Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / net / ethernet / korina.c
blob6ad094f176f8b175d6a3c63f1d61b6fbd3e06ec6
1 /*
2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
4 * Copyright 2004 IDT Inc. (rischelp@idt.com)
5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 * Copyright 2008 Florian Fainelli <florian@openwrt.org>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
14 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
16 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
19 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Writing to a DMA status register:
30 * When writing to the status register, you should mask the bit you have
31 * been testing the status register with. Both Tx and Rx DMA registers
32 * should stick to this procedure.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
57 #include <asm/bootinfo.h>
58 #include <asm/system.h>
59 #include <asm/bitops.h>
60 #include <asm/pgtable.h>
61 #include <asm/io.h>
62 #include <asm/dma.h>
64 #include <asm/mach-rc32434/rb.h>
65 #include <asm/mach-rc32434/rc32434.h>
66 #include <asm/mach-rc32434/eth.h>
67 #include <asm/mach-rc32434/dma_v.h>
69 #define DRV_NAME "korina"
70 #define DRV_VERSION "0.10"
71 #define DRV_RELDATE "04Mar2008"
73 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
74 ((dev)->dev_addr[1]))
75 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
76 ((dev)->dev_addr[3] << 16) | \
77 ((dev)->dev_addr[4] << 8) | \
78 ((dev)->dev_addr[5]))
80 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
82 /* the following must be powers of two */
83 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
84 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
86 /* KORINA_RBSIZE is the hardware's default maximum receive
87 * frame size in bytes. Having this hardcoded means that there
88 * is no support for MTU sizes greater than 1500. */
89 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
90 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
91 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
92 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
93 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
95 #define TX_TIMEOUT (6000 * HZ / 1000)
97 enum chain_status { desc_filled, desc_empty };
98 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
99 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
100 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
102 /* Information that need to be kept for each board. */
103 struct korina_private {
104 struct eth_regs *eth_regs;
105 struct dma_reg *rx_dma_regs;
106 struct dma_reg *tx_dma_regs;
107 struct dma_desc *td_ring; /* transmit descriptor ring */
108 struct dma_desc *rd_ring; /* receive descriptor ring */
110 struct sk_buff *tx_skb[KORINA_NUM_TDS];
111 struct sk_buff *rx_skb[KORINA_NUM_RDS];
113 int rx_next_done;
114 int rx_chain_head;
115 int rx_chain_tail;
116 enum chain_status rx_chain_status;
118 int tx_next_done;
119 int tx_chain_head;
120 int tx_chain_tail;
121 enum chain_status tx_chain_status;
122 int tx_count;
123 int tx_full;
125 int rx_irq;
126 int tx_irq;
127 int ovr_irq;
128 int und_irq;
130 spinlock_t lock; /* NIC xmit lock */
132 int dma_halt_cnt;
133 int dma_run_cnt;
134 struct napi_struct napi;
135 struct timer_list media_check_timer;
136 struct mii_if_info mii_if;
137 struct work_struct restart_task;
138 struct net_device *dev;
139 int phy_addr;
142 extern unsigned int idt_cpu_freq;
144 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
146 writel(0, &ch->dmandptr);
147 writel(dma_addr, &ch->dmadptr);
150 static inline void korina_abort_dma(struct net_device *dev,
151 struct dma_reg *ch)
153 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
154 writel(0x10, &ch->dmac);
156 while (!(readl(&ch->dmas) & DMA_STAT_HALT))
157 dev->trans_start = jiffies;
159 writel(0, &ch->dmas);
162 writel(0, &ch->dmadptr);
163 writel(0, &ch->dmandptr);
166 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
168 writel(dma_addr, &ch->dmandptr);
171 static void korina_abort_tx(struct net_device *dev)
