1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
23 #include "workarounds.h"
25 /**************************************************************************
29 **************************************************************************
32 /* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
52 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
54 #define EFX_FLUSH_INTERVAL 10
55 #define EFX_FLUSH_POLL_COUNT 100
57 /* Size and alignment of special buffers (4KB) */
58 #define EFX_BUF_SIZE 4096
60 /* Depth of RX flush request fifo */
61 #define EFX_RX_FLUSH_COUNT 4
63 /* Generated event code for efx_generate_test_event() */
64 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
65 (0x00010100 + (_channel)->channel)
67 /* Generated event code for efx_generate_fill_event() */
68 #define EFX_CHANNEL_MAGIC_FILL(_channel) \
69 (0x00010200 + (_channel)->channel)
71 /**************************************************************************
73 * Solarstorm hardware access
75 **************************************************************************/
77 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
80 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
84 /* Read the current event from the event queue */
85 static inline efx_qword_t
*efx_event(struct efx_channel
*channel
,
88 return ((efx_qword_t
*) (channel
->eventq
.addr
)) +
89 (index
& channel
->eventq_mask
);
92 /* See if an event is present
94 * We check both the high and low dword of the event for all ones. We
95 * wrote all ones when we cleared the event, and no valid event can
96 * have all ones in either its high or low dwords. This approach is
97 * robust against reordering.
99 * Note that using a single 64-bit comparison is incorrect; even
100 * though the CPU read will be atomic, the DMA write may not be.
102 static inline int efx_event_present(efx_qword_t
*event
)
104 return !(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
105 EFX_DWORD_IS_ALL_ONES(event
->dword
[1]));
108 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
109 const efx_oword_t
*mask
)
111 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
112 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
115 int efx_nic_test_registers(struct efx_nic
*efx
,
116 const struct efx_nic_register_test
*regs
,
119 unsigned address
= 0, i
, j
;
120 efx_oword_t mask
, imask
, original
, reg
, buf
;
122 /* Falcon should be in loopback to isolate the XMAC from the PHY */
123 WARN_ON(!LOOPBACK_INTERNAL(efx
));
125 for (i
= 0; i
< n_regs
; ++i
) {
126 address
= regs
[i
].address
;
127 mask
= imask
= regs
[i
].mask
;
128 EFX_INVERT_OWORD(imask
);
130 efx_reado(efx
, &original
, address
);
132 /* bit sweep on and off */
133 for (j
= 0; j
< 128; j
++) {
134 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
137 /* Test this testable bit can be set in isolation */
138 EFX_AND_OWORD(reg
, original
, mask
);
139 EFX_SET_OWORD32(reg
, j
, j
, 1);
141 efx_writeo(efx
, ®
, address
);
142 efx_reado(efx
, &buf
, address
);
144 if (efx_masked_compare_oword(®
, &buf
, &mask
))
147 /* Test this testable bit can be cleared in isolation */
148 EFX_OR_OWORD(reg
, original
, mask
);
149 EFX_SET_OWORD32(reg
, j
, j
, 0);
151 efx_writeo(efx
, ®
, address
);
152 efx_reado(efx
, &buf
, address
);
154 if (efx_masked_compare_oword(®
, &buf
, &mask
))
158 efx_writeo(efx
, &original
, address
);
164 netif_err(efx
, hw
, efx
->net_dev
,
165 "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
166 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
167 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
171 /**************************************************************************
173 * Special buffer handling
174 * Special buffers are used for event queues and the TX and RX
177 *************************************************************************/
180 * Initialise a special buffer
182 * This will define a buffer (previously allocated via
183 * efx_alloc_special_buffer()) in the buffer table, allowing
184 * it to be used for event queues, descriptor rings etc.
187 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
189 efx_qword_t buf_desc
;
194 EFX_BUG_ON_PARANOID(!buffer
->addr
);
196 /* Write buffer descriptors to NIC */
197 for (i
= 0; i
< buffer
->entries
; i
++) {
198 index
= buffer
->index
+ i
;
199 dma_addr
= buffer
->dma_addr
+ (i
* 4096);
200 netif_dbg(efx
, probe
, efx
->net_dev
,
201 "mapping special buffer %d at %llx\n",
202 index
, (unsigned long long)dma_addr
);
203 EFX_POPULATE_QWORD_3(buf_desc
,
204 FRF_AZ_BUF_ADR_REGION
, 0,
205 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
206 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
207 efx_write_buf_tbl(efx
, &buf_desc
, index
);
211 /* Unmaps a buffer and clears the buffer table entries */
213 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
215 efx_oword_t buf_tbl_upd
;
216 unsigned int start
= buffer
->index
;
217 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
219 if (!buffer
->entries
)
222 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
223 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
225 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
226 FRF_AZ_BUF_UPD_CMD
, 0,
227 FRF_AZ_BUF_CLR_CMD
, 1,
228 FRF_AZ_BUF_CLR_END_ID
, end
,
229 FRF_AZ_BUF_CLR_START_ID
, start
);
230 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
234 * Allocate a new special buffer
236 * This allocates memory for a new buffer, clears it and allocates a
237 * new buffer ID range. It does not write into the buffer table.
239 * This call will allocate 4KB buffers, since 8KB buffers can't be
240 * used for event queues and descriptor rings.
242 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
243 struct efx_special_buffer
*buffer
,
246 len
= ALIGN(len
, EFX_BUF_SIZE
);
248 buffer
->addr
= dma_alloc_coherent(&efx
->pci_dev
->dev
, len
,
249 &buffer
->dma_addr
, GFP_KERNEL
);
253 buffer
->entries
= len
/ EFX_BUF_SIZE
;
254 BUG_ON(buffer
->dma_addr
& (EFX_BUF_SIZE
- 1));
256 /* All zeros is a potentially valid event so memset to 0xff */
257 memset(buffer
->addr
, 0xff, len
);
259 /* Select new buffer ID */
260 buffer
->index
= efx
->next_buffer_table
;
261 efx
->next_buffer_table
+= buffer
->entries
;
263 netif_dbg(efx
, probe
, efx
->net_dev
,
264 "allocating special buffers %d-%d at %llx+%x "
265 "(virt %p phys %llx)\n", buffer
->index
,
266 buffer
->index
+ buffer
->entries
- 1,
267 (u64
)buffer
->dma_addr
, len
,
268 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
274 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
279 netif_dbg(efx
, hw
, efx
->net_dev
,
280 "deallocating special buffers %d-%d at %llx+%x "
281 "(virt %p phys %llx)\n", buffer
->index
,
282 buffer
->index
+ buffer
->entries
- 1,
283 (u64
)buffer
->dma_addr
, buffer
->len
,
284 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
286 dma_free_coherent(&efx
->pci_dev
->dev
, buffer
->len
, buffer
->addr
,
292 /**************************************************************************
294 * Generic buffer handling
295 * These buffers are used for interrupt status and MAC stats
297 **************************************************************************/
299 int efx_nic_alloc_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
,
302 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
307 memset(buffer
->addr
, 0, len
);
311 void efx_nic_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
)
314 pci_free_consistent(efx
->pci_dev
, buffer
->len
,
315 buffer
->addr
, buffer
->dma_addr
);
320 /**************************************************************************
324 **************************************************************************/
326 /* Returns a pointer to the specified transmit descriptor in the TX
327 * descriptor queue belonging to the specified channel.
