1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
50 #define DRV_VERSION "2.0.1-k"
51 char igbvf_driver_name
[] = "igbvf";
52 const char igbvf_driver_version
[] = DRV_VERSION
;
53 static const char igbvf_driver_string
[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright
[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
58 static int igbvf_poll(struct napi_struct
*napi
, int budget
);
59 static void igbvf_reset(struct igbvf_adapter
*);
60 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*);
61 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*);
63 static struct igbvf_info igbvf_vf_info
= {
67 .init_ops
= e1000_init_function_pointers_vf
,
70 static struct igbvf_info igbvf_i350_vf_info
= {
71 .mac
= e1000_vfadapt_i350
,
74 .init_ops
= e1000_init_function_pointers_vf
,
77 static const struct igbvf_info
*igbvf_info_tbl
[] = {
78 [board_vf
] = &igbvf_vf_info
,
79 [board_i350_vf
] = &igbvf_i350_vf_info
,
83 * igbvf_desc_unused - calculate if we have unused descriptors
85 static int igbvf_desc_unused(struct igbvf_ring
*ring
)
87 if (ring
->next_to_clean
> ring
->next_to_use
)
88 return ring
->next_to_clean
- ring
->next_to_use
- 1;
90 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
94 * igbvf_receive_skb - helper function to handle Rx indications
95 * @adapter: board private structure
96 * @status: descriptor status field as written by hardware
97 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
98 * @skb: pointer to sk_buff to be indicated to stack
100 static void igbvf_receive_skb(struct igbvf_adapter
*adapter
,
101 struct net_device
*netdev
,
103 u32 status
, u16 vlan
)
105 if (status
& E1000_RXD_STAT_VP
) {
106 u16 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
107 if (test_bit(vid
, adapter
->active_vlans
))
108 __vlan_hwaccel_put_tag(skb
, vid
);
110 netif_receive_skb(skb
);
113 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter
*adapter
,
114 u32 status_err
, struct sk_buff
*skb
)
116 skb_checksum_none_assert(skb
);
118 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
119 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
120 (adapter
->flags
& IGBVF_FLAG_RX_CSUM_DISABLED
))
123 /* TCP/UDP checksum error bit is set */
125 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
126 /* let the stack verify checksum errors */
127 adapter
->hw_csum_err
++;
131 /* It must be a TCP or UDP packet with a valid checksum */
132 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
133 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
135 adapter
->hw_csum_good
++;
139 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
140 * @rx_ring: address of ring structure to repopulate
141 * @cleaned_count: number of buffers to repopulate
143 static void igbvf_alloc_rx_buffers(struct igbvf_ring
*rx_ring
,
146 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
147 struct net_device
*netdev
= adapter
->netdev
;
148 struct pci_dev
*pdev
= adapter
->pdev
;
149 union e1000_adv_rx_desc
*rx_desc
;
150 struct igbvf_buffer
*buffer_info
;
155 i
= rx_ring
->next_to_use
;
156 buffer_info
= &rx_ring
->buffer_info
[i
];
158 if (adapter
->rx_ps_hdr_size
)
159 bufsz
= adapter
->rx_ps_hdr_size
;
161 bufsz
= adapter
->rx_buffer_len
;
163 while (cleaned_count
--) {
164 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
166 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
167 if (!buffer_info
->page
) {
168 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
169 if (!buffer_info
->page
) {
170 adapter
->alloc_rx_buff_failed
++;
173 buffer_info
->page_offset
= 0;
175 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
177 buffer_info
->page_dma
=
178 dma_map_page(&pdev
->dev
, buffer_info
->page
,
179 buffer_info
->page_offset
,
184 if (!buffer_info
->skb
) {
185 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
187 adapter
->alloc_rx_buff_failed
++;
191 buffer_info
->skb
= skb
;
192 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
196 /* Refresh the desc even if buffer_addrs didn't change because
197 * each write-back erases this info. */
198 if (adapter
->rx_ps_hdr_size
) {
199 rx_desc
->read
.pkt_addr
=
200 cpu_to_le64(buffer_info
->page_dma
);
201 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
203 rx_desc
->read
.pkt_addr
=
204 cpu_to_le64(buffer_info
->dma
);
205 rx_desc
->read
.hdr_addr
= 0;
209 if (i
== rx_ring
->count
)
211 buffer_info
= &rx_ring
->buffer_info
[i
];
215 if (rx_ring
->next_to_use
!= i
) {
216 rx_ring
->next_to_use
= i
;
218 i
= (rx_ring
->count
- 1);
222 /* Force memory writes to complete before letting h/w
223 * know there are new descriptors to fetch. (Only
224 * applicable for weak-ordered memory model archs,
227 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
232 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
233 * @adapter: board private structure
235 * the return value indicates whether actual cleaning was done, there
236 * is no guarantee that everything was cleaned
238 static bool igbvf_clean_rx_irq(struct igbvf_adapter
*adapter
,
239 int *work_done
, int work_to_do
)
241 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
242 struct net_device
*netdev
= adapter
->netdev
;
243 struct pci_dev
*pdev
= adapter
->pdev
;
244 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
245 struct igbvf_buffer
*buffer_info
, *next_buffer
;
247 bool cleaned
= false;
248 int cleaned_count
= 0;
249 unsigned int total_bytes
= 0, total_packets
= 0;
251 u32 length
, hlen
, staterr
;
253 i
= rx_ring
->next_to_clean
;
254 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
255 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
257 while (staterr
& E1000_RXD_STAT_DD
) {
258 if (*work_done
>= work_to_do
)
261 rmb(); /* read descriptor and rx_buffer_info after status DD */
263 buffer_info
= &rx_ring
->buffer_info
[i
];
265 /* HW will not DMA in data larger than the given buffer, even
266 * if it parses the (NFS, of course) header to be larger. In
267 * that case, it fills the header buffer and spills the rest
270 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hs_rss
.hdr_info
) &
271 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
272 if (hlen
> adapter
->rx_ps_hdr_size
)
273 hlen
= adapter
->rx_ps_hdr_size
;
275 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
279 skb
= buffer_info
->skb
;
280 prefetch(skb
->data
- NET_IP_ALIGN
);
281 buffer_info
->skb
= NULL
;
282 if (!adapter
->rx_ps_hdr_size
) {
283 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
284 adapter
->rx_buffer_len
,
286 buffer_info
->dma
= 0;
287 skb_put(skb
, length
);
291 if (!skb_shinfo(skb
)->nr_frags
) {
292 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
293 adapter
->rx_ps_hdr_size
,
299 dma_unmap_page(&pdev
->dev
, buffer_info
->page_dma
,
302 buffer_info
->page_dma
= 0;
304 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
306 buffer_info
->page_offset
,
309 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
310 (page_count(buffer_info
->page
) != 1))
311 buffer_info
->page
= NULL
;
313 get_page(buffer_info
->page
);
316 skb
->data_len
+= length
;
317 skb
->truesize
+= PAGE_SIZE
/ 2;
321 if (i
== rx_ring
->count
)
323 next_rxd
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
325 next_buffer
= &rx_ring
->buffer_info
[i
];
327 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
328 buffer_info
->skb
= next_buffer
->skb
;
329 buffer_info
->dma
= next_buffer
->dma
;
330 next_buffer
->skb
= skb
;
331 next_buffer
->dma
= 0;
335 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
336 dev_kfree_skb_irq(skb
);
340 total_bytes
+= skb
->len
;
343 igbvf_rx_checksum_adv(adapter
, staterr
, skb
);
345 skb
->protocol
= eth_type_trans(skb
, netdev
);
347 igbvf_receive_skb(adapter
, netdev
, skb
, staterr
,
348 rx_desc
->wb
.upper
.vlan
);
351 rx_desc
->wb
.upper
.status_error
= 0;
353 /* return some buffers to hardware, one at a time is too slow */
354 if (cleaned_count
>= IGBVF_RX_BUFFER_WRITE
) {
355 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
359 /* use prefetched values */
361 buffer_info
= next_buffer
;
363 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
366 rx_ring
->next_to_clean
= i
;
367 cleaned_count
= igbvf_desc_unused(rx_ring
);
370 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
372 adapter
->total_rx_packets
+= total_packets
;
373 adapter
->total_rx_bytes
+= total_bytes
;
374 adapter
->net_stats
.rx_bytes
+= total_bytes
;
375 adapter
->net_stats
.rx_packets
+= total_packets
;
379 static void igbvf_put_txbuf(struct igbvf_adapter
*adapter
,
380 struct igbvf_buffer
*buffer_info
)
382 if (buffer_info
->dma
) {
383 if (buffer_info
->mapped_as_page
)
384 dma_unmap_page(&adapter
->pdev
->dev
,
389 dma_unmap_single(&adapter
->pdev
->dev
,
393 buffer_info
->dma
= 0;
395 if (buffer_info
->skb
) {
396 dev_kfree_skb_any(buffer_info
->skb
);
397 buffer_info
->skb
= NULL
;
399 buffer_info
->time_stamp
= 0;
403 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
404 * @adapter: board private structure
406 * Return 0 on success, negative on failure
408 int igbvf_setup_tx_resources(struct igbvf_adapter
*adapter
,
409 struct igbvf_ring
*tx_ring
)
411 struct pci_dev
*pdev
= adapter
->pdev
;
414 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
415 tx_ring
->buffer_info
= vzalloc(size
);
416 if (!tx_ring
->buffer_info
)
419 /* round up to nearest 4K */
420 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
421 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
