and/or the 1000T control
873 * register and if the PHY is already setup for auto-negotiation, then
874 * return successful. Otherwise, setup advertisement and flow control to
875 * the appropriate values for the wanted auto-negotiation.
877 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
879 struct e1000_phy_info *phy = &hw->phy;
880 s32 ret_val;
881 u16 mii_autoneg_adv_reg;
882 u16 mii_1000t_ctrl_reg = 0;
884 phy->autoneg_advertised &= phy->autoneg_mask;
886 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
887 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
888 if (ret_val)
889 goto out;
891 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
892 /* Read the MII 1000Base-T Control Register (Address 9). */
893 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
894 &mii_1000t_ctrl_reg);
895 if (ret_val)
896 goto out;
900 * Need to parse both autoneg_advertised and fc and set up
901 * the appropriate PHY registers. First we will parse for
902 * autoneg_advertised software override. Since we can advertise
903 * a plethora of combinations, we need to check each bit
904 * individually.
908 * First we clear all the 10/100 mb speed bits in the Auto-Neg
909 * Advertisement Register (Address 4) and the 1000 mb speed bits in
910 * the 1000Base-T Control Register (Address 9).
912 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
913 NWAY_AR_100TX_HD_CAPS |
914 NWAY_AR_10T_FD_CAPS |
915 NWAY_AR_10T_HD_CAPS);
916 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
918 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
920 /* Do we want to advertise 10 Mb Half Duplex? */
921 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
922 hw_dbg("Advertise 10mb Half duplex\n");
923 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
926 /* Do we want to advertise 10 Mb Full Duplex? */
927 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
928 hw_dbg("Advertise 10mb Full duplex\n");
929 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
932 /* Do we want to advertise 100 Mb Half Duplex? */
933 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
934 hw_dbg("Advertise 100mb Half duplex\n");
935 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
938 /* Do we want to advertise 100 Mb Full Duplex? */
939 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
940 hw_dbg("Advertise 100mb Full duplex\n");
941 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
944 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
945 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
946 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
948 /* Do we want to advertise 1000 Mb Full Duplex? */
949 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
950 hw_dbg("Advertise 1000mb Full duplex\n");
951 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
955 * Check for a software override of the flow control settings, and
956 * setup the PHY advertisement registers accordingly. If
957 * auto-negotiation is enabled, then software will have to set the
958 * "PAUSE" bits to the correct value in the Auto-Negotiation
959 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
960 * negotiation.
962 * The possible values of the "fc" parameter are:
963 * 0: Flow control is completely disabled
964 * 1: Rx flow control is enabled (we can receive pause frames
965 * but not send pause frames).
966 * 2: Tx flow control is enabled (we can send pause frames
967 * but we do not support receiving pause frames).
968 * 3: Both Rx and TX flow control (symmetric) are enabled.
969 * other: No software override. The flow control configuration
970 * in the EEPROM is used.
972 switch (hw->fc.current_mode) {
973 case e1000_fc_none:
975 * Flow control (RX & TX) is completely disabled by a
976 * software over-ride.
978 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
979 break;
980 case e1000_fc_rx_pause:
982 * RX Flow control is enabled, and TX Flow control is
983 * disabled, by a software over-ride.
985 * Since there really isn't a way to advertise that we are
986 * capable of RX Pause ONLY, we will advertise that we
987 * support both symmetric and asymmetric RX PAUSE. Later
988 * (in e1000_config_fc_after_link_up) we will disable the
989 * hw's ability to send PAUSE frames.
991 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
992 break;
993 case e1000_fc_tx_pause:
995 * TX Flow control is enabled, and RX Flow control is
996 * disabled, by a software over-ride.
998 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
999 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1000 break;
1001 case e1000_fc_full:
1003 * Flow control (both RX and TX) is enabled by a software
1004 * over-ride.
1006 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1007 break;
1008 default:
1009 hw_dbg("Flow control param set incorrectly\n");
1010 ret_val = -E1000_ERR_CONFIG;
1011 goto out;
1014 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1015 if (ret_val)
1016 goto out;
1018 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1020 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1021 ret_val = phy->ops.write_reg(hw,
1022 PHY_1000T_CTRL,
1023 mii_1000t_ctrl_reg);
1024 if (ret_val)
1025 goto out;
1028 out:
1029 return ret_val;
1033 * igb_setup_copper_link - Configure copper link settings
1034 * @hw: pointer to the HW structure
1036 * Calls the appropriate function to configure the link for auto-neg or forced
1037 * speed and duplex. Then we check for link, once link is established calls
1038 * to configure collision distance and flow control are called. If link is
1039 * not established, we return -E1000_ERR_PHY (-2).