173 struct korina_private *lp = netdev_priv(dev);
175 korina_abort_dma(dev, lp->tx_dma_regs);
178 static void korina_abort_rx(struct net_device *dev)
180 struct korina_private *lp = netdev_priv(dev);
182 korina_abort_dma(dev, lp->rx_dma_regs);
185 static void korina_start_rx(struct korina_private *lp,
186 struct dma_desc *rd)
188 korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
191 static void korina_chain_rx(struct korina_private *lp,
192 struct dma_desc *rd)
194 korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
197 /* transmit packet */
198 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
200 struct korina_private *lp = netdev_priv(dev);
201 unsigned long flags;
202 u32 length;
203 u32 chain_prev, chain_next;
204 struct dma_desc *td;
206 spin_lock_irqsave(&lp->lock, flags);
208 td = &lp->td_ring[lp->tx_chain_tail];
210 /* stop queue when full, drop pkts if queue already full */
211 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
212 lp->tx_full = 1;
214 if (lp->tx_count == (KORINA_NUM_TDS - 2))
215 netif_stop_queue(dev);
216 else {
217 dev->stats.tx_dropped++;
218 dev_kfree_skb_any(skb);
219 spin_unlock_irqrestore(&lp->lock, flags);
221 return NETDEV_TX_BUSY;
225 lp->tx_count++;
227 lp->tx_skb[lp->tx_chain_tail] = skb;
229 length = skb->len;
230 dma_cache_wback((u32)skb->data, skb->len);
232 /* Setup the transmit descriptor. */
233 dma_cache_inv((u32) td, sizeof(*td));
234 td->ca = CPHYSADDR(skb->data);
235 chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
236 chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
238 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
239 if (lp->tx_chain_status == desc_empty) {
240 /* Update tail */
241 td->control = DMA_COUNT(length) |
242 DMA_DESC_COF | DMA_DESC_IOF;
243 /* Move tail */
244 lp->tx_chain_tail = chain_next;
245 /* Write to NDPTR */
246 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
247 &lp->tx_dma_regs->dmandptr);
248 /* Move head to tail */
249 lp->tx_chain_head = lp->tx_chain_tail;
250 } else {
251 /* Update tail */
252 td->control = DMA_COUNT(length) |
253 DMA_DESC_COF | DMA_DESC_IOF;
254 /* Link to prev */
255 lp->td_ring[chain_prev].control &=
256 ~DMA_DESC_COF;
257 /* Link to prev */
258 lp->td_ring[chain_prev].link = CPHYSADDR(td);
259 /* Move tail */
260 lp->tx_chain_tail = chain_next;
261 /* Write to NDPTR */
262 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
263 &(lp->tx_dma_regs->dmandptr));
264 /* Move head to tail */
265 lp->tx_chain_head = lp->tx_chain_tail;
266 lp->tx_chain_status = desc_empty;
268 } else {
269 if (lp->tx_chain_status == desc_empty) {
270 /* Update tail */
271 td->control = DMA_COUNT(length) |
272 DMA_DESC_COF | DMA_DESC_IOF;
273 /* Move tail */
274 lp->tx_chain_tail = chain_next;
275 lp->tx_chain_status = desc_filled;
276 } else {
277 /* Update tail */
278 td->control = DMA_COUNT(length) |
279 DMA_DESC_COF | DMA_DESC_IOF;
280 lp->td_ring[chain_prev].control &=
281 ~DMA_DESC_COF;
282 lp->td_ring[chain_prev].link = CPHYSADDR(td);
283 lp->tx_chain_tail = chain_next;
286 dma_cache_wback((u32) td, sizeof(*td));
288 dev->trans_start = jiffies;
289 spin_unlock_irqrestore(&lp->lock, flags);
291 return NETDEV_TX_OK;
294 static int mdio_read(struct net_device *dev, int mii_id, int reg)
296 struct korina_private *lp = netdev_priv(dev);
297 int ret;
299 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
301 writel(0, &lp->eth_regs->miimcfg);
302 writel(0, &lp->eth_regs->miimcmd);
303 writel(mii_id | reg, &lp->eth_regs->miimaddr);
304 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
306 ret = (int)(readl(&lp->eth_regs->miimrdd));
307 return ret;
310 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
312 struct korina_private *lp = netdev_priv(dev);
314 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
316 writel(0, &lp->eth_regs->miimcfg);
317 writel(1, &lp->eth_regs->miimcmd);
318 writel(mii_id | reg, &lp->eth_regs->miimaddr);
319 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
320 writel(val, &lp->eth_regs->miimwtd);