329 static inline efx_qword_t
*
330 efx_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int index
)
332 return ((efx_qword_t
*) (tx_queue
->txd
.addr
)) + index
;
335 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
336 static inline void efx_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
341 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
342 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
343 efx_writed_page(tx_queue
->efx
, ®
,
344 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
347 /* Write pointer and first descriptor for TX descriptor ring */
348 static inline void efx_push_tx_desc(struct efx_tx_queue
*tx_queue
,
349 const efx_qword_t
*txd
)
354 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN
!= 0);
355 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER
!= FR_BZ_TX_DESC_UPD_P0
);
357 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
358 EFX_POPULATE_OWORD_2(reg
, FRF_AZ_TX_DESC_PUSH_CMD
, true,
359 FRF_AZ_TX_DESC_WPTR
, write_ptr
);
361 efx_writeo_page(tx_queue
->efx
, ®
,
362 FR_BZ_TX_DESC_UPD_P0
, tx_queue
->queue
);
366 efx_may_push_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int write_count
)
368 unsigned empty_read_count
= ACCESS_ONCE(tx_queue
->empty_read_count
);
370 if (empty_read_count
== 0)
373 tx_queue
->empty_read_count
= 0;
374 return ((empty_read_count
^ write_count
) & ~EFX_EMPTY_COUNT_VALID
) == 0;
377 /* For each entry inserted into the software descriptor ring, create a
378 * descriptor in the hardware TX descriptor ring (in host memory), and
381 void efx_nic_push_buffers(struct efx_tx_queue
*tx_queue
)
384 struct efx_tx_buffer
*buffer
;
387 unsigned old_write_count
= tx_queue
->write_count
;
389 BUG_ON(tx_queue
->write_count
== tx_queue
->insert_count
);
392 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
393 buffer
= &tx_queue
->buffer
[write_ptr
];
394 txd
= efx_tx_desc(tx_queue
, write_ptr
);
395 ++tx_queue
->write_count
;
397 /* Create TX descriptor ring entry */
398 EFX_POPULATE_QWORD_4(*txd
,
399 FSF_AZ_TX_KER_CONT
, buffer
->continuation
,
400 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
401 FSF_AZ_TX_KER_BUF_REGION
, 0,
402 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
403 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
405 wmb(); /* Ensure descriptors are written before they are fetched */
407 if (efx_may_push_tx_desc(tx_queue
, old_write_count
)) {
408 txd
= efx_tx_desc(tx_queue
,
409 old_write_count
& tx_queue
->ptr_mask
);
410 efx_push_tx_desc(tx_queue
, txd
);
413 efx_notify_tx_desc(tx_queue
);
417 /* Allocate hardware resources for a TX queue */
418 int efx_nic_probe_tx(struct efx_tx_queue
*tx_queue
)
420 struct efx_nic
*efx
= tx_queue
->efx
;
423 entries
= tx_queue
->ptr_mask
+ 1;
424 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
425 entries
* sizeof(efx_qword_t
));
428 void efx_nic_init_tx(struct efx_tx_queue
*tx_queue
)
430 struct efx_nic
*efx
= tx_queue
->efx
;
433 tx_queue
->flushed
= FLUSH_NONE
;
435 /* Pin TX descriptor ring */
436 efx_init_special_buffer(efx
, &tx_queue
->txd
);
438 /* Push TX descriptor ring to card */
439 EFX_POPULATE_OWORD_10(reg
,
440 FRF_AZ_TX_DESCQ_EN
, 1,
441 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
442 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
443 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
444 FRF_AZ_TX_DESCQ_EVQ_ID
,
445 tx_queue
->channel
->channel
,
446 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
447 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
448 FRF_AZ_TX_DESCQ_SIZE
,
449 __ffs(tx_queue
->txd
.entries
),
450 FRF_AZ_TX_DESCQ_TYPE
, 0,
451 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
453 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
454 int csum
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
455 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
456 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_TCP_CHKSM_DIS
,
460 efx_writeo_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
463 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
464 /* Only 128 bits in this register */
465 BUILD_BUG_ON(EFX_MAX_TX_QUEUES
> 128);
467 efx_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
468 if (tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
)
469 clear_bit_le(tx_queue
->queue
, (void *)®
);
471 set_bit_le(tx_queue
->queue
, (void *)®
);
472 efx_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
475 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
476 EFX_POPULATE_OWORD_1(reg
,
478 (tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
480 FFE_BZ_TX_PACE_RESERVED
);
481 efx_writeo_table(efx
, ®
, FR_BZ_TX_PACE_TBL
,
486 static void efx_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
488 struct efx_nic
*efx
= tx_queue
->efx
;
489 efx_oword_t tx_flush_descq
;
491 tx_queue
->flushed
= FLUSH_PENDING
;
493 /* Post a flush command */
494 EFX_POPULATE_OWORD_2(tx_flush_descq
,
495 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
496 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
497 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
500 void efx_nic_fini_tx(struct efx_tx_queue
*tx_queue
)
502 struct efx_nic
*efx
= tx_queue
->efx
;
503 efx_oword_t tx_desc_ptr
;
505 /* The queue should have been flushed */
506 WARN_ON(tx_queue
->flushed
!= FLUSH_DONE
);
508 /* Remove TX descriptor ring from card */
509 EFX_ZERO_OWORD(tx_desc_ptr
);
510 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
513 /* Unpin TX descriptor ring */
514 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
517 /* Free buffers backing TX queue */
518 void efx_nic_remove_tx(struct efx_tx_queue
*tx_queue
)
520 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
523 /**************************************************************************
527 **************************************************************************/
529 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
530 static inline efx_qword_t
*
531 efx_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
533 return ((efx_qword_t
*) (rx_queue
->rxd
.addr
)) + index
;
536 /* This creates an entry in the RX descriptor queue */
538 efx_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
540 struct efx_rx_buffer
*rx_buf
;
543 rxd
= efx_rx_desc(rx_queue
, index
);
544 rx_buf
= efx_rx_buffer(rx_queue
, index
);
545 EFX_POPULATE_QWORD_3(*rxd
,
546 FSF_AZ_RX_KER_BUF_SIZE
,
548 rx_queue
->efx
->type
->rx_buffer_padding
,
549 FSF_AZ_RX_KER_BUF_REGION
, 0,
550 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
553 /* This writes to the RX_DESC_WPTR register for the specified receive
556 void efx_nic_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
558 struct efx_nic
*efx
= rx_queue
->efx
;
562 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
565 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
566 ++rx_queue
->notified_count
;
570 write_ptr
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
571 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
572 efx_writed_page(efx
, ®
, FR_AZ_RX_DESC_UPD_DWORD_P0
,
573 efx_rx_queue_index(rx_queue
));
576 int efx_nic_probe_rx(struct efx_rx_queue
*rx_queue
)
578 struct efx_nic
*efx
= rx_queue
->efx
;
581 entries
= rx_queue
->ptr_mask
+ 1;
582 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
583 entries
* sizeof(efx_qword_t
));
586 void efx_nic_init_rx(struct efx_rx_queue
*rx_queue
)
588 efx_oword_t rx_desc_ptr
;
589 struct efx_nic
*efx
= rx_queue
->efx
;
590 bool is_b0
= efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
;
591 bool iscsi_digest_en
= is_b0
;
593 netif_dbg(efx
, hw
, efx
->net_dev
,
594 "RX queue %d ring in special buffers %d-%d\n",
595 efx_rx_queue_index(rx_queue
), rx_queue
->rxd
.index
,
596 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