1041 s32 igb_setup_copper_link(struct e1000_hw *hw)
1043 s32 ret_val;
1044 bool link;
1047 if (hw->mac.autoneg) {
1049 * Setup autoneg and flow control advertisement and perform
1050 * autonegotiation.
1052 ret_val = igb_copper_link_autoneg(hw);
1053 if (ret_val)
1054 goto out;
1055 } else {
1057 * PHY will be set to 10H, 10F, 100H or 100F
1058 * depending on user settings.
1060 hw_dbg("Forcing Speed and Duplex\n");
1061 ret_val = hw->phy.ops.force_speed_duplex(hw);
1062 if (ret_val) {
1063 hw_dbg("Error Forcing Speed and Duplex\n");
1064 goto out;
1069 * Check link status. Wait up to 100 microseconds for link to become
1070 * valid.
1072 ret_val = igb_phy_has_link(hw,
1073 COPPER_LINK_UP_LIMIT,
1075 &link);
1076 if (ret_val)
1077 goto out;
1079 if (link) {
1080 hw_dbg("Valid link established!!!\n");
1081 igb_config_collision_dist(hw);
1082 ret_val = igb_config_fc_after_link_up(hw);
1083 } else {
1084 hw_dbg("Unable to establish link!!!\n");
1087 out:
1088 return ret_val;
1092 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1093 * @hw: pointer to the HW structure
1095 * Calls the PHY setup function to force speed and duplex. Clears the
1096 * auto-crossover to force MDI manually. Waits for link and returns
1097 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1099 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1101 struct e1000_phy_info *phy = &hw->phy;
1102 s32 ret_val;
1103 u16 phy_data;
1104 bool link;
1106 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1107 if (ret_val)
1108 goto out;
1110 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1112 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1113 if (ret_val)
1114 goto out;
1117 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1118 * forced whenever speed and duplex are forced.
1120 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1121 if (ret_val)
1122 goto out;
1124 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1125 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1127 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1128 if (ret_val)
1129 goto out;
1131 hw_dbg("IGP PSCR: %X\n", phy_data);
1133 udelay(1);
1135 if (phy->autoneg_wait_to_complete) {
1136 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1138 ret_val = igb_phy_has_link(hw,
1139 PHY_FORCE_LIMIT,
1140 100000,
1141 &link);
1142 if (ret_val)
1143 goto out;
1145 if (!link)
1146 hw_dbg("Link taking longer than expected.\n");
1148 /* Try once more */
1149 ret_val = igb_phy_has_link(hw,
1150 PHY_FORCE_LIMIT,
1151 100000,
1152 &link);
1153 if (ret_val)
1154 goto out;
1157 out:
1158 return ret_val;
1162 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1163 * @hw: pointer to the HW structure
1165 * Calls the PHY setup function to force speed and duplex. Clears the
1166 * auto-crossover to force MDI manually. Resets the PHY to commit the
1167 * changes. If time expires while waiting for link up, we reset the DSP.
1168 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1169 * successful completion, else return corresponding error code.
1171 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1173 struct e1000_phy_info *phy = &hw->phy;
1174 s32 ret_val;
1175 u16 phy_data;
1176 bool link;
1179 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1180 * forced whenever speed and duplex are forced.
1182 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1183 if (ret_val)
1184 goto out;
1186 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1187 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1188 if (ret_val)
1189 goto out;
1191 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1193 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1194 if (ret_val)
1195 goto out;
1197 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1199 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1200 if (ret_val)
1201 goto out;
1203 /* Reset the phy to commit changes. */
1204 ret_val = igb_phy_sw_reset(hw);
1205 if (ret_val)
1206 goto out;
1208 if (phy->autoneg_wait_to_complete) {
1209 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1211 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1212 if (ret_val)
1213 goto out;
1215 if (!link) {
1216 if (hw->phy.type != e1000_phy_m88 ||
1217 hw->phy.id == I347AT4_E_PHY_ID ||
1218 hw->phy.id == M88E1112_E_PHY_ID) {
1219 hw_dbg("Link taking longer than expected.\n");
1220 } else {
1223 * We didn't get link.
1224 * Reset the DSP and cross our fingers.