323 /* Ethernet Rx DMA interrupt */
324 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
326 struct net_device *dev = dev_id;
327 struct korina_private *lp = netdev_priv(dev);
328 u32 dmas, dmasm;
329 irqreturn_t retval;
331 dmas = readl(&lp->rx_dma_regs->dmas);
332 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
333 dmasm = readl(&lp->rx_dma_regs->dmasm);
334 writel(dmasm | (DMA_STAT_DONE |
335 DMA_STAT_HALT | DMA_STAT_ERR),
336 &lp->rx_dma_regs->dmasm);
338 napi_schedule(&lp->napi);
340 if (dmas & DMA_STAT_ERR)
341 printk(KERN_ERR "%s: DMA error\n", dev->name);
343 retval = IRQ_HANDLED;
344 } else
345 retval = IRQ_NONE;
347 return retval;
350 static int korina_rx(struct net_device *dev, int limit)
352 struct korina_private *lp = netdev_priv(dev);
353 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
354 struct sk_buff *skb, *skb_new;
355 u8 *pkt_buf;
356 u32 devcs, pkt_len, dmas;
357 int count;
359 dma_cache_inv((u32)rd, sizeof(*rd));
361 for (count = 0; count < limit; count++) {
362 skb = lp->rx_skb[lp->rx_next_done];
363 skb_new = NULL;
365 devcs = rd->devcs;
367 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
368 break;
370 /* Update statistics counters */
371 if (devcs & ETH_RX_CRC)
372 dev->stats.rx_crc_errors++;
373 if (devcs & ETH_RX_LOR)
374 dev->stats.rx_length_errors++;
375 if (devcs & ETH_RX_LE)
376 dev->stats.rx_length_errors++;
377 if (devcs & ETH_RX_OVR)
378 dev->stats.rx_fifo_errors++;
379 if (devcs & ETH_RX_CV)
380 dev->stats.rx_frame_errors++;
381 if (devcs & ETH_RX_CES)
382 dev->stats.rx_length_errors++;
383 if (devcs & ETH_RX_MP)
384 dev->stats.multicast++;
386 if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
387 /* check that this is a whole packet
388 * WARNING: DMA_FD bit incorrectly set
389 * in Rc32434 (errata ref #077) */
390 dev->stats.rx_errors++;
391 dev->stats.rx_dropped++;
392 } else if ((devcs & ETH_RX_ROK)) {
393 pkt_len = RCVPKT_LENGTH(devcs);
395 /* must be the (first and) last
396 * descriptor then */
397 pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
399 /* invalidate the cache */
400 dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
402 /* Malloc up new buffer. */
403 skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
405 if (!skb_new)
406 break;
407 /* Do not count the CRC */
408 skb_put(skb, pkt_len - 4);
409 skb->protocol = eth_type_trans(skb, dev);
411 /* Pass the packet to upper layers */
412 netif_receive_skb(skb);
413 dev->stats.rx_packets++;
414 dev->stats.rx_bytes += pkt_len;
416 /* Update the mcast stats */
417 if (devcs & ETH_RX_MP)
418 dev->stats.multicast++;
420 lp->rx_skb[lp->rx_next_done] = skb_new;
423 rd->devcs = 0;
425 /* Restore descriptor's curr_addr */
426 if (skb_new)
427 rd->ca = CPHYSADDR(skb_new->data);
428 else
429 rd->ca = CPHYSADDR(skb->data);
431 rd->control = DMA_COUNT(KORINA_RBSIZE) |
432 DMA_DESC_COD | DMA_DESC_IOD;
433 lp->rd_ring[(lp->rx_next_done - 1) &
434 KORINA_RDS_MASK].control &=
435 ~DMA_DESC_COD;
437 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
438 dma_cache_wback((u32)rd, sizeof(*rd));
439 rd = &lp->rd_ring[lp->rx_next_done];
440 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
443 dmas = readl(&lp->rx_dma_regs->dmas);
445 if (dmas & DMA_STAT_HALT) {
446 writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
447 &lp->rx_dma_regs->dmas);
449 lp->dma_halt_cnt++;
450 rd->devcs = 0;
451 skb = lp->rx_skb[lp->rx_next_done];
452 rd->ca = CPHYSADDR(skb->data);
453 dma_cache_wback((u32)rd, sizeof(*rd));
454 korina_chain_rx(lp, rd);
457 return count;
460 static int korina_poll(struct napi_struct *napi, int budget)
462 struct korina_private *lp =
463 container_of(napi, struct korina_private, napi);
464 struct net_device *dev = lp->dev;
465 int work_done;
467 work_done = korina_rx(dev, budget);
468 if (work_done < budget) {
469 napi_complete(napi);
471 writel(readl(&lp->rx_dma_regs->dmasm) &
472 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
473 &lp->rx_dma_regs->dmasm);
475 return work_done;
479 * Set or clear the multicast filter for this adaptor.