598 rx_queue
->flushed
= FLUSH_NONE
;
600 /* Pin RX descriptor ring */
601 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
603 /* Push RX descriptor ring to card */
604 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
605 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
606 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
607 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
608 FRF_AZ_RX_DESCQ_EVQ_ID
,
609 efx_rx_queue_channel(rx_queue
)->channel
,
610 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
611 FRF_AZ_RX_DESCQ_LABEL
,
612 efx_rx_queue_index(rx_queue
),
613 FRF_AZ_RX_DESCQ_SIZE
,
614 __ffs(rx_queue
->rxd
.entries
),
615 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
616 /* For >=B0 this is scatter so disable */
617 FRF_AZ_RX_DESCQ_JUMBO
, !is_b0
,
618 FRF_AZ_RX_DESCQ_EN
, 1);
619 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
620 efx_rx_queue_index(rx_queue
));
623 static void efx_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
625 struct efx_nic
*efx
= rx_queue
->efx
;
626 efx_oword_t rx_flush_descq
;
628 rx_queue
->flushed
= FLUSH_PENDING
;
630 /* Post a flush command */
631 EFX_POPULATE_OWORD_2(rx_flush_descq
,
632 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
633 FRF_AZ_RX_FLUSH_DESCQ
,
634 efx_rx_queue_index(rx_queue
));
635 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
638 void efx_nic_fini_rx(struct efx_rx_queue
*rx_queue
)
640 efx_oword_t rx_desc_ptr
;
641 struct efx_nic
*efx
= rx_queue
->efx
;
643 /* The queue should already have been flushed */
644 WARN_ON(rx_queue
->flushed
!= FLUSH_DONE
);
646 /* Remove RX descriptor ring from card */
647 EFX_ZERO_OWORD(rx_desc_ptr
);
648 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
649 efx_rx_queue_index(rx_queue
));
651 /* Unpin RX descriptor ring */
652 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
655 /* Free buffers backing RX queue */
656 void efx_nic_remove_rx(struct efx_rx_queue
*rx_queue
)
658 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
661 /**************************************************************************
663 * Event queue processing
664 * Event queues are processed by per-channel tasklets.
666 **************************************************************************/
668 /* Update a channel's event queue's read pointer (RPTR) register
670 * This writes the EVQ_RPTR_REG register for the specified channel's
673 void efx_nic_eventq_read_ack(struct efx_channel
*channel
)
676 struct efx_nic
*efx
= channel
->efx
;
678 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
,
679 channel
->eventq_read_ptr
& channel
->eventq_mask
);
680 efx_writed_table(efx
, ®
, efx
->type
->evq_rptr_tbl_base
,
684 /* Use HW to insert a SW defined event */
685 static void efx_generate_event(struct efx_channel
*channel
, efx_qword_t
*event
)
687 efx_oword_t drv_ev_reg
;
689 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
690 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
691 drv_ev_reg
.u32
[0] = event
->u32
[0];
692 drv_ev_reg
.u32
[1] = event
->u32
[1];
693 drv_ev_reg
.u32
[2] = 0;
694 drv_ev_reg
.u32
[3] = 0;
695 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, channel
->channel
);
696 efx_writeo(channel
->efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
699 /* Handle a transmit completion event
701 * The NIC batches TX completion events; the message we receive is of
702 * the form "complete all TX events up to this index".
705 efx_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
707 unsigned int tx_ev_desc_ptr
;
708 unsigned int tx_ev_q_label
;
709 struct efx_tx_queue
*tx_queue
;
710 struct efx_nic
*efx
= channel
->efx
;
713 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
714 /* Transmit completion */
715 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
716 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
717 tx_queue
= efx_channel_get_tx_queue(
718 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
719 tx_packets
= ((tx_ev_desc_ptr
- tx_queue
->read_count
) &
721 channel
->irq_mod_score
+= tx_packets
;
722 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
723 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
724 /* Rewrite the FIFO write pointer */
725 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
726 tx_queue
= efx_channel_get_tx_queue(
727 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
729 if (efx_dev_registered(efx
))
730 netif_tx_lock(efx
->net_dev
);
731 efx_notify_tx_desc(tx_queue
);
732 if (efx_dev_registered(efx
))
733 netif_tx_unlock(efx
->net_dev
);
734 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
) &&
735 EFX_WORKAROUND_10727(efx
)) {
736 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
738 netif_err(efx
, tx_err
, efx
->net_dev
,
739 "channel %d unexpected TX event "
740 EFX_QWORD_FMT
"\n", channel
->channel
,
741 EFX_QWORD_VAL(*event
));
747 /* Detect errors included in the rx_evt_pkt_ok bit. */
748 static void efx_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
749 const efx_qword_t
*event
,
753 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
754 struct efx_nic
*efx
= rx_queue
->efx
;
755 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
756 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
757 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
758 bool rx_ev_other_err
, rx_ev_pause_frm
;
759 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
760 unsigned rx_ev_pkt_type
;
762 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
763 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
764 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
765 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
766 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
767 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
768 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
769 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
770 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
771 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
772 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
773 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
774 rx_ev_drib_nib
= ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) ?
775 0 : EFX_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
776 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
778 /* Every error apart from tobe_disc and pause_frm */
779 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
780 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
781 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
783 /* Count errors that are not in MAC stats. Ignore expected
784 * checksum errors during self-test. */
786 ++channel
->n_rx_frm_trunc
;
787 else if (rx_ev_tobe_disc
)
788 ++channel
->n_rx_tobe_disc
;
789 else if (!efx
->loopback_selftest
) {
790 if (rx_ev_ip_hdr_chksum_err
)
791 ++channel
->n_rx_ip_hdr_chksum_err
;
792 else if (rx_ev_tcp_udp_chksum_err
)
793 ++channel
->n_rx_tcp_udp_chksum_err
;
796 /* The frame must be discarded if any of these are true. */
797 *discard
= (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
798 rx_ev_tobe_disc
| rx_ev_pause_frm
);
800 /* TOBE_DISC is expected on unicast mismatches; don't print out an
801 * error message. FRM_TRUNC indicates RXDP dropped the packet due
802 * to a FIFO overflow.
804 #ifdef EFX_ENABLE_DEBUG
805 if (rx_ev_other_err
&& net_ratelimit()) {
806 netif_dbg(efx
, rx_err
, efx
->net_dev
,
807 " RX queue %d unexpected RX event "
808 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
809 efx_rx_queue_index(rx_queue
), EFX_QWORD_VAL(*event
),
810 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
811 rx_ev_ip_hdr_chksum_err
?
812 " [IP_HDR_CHKSUM_ERR]" : "",
813 rx_ev_tcp_udp_chksum_err
?