1226 ret_val = phy->ops.write_reg(hw,
1227 M88E1000_PHY_PAGE_SELECT,
1228 0x001d);
1229 if (ret_val)
1230 goto out;
1231 ret_val = igb_phy_reset_dsp(hw);
1232 if (ret_val)
1233 goto out;
1237 /* Try once more */
1238 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1239 100000, &link);
1240 if (ret_val)
1241 goto out;
1244 if (hw->phy.type != e1000_phy_m88 ||
1245 hw->phy.id == I347AT4_E_PHY_ID ||
1246 hw->phy.id == M88E1112_E_PHY_ID)
1247 goto out;
1249 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1250 if (ret_val)
1251 goto out;
1254 * Resetting the phy means we need to re-force TX_CLK in the
1255 * Extended PHY Specific Control Register to 25MHz clock from
1256 * the reset value of 2.5MHz.
1258 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1259 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1260 if (ret_val)
1261 goto out;
1264 * In addition, we must re-enable CRS on Tx for both half and full
1265 * duplex.
1267 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1268 if (ret_val)
1269 goto out;
1271 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1272 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1274 out:
1275 return ret_val;
1279 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1280 * @hw: pointer to the HW structure
1281 * @phy_ctrl: pointer to current value of PHY_CONTROL
1283 * Forces speed and duplex on the PHY by doing the following: disable flow
1284 * control, force speed/duplex on the MAC, disable auto speed detection,
1285 * disable auto-negotiation, configure duplex, configure speed, configure
1286 * the collision distance, write configuration to CTRL register. The
1287 * caller must write to the PHY_CONTROL register for these settings to
1288 * take affect.
1290 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1291 u16 *phy_ctrl)
1293 struct e1000_mac_info *mac = &hw->mac;
1294 u32 ctrl;
1296 /* Turn off flow control when forcing speed/duplex */
1297 hw->fc.current_mode = e1000_fc_none;
1299 /* Force speed/duplex on the mac */
1300 ctrl = rd32(E1000_CTRL);
1301 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1302 ctrl &= ~E1000_CTRL_SPD_SEL;
1304 /* Disable Auto Speed Detection */
1305 ctrl &= ~E1000_CTRL_ASDE;
1307 /* Disable autoneg on the phy */
1308 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1310 /* Forcing Full or Half Duplex? */
1311 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1312 ctrl &= ~E1000_CTRL_FD;
1313 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1314 hw_dbg("Half Duplex\n");
1315 } else {
1316 ctrl |= E1000_CTRL_FD;
1317 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1318 hw_dbg("Full Duplex\n");
1321 /* Forcing 10mb or 100mb? */
1322 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1323 ctrl |= E1000_CTRL_SPD_100;
1324 *phy_ctrl |= MII_CR_SPEED_100;
1325 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1326 hw_dbg("Forcing 100mb\n");
1327 } else {
1328 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1329 *phy_ctrl |= MII_CR_SPEED_10;
1330 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1331 hw_dbg("Forcing 10mb\n");
1334 igb_config_collision_dist(hw);
1336 wr32(E1000_CTRL, ctrl);
1340 * igb_set_d3_lplu_state - Sets low power link up state for D3
1341 * @hw: pointer to the HW structure
1342 * @active: boolean used to enable/disable lplu
1344 * Success returns 0, Failure returns 1
1346 * The low power link up (lplu) state is set to the power management level D3
1347 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1348 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1349 * is used during Dx states where the power conservation is most important.
1350 * During driver activity, SmartSpeed should be enabled so performance is
1351 * maintained.
1353 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1355 struct e1000_phy_info *phy = &hw->phy;
1356 s32 ret_val = 0;
1357 u16 data;
1359 if (!(hw->phy.ops.read_reg))
1360 goto out;
1362 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1363 if (ret_val)
1364 goto out;
1366 if (!active) {
1367 data &= ~IGP02E1000_PM_D3_LPLU;
1368 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1369 data);
1370 if (ret_val)
1371 goto out;
1373 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1374 * during Dx states where the power conservation is most
1375 * important. During driver activity we should enable
1376 * SmartSpeed, so performance is maintained.
1378 if (phy->smart_speed == e1000_smart_speed_on) {
1379 ret_val = phy->ops.read_reg(hw,
1380 IGP01E1000_PHY_PORT_CONFIG,
1381 &data);
1382 if (ret_val)
1383 goto out;
1385 data |= IGP01E1000_PSCFR_SMART_SPEED;
1386 ret_val = phy->ops.write_reg(hw,
1387 IGP01E1000_PHY_PORT_CONFIG,
1388 data);
1389 if (ret_val)
1390 goto out;
1391 } else if (phy->smart_speed == e1000_smart_speed_off) {
1392 ret_val = phy->ops.read_reg(hw,
1393 IGP01E1000_PHY_PORT_CONFIG,
1394 &data);
1395 if (ret_val)
1396 goto out;
1398 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1399 ret_val = phy->ops.write_reg(hw,
1400 IGP01E1000_PHY_PORT_CONFIG,
1401 data);
1402 if (ret_val)
1403 goto out;
1405 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1406 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1407 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1408 data |= IGP02E1000_PM_D3_LPLU;
1409 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1410 data);
1411 if (ret_val)
1412 goto out;
1414 /* When LPLU is enabled, we should disable SmartSpeed */
1415 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1416 &data);
1417 if (ret_val)
1418 goto out;
1420 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1421 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1422 data);
1425 out:
1426 return ret_val;
1430 * igb_check_downshift - Checks whether a downshift in speed occurred
1431 * @hw: pointer to the HW structure
1433 * Success returns 0, Failure returns 1
1435 * A downshift is detected by querying the PHY link health.