423 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
424 &tx_ring
->dma
, GFP_KERNEL
);
429 tx_ring
->adapter
= adapter
;
430 tx_ring
->next_to_use
= 0;
431 tx_ring
->next_to_clean
= 0;
435 vfree(tx_ring
->buffer_info
);
436 dev_err(&adapter
->pdev
->dev
,
437 "Unable to allocate memory for the transmit descriptor ring\n");
442 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
443 * @adapter: board private structure
445 * Returns 0 on success, negative on failure
447 int igbvf_setup_rx_resources(struct igbvf_adapter
*adapter
,
448 struct igbvf_ring
*rx_ring
)
450 struct pci_dev
*pdev
= adapter
->pdev
;
453 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
454 rx_ring
->buffer_info
= vzalloc(size
);
455 if (!rx_ring
->buffer_info
)
458 desc_len
= sizeof(union e1000_adv_rx_desc
);
460 /* Round up to nearest 4K */
461 rx_ring
->size
= rx_ring
->count
* desc_len
;
462 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
464 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
465 &rx_ring
->dma
, GFP_KERNEL
);
470 rx_ring
->next_to_clean
= 0;
471 rx_ring
->next_to_use
= 0;
473 rx_ring
->adapter
= adapter
;
478 vfree(rx_ring
->buffer_info
);
479 rx_ring
->buffer_info
= NULL
;
480 dev_err(&adapter
->pdev
->dev
,
481 "Unable to allocate memory for the receive descriptor ring\n");
486 * igbvf_clean_tx_ring - Free Tx Buffers
487 * @tx_ring: ring to be cleaned
489 static void igbvf_clean_tx_ring(struct igbvf_ring
*tx_ring
)
491 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
492 struct igbvf_buffer
*buffer_info
;
496 if (!tx_ring
->buffer_info
)
499 /* Free all the Tx ring sk_buffs */
500 for (i
= 0; i
< tx_ring
->count
; i
++) {
501 buffer_info
= &tx_ring
->buffer_info
[i
];
502 igbvf_put_txbuf(adapter
, buffer_info
);
505 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
506 memset(tx_ring
->buffer_info
, 0, size
);
508 /* Zero out the descriptor ring */
509 memset(tx_ring
->desc
, 0, tx_ring
->size
);
511 tx_ring
->next_to_use
= 0;
512 tx_ring
->next_to_clean
= 0;
514 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
515 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
519 * igbvf_free_tx_resources - Free Tx Resources per Queue
520 * @tx_ring: ring to free resources from
522 * Free all transmit software resources
524 void igbvf_free_tx_resources(struct igbvf_ring
*tx_ring
)
526 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
528 igbvf_clean_tx_ring(tx_ring
);
530 vfree(tx_ring
->buffer_info
);
531 tx_ring
->buffer_info
= NULL
;
533 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
536 tx_ring
->desc
= NULL
;
540 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
541 * @adapter: board private structure
543 static void igbvf_clean_rx_ring(struct igbvf_ring
*rx_ring
)
545 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
546 struct igbvf_buffer
*buffer_info
;
547 struct pci_dev
*pdev
= adapter
->pdev
;
551 if (!rx_ring
->buffer_info
)
554 /* Free all the Rx ring sk_buffs */
555 for (i
= 0; i
< rx_ring
->count
; i
++) {
556 buffer_info
= &rx_ring
->buffer_info
[i
];
557 if (buffer_info
->dma
) {
558 if (adapter
->rx_ps_hdr_size
){
559 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
560 adapter
->rx_ps_hdr_size
,
563 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
564 adapter
->rx_buffer_len
,
567 buffer_info
->dma
= 0;
570 if (buffer_info
->skb
) {
571 dev_kfree_skb(buffer_info
->skb
);
572 buffer_info
->skb
= NULL
;
575 if (buffer_info
->page
) {
576 if (buffer_info
->page_dma
)
577 dma_unmap_page(&pdev
->dev
,
578 buffer_info
->page_dma
,
581 put_page(buffer_info
->page
);
582 buffer_info
->page
= NULL
;
583 buffer_info
->page_dma
= 0;
584 buffer_info
->page_offset
= 0;
588 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
589 memset(rx_ring
->buffer_info
, 0, size
);
591 /* Zero out the descriptor ring */
592 memset(rx_ring
->desc
, 0, rx_ring
->size
);
594 rx_ring
->next_to_clean
= 0;
595 rx_ring
->next_to_use
= 0;
597 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
598 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
602 * igbvf_free_rx_resources - Free Rx Resources
603 * @rx_ring: ring to clean the resources from
605 * Free all receive software resources
608 void igbvf_free_rx_resources(struct igbvf_ring
*rx_ring
)
610 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
612 igbvf_clean_rx_ring(rx_ring
);
614 vfree(rx_ring
->buffer_info
);
615 rx_ring
->buffer_info
= NULL
;
617 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
619 rx_ring
->desc
= NULL
;
623 * igbvf_update_itr - update the dynamic ITR value based on statistics
624 * @adapter: pointer to adapter
625 * @itr_setting: current adapter->itr
626 * @packets: the number of packets during this measurement interval
627 * @bytes: the number of bytes during this measurement interval
629 * Stores a new ITR value based on packets and byte
630 * counts during the last interrupt. The advantage of per interrupt
631 * computation is faster updates and more accurate ITR for the current
632 * traffic pattern. Constants in this function were computed
633 * based on theoretical maximum wire speed and thresholds were set based
634 * on testing data as well as attempting to minimize response time
635 * while increasing bulk throughput. This functionality is controlled
636 * by the InterruptThrottleRate module parameter.
638 static unsigned int igbvf_update_itr(struct igbvf_adapter
*adapter
,
639 u16 itr_setting
, int packets
,
642 unsigned int retval
= itr_setting
;
645 goto update_itr_done
;
647 switch (itr_setting
) {
649 /* handle TSO and jumbo frames */
650 if (bytes
/packets
> 8000)
651 retval
= bulk_latency
;
652 else if ((packets
< 5) && (bytes
> 512))
653 retval
= low_latency
;
655 case low_latency
: /* 50 usec aka 20000 ints/s */
657 /* this if handles the TSO accounting */
658 if (bytes
/packets
> 8000)
659 retval
= bulk_latency
;
660 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
661 retval
= bulk_latency
;
662 else if ((packets
> 35))
663 retval
= lowest_latency
;
664 } else if (bytes
/packets
> 2000) {
665 retval
= bulk_latency
;
666 } else if (packets
<= 2 && bytes
< 512) {
667 retval
= lowest_latency
;
670 case bulk_latency
: /* 250 usec aka 4000 ints/s */
673 retval
= low_latency
;
674 } else if (bytes
< 6000) {
675 retval
= low_latency
;
684 static void igbvf_set_itr(struct igbvf_adapter
*adapter
)
686 struct e1000_hw
*hw
= &adapter
->hw
;
688 u32 new_itr
= adapter
->itr
;
690 adapter
->tx_itr
= igbvf_update_itr(adapter
, adapter
->tx_itr
,
691 adapter
->total_tx_packets
,
692 adapter
->total_tx_bytes
);
693 /* conservative mode (itr 3) eliminates the lowest_latency setting */
694 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
695 adapter
->tx_itr
= low_latency
;
697 adapter
->rx_itr
= igbvf_update_itr(adapter
, adapter
->rx_itr
,
698 adapter
->total_rx_packets
,
699 adapter
->total_rx_bytes
);
700 /* conservative mode (itr 3) eliminates the lowest_latency setting */
701 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
702 adapter
->rx_itr
= low_latency
;
704 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
706 switch (current_itr
) {
707 /* counts and packets in update_itr are dependent on these numbers */
712 new_itr
= 20000; /* aka hwitr = ~200 */
721 if (new_itr
!= adapter
->itr
) {
723 * this attempts to bias the interrupt rate towards Bulk
724 * by adding intermediate steps when interrupt rate is
727 new_itr
= new_itr
> adapter
->itr
?
728 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
730 adapter
->itr
= new_itr
;
731 adapter
->rx_ring
->itr_val
= 1952;
733 if (adapter
->msix_entries
)
734 adapter
->rx_ring
->set_itr
= 1;
741 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
742 * @adapter: board private structure
743 * returns true if ring is completely cleaned
745 static bool igbvf_clean_tx_irq(struct igbvf_ring
*tx_ring
)
747 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
748 struct net_device
*netdev
= adapter
->netdev
;
749 struct igbvf_buffer
*buffer_info
;
751 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
752 unsigned int total_bytes
= 0, total_packets
= 0;
753 unsigned int i
, eop
, count
= 0;
754 bool cleaned
= false;
756 i
= tx_ring
->next_to_clean
;
757 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
758 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
760 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
761 (count
< tx_ring
->count
)) {
762 rmb(); /* read buffer_info after eop_desc status */
763 for (cleaned
= false; !cleaned
; count
++) {
764 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
765 buffer_info
= &tx_ring
->buffer_info
[i
];
766 cleaned
= (i
== eop
);
767 skb
= buffer_info
->skb
;
770 unsigned int segs
, bytecount
;
772 /* gso_segs is currently only valid for tcp */
773 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
774 /* multiply data chunks by size of headers */
775 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
777 total_packets
+= segs
;
778 total_bytes
+= bytecount
;
781 igbvf_put_txbuf(adapter
, buffer_info
);
782 tx_desc
->wb
.status
= 0;
785 if (i
== tx_ring
->count
)
788 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
789 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
792 tx_ring
->next_to_clean
= i
;
794 if (unlikely(count
&&
795 netif_carrier_ok(netdev
) &&
796 igbvf_desc_unused(tx_ring
) >= IGBVF_TX_QUEUE_WAKE
)) {
797 /* Make sure that anybody stopping the queue after this
798 * sees the new next_to_clean.