814 " [TCP_UDP_CHKSUM_ERR]" : "",
815 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
816 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
817 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
818 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
819 rx_ev_pause_frm
? " [PAUSE]" : "");
824 /* Handle receive events that are not in-order. */
826 efx_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
828 struct efx_nic
*efx
= rx_queue
->efx
;
829 unsigned expected
, dropped
;
831 expected
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
832 dropped
= (index
- expected
) & rx_queue
->ptr_mask
;
833 netif_info(efx
, rx_err
, efx
->net_dev
,
834 "dropped %d events (index=%d expected=%d)\n",
835 dropped
, index
, expected
);
837 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
838 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
841 /* Handle a packet received event
843 * The NIC gives a "discard" flag if it's a unicast packet with the
844 * wrong destination address
845 * Also "is multicast" and "matches multicast filter" flags can be used to
846 * discard non-matching multicast packets.
849 efx_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
851 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
852 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
853 unsigned expected_ptr
;
854 bool rx_ev_pkt_ok
, discard
= false, checksummed
;
855 struct efx_rx_queue
*rx_queue
;
857 /* Basic packet information */
858 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
859 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
860 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
861 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
));
862 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
) != 1);
863 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
866 rx_queue
= efx_channel_get_rx_queue(channel
);
868 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
869 expected_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
870 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
))
871 efx_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
);
873 if (likely(rx_ev_pkt_ok
)) {
874 /* If packet is marked as OK and packet type is TCP/IP or
875 * UDP/IP, then we can rely on the hardware checksum.
878 rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
||
879 rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
;
881 efx_handle_rx_not_ok(rx_queue
, event
, &rx_ev_pkt_ok
, &discard
);
885 /* Detect multicast packets that didn't match the filter */
886 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
887 if (rx_ev_mcast_pkt
) {
888 unsigned int rx_ev_mcast_hash_match
=
889 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
891 if (unlikely(!rx_ev_mcast_hash_match
)) {
892 ++channel
->n_rx_mcast_mismatch
;
897 channel
->irq_mod_score
+= 2;
899 /* Handle received packet */
900 efx_rx_packet(rx_queue
, rx_ev_desc_ptr
, rx_ev_byte_cnt
,
901 checksummed
, discard
);
905 efx_handle_generated_event(struct efx_channel
*channel
, efx_qword_t
*event
)
907 struct efx_nic
*efx
= channel
->efx
;
910 code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
911 if (code
== EFX_CHANNEL_MAGIC_TEST(channel
))
913 else if (code
== EFX_CHANNEL_MAGIC_FILL(channel
))
914 /* The queue must be empty, so we won't receive any rx
915 * events, so efx_process_channel() won't refill the
916 * queue. Refill it here */
917 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel
));
919 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
920 "generated event "EFX_QWORD_FMT
"\n",
921 channel
->channel
, EFX_QWORD_VAL(*event
));
925 efx_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
927 struct efx_nic
*efx
= channel
->efx
;
928 unsigned int ev_sub_code
;
929 unsigned int ev_sub_data
;
931 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
932 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
934 switch (ev_sub_code
) {
935 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
936 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
937 channel
->channel
, ev_sub_data
);
939 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
940 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
941 channel
->channel
, ev_sub_data
);
943 case FSE_AZ_EVQ_INIT_DONE_EV
:
944 netif_dbg(efx
, hw
, efx
->net_dev
,
945 "channel %d EVQ %d initialised\n",
946 channel
->channel
, ev_sub_data
);
948 case FSE_AZ_SRM_UPD_DONE_EV
:
949 netif_vdbg(efx
, hw
, efx
->net_dev
,
950 "channel %d SRAM update done\n", channel
->channel
);
952 case FSE_AZ_WAKE_UP_EV
:
953 netif_vdbg(efx
, hw
, efx
->net_dev
,
954 "channel %d RXQ %d wakeup event\n",
955 channel
->channel
, ev_sub_data
);
957 case FSE_AZ_TIMER_EV
:
958 netif_vdbg(efx
, hw
, efx
->net_dev
,
959 "channel %d RX queue %d timer expired\n",
960 channel
->channel
, ev_sub_data
);
962 case FSE_AA_RX_RECOVER_EV
:
963 netif_err(efx
, rx_err
, efx
->net_dev
,
964 "channel %d seen DRIVER RX_RESET event. "
965 "Resetting.\n", channel
->channel
);
966 atomic_inc(&efx
->rx_reset
);
967 efx_schedule_reset(efx
,
968 EFX_WORKAROUND_6555(efx
) ?
969 RESET_TYPE_RX_RECOVERY
:
972 case FSE_BZ_RX_DSC_ERROR_EV
:
973 netif_err(efx
, rx_err
, efx
->net_dev
,
974 "RX DMA Q %d reports descriptor fetch error."
975 " RX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
976 efx_schedule_reset(efx
, RESET_TYPE_RX_DESC_FETCH
);
978 case FSE_BZ_TX_DSC_ERROR_EV
:
979 netif_err(efx
, tx_err
, efx
->net_dev
,
980 "TX DMA Q %d reports descriptor fetch error."
981 " TX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
982 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
985 netif_vdbg(efx
, hw
, efx
->net_dev
,
986 "channel %d unknown driver event code %d "
987 "data %04x\n", channel
->channel
, ev_sub_code
,
993 int efx_nic_process_eventq(struct efx_channel
*channel
, int budget
)
995 struct efx_nic
*efx
= channel
->efx
;
996 unsigned int read_ptr
;
997 efx_qword_t event
, *p_event
;
1002 read_ptr
= channel
->eventq_read_ptr
;
1005 p_event
= efx_event(channel
, read_ptr
);
1008 if (!efx_event_present(&event
))
1012 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1013 "channel %d event is "EFX_QWORD_FMT
"\n",
1014 channel
->channel
, EFX_QWORD_VAL(event
));
1016 /* Clear this event by marking it all ones */
1017 EFX_SET_QWORD(*p_event
);
1021 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1024 case FSE_AZ_EV_CODE_RX_EV
:
1025 efx_handle_rx_event(channel
, &event
);
1026 if (++spent
== budget
)
1029 case FSE_AZ_EV_CODE_TX_EV
:
1030 tx_packets
+= efx_handle_tx_event(channel
, &event
);
1031 if (tx_packets
> efx
->txq_entries
) {
1036 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1037 efx_handle_generated_event(channel
, &event
);
1039 case FSE_AZ_EV_CODE_DRIVER_EV
:
1040 efx_handle_driver_event(channel
, &event
);
1042 case FSE_CZ_EV_CODE_MCDI_EV
:
1043 efx_mcdi_process_event(channel
, &event
);
1045 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1046 if (efx
->type
->handle_global_event
&&
1047 efx
->type
->handle_global_event(channel
, &event
))
1049 /* else fall through */
1051 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1052 "channel %d unknown event type %d (data "
1053 EFX_QWORD_FMT
")\n", channel
->channel
,
1054 ev_code
, EFX_QWORD_VAL(event
));
1059 channel
->eventq_read_ptr
= read_ptr
;
1063 /* Check whether an event is present in the eventq at the current
1064 * read pointer. Only useful for self-test.