481 static void korina_multicast_list(struct net_device *dev)
483 struct korina_private *lp = netdev_priv(dev);
484 unsigned long flags;
485 struct netdev_hw_addr *ha;
486 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
487 int i;
489 /* Set promiscuous mode */
490 if (dev->flags & IFF_PROMISC)
491 recognise |= ETH_ARC_PRO;
493 else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
494 /* All multicast and broadcast */
495 recognise |= ETH_ARC_AM;
497 /* Build the hash table */
498 if (netdev_mc_count(dev) > 4) {
499 u16 hash_table[4];
500 u32 crc;
502 for (i = 0; i < 4; i++)
503 hash_table[i] = 0;
505 netdev_for_each_mc_addr(ha, dev) {
506 crc = ether_crc_le(6, ha->addr);
507 crc >>= 26;
508 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
510 /* Accept filtered multicast */
511 recognise |= ETH_ARC_AFM;
513 /* Fill the MAC hash tables with their values */
514 writel((u32)(hash_table[1] << 16 | hash_table[0]),
515 &lp->eth_regs->ethhash0);
516 writel((u32)(hash_table[3] << 16 | hash_table[2]),
517 &lp->eth_regs->ethhash1);
520 spin_lock_irqsave(&lp->lock, flags);
521 writel(recognise, &lp->eth_regs->etharc);
522 spin_unlock_irqrestore(&lp->lock, flags);
525 static void korina_tx(struct net_device *dev)
527 struct korina_private *lp = netdev_priv(dev);
528 struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
529 u32 devcs;
530 u32 dmas;
532 spin_lock(&lp->lock);
534 /* Process all desc that are done */
535 while (IS_DMA_FINISHED(td->control)) {
536 if (lp->tx_full == 1) {
537 netif_wake_queue(dev);
538 lp->tx_full = 0;
541 devcs = lp->td_ring[lp->tx_next_done].devcs;
542 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
543 (ETH_TX_FD | ETH_TX_LD)) {
544 dev->stats.tx_errors++;
545 dev->stats.tx_dropped++;
547 /* Should never happen */
548 printk(KERN_ERR "%s: split tx ignored\n",
549 dev->name);
550 } else if (devcs & ETH_TX_TOK) {
551 dev->stats.tx_packets++;
552 dev->stats.tx_bytes +=
553 lp->tx_skb[lp->tx_next_done]->len;
554 } else {
555 dev->stats.tx_errors++;
556 dev->stats.tx_dropped++;
558 /* Underflow */
559 if (devcs & ETH_TX_UND)
560 dev->stats.tx_fifo_errors++;
562 /* Oversized frame */
563 if (devcs & ETH_TX_OF)
564 dev->stats.tx_aborted_errors++;
566 /* Excessive deferrals */
567 if (devcs & ETH_TX_ED)
568 dev->stats.tx_carrier_errors++;
570 /* Collisions: medium busy */
571 if (devcs & ETH_TX_EC)
572 dev->stats.collisions++;
574 /* Late collision */
575 if (devcs & ETH_TX_LC)
576 dev->stats.tx_window_errors++;
579 /* We must always free the original skb */
580 if (lp->tx_skb[lp->tx_next_done]) {
581 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
582 lp->tx_skb[lp->tx_next_done] = NULL;
585 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
586 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
587 lp->td_ring[lp->tx_next_done].link = 0;
588 lp->td_ring[lp->tx_next_done].ca = 0;
589 lp->tx_count--;
591 /* Go on to next transmission */
592 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
593 td = &lp->td_ring[lp->tx_next_done];
597 /* Clear the DMA status register */
598 dmas = readl(&lp->tx_dma_regs->dmas);
599 writel(~dmas, &lp->tx_dma_regs->dmas);
601 writel(readl(&lp->tx_dma_regs->dmasm) &
602 ~(DMA_STAT_FINI | DMA_STAT_ERR),
603 &lp->tx_dma_regs->dmasm);
605 spin_unlock(&lp->lock);
608 static irqreturn_t
609 korina_tx_dma_interrupt(int irq, void *dev_id)
611 struct net_device *dev = dev_id;
612 struct korina_private *lp = netdev_priv(dev);
613 u32 dmas, dmasm;
614 irqreturn_t retval;
616 dmas = readl(&lp->tx_dma_regs->dmas);
618 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
619 dmasm = readl(&lp->tx_dma_regs->dmasm);
620 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
621 &lp->tx_dma_regs->dmasm);
623 korina_tx(dev);
625 if (lp->tx_chain_status == desc_filled &&
626 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
627 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
628 &(lp->tx_dma_regs->dmandptr));
629 lp->tx_chain_status = desc_empty;
630 lp->tx_chain_head = lp->tx_chain_tail;
631 dev->trans_start = jiffies;
633 if (dmas & DMA_STAT_ERR)
634 printk(KERN_ERR "%s: DMA error\n", dev->name);
636 retval = IRQ_HANDLED;
637 } else
638 retval = IRQ_NONE;
640 return retval;