801 if (netif_queue_stopped(netdev
) &&
802 !(test_bit(__IGBVF_DOWN
, &adapter
->state
))) {
803 netif_wake_queue(netdev
);
804 ++adapter
->restart_queue
;
808 adapter
->net_stats
.tx_bytes
+= total_bytes
;
809 adapter
->net_stats
.tx_packets
+= total_packets
;
810 return count
< tx_ring
->count
;
813 static irqreturn_t
igbvf_msix_other(int irq
, void *data
)
815 struct net_device
*netdev
= data
;
816 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
817 struct e1000_hw
*hw
= &adapter
->hw
;
819 adapter
->int_counter1
++;
821 netif_carrier_off(netdev
);
822 hw
->mac
.get_link_status
= 1;
823 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
824 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
826 ew32(EIMS
, adapter
->eims_other
);
831 static irqreturn_t
igbvf_intr_msix_tx(int irq
, void *data
)
833 struct net_device
*netdev
= data
;
834 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
835 struct e1000_hw
*hw
= &adapter
->hw
;
836 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
839 adapter
->total_tx_bytes
= 0;
840 adapter
->total_tx_packets
= 0;
842 /* auto mask will automatically reenable the interrupt when we write
844 if (!igbvf_clean_tx_irq(tx_ring
))
845 /* Ring was not completely cleaned, so fire another interrupt */
846 ew32(EICS
, tx_ring
->eims_value
);
848 ew32(EIMS
, tx_ring
->eims_value
);
853 static irqreturn_t
igbvf_intr_msix_rx(int irq
, void *data
)
855 struct net_device
*netdev
= data
;
856 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
858 adapter
->int_counter0
++;
860 /* Write the ITR value calculated at the end of the
861 * previous interrupt.
863 if (adapter
->rx_ring
->set_itr
) {
864 writel(adapter
->rx_ring
->itr_val
,
865 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
866 adapter
->rx_ring
->set_itr
= 0;
869 if (napi_schedule_prep(&adapter
->rx_ring
->napi
)) {
870 adapter
->total_rx_bytes
= 0;
871 adapter
->total_rx_packets
= 0;
872 __napi_schedule(&adapter
->rx_ring
->napi
);
878 #define IGBVF_NO_QUEUE -1
880 static void igbvf_assign_vector(struct igbvf_adapter
*adapter
, int rx_queue
,
881 int tx_queue
, int msix_vector
)
883 struct e1000_hw
*hw
= &adapter
->hw
;
886 /* 82576 uses a table-based method for assigning vectors.
887 Each queue has a single entry in the table to which we write
888 a vector number along with a "valid" bit. Sadly, the layout
889 of the table is somewhat counterintuitive. */
890 if (rx_queue
> IGBVF_NO_QUEUE
) {
891 index
= (rx_queue
>> 1);
892 ivar
= array_er32(IVAR0
, index
);
893 if (rx_queue
& 0x1) {
894 /* vector goes into third byte of register */
895 ivar
= ivar
& 0xFF00FFFF;
896 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
898 /* vector goes into low byte of register */
899 ivar
= ivar
& 0xFFFFFF00;
900 ivar
|= msix_vector
| E1000_IVAR_VALID
;
902 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
903 array_ew32(IVAR0
, index
, ivar
);
905 if (tx_queue
> IGBVF_NO_QUEUE
) {
906 index
= (tx_queue
>> 1);
907 ivar
= array_er32(IVAR0
, index
);
908 if (tx_queue
& 0x1) {
909 /* vector goes into high byte of register */
910 ivar
= ivar
& 0x00FFFFFF;
911 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
913 /* vector goes into second byte of register */
914 ivar
= ivar
& 0xFFFF00FF;
915 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
917 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
918 array_ew32(IVAR0
, index
, ivar
);
923 * igbvf_configure_msix - Configure MSI-X hardware
925 * igbvf_configure_msix sets up the hardware to properly
926 * generate MSI-X interrupts.
928 static void igbvf_configure_msix(struct igbvf_adapter
*adapter
)
931 struct e1000_hw
*hw
= &adapter
->hw
;
932 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
933 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
936 adapter
->eims_enable_mask
= 0;
938 igbvf_assign_vector(adapter
, IGBVF_NO_QUEUE
, 0, vector
++);
939 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
940 if (tx_ring
->itr_val
)
941 writel(tx_ring
->itr_val
,
942 hw
->hw_addr
+ tx_ring
->itr_register
);
944 writel(1952, hw
->hw_addr
+ tx_ring
->itr_register
);
946 igbvf_assign_vector(adapter
, 0, IGBVF_NO_QUEUE
, vector
++);
947 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
948 if (rx_ring
->itr_val
)
949 writel(rx_ring
->itr_val
,
950 hw
->hw_addr
+ rx_ring
->itr_register
);
952 writel(1952, hw
->hw_addr
+ rx_ring
->itr_register
);
954 /* set vector for other causes, i.e. link changes */
956 tmp
= (vector
++ | E1000_IVAR_VALID
);
958 ew32(IVAR_MISC
, tmp
);
960 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
961 adapter
->eims_other
= 1 << (vector
- 1);
965 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*adapter
)
967 if (adapter
->msix_entries
) {
968 pci_disable_msix(adapter
->pdev
);
969 kfree(adapter
->msix_entries
);
970 adapter
->msix_entries
= NULL
;
975 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
977 * Attempt to configure interrupts using the best available
978 * capabilities of the hardware and kernel.
980 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*adapter
)
985 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
986 adapter
->msix_entries
= kcalloc(3, sizeof(struct msix_entry
),
988 if (adapter
->msix_entries
) {
989 for (i
= 0; i
< 3; i
++)
990 adapter
->msix_entries
[i
].entry
= i
;
992 err
= pci_enable_msix(adapter
->pdev
,
993 adapter
->msix_entries
, 3);
998 dev_err(&adapter
->pdev
->dev
,
999 "Failed to initialize MSI-X interrupts.\n");
1000 igbvf_reset_interrupt_capability(adapter
);
1005 * igbvf_request_msix - Initialize MSI-X interrupts
1007 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1010 static int igbvf_request_msix(struct igbvf_adapter
*adapter
)
1012 struct net_device
*netdev
= adapter
->netdev
;
1013 int err
= 0, vector
= 0;
1015 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5)) {
1016 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1017 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1019 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1020 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1023 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1024 igbvf_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1029 adapter
->tx_ring
->itr_register
= E1000_EITR(vector
);
1030 adapter
->tx_ring
->itr_val
= 1952;
1033 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1034 igbvf_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1039 adapter
->rx_ring
->itr_register
= E1000_EITR(vector
);
1040 adapter
->rx_ring
->itr_val
= 1952;
1043 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1044 igbvf_msix_other
, 0, netdev
->name
, netdev
);
1048 igbvf_configure_msix(adapter
);
1055 * igbvf_alloc_queues - Allocate memory for all rings
1056 * @adapter: board private structure to initialize
1058 static int __devinit
igbvf_alloc_queues(struct igbvf_adapter
*adapter
)
1060 struct net_device
*netdev
= adapter
->netdev
;
1062 adapter
->tx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1063 if (!adapter
->tx_ring
)
1066 adapter
->rx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1067 if (!adapter
->rx_ring
) {
1068 kfree(adapter
->tx_ring
);
1072 netif_napi_add(netdev
, &adapter
->rx_ring
->napi
, igbvf_poll
, 64);
1078 * igbvf_request_irq - initialize interrupts
1080 * Attempts to configure interrupts using the best available
1081 * capabilities of the hardware and kernel.
1083 static int igbvf_request_irq(struct igbvf_adapter
*adapter
)
1087 /* igbvf supports msi-x only */
1088 if (adapter
->msix_entries
)
1089 err
= igbvf_request_msix(adapter
);
1094 dev_err(&adapter
->pdev
->dev
,
1095 "Unable to allocate interrupt, Error: %d\n", err
);
1100 static void igbvf_free_irq(struct igbvf_adapter
*adapter
)
1102 struct net_device
*netdev
= adapter
->netdev
;
1105 if (adapter
->msix_entries
) {
1106 for (vector
= 0; vector
< 3; vector
++)
1107 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1112 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1114 static void igbvf_irq_disable(struct igbvf_adapter
*adapter
)
1116 struct e1000_hw
*hw
= &adapter
->hw
;
1120 if (adapter
->msix_entries
)
1125 * igbvf_irq_enable - Enable default interrupt generation settings
1127 static void igbvf_irq_enable(struct igbvf_adapter
*adapter
)
1129 struct e1000_hw
*hw
= &adapter
->hw
;
1131 ew32(EIAC
, adapter
->eims_enable_mask
);
1132 ew32(EIAM
, adapter
->eims_enable_mask
);
1133 ew32(EIMS
, adapter
->eims_enable_mask
);
1137 * igbvf_poll - NAPI Rx polling callback
1138 * @napi: struct associated with this polling callback
1139 * @budget: amount of packets driver is allowed to process this poll
1141 static int igbvf_poll(struct napi_struct
*napi
, int budget
)
1143 struct igbvf_ring
*rx_ring
= container_of(napi
, struct igbvf_ring
, napi
);
1144 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
1145 struct e1000_hw
*hw
= &adapter
->hw
;
1148 igbvf_clean_rx_irq(adapter
, &work_done
, budget
);
1150 /* If not enough Rx work done, exit the polling mode */
1151 if (work_done
< budget
) {
1152 napi_complete(napi
);
1154 if (adapter
->itr_setting
& 3)
1155 igbvf_set_itr(adapter
);
1157 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1158 ew32(EIMS
, adapter
->rx_ring
->eims_value
);
1165 * igbvf_set_rlpml - set receive large packet maximum length
1166 * @adapter: board private structure
1168 * Configure the maximum size of packets that will be received
1170 static void igbvf_set_rlpml(struct igbvf_adapter
*adapter
)
1173 struct e1000_hw
*hw
= &adapter
->hw
;
1175 max_frame_size
= adapter
->max_frame_size
+ VLAN_TAG_SIZE
;
1176 e1000_rlpml_set_vf(hw
, max_frame_size
);
1179 static int igbvf_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1181 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1182 struct e1000_hw
*hw
= &adapter
->hw
;
1184 if (hw
->mac
.ops
.set_vfta(hw
, vid
, true)) {
1185 dev_err(&adapter
->pdev
->dev
, "Failed to add vlan id %d\n", vid
);
1188 set_bit(vid
, adapter
->active_vlans
);
1192 static int igbvf_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1194 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1195 struct e1000_hw
*hw
= &adapter
->hw
;
1197 if (hw
->mac
.ops
.set_vfta(hw
, vid
, false)) {
1198 dev_err(&adapter
->pdev
->dev
,
1199 "Failed to remove vlan id %d\n", vid
);
1202 clear_bit(vid
, adapter
->active_vlans
);
1206 static void igbvf_restore_vlan(struct igbvf_adapter
*adapter
)
1210 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
1211 igbvf_vlan_rx_add_vid(adapter
->netdev
, vid
);
1215 * igbvf_configure_tx - Configure Transmit Unit after Reset
1216 * @adapter: board private structure
1218 * Configure the Tx unit of the MAC after a reset.