1437 s32 igb_check_downshift(struct e1000_hw *hw)
1439 struct e1000_phy_info *phy = &hw->phy;
1440 s32 ret_val;
1441 u16 phy_data, offset, mask;
1443 switch (phy->type) {
1444 case e1000_phy_m88:
1445 case e1000_phy_gg82563:
1446 offset = M88E1000_PHY_SPEC_STATUS;
1447 mask = M88E1000_PSSR_DOWNSHIFT;
1448 break;
1449 case e1000_phy_igp_2:
1450 case e1000_phy_igp:
1451 case e1000_phy_igp_3:
1452 offset = IGP01E1000_PHY_LINK_HEALTH;
1453 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1454 break;
1455 default:
1456 /* speed downshift not supported */
1457 phy->speed_downgraded = false;
1458 ret_val = 0;
1459 goto out;
1462 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1464 if (!ret_val)
1465 phy->speed_downgraded = (phy_data & mask) ? true : false;
1467 out:
1468 return ret_val;
1472 * igb_check_polarity_m88 - Checks the polarity.
1473 * @hw: pointer to the HW structure
1475 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1477 * Polarity is determined based on the PHY specific status register.
1479 static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1481 struct e1000_phy_info *phy = &hw->phy;
1482 s32 ret_val;
1483 u16 data;
1485 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1487 if (!ret_val)
1488 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1489 ? e1000_rev_polarity_reversed
1490 : e1000_rev_polarity_normal;
1492 return ret_val;
1496 * igb_check_polarity_igp - Checks the polarity.
1497 * @hw: pointer to the HW structure
1499 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1501 * Polarity is determined based on the PHY port status register, and the
1502 * current speed (since there is no polarity at 100Mbps).
1504 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1506 struct e1000_phy_info *phy = &hw->phy;
1507 s32 ret_val;
1508 u16 data, offset, mask;
1511 * Polarity is determined based on the speed of
1512 * our connection.
1514 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1515 if (ret_val)
1516 goto out;
1518 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1519 IGP01E1000_PSSR_SPEED_1000MBPS) {
1520 offset = IGP01E1000_PHY_PCS_INIT_REG;
1521 mask = IGP01E1000_PHY_POLARITY_MASK;
1522 } else {
1524 * This really only applies to 10Mbps since
1525 * there is no polarity for 100Mbps (always 0).
1527 offset = IGP01E1000_PHY_PORT_STATUS;
1528 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1531 ret_val = phy->ops.read_reg(hw, offset, &data);
1533 if (!ret_val)
1534 phy->cable_polarity = (data & mask)
1535 ? e1000_rev_polarity_reversed
1536 : e1000_rev_polarity_normal;
1538 out:
1539 return ret_val;
1543 * igb_wait_autoneg - Wait for auto-neg compeletion
1544 * @hw: pointer to the HW structure
1546 * Waits for auto-negotiation to complete or for the auto-negotiation time
1547 * limit to expire, which ever happens first.
1549 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1551 s32 ret_val = 0;
1552 u16 i, phy_status;
1554 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1555 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1556 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1557 if (ret_val)
1558 break;
1559 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1560 if (ret_val)
1561 break;
1562 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1563 break;
1564 msleep(100);
1568 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1569 * has completed.
1571 return ret_val;
1575 * igb_phy_has_link - Polls PHY for link
1576 * @hw: pointer to the HW structure
1577 * @iterations: number of times to poll for link
1578 * @usec_interval: delay between polling attempts
1579 * @success: pointer to whether polling was successful or not
1581 * Polls the PHY status register for link, 'iterations' number of times.
1583 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1584 u32 usec_interval, bool *success)
1586 s32 ret_val = 0;
1587 u16 i, phy_status;
1589 for (i = 0; i < iterations; i++) {
1591 * Some PHYs require the PHY_STATUS register to be read
1592 * twice due to the link bit being sticky. No harm doing
1593 * it across the board.