644 static void korina_check_media(struct net_device *dev, unsigned int init_media)
646 struct korina_private *lp = netdev_priv(dev);
648 mii_check_media(&lp->mii_if, 0, init_media);
650 if (lp->mii_if.full_duplex)
651 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
652 &lp->eth_regs->ethmac2);
653 else
654 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
655 &lp->eth_regs->ethmac2);
658 static void korina_poll_media(unsigned long data)
660 struct net_device *dev = (struct net_device *) data;
661 struct korina_private *lp = netdev_priv(dev);
663 korina_check_media(dev, 0);
664 mod_timer(&lp->media_check_timer, jiffies + HZ);
667 static void korina_set_carrier(struct mii_if_info *mii)
669 if (mii->force_media) {
670 /* autoneg is off: Link is always assumed to be up */
671 if (!netif_carrier_ok(mii->dev))
672 netif_carrier_on(mii->dev);
673 } else /* Let MMI library update carrier status */
674 korina_check_media(mii->dev, 0);
677 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
679 struct korina_private *lp = netdev_priv(dev);
680 struct mii_ioctl_data *data = if_mii(rq);
681 int rc;
683 if (!netif_running(dev))
684 return -EINVAL;
685 spin_lock_irq(&lp->lock);
686 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
687 spin_unlock_irq(&lp->lock);
688 korina_set_carrier(&lp->mii_if);
690 return rc;
693 /* ethtool helpers */
694 static void netdev_get_drvinfo(struct net_device *dev,
695 struct ethtool_drvinfo *info)
697 struct korina_private *lp = netdev_priv(dev);
699 strcpy(info->driver, DRV_NAME);
700 strcpy(info->version, DRV_VERSION);
701 strcpy(info->bus_info, lp->dev->name);
704 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
706 struct korina_private *lp = netdev_priv(dev);
707 int rc;
709 spin_lock_irq(&lp->lock);
710 rc = mii_ethtool_gset(&lp->mii_if, cmd);
711 spin_unlock_irq(&lp->lock);
713 return rc;
716 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
718 struct korina_private *lp = netdev_priv(dev);
719 int rc;
721 spin_lock_irq(&lp->lock);
722 rc = mii_ethtool_sset(&lp->mii_if, cmd);
723 spin_unlock_irq(&lp->lock);
724 korina_set_carrier(&lp->mii_if);
726 return rc;
729 static u32 netdev_get_link(struct net_device *dev)
731 struct korina_private *lp = netdev_priv(dev);
733 return mii_link_ok(&lp->mii_if);
736 static const struct ethtool_ops netdev_ethtool_ops = {
737 .get_drvinfo = netdev_get_drvinfo,
738 .get_settings = netdev_get_settings,
739 .set_settings = netdev_set_settings,
740 .get_link = netdev_get_link,
743 static int korina_alloc_ring(struct net_device *dev)
745 struct korina_private *lp = netdev_priv(dev);
746 struct sk_buff *skb;
747 int i;
749 /* Initialize the transmit descriptors */
750 for (i = 0; i < KORINA_NUM_TDS; i++) {
751 lp->td_ring[i].control = DMA_DESC_IOF;
752 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
753 lp->td_ring[i].ca = 0;
754 lp->td_ring[i].link = 0;
756 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
757 lp->tx_full = lp->tx_count = 0;
758 lp->tx_chain_status = desc_empty;
760 /* Initialize the receive descriptors */
761 for (i = 0; i < KORINA_NUM_RDS; i++) {
762 skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
763 if (!skb)
764 return -ENOMEM;
765 lp->rx_skb[i] = skb;
766 lp->rd_ring[i].control = DMA_DESC_IOD |
767 DMA_COUNT(KORINA_RBSIZE);
768 lp->rd_ring[i].devcs = 0;
769 lp->rd_ring[i].ca = CPHYSADDR(skb->data);
770 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
773 /* loop back receive descriptors, so the last
774 * descriptor points to the first one */
775 lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
776 lp->rd_ring[i - 1].control |= DMA_DESC_COD;
778 lp->rx_next_done = 0;
779 lp->rx_chain_head = 0;
780 lp->rx_chain_tail = 0;
781 lp->rx_chain_status = desc_empty;
783 return 0;
786 static void korina_free_ring(struct net_device *dev)
788 struct korina_private *lp = netdev_priv(dev);
789 int i;
791 for (i = 0; i < KORINA_NUM_RDS; i++) {
792 lp->rd_ring[i].control = 0;
793 if (lp->rx_skb[i])
794 dev_kfree_skb_any(lp->rx_skb[i]);
795 lp->rx_skb[i] = NULL;
798 for (i = 0; i < KORINA_NUM_TDS; i++) {
799 lp->td_ring[i].control = 0;
800 if (lp->tx_skb[i])
801 dev_kfree_skb_any(lp->tx_skb[i]);
802 lp->tx_skb[i] = NULL;
807 * Initialize the RC32434 ethernet controller.