1066 bool efx_nic_event_present(struct efx_channel
*channel
)
1068 return efx_event_present(efx_event(channel
, channel
->eventq_read_ptr
));
1071 /* Allocate buffer table entries for event queue */
1072 int efx_nic_probe_eventq(struct efx_channel
*channel
)
1074 struct efx_nic
*efx
= channel
->efx
;
1077 entries
= channel
->eventq_mask
+ 1;
1078 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1079 entries
* sizeof(efx_qword_t
));
1082 void efx_nic_init_eventq(struct efx_channel
*channel
)
1085 struct efx_nic
*efx
= channel
->efx
;
1087 netif_dbg(efx
, hw
, efx
->net_dev
,
1088 "channel %d event queue in special buffers %d-%d\n",
1089 channel
->channel
, channel
->eventq
.index
,
1090 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1092 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1093 EFX_POPULATE_OWORD_3(reg
,
1094 FRF_CZ_TIMER_Q_EN
, 1,
1095 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1096 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1097 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1100 /* Pin event queue buffer */
1101 efx_init_special_buffer(efx
, &channel
->eventq
);
1103 /* Fill event queue with all ones (i.e. empty events) */
1104 memset(channel
->eventq
.addr
, 0xff, channel
->eventq
.len
);
1106 /* Push event queue to card */
1107 EFX_POPULATE_OWORD_3(reg
,
1109 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1110 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1111 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1114 efx
->type
->push_irq_moderation(channel
);
1117 void efx_nic_fini_eventq(struct efx_channel
*channel
)
1120 struct efx_nic
*efx
= channel
->efx
;
1122 /* Remove event queue from card */
1123 EFX_ZERO_OWORD(reg
);
1124 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1126 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1127 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1129 /* Unpin event queue */
1130 efx_fini_special_buffer(efx
, &channel
->eventq
);
1133 /* Free buffers backing event queue */
1134 void efx_nic_remove_eventq(struct efx_channel
*channel
)
1136 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1140 void efx_nic_generate_test_event(struct efx_channel
*channel
)
1142 unsigned int magic
= EFX_CHANNEL_MAGIC_TEST(channel
);
1143 efx_qword_t test_event
;
1145 EFX_POPULATE_QWORD_2(test_event
, FSF_AZ_EV_CODE
,
1146 FSE_AZ_EV_CODE_DRV_GEN_EV
,
1147 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
1148 efx_generate_event(channel
, &test_event
);
1151 void efx_nic_generate_fill_event(struct efx_channel
*channel
)
1153 unsigned int magic
= EFX_CHANNEL_MAGIC_FILL(channel
);
1154 efx_qword_t test_event
;
1156 EFX_POPULATE_QWORD_2(test_event
, FSF_AZ_EV_CODE
,
1157 FSE_AZ_EV_CODE_DRV_GEN_EV
,
1158 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
1159 efx_generate_event(channel
, &test_event
);
1162 /**************************************************************************
1166 **************************************************************************/
1169 static void efx_poll_flush_events(struct efx_nic
*efx
)
1171 struct efx_channel
*channel
= efx_get_channel(efx
, 0);
1172 struct efx_tx_queue
*tx_queue
;
1173 struct efx_rx_queue
*rx_queue
;
1174 unsigned int read_ptr
= channel
->eventq_read_ptr
;
1175 unsigned int end_ptr
= read_ptr
+ channel
->eventq_mask
- 1;
1178 efx_qword_t
*event
= efx_event(channel
, read_ptr
);
1179 int ev_code
, ev_sub_code
, ev_queue
;
1182 if (!efx_event_present(event
))
1185 ev_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_EV_CODE
);
1186 ev_sub_code
= EFX_QWORD_FIELD(*event
,
1187 FSF_AZ_DRIVER_EV_SUBCODE
);
1188 if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1189 ev_sub_code
== FSE_AZ_TX_DESCQ_FLS_DONE_EV
) {
1190 ev_queue
= EFX_QWORD_FIELD(*event
,
1191 FSF_AZ_DRIVER_EV_SUBDATA
);
1192 if (ev_queue
< EFX_TXQ_TYPES
* efx
->n_tx_channels
) {
1193 tx_queue
= efx_get_tx_queue(
1194 efx
, ev_queue
/ EFX_TXQ_TYPES
,
1195 ev_queue
% EFX_TXQ_TYPES
);
1196 tx_queue
->flushed
= FLUSH_DONE
;
1198 } else if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1199 ev_sub_code
== FSE_AZ_RX_DESCQ_FLS_DONE_EV
) {
1200 ev_queue
= EFX_QWORD_FIELD(
1201 *event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1202 ev_failed
= EFX_QWORD_FIELD(
1203 *event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1204 if (ev_queue
< efx
->n_rx_channels
) {
1205 rx_queue
= efx_get_rx_queue(efx
, ev_queue
);
1207 ev_failed
? FLUSH_FAILED
: FLUSH_DONE
;
1211 /* We're about to destroy the queue anyway, so
1212 * it's ok to throw away every non-flush event */
1213 EFX_SET_QWORD(*event
);
1216 } while (read_ptr
!= end_ptr
);
1218 channel
->eventq_read_ptr
= read_ptr
;
1221 /* Handle tx and rx flushes at the same time, since they run in
1222 * parallel in the hardware and there's no reason for us to
1224 int efx_nic_flush_queues(struct efx_nic
*efx
)
1226 struct efx_channel
*channel
;
1227 struct efx_rx_queue
*rx_queue
;
1228 struct efx_tx_queue
*tx_queue
;
1229 int i
, tx_pending
, rx_pending
;
1231 /* If necessary prepare the hardware for flushing */
1232 efx
->type
->prepare_flush(efx
);
1234 /* Flush all tx queues in parallel */
1235 efx_for_each_channel(channel
, efx
) {
1236 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
) {
1237 if (tx_queue
->initialised
)
1238 efx_flush_tx_queue(tx_queue
);
1242 /* The hardware supports four concurrent rx flushes, each of which may
1243 * need to be retried if there is an outstanding descriptor fetch */
1244 for (i
= 0; i
< EFX_FLUSH_POLL_COUNT
; ++i
) {
1245 rx_pending
= tx_pending
= 0;
1246 efx_for_each_channel(channel
, efx
) {
1247 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1248 if (rx_queue
->flushed
== FLUSH_PENDING
)
1252 efx_for_each_channel(channel
, efx
) {
1253 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1254 if (rx_pending
== EFX_RX_FLUSH_COUNT
)
1256 if (rx_queue
->flushed
== FLUSH_FAILED
||
1257 rx_queue
->flushed
== FLUSH_NONE
) {
1258 efx_flush_rx_queue(rx_queue
);
1262 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
) {
1263 if (tx_queue
->initialised
&&
1264 tx_queue
->flushed
!= FLUSH_DONE
)
1269 if (rx_pending
== 0 && tx_pending
== 0)
1272 msleep(EFX_FLUSH_INTERVAL
);
1273 efx_poll_flush_events(efx
);
1276 /* Mark the queues as all flushed. We're going to return failure
1277 * leading to a reset, or fake up success anyway */
1278 efx_for_each_channel(channel
, efx
) {
1279 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
) {
1280 if (tx_queue
->initialised
&&
1281 tx_queue
->flushed
!= FLUSH_DONE
)
1282 netif_err(efx
, hw
, efx
->net_dev
,
1283 "tx queue %d flush command timed out\n",
1285 tx_queue
->flushed
= FLUSH_DONE
;
1287 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1288 if (rx_queue
->flushed
!= FLUSH_DONE
)
1289 netif_err(efx
, hw
, efx
->net_dev
,
1290 "rx queue %d flush command timed out\n",
1291 efx_rx_queue_index(rx_queue
));
1292 rx_queue
->flushed
= FLUSH_DONE
;
1299 /**************************************************************************
1301 * Hardware interrupts
1302 * The hardware interrupt handler does very little work; all the event
1303 * queue processing is carried out by per-channel tasklets.