1595 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1596 if (ret_val) {
1598 * If the first read fails, another entity may have
1599 * ownership of the resources, wait and try again to
1600 * see if they have relinquished the resources yet.
1602 udelay(usec_interval);
1604 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1605 if (ret_val)
1606 break;
1607 if (phy_status & MII_SR_LINK_STATUS)
1608 break;
1609 if (usec_interval >= 1000)
1610 mdelay(usec_interval/1000);
1611 else
1612 udelay(usec_interval);
1615 *success = (i < iterations) ? true : false;
1617 return ret_val;
1621 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1622 * @hw: pointer to the HW structure
1624 * Reads the PHY specific status register to retrieve the cable length
1625 * information. The cable length is determined by averaging the minimum and
1626 * maximum values to get the "average" cable length. The m88 PHY has four
1627 * possible cable length values, which are:
1628 * Register Value Cable Length
1629 * 0 < 50 meters
1630 * 1 50 - 80 meters
1631 * 2 80 - 110 meters
1632 * 3 110 - 140 meters
1633 * 4 > 140 meters
1635 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1637 struct e1000_phy_info *phy = &hw->phy;
1638 s32 ret_val;
1639 u16 phy_data, index;
1641 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1642 if (ret_val)
1643 goto out;
1645 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1646 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1647 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1648 ret_val = -E1000_ERR_PHY;
1649 goto out;
1652 phy->min_cable_length = e1000_m88_cable_length_table[index];
1653 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1655 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1657 out:
1658 return ret_val;
1661 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1663 struct e1000_phy_info *phy = &hw->phy;
1664 s32 ret_val;
1665 u16 phy_data, phy_data2, index, default_page, is_cm;
1667 switch (hw->phy.id) {
1668 case I347AT4_E_PHY_ID:
1669 /* Remember the original page select and set it to 7 */
1670 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1671 &default_page);
1672 if (ret_val)
1673 goto out;
1675 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1676 if (ret_val)
1677 goto out;
1679 /* Get cable length from PHY Cable Diagnostics Control Reg */
1680 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1681 &phy_data);
1682 if (ret_val)
1683 goto out;
1685 /* Check if the unit of cable length is meters or cm */
1686 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1687 if (ret_val)
1688 goto out;
1690 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1692 /* Populate the phy structure with cable length in meters */
1693 phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1694 phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1695 phy->cable_length = phy_data / (is_cm ? 100 : 1);
1697 /* Reset the page selec to its original value */
1698 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1699 default_page);
1700 if (ret_val)
1701 goto out;
1702 break;
1703 case M88E1112_E_PHY_ID:
1704 /* Remember the original page select and set it to 5 */
1705 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1706 &default_page);
1707 if (ret_val)
1708 goto out;
1710 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1711 if (ret_val)
1712 goto out;
1714 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1715 &phy_data);
1716 if (ret_val)
1717 goto out;
1719 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1720 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1721 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1722 ret_val = -E1000_ERR_PHY;
1723 goto out;
1726 phy->min_cable_length = e1000_m88_cable_length_table[index];
1727 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1729 phy->cable_length = (phy->min_cable_length +
1730 phy->max_cable_length) / 2;
1732 /* Reset the page select to its original value */
1733 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1734 default_page);
1735 if (ret_val)
1736 goto out;
1738 break;
1739 default:
1740 ret_val = -E1000_ERR_PHY;
1741 goto out;
1744 out:
1745 return ret_val;
1749 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1750 * @hw: pointer to the HW structure
1752 * The automatic gain control (agc) normalizes the amplitude of the
1753 * received signal, adjusting for the attenuation produced by the
1754 * cable. By reading the AGC registers, which represent the
1755 * combination of coarse and fine gain value, the value can be put
1756 * into a lookup table to obtain the approximate cable length
1757 * for each channel.
1759 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1761 struct e1000_phy_info *phy = &hw->phy;
1762 s32 ret_val = 0;
1763 u16 phy_data, i, agc_value = 0;
1764 u16 cur_agc_index, max_agc_index = 0;
1765 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1766 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1767 IGP02E1000_PHY_AGC_A,
1768 IGP02E1000_PHY_AGC_B,
1769 IGP02E1000_PHY_AGC_C,
1770 IGP02E1000_PHY_AGC_D
1773 /* Read the AGC registers for all channels */
1774 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1775 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1776 if (ret_val)
1777 goto out;
1780 * Getting bits 15:9, which represent the combination of
1781 * coarse and fine gain values. The result is a number
1782 * that can be put into the lookup table to obtain the
1783 * approximate cable length.