809 static int korina_init(struct net_device *dev)
811 struct korina_private *lp = netdev_priv(dev);
813 /* Disable DMA */
814 korina_abort_tx(dev);
815 korina_abort_rx(dev);
817 /* reset ethernet logic */
818 writel(0, &lp->eth_regs->ethintfc);
819 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
820 dev->trans_start = jiffies;
822 /* Enable Ethernet Interface */
823 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
825 /* Allocate rings */
826 if (korina_alloc_ring(dev)) {
827 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
828 korina_free_ring(dev);
829 return -ENOMEM;
832 writel(0, &lp->rx_dma_regs->dmas);
833 /* Start Rx DMA */
834 korina_start_rx(lp, &lp->rd_ring[0]);
836 writel(readl(&lp->tx_dma_regs->dmasm) &
837 ~(DMA_STAT_FINI | DMA_STAT_ERR),
838 &lp->tx_dma_regs->dmasm);
839 writel(readl(&lp->rx_dma_regs->dmasm) &
840 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
841 &lp->rx_dma_regs->dmasm);
843 /* Accept only packets destined for this Ethernet device address */
844 writel(ETH_ARC_AB, &lp->eth_regs->etharc);
846 /* Set all Ether station address registers to their initial values */
847 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
848 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
850 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
851 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
853 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
854 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
856 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
857 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
860 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
861 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
862 &lp->eth_regs->ethmac2);
864 /* Back to back inter-packet-gap */
865 writel(0x15, &lp->eth_regs->ethipgt);
866 /* Non - Back to back inter-packet-gap */
867 writel(0x12, &lp->eth_regs->ethipgr);
869 /* Management Clock Prescaler Divisor
870 * Clock independent setting */
871 writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
872 &lp->eth_regs->ethmcp);
874 /* don't transmit until fifo contains 48b */
875 writel(48, &lp->eth_regs->ethfifott);
877 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
879 napi_enable(&lp->napi);
880 netif_start_queue(dev);
882 return 0;
886 * Restart the RC32434 ethernet controller.
888 static void korina_restart_task(struct work_struct *work)
890 struct korina_private *lp = container_of(work,
891 struct korina_private, restart_task);
892 struct net_device *dev = lp->dev;
895 * Disable interrupts
897 disable_irq(lp->rx_irq);
898 disable_irq(lp->tx_irq);
899 disable_irq(lp->ovr_irq);
900 disable_irq(lp->und_irq);
902 writel(readl(&lp->tx_dma_regs->dmasm) |
903 DMA_STAT_FINI | DMA_STAT_ERR,
904 &lp->tx_dma_regs->dmasm);
905 writel(readl(&lp->rx_dma_regs->dmasm) |
906 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
907 &lp->rx_dma_regs->dmasm);
909 korina_free_ring(dev);
911 napi_disable(&lp->napi);
913 if (korina_init(dev) < 0) {
914 printk(KERN_ERR "%s: cannot restart device\n", dev->name);
915 return;
917 korina_multicast_list(dev);
919 enable_irq(lp->und_irq);
920 enable_irq(lp->ovr_irq);
921 enable_irq(lp->tx_irq);
922 enable_irq(lp->rx_irq);
925 static void korina_clear_and_restart(struct net_device *dev, u32 value)
927 struct korina_private *lp = netdev_priv(dev);
929 netif_stop_queue(dev);
930 writel(value, &lp->eth_regs->ethintfc);
931 schedule_work(&lp->restart_task);
934 /* Ethernet Tx Underflow interrupt */
935 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
937 struct net_device *dev = dev_id;
938 struct korina_private *lp = netdev_priv(dev);
939 unsigned int und;
941 spin_lock(&lp->lock);
943 und = readl(&lp->eth_regs->ethintfc);
945 if (und & ETH_INT_FC_UND)
946 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
948 spin_unlock(&lp->lock);
950 return IRQ_HANDLED;
953 static void korina_tx_timeout(struct net_device *dev)