1305 **************************************************************************/
1307 /* Enable/disable/generate interrupts */
1308 static inline void efx_nic_interrupts(struct efx_nic
*efx
,
1309 bool enabled
, bool force
)
1311 efx_oword_t int_en_reg_ker
;
1313 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1314 FRF_AZ_KER_INT_LEVE_SEL
, efx
->fatal_irq_level
,
1315 FRF_AZ_KER_INT_KER
, force
,
1316 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1317 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1320 void efx_nic_enable_interrupts(struct efx_nic
*efx
)
1322 struct efx_channel
*channel
;
1324 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1325 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1327 /* Enable interrupts */
1328 efx_nic_interrupts(efx
, true, false);
1330 /* Force processing of all the channels to get the EVQ RPTRs up to
1332 efx_for_each_channel(channel
, efx
)
1333 efx_schedule_channel(channel
);
1336 void efx_nic_disable_interrupts(struct efx_nic
*efx
)
1338 /* Disable interrupts */
1339 efx_nic_interrupts(efx
, false, false);
1342 /* Generate a test interrupt
1343 * Interrupt must already have been enabled, otherwise nasty things
1346 void efx_nic_generate_interrupt(struct efx_nic
*efx
)
1348 efx_nic_interrupts(efx
, true, true);
1351 /* Process a fatal interrupt
1352 * Disable bus mastering ASAP and schedule a reset
1354 irqreturn_t
efx_nic_fatal_interrupt(struct efx_nic
*efx
)
1356 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1357 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1358 efx_oword_t fatal_intr
;
1359 int error
, mem_perr
;
1361 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1362 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1364 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EFX_OWORD_FMT
" status "
1365 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1366 EFX_OWORD_VAL(fatal_intr
),
1367 error
? "disabling bus mastering" : "no recognised error");
1369 /* If this is a memory parity error dump which blocks are offending */
1370 mem_perr
= (EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1371 EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1374 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1375 netif_err(efx
, hw
, efx
->net_dev
,
1376 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT
"\n",
1377 EFX_OWORD_VAL(reg
));
1380 /* Disable both devices */
1381 pci_clear_master(efx
->pci_dev
);
1382 if (efx_nic_is_dual_func(efx
))
1383 pci_clear_master(nic_data
->pci_dev2
);
1384 efx_nic_disable_interrupts(efx
);
1386 /* Count errors and reset or disable the NIC accordingly */
1387 if (efx
->int_error_count
== 0 ||
1388 time_after(jiffies
, efx
->int_error_expire
)) {
1389 efx
->int_error_count
= 0;
1390 efx
->int_error_expire
=
1391 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1393 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1394 netif_err(efx
, hw
, efx
->net_dev
,
1395 "SYSTEM ERROR - reset scheduled\n");
1396 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1398 netif_err(efx
, hw
, efx
->net_dev
,
1399 "SYSTEM ERROR - max number of errors seen."
1400 "NIC will be disabled\n");
1401 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1407 /* Handle a legacy interrupt
1408 * Acknowledges the interrupt and schedule event queue processing.
1410 static irqreturn_t
efx_legacy_interrupt(int irq
, void *dev_id
)
1412 struct efx_nic
*efx
= dev_id
;
1413 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1414 irqreturn_t result
= IRQ_NONE
;
1415 struct efx_channel
*channel
;
1420 /* Could this be ours? If interrupts are disabled then the
1421 * channel state may not be valid.
1423 if (!efx
->legacy_irq_enabled
)
1426 /* Read the ISR which also ACKs the interrupts */
1427 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1428 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1430 /* Check to see if we have a serious error condition */
1431 if (queues
& (1U << efx
->fatal_irq_level
)) {
1432 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1433 if (unlikely(syserr
))
1434 return efx_nic_fatal_interrupt(efx
);
1438 if (EFX_WORKAROUND_15783(efx
))
1439 efx
->irq_zero_count
= 0;
1441 /* Schedule processing of any interrupting queues */
1442 efx_for_each_channel(channel
, efx
) {
1444 efx_schedule_channel(channel
);
1447 result
= IRQ_HANDLED
;
1449 } else if (EFX_WORKAROUND_15783(efx
)) {
1452 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1453 * because this might be a shared interrupt. */
1454 if (efx
->irq_zero_count
++ == 0)
1455 result
= IRQ_HANDLED
;
1457 /* Ensure we schedule or rearm all event queues */
1458 efx_for_each_channel(channel
, efx
) {
1459 event
= efx_event(channel
, channel
->eventq_read_ptr
);
1460 if (efx_event_present(event
))
1461 efx_schedule_channel(channel
);
1463 efx_nic_eventq_read_ack(channel
);
1467 if (result
== IRQ_HANDLED
) {
1468 efx
->last_irq_cpu
= raw_smp_processor_id();
1469 netif_vdbg(efx
, intr
, efx
->net_dev
,
1470 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1471 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1477 /* Handle an MSI interrupt
1479 * Handle an MSI hardware interrupt. This routine schedules event
1480 * queue processing. No interrupt acknowledgement cycle is necessary.
1481 * Also, we never need to check that the interrupt is for us, since
1482 * MSI interrupts cannot be shared.
1484 static irqreturn_t
efx_msi_interrupt(int irq
, void *dev_id
)
1486 struct efx_channel
*channel
= *(struct efx_channel
**)dev_id
;
1487 struct efx_nic
*efx
= channel
->efx
;
1488 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1491 efx
->last_irq_cpu
= raw_smp_processor_id();
1492 netif_vdbg(efx
, intr
, efx
->net_dev
,
1493 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1494 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1496 /* Check to see if we have a serious error condition */
1497 if (channel
->channel
== efx
->fatal_irq_level
) {
1498 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1499 if (unlikely(syserr
))
1500 return efx_nic_fatal_interrupt(efx
);
1503 /* Schedule processing of the channel */
1504 efx_schedule_channel(channel
);
1510 /* Setup RSS indirection table.
1511 * This maps from the hash value of the packet to RXQ
1513 void efx_nic_push_rx_indir_table(struct efx_nic
*efx
)
1518 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
1521 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1522 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1524 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1525 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1526 efx
->rx_indir_table
[i
]);
1527 efx_writed_table(efx
, &dword
, FR_BZ_RX_INDIRECTION_TBL
, i
);
1531 /* Hook interrupt handler(s)
1532 * Try MSI and then legacy interrupts.