1220 static void igbvf_configure_tx(struct igbvf_adapter
*adapter
)
1222 struct e1000_hw
*hw
= &adapter
->hw
;
1223 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1225 u32 txdctl
, dca_txctrl
;
1227 /* disable transmits */
1228 txdctl
= er32(TXDCTL(0));
1229 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1233 /* Setup the HW Tx Head and Tail descriptor pointers */
1234 ew32(TDLEN(0), tx_ring
->count
* sizeof(union e1000_adv_tx_desc
));
1235 tdba
= tx_ring
->dma
;
1236 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
1237 ew32(TDBAH(0), (tdba
>> 32));
1240 tx_ring
->head
= E1000_TDH(0);
1241 tx_ring
->tail
= E1000_TDT(0);
1243 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1244 * MUST be delivered in order or it will completely screw up
1247 dca_txctrl
= er32(DCA_TXCTRL(0));
1248 dca_txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1249 ew32(DCA_TXCTRL(0), dca_txctrl
);
1251 /* enable transmits */
1252 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1253 ew32(TXDCTL(0), txdctl
);
1255 /* Setup Transmit Descriptor Settings for eop descriptor */
1256 adapter
->txd_cmd
= E1000_ADVTXD_DCMD_EOP
| E1000_ADVTXD_DCMD_IFCS
;
1258 /* enable Report Status bit */
1259 adapter
->txd_cmd
|= E1000_ADVTXD_DCMD_RS
;
1263 * igbvf_setup_srrctl - configure the receive control registers
1264 * @adapter: Board private structure
1266 static void igbvf_setup_srrctl(struct igbvf_adapter
*adapter
)
1268 struct e1000_hw
*hw
= &adapter
->hw
;
1271 srrctl
&= ~(E1000_SRRCTL_DESCTYPE_MASK
|
1272 E1000_SRRCTL_BSIZEHDR_MASK
|
1273 E1000_SRRCTL_BSIZEPKT_MASK
);
1275 /* Enable queue drop to avoid head of line blocking */
1276 srrctl
|= E1000_SRRCTL_DROP_EN
;
1278 /* Setup buffer sizes */
1279 srrctl
|= ALIGN(adapter
->rx_buffer_len
, 1024) >>
1280 E1000_SRRCTL_BSIZEPKT_SHIFT
;
1282 if (adapter
->rx_buffer_len
< 2048) {
1283 adapter
->rx_ps_hdr_size
= 0;
1284 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1286 adapter
->rx_ps_hdr_size
= 128;
1287 srrctl
|= adapter
->rx_ps_hdr_size
<<
1288 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1289 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1292 ew32(SRRCTL(0), srrctl
);
1296 * igbvf_configure_rx - Configure Receive Unit after Reset
1297 * @adapter: board private structure
1299 * Configure the Rx unit of the MAC after a reset.
1301 static void igbvf_configure_rx(struct igbvf_adapter
*adapter
)
1303 struct e1000_hw
*hw
= &adapter
->hw
;
1304 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1308 /* disable receives */
1309 rxdctl
= er32(RXDCTL(0));
1310 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1314 rdlen
= rx_ring
->count
* sizeof(union e1000_adv_rx_desc
);
1317 * Setup the HW Rx Head and Tail Descriptor Pointers and
1318 * the Base and Length of the Rx Descriptor Ring
1320 rdba
= rx_ring
->dma
;
1321 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
1322 ew32(RDBAH(0), (rdba
>> 32));
1323 ew32(RDLEN(0), rx_ring
->count
* sizeof(union e1000_adv_rx_desc
));
1324 rx_ring
->head
= E1000_RDH(0);
1325 rx_ring
->tail
= E1000_RDT(0);
1329 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1330 rxdctl
&= 0xFFF00000;
1331 rxdctl
|= IGBVF_RX_PTHRESH
;
1332 rxdctl
|= IGBVF_RX_HTHRESH
<< 8;
1333 rxdctl
|= IGBVF_RX_WTHRESH
<< 16;
1335 igbvf_set_rlpml(adapter
);
1337 /* enable receives */
1338 ew32(RXDCTL(0), rxdctl
);
1342 * igbvf_set_multi - Multicast and Promiscuous mode set
1343 * @netdev: network interface device structure
1345 * The set_multi entry point is called whenever the multicast address
1346 * list or the network interface flags are updated. This routine is
1347 * responsible for configuring the hardware for proper multicast,
1348 * promiscuous mode, and all-multi behavior.
1350 static void igbvf_set_multi(struct net_device
*netdev
)
1352 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1353 struct e1000_hw
*hw
= &adapter
->hw
;
1354 struct netdev_hw_addr
*ha
;
1355 u8
*mta_list
= NULL
;
1358 if (!netdev_mc_empty(netdev
)) {
1359 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
1361 dev_err(&adapter
->pdev
->dev
,
1362 "failed to allocate multicast filter list\n");
1367 /* prepare a packed array of only addresses. */
1369 netdev_for_each_mc_addr(ha
, netdev
)
1370 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
1372 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
, 0, 0);
1377 * igbvf_configure - configure the hardware for Rx and Tx
1378 * @adapter: private board structure
1380 static void igbvf_configure(struct igbvf_adapter
*adapter
)
1382 igbvf_set_multi(adapter
->netdev
);
1384 igbvf_restore_vlan(adapter
);
1386 igbvf_configure_tx(adapter
);
1387 igbvf_setup_srrctl(adapter
);
1388 igbvf_configure_rx(adapter
);
1389 igbvf_alloc_rx_buffers(adapter
->rx_ring
,
1390 igbvf_desc_unused(adapter
->rx_ring
));
1393 /* igbvf_reset - bring the hardware into a known good state
1395 * This function boots the hardware and enables some settings that
1396 * require a configuration cycle of the hardware - those cannot be
1397 * set/changed during runtime. After reset the device needs to be
1398 * properly configured for Rx, Tx etc.
1400 static void igbvf_reset(struct igbvf_adapter
*adapter
)
1402 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1403 struct net_device
*netdev
= adapter
->netdev
;
1404 struct e1000_hw
*hw
= &adapter
->hw
;
1406 /* Allow time for pending master requests to run */
1407 if (mac
->ops
.reset_hw(hw
))
1408 dev_err(&adapter
->pdev
->dev
, "PF still resetting\n");
1410 mac
->ops
.init_hw(hw
);
1412 if (is_valid_ether_addr(adapter
->hw
.mac
.addr
)) {
1413 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
1415 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
,
1419 adapter
->last_reset
= jiffies
;
1422 int igbvf_up(struct igbvf_adapter
*adapter
)
1424 struct e1000_hw
*hw
= &adapter
->hw
;
1426 /* hardware has been reset, we need to reload some things */
1427 igbvf_configure(adapter
);
1429 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1431 napi_enable(&adapter
->rx_ring
->napi
);
1432 if (adapter
->msix_entries
)
1433 igbvf_configure_msix(adapter
);
1435 /* Clear any pending interrupts. */
1437 igbvf_irq_enable(adapter
);
1439 /* start the watchdog */
1440 hw
->mac
.get_link_status
= 1;
1441 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1447 void igbvf_down(struct igbvf_adapter
*adapter
)
1449 struct net_device
*netdev
= adapter
->netdev
;
1450 struct e1000_hw
*hw
= &adapter
->hw
;
1454 * signal that we're down so the interrupt handler does not
1455 * reschedule our watchdog timer
1457 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1459 /* disable receives in the hardware */
1460 rxdctl
= er32(RXDCTL(0));
1461 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1463 netif_stop_queue(netdev
);
1465 /* disable transmits in the hardware */
1466 txdctl
= er32(TXDCTL(0));
1467 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1469 /* flush both disables and wait for them to finish */
1473 napi_disable(&adapter
->rx_ring
->napi
);
1475 igbvf_irq_disable(adapter
);
1477 del_timer_sync(&adapter
->watchdog_timer
);
1479 netif_carrier_off(netdev
);
1481 /* record the stats before reset*/
1482 igbvf_update_stats(adapter
);
1484 adapter
->link_speed
= 0;
1485 adapter
->link_duplex
= 0;
1487 igbvf_reset(adapter
);
1488 igbvf_clean_tx_ring(adapter
->tx_ring
);
1489 igbvf_clean_rx_ring(adapter
->rx_ring
);
1492 void igbvf_reinit_locked(struct igbvf_adapter
*adapter
)
1495 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
1497 igbvf_down(adapter
);
1499 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
1503 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1504 * @adapter: board private structure to initialize
1506 * igbvf_sw_init initializes the Adapter private data structure.