1785 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1786 IGP02E1000_AGC_LENGTH_MASK;
1788 /* Array index bound check. */
1789 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1790 (cur_agc_index == 0)) {
1791 ret_val = -E1000_ERR_PHY;
1792 goto out;
1795 /* Remove min & max AGC values from calculation. */
1796 if (e1000_igp_2_cable_length_table[min_agc_index] >
1797 e1000_igp_2_cable_length_table[cur_agc_index])
1798 min_agc_index = cur_agc_index;
1799 if (e1000_igp_2_cable_length_table[max_agc_index] <
1800 e1000_igp_2_cable_length_table[cur_agc_index])
1801 max_agc_index = cur_agc_index;
1803 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1806 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1807 e1000_igp_2_cable_length_table[max_agc_index]);
1808 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1810 /* Calculate cable length with the error range of +/- 10 meters. */
1811 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1812 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1813 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1815 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1817 out:
1818 return ret_val;
1822 * igb_get_phy_info_m88 - Retrieve PHY information
1823 * @hw: pointer to the HW structure
1825 * Valid for only copper links. Read the PHY status register (sticky read)
1826 * to verify that link is up. Read the PHY special control register to
1827 * determine the polarity and 10base-T extended distance. Read the PHY
1828 * special status register to determine MDI/MDIx and current speed. If
1829 * speed is 1000, then determine cable length, local and remote receiver.
1831 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1833 struct e1000_phy_info *phy = &hw->phy;
1834 s32 ret_val;
1835 u16 phy_data;
1836 bool link;
1838 if (phy->media_type != e1000_media_type_copper) {
1839 hw_dbg("Phy info is only valid for copper media\n");
1840 ret_val = -E1000_ERR_CONFIG;
1841 goto out;
1844 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1845 if (ret_val)
1846 goto out;
1848 if (!link) {
1849 hw_dbg("Phy info is only valid if link is up\n");
1850 ret_val = -E1000_ERR_CONFIG;
1851 goto out;
1854 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1855 if (ret_val)
1856 goto out;
1858 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1859 ? true : false;
1861 ret_val = igb_check_polarity_m88(hw);
1862 if (ret_val)
1863 goto out;
1865 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1866 if (ret_val)
1867 goto out;
1869 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1871 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1872 ret_val = phy->ops.get_cable_length(hw);
1873 if (ret_val)
1874 goto out;
1876 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1877 if (ret_val)
1878 goto out;
1880 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1881 ? e1000_1000t_rx_status_ok
1882 : e1000_1000t_rx_status_not_ok;
1884 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1885 ? e1000_1000t_rx_status_ok
1886 : e1000_1000t_rx_status_not_ok;
1887 } else {
1888 /* Set values to "undefined" */
1889 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1890 phy->local_rx = e1000_1000t_rx_status_undefined;
1891 phy->remote_rx = e1000_1000t_rx_status_undefined;
1894 out:
1895 return ret_val;
1899 * igb_get_phy_info_igp - Retrieve igp PHY information
1900 * @hw: pointer to the HW structure
1902 * Read PHY status to determine if link is up. If link is up, then
1903 * set/determine 10base-T extended distance and polarity correction. Read
1904 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1905 * determine on the cable length, local and remote receiver.
1907 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1909 struct e1000_phy_info *phy = &hw->phy;
1910 s32 ret_val;
1911 u16 data;
1912 bool link;
1914 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1915 if (ret_val)
1916 goto out;
1918 if (!link) {
1919 hw_dbg("Phy info is only valid if link is up\n");
1920 ret_val = -E1000_ERR_CONFIG;
1921 goto out;
1924 phy->polarity_correction = true;
1926 ret_val = igb_check_polarity_igp(hw);
1927 if (ret_val)
1928 goto out;
1930 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1931 if (ret_val)
1932 goto out;
1934 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1936 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1937 IGP01E1000_PSSR_SPEED_1000MBPS) {
1938 ret_val = phy->ops.get_cable_length(hw);
1939 if (ret_val)
1940 goto out;
1942 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1943 if (ret_val)
1944 goto out;
1946 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1947 ? e1000_1000t_rx_status_ok
1948 : e1000_1000t_rx_status_not_ok;
1950 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1951 ? e1000_1000t_rx_status_ok
1952 : e1000_1000t_rx_status_not_ok;
1953 } else {
1954 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1955 phy->local_rx = e1000_1000t_rx_status_undefined;
1956 phy->remote_rx = e1000_1000t_rx_status_undefined;
1959 out:
1960 return ret_val;
1964 * igb_phy_sw_reset - PHY software reset
1965 * @hw: pointer to the HW structure
1967 * Does a software reset of the PHY by reading the PHY control register and
1968 * setting/write the control register reset bit to the PHY.