1534 int efx_nic_init_interrupt(struct efx_nic
*efx
)
1536 struct efx_channel
*channel
;
1539 if (!EFX_INT_MODE_USE_MSI(efx
)) {
1540 irq_handler_t handler
;
1541 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1542 handler
= efx_legacy_interrupt
;
1544 handler
= falcon_legacy_interrupt_a1
;
1546 rc
= request_irq(efx
->legacy_irq
, handler
, IRQF_SHARED
,
1549 netif_err(efx
, drv
, efx
->net_dev
,
1550 "failed to hook legacy IRQ %d\n",
1557 /* Hook MSI or MSI-X interrupt */
1558 efx_for_each_channel(channel
, efx
) {
1559 rc
= request_irq(channel
->irq
, efx_msi_interrupt
,
1560 IRQF_PROBE_SHARED
, /* Not shared */
1561 efx
->channel_name
[channel
->channel
],
1562 &efx
->channel
[channel
->channel
]);
1564 netif_err(efx
, drv
, efx
->net_dev
,
1565 "failed to hook IRQ %d\n", channel
->irq
);
1573 efx_for_each_channel(channel
, efx
)
1574 free_irq(channel
->irq
, &efx
->channel
[channel
->channel
]);
1579 void efx_nic_fini_interrupt(struct efx_nic
*efx
)
1581 struct efx_channel
*channel
;
1584 /* Disable MSI/MSI-X interrupts */
1585 efx_for_each_channel(channel
, efx
) {
1587 free_irq(channel
->irq
, &efx
->channel
[channel
->channel
]);
1590 /* ACK legacy interrupt */
1591 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1592 efx_reado(efx
, ®
, FR_BZ_INT_ISR0
);
1594 falcon_irq_ack_a1(efx
);
1596 /* Disable legacy interrupt */
1597 if (efx
->legacy_irq
)
1598 free_irq(efx
->legacy_irq
, efx
);
1601 u32
efx_nic_fpga_ver(struct efx_nic
*efx
)
1603 efx_oword_t altera_build
;
1604 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1605 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1608 void efx_nic_init_common(struct efx_nic
*efx
)
1612 /* Set positions of descriptor caches in SRAM. */
1613 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
,
1614 efx
->type
->tx_dc_base
/ 8);
1615 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1616 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
,
1617 efx
->type
->rx_dc_base
/ 8);
1618 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1620 /* Set TX descriptor cache size. */
1621 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1622 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1623 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1625 /* Set RX descriptor cache size. Set low watermark to size-8, as
1626 * this allows most efficient prefetching.
1628 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1629 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1630 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1631 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1632 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1634 /* Program INT_KER address */
1635 EFX_POPULATE_OWORD_2(temp
,
1636 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1637 EFX_INT_MODE_USE_MSI(efx
),
1638 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1639 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1641 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1642 /* Use an interrupt level unused by event queues */
1643 efx
->fatal_irq_level
= 0x1f;
1645 /* Use a valid MSI-X vector */
1646 efx
->fatal_irq_level
= 0;
1648 /* Enable all the genuinely fatal interrupts. (They are still
1649 * masked by the overall interrupt mask, controlled by
1650 * falcon_interrupts()).
1652 * Note: All other fatal interrupts are enabled
1654 EFX_POPULATE_OWORD_3(temp
,
1655 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1656 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1657 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1658 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1659 EFX_SET_OWORD_FIELD(temp
, FRF_CZ_SRAM_PERR_INT_P_KER_EN
, 1);
1660 EFX_INVERT_OWORD(temp
);
1661 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1663 efx_nic_push_rx_indir_table(efx
);
1665 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1666 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1668 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1669 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1670 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1671 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1672 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 1);
1673 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1674 /* Enable SW_EV to inherit in char driver - assume harmless here */
1675 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1676 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1677 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1678 /* Disable hardware watchdog which can misfire */
1679 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1680 /* Squash TX of packets of 16 bytes or less */
1681 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1682 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1683 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1685 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1686 EFX_POPULATE_OWORD_4(temp
,
1687 /* Default values */
1688 FRF_BZ_TX_PACE_SB_NOT_AF
, 0x15,
1689 FRF_BZ_TX_PACE_SB_AF
, 0xb,
1690 FRF_BZ_TX_PACE_FB_BASE
, 0,
1691 /* Allow large pace values in the
1693 FRF_BZ_TX_PACE_BIN_TH
,
1694 FFE_BZ_TX_PACE_RESERVED
);
1695 efx_writeo(efx
, &temp
, FR_BZ_TX_PACE
);
1701 #define REGISTER_REVISION_A 1
1702 #define REGISTER_REVISION_B 2
1703 #define REGISTER_REVISION_C 3
1704 #define REGISTER_REVISION_Z 3 /* latest revision */
1706 struct efx_nic_reg
{
1708 u32 min_revision
:2, max_revision
:2;
1711 #define REGISTER(name, min_rev, max_rev) { \
1712 FR_ ## min_rev ## max_rev ## _ ## name, \
1713 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1715 #define REGISTER_AA(name) REGISTER(name, A, A)
1716 #define REGISTER_AB(name) REGISTER(name, A, B)
1717 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1718 #define REGISTER_BB(name) REGISTER(name, B, B)
1719 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1720 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1722 static const struct efx_nic_reg efx_nic_regs
[] = {
1723 REGISTER_AZ(ADR_REGION
),
1724 REGISTER_AZ(INT_EN_KER
),
1725 REGISTER_BZ(INT_EN_CHAR
),
1726 REGISTER_AZ(INT_ADR_KER
),
1727 REGISTER_BZ(INT_ADR_CHAR
),
1728 /* INT_ACK_KER is WO */
1729 /* INT_ISR0 is RC */
1730 REGISTER_AZ(HW_INIT
),
1731 REGISTER_CZ(USR_EV_CFG
),
1732 REGISTER_AB(EE_SPI_HCMD
),
1733 REGISTER_AB(EE_SPI_HADR
),
1734 REGISTER_AB(EE_SPI_HDATA
),
1735 REGISTER_AB(EE_BASE_PAGE
),
1736 REGISTER_AB(EE_VPD_CFG0
),
1737 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1738 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1739 /* PCIE_CORE_INDIRECT is indirect */
1740 REGISTER_AB(NIC_STAT
),
1741 REGISTER_AB(GPIO_CTL
),
1742 REGISTER_AB(GLB_CTL
),
1743 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1744 REGISTER_BZ(DP_CTRL
),
1745 REGISTER_AZ(MEM_STAT
),
1746 REGISTER_AZ(CS_DEBUG