1507 * Fields are initialized based on PCI device information and
1508 * OS network device settings (MTU size).
1510 static int __devinit
igbvf_sw_init(struct igbvf_adapter
*adapter
)
1512 struct net_device
*netdev
= adapter
->netdev
;
1515 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
1516 adapter
->rx_ps_hdr_size
= 0;
1517 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1518 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1520 adapter
->tx_int_delay
= 8;
1521 adapter
->tx_abs_int_delay
= 32;
1522 adapter
->rx_int_delay
= 0;
1523 adapter
->rx_abs_int_delay
= 8;
1524 adapter
->itr_setting
= 3;
1525 adapter
->itr
= 20000;
1527 /* Set various function pointers */
1528 adapter
->ei
->init_ops(&adapter
->hw
);
1530 rc
= adapter
->hw
.mac
.ops
.init_params(&adapter
->hw
);
1534 rc
= adapter
->hw
.mbx
.ops
.init_params(&adapter
->hw
);
1538 igbvf_set_interrupt_capability(adapter
);
1540 if (igbvf_alloc_queues(adapter
))
1543 spin_lock_init(&adapter
->tx_queue_lock
);
1545 /* Explicitly disable IRQ since the NIC can be in any state. */
1546 igbvf_irq_disable(adapter
);
1548 spin_lock_init(&adapter
->stats_lock
);
1550 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1554 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter
*adapter
)
1556 struct e1000_hw
*hw
= &adapter
->hw
;
1558 adapter
->stats
.last_gprc
= er32(VFGPRC
);
1559 adapter
->stats
.last_gorc
= er32(VFGORC
);
1560 adapter
->stats
.last_gptc
= er32(VFGPTC
);
1561 adapter
->stats
.last_gotc
= er32(VFGOTC
);
1562 adapter
->stats
.last_mprc
= er32(VFMPRC
);
1563 adapter
->stats
.last_gotlbc
= er32(VFGOTLBC
);
1564 adapter
->stats
.last_gptlbc
= er32(VFGPTLBC
);
1565 adapter
->stats
.last_gorlbc
= er32(VFGORLBC
);
1566 adapter
->stats
.last_gprlbc
= er32(VFGPRLBC
);
1568 adapter
->stats
.base_gprc
= er32(VFGPRC
);
1569 adapter
->stats
.base_gorc
= er32(VFGORC
);
1570 adapter
->stats
.base_gptc
= er32(VFGPTC
);
1571 adapter
->stats
.base_gotc
= er32(VFGOTC
);
1572 adapter
->stats
.base_mprc
= er32(VFMPRC
);
1573 adapter
->stats
.base_gotlbc
= er32(VFGOTLBC
);
1574 adapter
->stats
.base_gptlbc
= er32(VFGPTLBC
);
1575 adapter
->stats
.base_gorlbc
= er32(VFGORLBC
);
1576 adapter
->stats
.base_gprlbc
= er32(VFGPRLBC
);
1580 * igbvf_open - Called when a network interface is made active
1581 * @netdev: network interface device structure
1583 * Returns 0 on success, negative value on failure
1585 * The open entry point is called when a network interface is made
1586 * active by the system (IFF_UP). At this point all resources needed
1587 * for transmit and receive operations are allocated, the interrupt
1588 * handler is registered with the OS, the watchdog timer is started,
1589 * and the stack is notified that the interface is ready.
1591 static int igbvf_open(struct net_device
*netdev
)
1593 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1594 struct e1000_hw
*hw
= &adapter
->hw
;
1597 /* disallow open during test */
1598 if (test_bit(__IGBVF_TESTING
, &adapter
->state
))
1601 /* allocate transmit descriptors */
1602 err
= igbvf_setup_tx_resources(adapter
, adapter
->tx_ring
);
1606 /* allocate receive descriptors */
1607 err
= igbvf_setup_rx_resources(adapter
, adapter
->rx_ring
);
1612 * before we allocate an interrupt, we must be ready to handle it.
1613 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1614 * as soon as we call pci_request_irq, so we have to setup our
1615 * clean_rx handler before we do so.
1617 igbvf_configure(adapter
);
1619 err
= igbvf_request_irq(adapter
);
1623 /* From here on the code is the same as igbvf_up() */
1624 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1626 napi_enable(&adapter
->rx_ring
->napi
);
1628 /* clear any pending interrupts */
1631 igbvf_irq_enable(adapter
);
1633 /* start the watchdog */
1634 hw
->mac
.get_link_status
= 1;
1635 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1640 igbvf_free_rx_resources(adapter
->rx_ring
);
1642 igbvf_free_tx_resources(adapter
->tx_ring
);
1644 igbvf_reset(adapter
);
1650 * igbvf_close - Disables a network interface
1651 * @netdev: network interface device structure
1653 * Returns 0, this is not allowed to fail
1655 * The close entry point is called when an interface is de-activated
1656 * by the OS. The hardware is still under the drivers control, but
1657 * needs to be disabled. A global MAC reset is issued to stop the
1658 * hardware, and all transmit and receive resources are freed.
1660 static int igbvf_close(struct net_device
*netdev
)
1662 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1664 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
1665 igbvf_down(adapter
);
1667 igbvf_free_irq(adapter
);
1669 igbvf_free_tx_resources(adapter
->tx_ring
);
1670 igbvf_free_rx_resources(adapter
->rx_ring
);
1675 * igbvf_set_mac - Change the Ethernet Address of the NIC
1676 * @netdev: network interface device structure
1677 * @p: pointer to an address structure
1679 * Returns 0 on success, negative on failure
1681 static int igbvf_set_mac(struct net_device
*netdev
, void *p
)
1683 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1684 struct e1000_hw
*hw
= &adapter
->hw
;
1685 struct sockaddr
*addr
= p
;
1687 if (!is_valid_ether_addr(addr
->sa_data
))
1688 return -EADDRNOTAVAIL
;
1690 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1692 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
1694 if (memcmp(addr
->sa_data
, hw
->mac
.addr
, 6))
1695 return -EADDRNOTAVAIL
;
1697 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1702 #define UPDATE_VF_COUNTER(reg, name) \
1704 u32 current_counter = er32(reg); \
1705 if (current_counter < adapter->stats.last_##name) \
1706 adapter->stats.name += 0x100000000LL; \
1707 adapter->stats.last_##name = current_counter; \
1708 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1709 adapter->stats.name |= current_counter; \
1713 * igbvf_update_stats - Update the board statistics counters
1714 * @adapter: board private structure
1716 void igbvf_update_stats(struct igbvf_adapter
*adapter
)
1718 struct e1000_hw
*hw
= &adapter
->hw
;
1719 struct pci_dev
*pdev
= adapter
->pdev
;
1722 * Prevent stats update while adapter is being reset, link is down
1723 * or if the pci connection is down.
1725 if (adapter
->link_speed
== 0)
1728 if (test_bit(__IGBVF_RESETTING
, &adapter
->state
))
1731 if (pci_channel_offline(pdev
))
1734 UPDATE_VF_COUNTER(VFGPRC
, gprc
);
1735 UPDATE_VF_COUNTER(VFGORC
, gorc
);
1736 UPDATE_VF_COUNTER(VFGPTC
, gptc
);
1737 UPDATE_VF_COUNTER(VFGOTC
, gotc
);
1738 UPDATE_VF_COUNTER(VFMPRC
, mprc
);
1739 UPDATE_VF_COUNTER(VFGOTLBC
, gotlbc
);
1740 UPDATE_VF_COUNTER(VFGPTLBC
, gptlbc
);
1741 UPDATE_VF_COUNTER(VFGORLBC
, gorlbc
);
1742 UPDATE_VF_COUNTER(VFGPRLBC
, gprlbc
);
1744 /* Fill out the OS statistics structure */
1745 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
1748 static void igbvf_print_link_info(struct igbvf_adapter
*adapter
)
1750 dev_info(&adapter
->pdev
->dev
, "Link is Up %d Mbps %s Duplex\n",
1751 adapter
->link_speed
,
1752 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half");
1755 static bool igbvf_has_link(struct igbvf_adapter
*adapter
)
1757 struct e1000_hw
*hw
= &adapter
->hw
;
1758 s32 ret_val
= E1000_SUCCESS
;
1761 /* If interface is down, stay link down */
1762 if (test_bit(__IGBVF_DOWN
, &adapter
->state
))
1765 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1766 link_active
= !hw
->mac
.get_link_status
;
1768 /* if check for link returns error we will need to reset */
1769 if (ret_val
&& time_after(jiffies
, adapter
->last_reset
+ (10 * HZ
)))
1770 schedule_work(&adapter
->reset_task
);
1776 * igbvf_watchdog - Timer Call-back
1777 * @data: pointer to adapter cast into an unsigned long
1779 static void igbvf_watchdog(unsigned long data
)
1781 struct igbvf_adapter
*adapter
= (struct igbvf_adapter
*) data
;
1783 /* Do the rest outside of interrupt context */
1784 schedule_work(&adapter
->watchdog_task
);
1787 static void igbvf_watchdog_task(struct work_struct
*work
)
1789 struct igbvf_adapter
*adapter
= container_of(work
,
1790 struct igbvf_adapter
,
1792 struct net_device
*netdev
= adapter
->netdev
;
1793 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1794 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1795 struct e1000_hw
*hw
= &adapter
->hw
;
1799 link
= igbvf_has_link(adapter
);
1802 if (!netif_carrier_ok(netdev
)) {
1803 mac
->ops
.get_link_up_info(&adapter
->hw
,
1804 &adapter
->link_speed
,
1805 &adapter
->link_duplex
);
1806 igbvf_print_link_info(adapter
);
1808 netif_carrier_on(netdev
);
1809 netif_wake_queue(netdev
);
1812 if (netif_carrier_ok(netdev
)) {
1813 adapter
->link_speed
= 0;
1814 adapter
->link_duplex
= 0;
1815 dev_info(&adapter
->pdev
->dev
, "Link is Down\n");
1816 netif_carrier_off(netdev
);
1817 netif_stop_queue(netdev
);
1821 if (netif_carrier_ok(netdev
)) {
1822 igbvf_update_stats(adapter
);
1824 tx_pending
= (igbvf_desc_unused(tx_ring
) + 1 <
1828 * We've lost link, so the controller stops DMA,
1829 * but we've got queued Tx work that's never going
1830 * to get done, so reset controller to flush Tx.