1970 s32 igb_phy_sw_reset(struct e1000_hw *hw)
1972 s32 ret_val = 0;
1973 u16 phy_ctrl;
1975 if (!(hw->phy.ops.read_reg))
1976 goto out;
1978 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1979 if (ret_val)
1980 goto out;
1982 phy_ctrl |= MII_CR_RESET;
1983 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1984 if (ret_val)
1985 goto out;
1987 udelay(1);
1989 out:
1990 return ret_val;
1994 * igb_phy_hw_reset - PHY hardware reset
1995 * @hw: pointer to the HW structure
1997 * Verify the reset block is not blocking us from resetting. Acquire
1998 * semaphore (if necessary) and read/set/write the device control reset
1999 * bit in the PHY. Wait the appropriate delay time for the device to
2000 * reset and relase the semaphore (if necessary).
2002 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2004 struct e1000_phy_info *phy = &hw->phy;
2005 s32 ret_val;
2006 u32 ctrl;
2008 ret_val = igb_check_reset_block(hw);
2009 if (ret_val) {
2010 ret_val = 0;
2011 goto out;
2014 ret_val = phy->ops.acquire(hw);
2015 if (ret_val)
2016 goto out;
2018 ctrl = rd32(E1000_CTRL);
2019 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2020 wrfl();
2022 udelay(phy->reset_delay_us);
2024 wr32(E1000_CTRL, ctrl);
2025 wrfl();
2027 udelay(150);
2029 phy->ops.release(hw);
2031 ret_val = phy->ops.get_cfg_done(hw);
2033 out:
2034 return ret_val;
2038 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2039 * @hw: pointer to the HW structure
2041 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2043 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2045 hw_dbg("Running IGP 3 PHY init script\n");
2047 /* PHY init IGP 3 */
2048 /* Enable rise/fall, 10-mode work in class-A */
2049 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2050 /* Remove all caps from Replica path filter */
2051 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2052 /* Bias trimming for ADC, AFE and Driver (Default) */
2053 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2054 /* Increase Hybrid poly bias */
2055 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2056 /* Add 4% to TX amplitude in Giga mode */
2057 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2058 /* Disable trimming (TTT) */
2059 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2060 /* Poly DC correction to 94.6% + 2% for all channels */
2061 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2062 /* ABS DC correction to 95.9% */
2063 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2064 /* BG temp curve trim */
2065 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2066 /* Increasing ADC OPAMP stage 1 currents to max */
2067 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2068 /* Force 1000 ( required for enabling PHY regs configuration) */
2069 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2070 /* Set upd_freq to 6 */
2071 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2072 /* Disable NPDFE */
2073 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2074 /* Disable adaptive fixed FFE (Default) */
2075 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2076 /* Enable FFE hysteresis */
2077 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2078 /* Fixed FFE for short cable lengths */
2079 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2080 /* Fixed FFE for medium cable lengths */
2081 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2082 /* Fixed FFE for long cable lengths */
2083 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2084 /* Enable Adaptive Clip Threshold */
2085 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2086 /* AHT reset limit to 1 */
2087 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2088 /* Set AHT master delay to 127 msec */
2089 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2090 /* Set scan bits for AHT */
2091 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2092 /* Set AHT Preset bits */
2093 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2094 /* Change integ_factor of channel A to 3 */
2095 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2096 /* Change prop_factor of channels BCD to 8 */
2097 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2098 /* Change cg_icount + enable integbp for channels BCD */
2099 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2101 * Change cg_icount + enable integbp + change prop_factor_master
2102 * to 8 for channel A
2104 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2105 /* Disable AHT in Slave mode on channel A */
2106 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2108 * Enable LPLU and disable AN to 1000 in non-D0a states,
2109 * Enable SPD+B2B
2111 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2112 /* Enable restart AN on an1000_dis change */
2113 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2114 /* Enable wh_fifo read clock in 10/100 modes */
2115 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2116 /* Restart AN, Speed selection is 1000 */
2117 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2119 return 0;
2123 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2124 * @hw: pointer to the HW structure
2126 * In the case of a PHY power down to save power, or to turn off link during a
2127 * driver unload, restore the link to previous settings.