955 struct korina_private *lp = netdev_priv(dev);
957 schedule_work(&lp->restart_task);
960 /* Ethernet Rx Overflow interrupt */
961 static irqreturn_t
962 korina_ovr_interrupt(int irq, void *dev_id)
964 struct net_device *dev = dev_id;
965 struct korina_private *lp = netdev_priv(dev);
966 unsigned int ovr;
968 spin_lock(&lp->lock);
969 ovr = readl(&lp->eth_regs->ethintfc);
971 if (ovr & ETH_INT_FC_OVR)
972 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
974 spin_unlock(&lp->lock);
976 return IRQ_HANDLED;
979 #ifdef CONFIG_NET_POLL_CONTROLLER
980 static void korina_poll_controller(struct net_device *dev)
982 disable_irq(dev->irq);
983 korina_tx_dma_interrupt(dev->irq, dev);
984 enable_irq(dev->irq);
986 #endif
988 static int korina_open(struct net_device *dev)
990 struct korina_private *lp = netdev_priv(dev);
991 int ret;
993 /* Initialize */
994 ret = korina_init(dev);
995 if (ret < 0) {
996 printk(KERN_ERR "%s: cannot open device\n", dev->name);
997 goto out;
1000 /* Install the interrupt handler
1001 * that handles the Done Finished
1002 * Ovr and Und Events */
1003 ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1004 IRQF_DISABLED, "Korina ethernet Rx", dev);
1005 if (ret < 0) {
1006 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1007 dev->name, lp->rx_irq);
1008 goto err_release;
1010 ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1011 IRQF_DISABLED, "Korina ethernet Tx", dev);
1012 if (ret < 0) {
1013 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1014 dev->name, lp->tx_irq);
1015 goto err_free_rx_irq;
1018 /* Install handler for overrun error. */
1019 ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
1020 IRQF_DISABLED, "Ethernet Overflow", dev);
1021 if (ret < 0) {
1022 printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1023 dev->name, lp->ovr_irq);
1024 goto err_free_tx_irq;
1027 /* Install handler for underflow error. */
1028 ret = request_irq(lp->und_irq, korina_und_interrupt,
1029 IRQF_DISABLED, "Ethernet Underflow", dev);
1030 if (ret < 0) {
1031 printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1032 dev->name, lp->und_irq);
1033 goto err_free_ovr_irq;
1035 mod_timer(&lp->media_check_timer, jiffies + 1);
1036 out:
1037 return ret;
1039 err_free_ovr_irq:
1040 free_irq(lp->ovr_irq, dev);
1041 err_free_tx_irq:
1042 free_irq(lp->tx_irq, dev);
1043 err_free_rx_irq:
1044 free_irq(lp->rx_irq, dev);
1045 err_release:
1046 korina_free_ring(dev);
1047 goto out;
1050 static int korina_close(struct net_device *dev)
1052 struct korina_private *lp = netdev_priv(dev);
1053 u32 tmp;
1055 del_timer(&lp->media_check_timer);
1057 /* Disable interrupts */
1058 disable_irq(lp->rx_irq);
1059 disable_irq(lp->tx_irq);
1060 disable_irq(lp->ovr_irq);
1061 disable_irq(lp->und_irq);
1063 korina_abort_tx(dev);
1064 tmp = readl(&lp->tx_dma_regs->dmasm);
1065 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1066 writel(tmp, &lp->tx_dma_regs->dmasm);
1068 korina_abort_rx(dev);
1069 tmp = readl(&lp->rx_dma_regs->dmasm);
1070 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1071 writel(tmp, &lp->rx_dma_regs->dmasm);
1073 korina_free_ring(dev);
1075 napi_disable(&lp->napi);
1077 cancel_work_sync(&lp->restart_task);
1079 free_irq(lp->rx_irq, dev);
1080 free_irq(lp->tx_irq, dev);
1081 free_irq(lp->ovr_irq, dev);
1082 free_irq(lp->und_irq, dev);
1084 return 0;
1087 static const struct net_device_ops korina_netdev_ops = {
1088 .ndo_open = korina_open,
1089 .ndo_stop = korina_close,
1090 .ndo_start_xmit = korina_send_packet,
1091 .ndo_set_rx_mode = korina_multicast_list,
1092 .ndo_tx_timeout = korina_tx_timeout,
1093 .ndo_do_ioctl = korina_ioctl,
1094 .ndo_change_mtu = eth_change_mtu,
1095 .ndo_validate_addr = eth_validate_addr,
1096 .ndo_set_mac_address = eth_mac_addr,
1097 #ifdef CONFIG_NET_POLL_CONTROLLER
1098 .ndo_poll_controller = korina_poll_controller,
1099 #endif
1102 static int korina_probe(struct platform_device *pdev)