1831 * (Do the reset outside of interrupt context).
1833 adapter
->tx_timeout_count
++;
1834 schedule_work(&adapter
->reset_task
);
1838 /* Cause software interrupt to ensure Rx ring is cleaned */
1839 ew32(EICS
, adapter
->rx_ring
->eims_value
);
1841 /* Reset the timer */
1842 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1843 mod_timer(&adapter
->watchdog_timer
,
1844 round_jiffies(jiffies
+ (2 * HZ
)));
1847 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1848 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1849 #define IGBVF_TX_FLAGS_TSO 0x00000004
1850 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1851 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1852 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1854 static int igbvf_tso(struct igbvf_adapter
*adapter
,
1855 struct igbvf_ring
*tx_ring
,
1856 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
1858 struct e1000_adv_tx_context_desc
*context_desc
;
1861 struct igbvf_buffer
*buffer_info
;
1862 u32 info
= 0, tu_cmd
= 0;
1863 u32 mss_l4len_idx
, l4len
;
1866 if (skb_header_cloned(skb
)) {
1867 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1869 dev_err(&adapter
->pdev
->dev
,
1870 "igbvf_tso returning an error\n");
1875 l4len
= tcp_hdrlen(skb
);
1878 if (skb
->protocol
== htons(ETH_P_IP
)) {
1879 struct iphdr
*iph
= ip_hdr(skb
);
1882 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
1886 } else if (skb_is_gso_v6(skb
)) {
1887 ipv6_hdr(skb
)->payload_len
= 0;
1888 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
1889 &ipv6_hdr(skb
)->daddr
,
1893 i
= tx_ring
->next_to_use
;
1895 buffer_info
= &tx_ring
->buffer_info
[i
];
1896 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1897 /* VLAN MACLEN IPLEN */
1898 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1899 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1900 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1901 *hdr_len
+= skb_network_offset(skb
);
1902 info
|= (skb_transport_header(skb
) - skb_network_header(skb
));
1903 *hdr_len
+= (skb_transport_header(skb
) - skb_network_header(skb
));
1904 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1906 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1907 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1909 if (skb
->protocol
== htons(ETH_P_IP
))
1910 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1911 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1913 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1916 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
1917 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
1919 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
1920 context_desc
->seqnum_seed
= 0;
1922 buffer_info
->time_stamp
= jiffies
;
1923 buffer_info
->next_to_watch
= i
;
1924 buffer_info
->dma
= 0;
1926 if (i
== tx_ring
->count
)
1929 tx_ring
->next_to_use
= i
;
1934 static inline bool igbvf_tx_csum(struct igbvf_adapter
*adapter
,
1935 struct igbvf_ring
*tx_ring
,
1936 struct sk_buff
*skb
, u32 tx_flags
)
1938 struct e1000_adv_tx_context_desc
*context_desc
;
1940 struct igbvf_buffer
*buffer_info
;
1941 u32 info
= 0, tu_cmd
= 0;
1943 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1944 (tx_flags
& IGBVF_TX_FLAGS_VLAN
)) {
1945 i
= tx_ring
->next_to_use
;
1946 buffer_info
= &tx_ring
->buffer_info
[i
];
1947 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1949 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1950 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1952 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1953 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1954 info
|= (skb_transport_header(skb
) -
1955 skb_network_header(skb
));
1958 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1960 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1962 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1963 switch (skb
->protocol
) {
1964 case __constant_htons(ETH_P_IP
):
1965 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1966 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
1967 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1969 case __constant_htons(ETH_P_IPV6
):
1970 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
1971 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1978 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1979 context_desc
->seqnum_seed
= 0;
1980 context_desc
->mss_l4len_idx
= 0;
1982 buffer_info
->time_stamp
= jiffies
;
1983 buffer_info
->next_to_watch
= i
;
1984 buffer_info
->dma
= 0;
1986 if (i
== tx_ring
->count
)
1988 tx_ring
->next_to_use
= i
;
1996 static int igbvf_maybe_stop_tx(struct net_device
*netdev
, int size
)
1998 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2000 /* there is enough descriptors then we don't need to worry */
2001 if (igbvf_desc_unused(adapter
->tx_ring
) >= size
)
2004 netif_stop_queue(netdev
);
2008 /* We need to check again just in case room has been made available */
2009 if (igbvf_desc_unused(adapter
->tx_ring
) < size
)
2012 netif_wake_queue(netdev
);
2014 ++adapter
->restart_queue
;
2018 #define IGBVF_MAX_TXD_PWR 16
2019 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2021 static inline int igbvf_tx_map_adv(struct igbvf_adapter
*adapter
,
2022 struct igbvf_ring
*tx_ring
,
2023 struct sk_buff
*skb
,
2026 struct igbvf_buffer
*buffer_info
;
2027 struct pci_dev
*pdev
= adapter
->pdev
;
2028 unsigned int len
= skb_headlen(skb
);
2029 unsigned int count
= 0, i
;
2032 i
= tx_ring
->next_to_use
;
2034 buffer_info
= &tx_ring
->buffer_info
[i
];
2035 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2036 buffer_info
->length
= len
;
2037 /* set time_stamp *before* dma to help avoid a possible race */
2038 buffer_info
->time_stamp
= jiffies
;
2039 buffer_info
->next_to_watch
= i
;
2040 buffer_info
->mapped_as_page
= false;
2041 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
, len
,
2043 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2047 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2048 const struct skb_frag_struct
*frag
;
2052 if (i
== tx_ring
->count
)
2055 frag
= &skb_shinfo(skb
)->frags
[f
];
2056 len
= skb_frag_size(frag
);
2058 buffer_info
= &tx_ring
->buffer_info
[i
];
2059 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2060 buffer_info
->length
= len
;
2061 buffer_info
->time_stamp
= jiffies
;
2062 buffer_info
->next_to_watch
= i
;
2063 buffer_info
->mapped_as_page
= true;
2064 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
, 0, len
,
2066 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2070 tx_ring
->buffer_info
[i
].skb
= skb
;
2071 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2076 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2078 /* clear timestamp and dma mappings for failed buffer_info mapping */
2079 buffer_info
->dma
= 0;
2080 buffer_info
->time_stamp
= 0;
2081 buffer_info
->length
= 0;
2082 buffer_info
->next_to_watch
= 0;
2083 buffer_info
->mapped_as_page
= false;
2087 /* clear timestamp and dma mappings for remaining portion of packet */
2090 i
+= tx_ring
->count
;
2092 buffer_info
= &tx_ring
->buffer_info
[i
];
2093 igbvf_put_txbuf(adapter
, buffer_info
);
2099 static inline void igbvf_tx_queue_adv(struct igbvf_adapter
*adapter
,
2100 struct igbvf_ring
*tx_ring
,
2101 int tx_flags
, int count
, u32 paylen
,
2104 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2105 struct igbvf_buffer
*buffer_info
;
2106 u32 olinfo_status
= 0, cmd_type_len
;
2109 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2110 E1000_ADVTXD_DCMD_DEXT
);
2112 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2113 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2115 if (tx_flags
& IGBVF_TX_FLAGS_TSO
) {
2116 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2118 /* insert tcp checksum */
2119 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2121 /* insert ip checksum */
2122 if (tx_flags
& IGBVF_TX_FLAGS_IPV4
)
2123 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2125 } else if (tx_flags
& IGBVF_TX_FLAGS_CSUM
) {
2126 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2129 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2131 i
= tx_ring
->next_to_use
;
2133 buffer_info
= &tx_ring
->buffer_info
[i
];
2134 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
2135 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2136 tx_desc
->read
.cmd_type_len
=
2137 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2138 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2140 if (i
== tx_ring
->count
)
2144 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2145 /* Force memory writes to complete before letting h/w
2146 * know there are new descriptors to fetch. (Only
2147 * applicable for weak-ordered memory model archs,
2148 * such as IA-64). */
2151 tx_ring
->next_to_use
= i
;
2152 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2153 /* we need this if more than one processor can write to our tail
2154 * at a time, it syncronizes IO on IA64/Altix systems */
2158 static netdev_tx_t
igbvf_xmit_frame_ring_adv(struct sk_buff
*skb
,
2159 struct net_device
*netdev
,
2160 struct igbvf_ring
*tx_ring
)
2162 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2163 unsigned int first
, tx_flags
= 0;
2168 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2169 dev_kfree_skb_any(skb
);
2170 return NETDEV_TX_OK
;
2173 if (skb
->len
<= 0) {
2174 dev_kfree_skb_any(skb
);
2175 return NETDEV_TX_OK
;
2179 * need: count + 4 desc gap to keep tail from touching
2180 * + 2 desc gap to keep tail from touching head,
2181 * + 1 desc for skb->data,
2182 * + 1 desc for context descriptor,
2183 * head, otherwise try next time
2185 if (igbvf_maybe_stop_tx(netdev
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2186 /* this is a hard error */
2187 return NETDEV_TX_BUSY
;
2190 if (vlan_tx_tag_present(skb
)) {
2191 tx_flags
|= IGBVF_TX_FLAGS_VLAN
;
2192 tx_flags
|= (vlan_tx_tag_get(skb
) << IGBVF_TX_FLAGS_VLAN_SHIFT
);
2195 if (skb
->protocol
== htons(ETH_P_IP
))
2196 tx_flags
|= IGBVF_TX_FLAGS_IPV4
;
2198 first
= tx_ring
->next_to_use
;
2200 tso
= skb_is_gso(skb
) ?