2129 void igb_power_up_phy_copper(struct e1000_hw *hw)
2131 u16 mii_reg = 0;
2133 /* The PHY will retain its settings across a power down/up cycle */
2134 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2135 mii_reg &= ~MII_CR_POWER_DOWN;
2136 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2140 * igb_power_down_phy_copper - Power down copper PHY
2141 * @hw: pointer to the HW structure
2143 * Power down PHY to save power when interface is down and wake on lan
2144 * is not enabled.
2146 void igb_power_down_phy_copper(struct e1000_hw *hw)
2148 u16 mii_reg = 0;
2150 /* The PHY will retain its settings across a power down/up cycle */
2151 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2152 mii_reg |= MII_CR_POWER_DOWN;
2153 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2154 msleep(1);
2158 * igb_check_polarity_82580 - Checks the polarity.
2159 * @hw: pointer to the HW structure
2161 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2163 * Polarity is determined based on the PHY specific status register.
2165 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2167 struct e1000_phy_info *phy = &hw->phy;
2168 s32 ret_val;
2169 u16 data;
2172 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2174 if (!ret_val)
2175 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2176 ? e1000_rev_polarity_reversed
2177 : e1000_rev_polarity_normal;
2179 return ret_val;
2183 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2184 * @hw: pointer to the HW structure
2186 * Calls the PHY setup function to force speed and duplex. Clears the
2187 * auto-crossover to force MDI manually. Waits for link and returns
2188 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2190 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2192 struct e1000_phy_info *phy = &hw->phy;
2193 s32 ret_val;
2194 u16 phy_data;
2195 bool link;
2198 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2199 if (ret_val)
2200 goto out;
2202 igb_phy_force_speed_duplex_setup(hw, &phy_data);
2204 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2205 if (ret_val)
2206 goto out;
2209 * Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2210 * forced whenever speed and duplex are forced.
2212 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2213 if (ret_val)
2214 goto out;
2216 phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX;
2217 phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX;
2219 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2220 if (ret_val)
2221 goto out;
2223 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2225 udelay(1);
2227 if (phy->autoneg_wait_to_complete) {
2228 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2230 ret_val = igb_phy_has_link(hw,
2231 PHY_FORCE_LIMIT,
2232 100000,
2233 &link);
2234 if (ret_val)
2235 goto out;
2237 if (!link)
2238 hw_dbg("Link taking longer than expected.\n");
2240 /* Try once more */
2241 ret_val = igb_phy_has_link(hw,
2242 PHY_FORCE_LIMIT,
2243 100000,
2244 &link);
2245 if (ret_val)
2246 goto out;
2249 out:
2250 return ret_val;
2254 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2255 * @hw: pointer to the HW structure
2257 * Read PHY status to determine if link is up. If link is up, then
2258 * set/determine 10base-T extended distance and polarity correction. Read
2259 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2260 * determine on the cable length, local and remote receiver.
2262 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2264 struct e1000_phy_info *phy = &hw->phy;
2265 s32 ret_val;
2266 u16 data;
2267 bool link;
2270 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2271 if (ret_val)
2272 goto out;
2274 if (!link) {
2275 hw_dbg("Phy info is only valid if link is up\n");
2276 ret_val = -E1000_ERR_CONFIG;
2277 goto out;
2280 phy->polarity_correction = true;
2282 ret_val = igb_check_polarity_82580(hw);
2283 if (ret_val)
2284 goto out;
2286 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2287 if (ret_val)
2288 goto out;
2290 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2292 if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2293 I82580_PHY_STATUS2_SPEED_1000MBPS) {
2294 ret_val = hw->phy.ops.get_cable_length(hw);
2295 if (ret_val)
2296 goto out;
2298 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2299 if (ret_val)
2300 goto out;
2302 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2303 ? e1000_1000t_rx_status_ok
2304 : e1000_1000t_rx_status_not_ok;
2306 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2307 ? e1000_1000t_rx_status_ok
2308 : e1000_1000t_rx_status_not_ok;
2309 } else {
2310 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2311 phy->local_rx = e1000_1000t_rx_status_undefined;
2312 phy->remote_rx = e1000_1000t_rx_status_undefined;
2315 out:
2316 return ret_val;
2320 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2321 * @hw: pointer to the HW structure
2323 * Reads the diagnostic status register and verifies result is valid before
2324 * placing it in the phy_cable_length field.
2326 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2328 struct e1000_phy_info *phy = &hw->phy;
2329 s32 ret_val;
2330 u16 phy_data, length;
2333 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2334 if (ret_val)
2335 goto out;
2337 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2338 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2340 if (length == E1000_CABLE_LENGTH_UNDEFINED)
2341 ret_val = -E1000_ERR_PHY;
2343 phy->cable_length = length;
2345 out:
2346 return ret_val;