),
1747 REGISTER_AZ(ALTERA_BUILD
),
1748 REGISTER_AZ(CSR_SPARE
),
1749 REGISTER_AB(PCIE_SD_CTL0123
),
1750 REGISTER_AB(PCIE_SD_CTL45
),
1751 REGISTER_AB(PCIE_PCS_CTL_STAT
),
1752 /* DEBUG_DATA_OUT is not used */
1754 REGISTER_AZ(EVQ_CTL
),
1755 REGISTER_AZ(EVQ_CNT1
),
1756 REGISTER_AZ(EVQ_CNT2
),
1757 REGISTER_AZ(BUF_TBL_CFG
),
1758 REGISTER_AZ(SRM_RX_DC_CFG
),
1759 REGISTER_AZ(SRM_TX_DC_CFG
),
1760 REGISTER_AZ(SRM_CFG
),
1761 /* BUF_TBL_UPD is WO */
1762 REGISTER_AZ(SRM_UPD_EVQ
),
1763 REGISTER_AZ(SRAM_PARITY
),
1764 REGISTER_AZ(RX_CFG
),
1765 REGISTER_BZ(RX_FILTER_CTL
),
1766 /* RX_FLUSH_DESCQ is WO */
1767 REGISTER_AZ(RX_DC_CFG
),
1768 REGISTER_AZ(RX_DC_PF_WM
),
1769 REGISTER_BZ(RX_RSS_TKEY
),
1770 /* RX_NODESC_DROP is RC */
1771 REGISTER_AA(RX_SELF_RST
),
1772 /* RX_DEBUG, RX_PUSH_DROP are not used */
1773 REGISTER_CZ(RX_RSS_IPV6_REG1
),
1774 REGISTER_CZ(RX_RSS_IPV6_REG2
),
1775 REGISTER_CZ(RX_RSS_IPV6_REG3
),
1776 /* TX_FLUSH_DESCQ is WO */
1777 REGISTER_AZ(TX_DC_CFG
),
1778 REGISTER_AA(TX_CHKSM_CFG
),
1779 REGISTER_AZ(TX_CFG
),
1780 /* TX_PUSH_DROP is not used */
1781 REGISTER_AZ(TX_RESERVED
),
1782 REGISTER_BZ(TX_PACE
),
1783 /* TX_PACE_DROP_QID is RC */
1784 REGISTER_BB(TX_VLAN
),
1785 REGISTER_BZ(TX_IPFIL_PORTEN
),
1786 REGISTER_AB(MD_TXD
),
1787 REGISTER_AB(MD_RXD
),
1789 REGISTER_AB(MD_PHY_ADR
),
1792 REGISTER_AB(MAC_STAT_DMA
),
1793 REGISTER_AB(MAC_CTRL
),
1794 REGISTER_BB(GEN_MODE
),
1795 REGISTER_AB(MAC_MC_HASH_REG0
),
1796 REGISTER_AB(MAC_MC_HASH_REG1
),
1797 REGISTER_AB(GM_CFG1
),
1798 REGISTER_AB(GM_CFG2
),
1799 /* GM_IPG and GM_HD are not used */
1800 REGISTER_AB(GM_MAX_FLEN
),
1801 /* GM_TEST is not used */
1802 REGISTER_AB(GM_ADR1
),
1803 REGISTER_AB(GM_ADR2
),
1804 REGISTER_AB(GMF_CFG0
),
1805 REGISTER_AB(GMF_CFG1
),
1806 REGISTER_AB(GMF_CFG2
),
1807 REGISTER_AB(GMF_CFG3
),
1808 REGISTER_AB(GMF_CFG4
),
1809 REGISTER_AB(GMF_CFG5
),
1810 REGISTER_BB(TX_SRC_MAC_CTL
),
1811 REGISTER_AB(XM_ADR_LO
),
1812 REGISTER_AB(XM_ADR_HI
),
1813 REGISTER_AB(XM_GLB_CFG
),
1814 REGISTER_AB(XM_TX_CFG
),
1815 REGISTER_AB(XM_RX_CFG
),
1816 REGISTER_AB(XM_MGT_INT_MASK
),
1818 REGISTER_AB(XM_PAUSE_TIME
),
1819 REGISTER_AB(XM_TX_PARAM
),
1820 REGISTER_AB(XM_RX_PARAM
),
1821 /* XM_MGT_INT_MSK (note no 'A') is RC */
1822 REGISTER_AB(XX_PWR_RST
),
1823 REGISTER_AB(XX_SD_CTL
),
1824 REGISTER_AB(XX_TXDRV_CTL
),
1825 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1826 /* XX_CORE_STAT is partly RC */
1829 struct efx_nic_reg_table
{
1831 u32 min_revision
:2, max_revision
:2;
1832 u32 step
:6, rows
:21;
1835 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1837 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1840 #define REGISTER_TABLE(name, min_rev, max_rev) \
1841 REGISTER_TABLE_DIMENSIONS( \
1842 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1844 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1845 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1846 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1847 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1848 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1849 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1850 #define REGISTER_TABLE_BB_CZ(name) \
1851 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1852 FR_BZ_ ## name ## _STEP, \
1853 FR_BB_ ## name ## _ROWS), \
1854 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1855 FR_BZ_ ## name ## _STEP, \
1856 FR_CZ_ ## name ## _ROWS)
1857 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1859 static const struct efx_nic_reg_table efx_nic_reg_tables
[] = {
1860 /* DRIVER is not used */
1861 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1862 REGISTER_TABLE_BB(TX_IPFIL_TBL
),
1863 REGISTER_TABLE_BB(TX_SRC_MAC_TBL
),
1864 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER
),
1865 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL
),
1866 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER
),
1867 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL
),
1868 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER
),
1869 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL
),
1870 /* We can't reasonably read all of the buffer table (up to 8MB!).
1871 * However this driver will only use a few entries. Reading
1872 * 1K entries allows for some expansion of queue count and
1873 * size before we need to change the version. */
1874 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER
, FR_AA_BUF_FULL_TBL_KER
,
1876 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL
, FR_BZ_BUF_FULL_TBL
,
1878 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0
),
1879 REGISTER_TABLE_BB_CZ(TIMER_TBL
),
1880 REGISTER_TABLE_BB_CZ(TX_PACE_TBL
),
1881 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL
),
1882 /* TX_FILTER_TBL0 is huge and not used by this driver */
1883 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0
),
1884 REGISTER_TABLE_CZ(MC_TREG_SMEM
),
1885 /* MSIX_PBA_TABLE is not mapped */
1886 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1887 REGISTER_TABLE_BZ(RX_FILTER_TBL0
),
1890 size_t efx_nic_get_regs_len(struct efx_nic
*efx
)
1892 const struct efx_nic_reg
*reg
;
1893 const struct efx_nic_reg_table
*table
;
1896 for (reg
= efx_nic_regs
;
1897 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
1899 if (efx
->type
->revision
>= reg
->min_revision
&&
1900 efx
->type
->revision
<= reg
->max_revision
)
1901 len
+= sizeof(efx_oword_t
);
1903 for (table
= efx_nic_reg_tables
;
1904 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
1906 if (efx
->type
->revision
>= table
->min_revision
&&
1907 efx
->type
->revision
<= table
->max_revision
)
1908 len
+= table
->rows
* min_t(size_t, table
->step
, 16);
1913 void efx_nic_get_regs(struct efx_nic
*efx
, void *buf
)
1915 const struct efx_nic_reg
*reg
;
1916 const struct efx_nic_reg_table
*table
;
1918 for (reg
= efx_nic_regs
;
1919 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
1921 if (efx
->type
->revision
>= reg
->min_revision
&&
1922 efx
->type
->revision
<= reg
->max_revision
) {
1923 efx_reado(efx
, (efx_oword_t
*)buf
, reg
->offset
);
1924 buf
+= sizeof(efx_oword_t
);
1928 for (table
= efx_nic_reg_tables
;
1929 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
1933 if (!(efx
->type
->revision
>= table
->min_revision
&&
1934 efx
->type
->revision
<= table
->max_revision
))
1937 size
= min_t(size_t, table
->step
, 16);
1939 for (i
= 0; i
< table
->rows
; i
++) {
1940 switch (table
->step
) {
1941 case 4: /* 32-bit register or SRAM */
1942 efx_readd_table(efx
, buf
, table
->offset
, i
);
1944 case 8: /* 64-bit SRAM */
1946 efx
->membase
+ table
->offset
,
1949 case 16: /* 128-bit register */
1950 efx_reado_table(efx
, buf
, table
->offset
, i
);
1952 case 32: /* 128-bit register, interleaved */
1953 efx_reado_table(efx
, buf
, table
->offset
, 2 * i
);