2201 igbvf_tso(adapter
, tx_ring
, skb
, tx_flags
, &hdr_len
) : 0;
2202 if (unlikely(tso
< 0)) {
2203 dev_kfree_skb_any(skb
);
2204 return NETDEV_TX_OK
;
2208 tx_flags
|= IGBVF_TX_FLAGS_TSO
;
2209 else if (igbvf_tx_csum(adapter
, tx_ring
, skb
, tx_flags
) &&
2210 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2211 tx_flags
|= IGBVF_TX_FLAGS_CSUM
;
2214 * count reflects descriptors mapped, if 0 then mapping error
2215 * has occurred and we need to rewind the descriptor queue
2217 count
= igbvf_tx_map_adv(adapter
, tx_ring
, skb
, first
);
2220 igbvf_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
2222 /* Make sure there is space in the ring for the next send. */
2223 igbvf_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 4);
2225 dev_kfree_skb_any(skb
);
2226 tx_ring
->buffer_info
[first
].time_stamp
= 0;
2227 tx_ring
->next_to_use
= first
;
2230 return NETDEV_TX_OK
;
2233 static netdev_tx_t
igbvf_xmit_frame(struct sk_buff
*skb
,
2234 struct net_device
*netdev
)
2236 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2237 struct igbvf_ring
*tx_ring
;
2239 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2240 dev_kfree_skb_any(skb
);
2241 return NETDEV_TX_OK
;
2244 tx_ring
= &adapter
->tx_ring
[0];
2246 return igbvf_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
2250 * igbvf_tx_timeout - Respond to a Tx Hang
2251 * @netdev: network interface device structure
2253 static void igbvf_tx_timeout(struct net_device
*netdev
)
2255 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2257 /* Do the reset outside of interrupt context */
2258 adapter
->tx_timeout_count
++;
2259 schedule_work(&adapter
->reset_task
);
2262 static void igbvf_reset_task(struct work_struct
*work
)
2264 struct igbvf_adapter
*adapter
;
2265 adapter
= container_of(work
, struct igbvf_adapter
, reset_task
);
2267 igbvf_reinit_locked(adapter
);
2271 * igbvf_get_stats - Get System Network Statistics
2272 * @netdev: network interface device structure
2274 * Returns the address of the device statistics structure.
2275 * The statistics are actually updated from the timer callback.
2277 static struct net_device_stats
*igbvf_get_stats(struct net_device
*netdev
)
2279 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2281 /* only return the current stats */
2282 return &adapter
->net_stats
;
2286 * igbvf_change_mtu - Change the Maximum Transfer Unit
2287 * @netdev: network interface device structure
2288 * @new_mtu: new value for maximum frame size
2290 * Returns 0 on success, negative on failure
2292 static int igbvf_change_mtu(struct net_device
*netdev
, int new_mtu
)
2294 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2295 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2297 if ((new_mtu
< 68) || (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2298 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2302 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2303 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2304 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2308 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2310 /* igbvf_down has a dependency on max_frame_size */
2311 adapter
->max_frame_size
= max_frame
;
2312 if (netif_running(netdev
))
2313 igbvf_down(adapter
);
2316 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2317 * means we reserve 2 more, this pushes us to allocate from the next
2319 * i.e. RXBUFFER_2048 --> size-4096 slab
2320 * However with the new *_jumbo_rx* routines, jumbo receives will use
2324 if (max_frame
<= 1024)
2325 adapter
->rx_buffer_len
= 1024;
2326 else if (max_frame
<= 2048)
2327 adapter
->rx_buffer_len
= 2048;
2329 #if (PAGE_SIZE / 2) > 16384
2330 adapter
->rx_buffer_len
= 16384;
2332 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
2336 /* adjust allocation if LPE protects us, and we aren't using SBP */
2337 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2338 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
2339 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+
2342 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2343 netdev
->mtu
, new_mtu
);
2344 netdev
->mtu
= new_mtu
;
2346 if (netif_running(netdev
))
2349 igbvf_reset(adapter
);
2351 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2356 static int igbvf_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2364 static int igbvf_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2366 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2367 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2372 netif_device_detach(netdev
);
2374 if (netif_running(netdev
)) {
2375 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
2376 igbvf_down(adapter
);
2377 igbvf_free_irq(adapter
);
2381 retval
= pci_save_state(pdev
);
2386 pci_disable_device(pdev
);
2392 static int igbvf_resume(struct pci_dev
*pdev
)
2394 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2395 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2398 pci_restore_state(pdev
);
2399 err
= pci_enable_device_mem(pdev
);
2401 dev_err(&pdev
->dev
, "Cannot enable PCI device from suspend\n");
2405 pci_set_master(pdev
);
2407 if (netif_running(netdev
)) {
2408 err
= igbvf_request_irq(adapter
);
2413 igbvf_reset(adapter
);
2415 if (netif_running(netdev
))
2418 netif_device_attach(netdev
);
2424 static void igbvf_shutdown(struct pci_dev
*pdev
)
2426 igbvf_suspend(pdev
, PMSG_SUSPEND
);
2429 #ifdef CONFIG_NET_POLL_CONTROLLER
2431 * Polling 'interrupt' - used by things like netconsole to send skbs
2432 * without having to re-enable interrupts. It's not called while
2433 * the interrupt routine is executing.
2435 static void igbvf_netpoll(struct net_device
*netdev
)
2437 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2439 disable_irq(adapter
->pdev
->irq
);
2441 igbvf_clean_tx_irq(adapter
->tx_ring
);
2443 enable_irq(adapter
->pdev
->irq
);
2448 * igbvf_io_error_detected - called when PCI error is detected
2449 * @pdev: Pointer to PCI device
2450 * @state: The current pci connection state
2452 * This function is called after a PCI bus error affecting
2453 * this device has been detected.
2455 static pci_ers_result_t
igbvf_io_error_detected(struct pci_dev
*pdev
,
2456 pci_channel_state_t state
)
2458 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2459 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2461 netif_device_detach(netdev
);
2463 if (state
== pci_channel_io_perm_failure
)
2464 return PCI_ERS_RESULT_DISCONNECT
;
2466 if (netif_running(netdev
))
2467 igbvf_down(adapter
);
2468 pci_disable_device(pdev
);
2470 /* Request a slot slot reset. */
2471 return PCI_ERS_RESULT_NEED_RESET
;
2475 * igbvf_io_slot_reset - called after the pci bus has been reset.
2476 * @pdev: Pointer to PCI device
2478 * Restart the card from scratch, as if from a cold-boot. Implementation
2479 * resembles the first-half of the igbvf_resume routine.
2481 static pci_ers_result_t
igbvf_io_slot_reset(struct pci_dev
*pdev
)
2483 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2484 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2486 if (pci_enable_device_mem(pdev
)) {
2488 "Cannot re-enable PCI device after reset.\n");
2489 return PCI_ERS_RESULT_DISCONNECT
;
2491 pci_set_master(pdev
);
2493 igbvf_reset(adapter
);
2495 return PCI_ERS_RESULT_RECOVERED
;
2499 * igbvf_io_resume - called when traffic can start flowing again.
2500 * @pdev: Pointer to PCI device
2502 * This callback is called when the error recovery driver tells us that
2503 * its OK to resume normal operation. Implementation resembles the
2504 * second-half of the igbvf_resume routine.