1104 struct korina_device *bif = platform_get_drvdata(pdev);
1105 struct korina_private *lp;
1106 struct net_device *dev;
1107 struct resource *r;
1108 int rc;
1110 dev = alloc_etherdev(sizeof(struct korina_private));
1111 if (!dev) {
1112 printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
1113 return -ENOMEM;
1115 SET_NETDEV_DEV(dev, &pdev->dev);
1116 lp = netdev_priv(dev);
1118 bif->dev = dev;
1119 memcpy(dev->dev_addr, bif->mac, 6);
1121 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1122 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1123 lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1124 lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1126 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1127 dev->base_addr = r->start;
1128 lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
1129 if (!lp->eth_regs) {
1130 printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1131 rc = -ENXIO;
1132 goto probe_err_out;
1135 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1136 lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1137 if (!lp->rx_dma_regs) {
1138 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1139 rc = -ENXIO;
1140 goto probe_err_dma_rx;
1143 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1144 lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1145 if (!lp->tx_dma_regs) {
1146 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1147 rc = -ENXIO;
1148 goto probe_err_dma_tx;
1151 lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1152 if (!lp->td_ring) {
1153 printk(KERN_ERR DRV_NAME ": cannot allocate descriptors\n");
1154 rc = -ENXIO;
1155 goto probe_err_td_ring;
1158 dma_cache_inv((unsigned long)(lp->td_ring),
1159 TD_RING_SIZE + RD_RING_SIZE);
1161 /* now convert TD_RING pointer to KSEG1 */
1162 lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1163 lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1165 spin_lock_init(&lp->lock);
1166 /* just use the rx dma irq */
1167 dev->irq = lp->rx_irq;
1168 lp->dev = dev;
1170 dev->netdev_ops = &korina_netdev_ops;
1171 dev->ethtool_ops = &netdev_ethtool_ops;
1172 dev->watchdog_timeo = TX_TIMEOUT;
1173 netif_napi_add(dev, &lp->napi, korina_poll, 64);
1175 lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1176 lp->mii_if.dev = dev;
1177 lp->mii_if.mdio_read = mdio_read;
1178 lp->mii_if.mdio_write = mdio_write;
1179 lp->mii_if.phy_id = lp->phy_addr;
1180 lp->mii_if.phy_id_mask = 0x1f;
1181 lp->mii_if.reg_num_mask = 0x1f;
1183 rc = register_netdev(dev);
1184 if (rc < 0) {
1185 printk(KERN_ERR DRV_NAME
1186 ": cannot register net device: %d\n", rc);
1187 goto probe_err_register;
1189 setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1191 INIT_WORK(&lp->restart_task, korina_restart_task);
1193 printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1194 dev->name);
1195 out:
1196 return rc;
1198 probe_err_register:
1199 kfree(lp->td_ring);
1200 probe_err_td_ring:
1201 iounmap(lp->tx_dma_regs);
1202 probe_err_dma_tx:
1203 iounmap(lp->rx_dma_regs);
1204 probe_err_dma_rx:
1205 iounmap(lp->eth_regs);
1206 probe_err_out:
1207 free_netdev(dev);
1208 goto out;
1211 static int korina_remove(struct platform_device *pdev)
1213 struct korina_device *bif = platform_get_drvdata(pdev);
1214 struct korina_private *lp = netdev_priv(bif->dev);
1216 iounmap(lp->eth_regs);
1217 iounmap(lp->rx_dma_regs);
1218 iounmap(lp->tx_dma_regs);
1220 platform_set_drvdata(pdev, NULL);
1221 unregister_netdev(bif->dev);
1222 free_netdev(bif->dev);
1224 return 0;
1227 static struct platform_driver korina_driver = {
1228 .driver.name = "korina",
1229 .probe = korina_probe,
1230 .remove = korina_remove,
1233 module_platform_driver(korina_driver);
1235 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1236 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1237 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1238 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1239 MODULE_LICENSE("GPL");