2506 static void igbvf_io_resume(struct pci_dev
*pdev
)
2508 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2509 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2511 if (netif_running(netdev
)) {
2512 if (igbvf_up(adapter
)) {
2514 "can't bring device back up after reset\n");
2519 netif_device_attach(netdev
);
2522 static void igbvf_print_device_info(struct igbvf_adapter
*adapter
)
2524 struct e1000_hw
*hw
= &adapter
->hw
;
2525 struct net_device
*netdev
= adapter
->netdev
;
2526 struct pci_dev
*pdev
= adapter
->pdev
;
2528 if (hw
->mac
.type
== e1000_vfadapt_i350
)
2529 dev_info(&pdev
->dev
, "Intel(R) I350 Virtual Function\n");
2531 dev_info(&pdev
->dev
, "Intel(R) 82576 Virtual Function\n");
2532 dev_info(&pdev
->dev
, "Address: %pM\n", netdev
->dev_addr
);
2535 static int igbvf_set_features(struct net_device
*netdev
,
2536 netdev_features_t features
)
2538 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2540 if (features
& NETIF_F_RXCSUM
)
2541 adapter
->flags
&= ~IGBVF_FLAG_RX_CSUM_DISABLED
;
2543 adapter
->flags
|= IGBVF_FLAG_RX_CSUM_DISABLED
;
2548 static const struct net_device_ops igbvf_netdev_ops
= {
2549 .ndo_open
= igbvf_open
,
2550 .ndo_stop
= igbvf_close
,
2551 .ndo_start_xmit
= igbvf_xmit_frame
,
2552 .ndo_get_stats
= igbvf_get_stats
,
2553 .ndo_set_rx_mode
= igbvf_set_multi
,
2554 .ndo_set_mac_address
= igbvf_set_mac
,
2555 .ndo_change_mtu
= igbvf_change_mtu
,
2556 .ndo_do_ioctl
= igbvf_ioctl
,
2557 .ndo_tx_timeout
= igbvf_tx_timeout
,
2558 .ndo_vlan_rx_add_vid
= igbvf_vlan_rx_add_vid
,
2559 .ndo_vlan_rx_kill_vid
= igbvf_vlan_rx_kill_vid
,
2560 #ifdef CONFIG_NET_POLL_CONTROLLER
2561 .ndo_poll_controller
= igbvf_netpoll
,
2563 .ndo_set_features
= igbvf_set_features
,
2567 * igbvf_probe - Device Initialization Routine
2568 * @pdev: PCI device information struct
2569 * @ent: entry in igbvf_pci_tbl
2571 * Returns 0 on success, negative on failure
2573 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2574 * The OS initialization, configuring of the adapter private structure,
2575 * and a hardware reset occur.
2577 static int __devinit
igbvf_probe(struct pci_dev
*pdev
,
2578 const struct pci_device_id
*ent
)
2580 struct net_device
*netdev
;
2581 struct igbvf_adapter
*adapter
;
2582 struct e1000_hw
*hw
;
2583 const struct igbvf_info
*ei
= igbvf_info_tbl
[ent
->driver_data
];
2585 static int cards_found
;
2586 int err
, pci_using_dac
;
2588 err
= pci_enable_device_mem(pdev
);
2593 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
2595 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
2599 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
2601 err
= dma_set_coherent_mask(&pdev
->dev
,
2604 dev_err(&pdev
->dev
, "No usable DMA "
2605 "configuration, aborting\n");
2611 err
= pci_request_regions(pdev
, igbvf_driver_name
);
2615 pci_set_master(pdev
);
2618 netdev
= alloc_etherdev(sizeof(struct igbvf_adapter
));
2620 goto err_alloc_etherdev
;
2622 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2624 pci_set_drvdata(pdev
, netdev
);
2625 adapter
= netdev_priv(netdev
);
2627 adapter
->netdev
= netdev
;
2628 adapter
->pdev
= pdev
;
2630 adapter
->pba
= ei
->pba
;
2631 adapter
->flags
= ei
->flags
;
2632 adapter
->hw
.back
= adapter
;
2633 adapter
->hw
.mac
.type
= ei
->mac
;
2634 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
2636 /* PCI config space info */
2638 hw
->vendor_id
= pdev
->vendor
;
2639 hw
->device_id
= pdev
->device
;
2640 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
2641 hw
->subsystem_device_id
= pdev
->subsystem_device
;
2642 hw
->revision_id
= pdev
->revision
;
2645 adapter
->hw
.hw_addr
= ioremap(pci_resource_start(pdev
, 0),
2646 pci_resource_len(pdev
, 0));
2648 if (!adapter
->hw
.hw_addr
)
2651 if (ei
->get_variants
) {
2652 err
= ei
->get_variants(adapter
);
2657 /* setup adapter struct */
2658 err
= igbvf_sw_init(adapter
);
2662 /* construct the net_device struct */
2663 netdev
->netdev_ops
= &igbvf_netdev_ops
;
2665 igbvf_set_ethtool_ops(netdev
);
2666 netdev
->watchdog_timeo
= 5 * HZ
;
2667 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2669 adapter
->bd_number
= cards_found
++;
2671 netdev
->hw_features
= NETIF_F_SG
|
2678 netdev
->features
= netdev
->hw_features
|
2679 NETIF_F_HW_VLAN_TX
|
2680 NETIF_F_HW_VLAN_RX
|
2681 NETIF_F_HW_VLAN_FILTER
;
2684 netdev
->features
|= NETIF_F_HIGHDMA
;
2686 netdev
->vlan_features
|= NETIF_F_TSO
;
2687 netdev
->vlan_features
|= NETIF_F_TSO6
;
2688 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
2689 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
2690 netdev
->vlan_features
|= NETIF_F_SG
;
2692 /*reset the controller to put the device in a known good state */
2693 err
= hw
->mac
.ops
.reset_hw(hw
);
2695 dev_info(&pdev
->dev
,
2696 "PF still in reset state, assigning new address."
2697 " Is the PF interface up?\n");
2698 dev_hw_addr_random(adapter
->netdev
, hw
->mac
.addr
);
2700 err
= hw
->mac
.ops
.read_mac_addr(hw
);
2702 dev_err(&pdev
->dev
, "Error reading MAC address\n");
2707 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2708 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2710 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2711 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
2717 setup_timer(&adapter
->watchdog_timer
, &igbvf_watchdog
,
2718 (unsigned long) adapter
);
2720 INIT_WORK(&adapter
->reset_task
, igbvf_reset_task
);
2721 INIT_WORK(&adapter
->watchdog_task
, igbvf_watchdog_task
);
2723 /* ring size defaults */
2724 adapter
->rx_ring
->count
= 1024;
2725 adapter
->tx_ring
->count
= 1024;
2727 /* reset the hardware with the new settings */
2728 igbvf_reset(adapter
);
2730 strcpy(netdev
->name
, "eth%d");
2731 err
= register_netdev(netdev
);
2735 /* tell the stack to leave us alone until igbvf_open() is called */
2736 netif_carrier_off(netdev
);
2737 netif_stop_queue(netdev
);
2739 igbvf_print_device_info(adapter
);
2741 igbvf_initialize_last_counter_stats(adapter
);
2746 kfree(adapter
->tx_ring
);
2747 kfree(adapter
->rx_ring
);
2749 igbvf_reset_interrupt_capability(adapter
);
2750 iounmap(adapter
->hw
.hw_addr
);
2752 free_netdev(netdev
);
2754 pci_release_regions(pdev
);
2757 pci_disable_device(pdev
);
2762 * igbvf_remove - Device Removal Routine
2763 * @pdev: PCI device information struct
2765 * igbvf_remove is called by the PCI subsystem to alert the driver
2766 * that it should release a PCI device. The could be caused by a
2767 * Hot-Plug event, or because the driver is going to be removed from
2770 static void __devexit
igbvf_remove(struct pci_dev
*pdev
)
2772 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2773 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2774 struct e1000_hw
*hw
= &adapter
->hw
;
2777 * The watchdog timer may be rescheduled, so explicitly
2778 * disable it from being rescheduled.
2780 set_bit(__IGBVF_DOWN
, &adapter
->state
);
2781 del_timer_sync(&adapter
->watchdog_timer
);
2783 cancel_work_sync(&adapter
->reset_task
);
2784 cancel_work_sync(&adapter
->watchdog_task
);
2786 unregister_netdev(netdev
);
2788 igbvf_reset_interrupt_capability(adapter
);
2791 * it is important to delete the napi struct prior to freeing the
2792 * rx ring so that you do not end up with null pointer refs
2794 netif_napi_del(&adapter
->rx_ring
->napi
);
2795 kfree(adapter
->tx_ring
);
2796 kfree(adapter
->rx_ring
);
2798 iounmap(hw
->hw_addr
);
2799 if (hw
->flash_address
)
2800 iounmap(hw
->flash_address
);
2801 pci_release_regions(pdev
);
2803 free_netdev(netdev
);
2805 pci_disable_device(pdev
);
2808 /* PCI Error Recovery (ERS) */
2809 static struct pci_error_handlers igbvf_err_handler
= {
2810 .error_detected
= igbvf_io_error_detected
,
2811 .slot_reset
= igbvf_io_slot_reset
,
2812 .resume
= igbvf_io_resume
,
2815 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl
) = {
2816 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_VF
), board_vf
},
2817 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_VF
), board_i350_vf
},
2818 { } /* terminate list */
2820 MODULE_DEVICE_TABLE(pci
, igbvf_pci_tbl
);
2822 /* PCI Device API Driver */
2823 static struct pci_driver igbvf_driver
= {
2824 .name
= igbvf_driver_name
,
2825 .id_table
= igbvf_pci_tbl
,
2826 .probe
= igbvf_probe
,
2827 .remove
= __devexit_p(igbvf_remove
),
2829 /* Power Management Hooks */
2830 .suspend
= igbvf_suspend
,
2831 .resume
= igbvf_resume
,
2833 .shutdown
= igbvf_shutdown
,
2834 .err_handler
= &igbvf_err_handler
2838 * igbvf_init_module - Driver Registration Routine
2840 * igbvf_init_module is the first routine called when the driver is
2841 * loaded. All it does is register with the PCI subsystem.
2843 static int __init
igbvf_init_module(void)
2846 pr_info("%s - version %s\n", igbvf_driver_string
, igbvf_driver_version
);
2847 pr_info("%s\n", igbvf_copyright
);
2849 ret
= pci_register_driver(&igbvf_driver
);
2853 module_init(igbvf_init_module
);
2856 * igbvf_exit_module - Driver Exit Cleanup Routine
2858 * igbvf_exit_module is called just before the driver is removed
2861 static void __exit
igbvf_exit_module(void)
2863 pci_unregister_driver(&igbvf_driver
);
2865 module_exit(igbvf_exit_module
);
2868 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2869 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2870 MODULE_LICENSE("GPL");
2871 MODULE_VERSION(DRV_VERSION
);