1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2010 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
23 #include "workarounds.h"
26 * TX descriptor ring full threshold
28 * The tx_queue descriptor ring fill-level must fall below this value
29 * before we restart the netif queue
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
33 static void efx_dequeue_buffer(struct efx_tx_queue
*tx_queue
,
34 struct efx_tx_buffer
*buffer
,
35 unsigned int *pkts_compl
,
36 unsigned int *bytes_compl
)
38 if (buffer
->unmap_len
) {
39 struct pci_dev
*pci_dev
= tx_queue
->efx
->pci_dev
;
40 dma_addr_t unmap_addr
= (buffer
->dma_addr
+ buffer
->len
-
42 if (buffer
->unmap_single
)
43 pci_unmap_single(pci_dev
, unmap_addr
, buffer
->unmap_len
,
46 pci_unmap_page(pci_dev
, unmap_addr
, buffer
->unmap_len
,
48 buffer
->unmap_len
= 0;
49 buffer
->unmap_single
= false;
54 (*bytes_compl
) += buffer
->skb
->len
;
55 dev_kfree_skb_any((struct sk_buff
*) buffer
->skb
);
57 netif_vdbg(tx_queue
->efx
, tx_done
, tx_queue
->efx
->net_dev
,
58 "TX queue %d transmission id %x complete\n",
59 tx_queue
->queue
, tx_queue
->read_count
);
64 * struct efx_tso_header - a DMA mapped buffer for packet headers
65 * @next: Linked list of free ones.
66 * The list is protected by the TX queue lock.
67 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
68 * @dma_addr: The DMA address of the header below.
70 * This controls the memory used for a TSO header. Use TSOH_DATA()
71 * to find the packet header data. Use TSOH_SIZE() to calculate the
72 * total size required for a given packet header length. TSO headers
73 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
75 struct efx_tso_header
{
77 struct efx_tso_header
*next
;
83 static int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
,
85 static void efx_fini_tso(struct efx_tx_queue
*tx_queue
);
86 static void efx_tsoh_heap_free(struct efx_tx_queue
*tx_queue
,
87 struct efx_tso_header
*tsoh
);
89 static void efx_tsoh_free(struct efx_tx_queue
*tx_queue
,
90 struct efx_tx_buffer
*buffer
)
93 if (likely(!buffer
->tsoh
->unmap_len
)) {
94 buffer
->tsoh
->next
= tx_queue
->tso_headers_free
;
95 tx_queue
->tso_headers_free
= buffer
->tsoh
;
97 efx_tsoh_heap_free(tx_queue
, buffer
->tsoh
);
104 static inline unsigned
105 efx_max_tx_len(struct efx_nic
*efx
, dma_addr_t dma_addr
)
107 /* Depending on the NIC revision, we can use descriptor
108 * lengths up to 8K or 8K-1. However, since PCI Express
109 * devices must split read requests at 4K boundaries, there is
110 * little benefit from using descriptors that cross those
111 * boundaries and we keep things simple by not doing so.
113 unsigned len
= (~dma_addr
& 0xfff) + 1;
115 /* Work around hardware bug for unaligned buffers. */
116 if (EFX_WORKAROUND_5391(efx
) && (dma_addr
& 0xf))
117 len
= min_t(unsigned, len
, 512 - (dma_addr
& 0xf));
123 * Add a socket buffer to a TX queue
125 * This maps all fragments of a socket buffer for DMA and adds them to
126 * the TX queue. The queue's insert pointer will be incremented by
127 * the number of fragments in the socket buffer.
129 * If any DMA mapping fails, any mapped fragments will be unmapped,
130 * the queue's insert pointer will be restored to its original value.
132 * This function is split out from efx_hard_start_xmit to allow the
133 * loopback test to direct packets via specific TX queues.
135 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
136 * You must hold netif_tx_lock() to call this function.
138 netdev_tx_t
efx_enqueue_skb(struct efx_tx_queue
*tx_queue
, struct sk_buff
*skb
)
140 struct efx_nic
*efx
= tx_queue
->efx
;
141 struct pci_dev
*pci_dev
= efx
->pci_dev
;
142 struct efx_tx_buffer
*buffer
;
143 skb_frag_t
*fragment
;
144 unsigned int len
, unmap_len
= 0, fill_level
, insert_ptr
;
145 dma_addr_t dma_addr
, unmap_addr
= 0;
146 unsigned int dma_len
;
149 netdev_tx_t rc
= NETDEV_TX_OK
;
151 EFX_BUG_ON_PARANOID(tx_queue
->write_count
!= tx_queue
->insert_count
);
153 if (skb_shinfo(skb
)->gso_size
)
154 return efx_enqueue_skb_tso(tx_queue
, skb
);
156 /* Get size of the initial fragment */
157 len
= skb_headlen(skb
);
159 /* Pad if necessary */
160 if (EFX_WORKAROUND_15592(efx
) && skb
->len
<= 32) {
161 EFX_BUG_ON_PARANOID(skb
->data_len
);
163 if (skb_pad(skb
, len
- skb
->len
))
167 fill_level
= tx_queue
->insert_count
- tx_queue
->old_read_count
;
168 q_space
= efx
->txq_entries
- 1 - fill_level
;
170 /* Map for DMA. Use pci_map_single rather than pci_map_page
171 * since this is more efficient on machines with sparse
175 dma_addr
= pci_map_single(pci_dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
177 /* Process all fragments */
179 if (unlikely(pci_dma_mapping_error(pci_dev
, dma_addr
)))
182 /* Store fields for marking in the per-fragment final
185 unmap_addr
= dma_addr
;
187 /* Add to TX queue, splitting across DMA boundaries */
189 if (unlikely(q_space
-- <= 0)) {
190 /* It might be that completions have
191 * happened since the xmit path last
192 * checked. Update the xmit path's
193 * copy of read_count.
195 netif_tx_stop_queue(tx_queue
->core_txq
);
196 /* This memory barrier protects the
197 * change of queue state from the access
200 tx_queue
->old_read_count
=
201 ACCESS_ONCE(tx_queue
->read_count
);
202 fill_level
= (tx_queue
->insert_count
203 - tx_queue
->old_read_count
);
204 q_space
= efx
->txq_entries
- 1 - fill_level
;
205 if (unlikely(q_space
-- <= 0)) {
210 if (likely(!efx
->loopback_selftest
))
211 netif_tx_start_queue(
215 insert_ptr
= tx_queue
->insert_count
& tx_queue
->ptr_mask
;
216 buffer
= &tx_queue
->buffer
[insert_ptr
];
217 efx_tsoh_free(tx_queue
, buffer
);
218 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
219 EFX_BUG_ON_PARANOID(buffer
->skb
);
220 EFX_BUG_ON_PARANOID(buffer
->len
);
221 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
222 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
224 dma_len
= efx_max_tx_len(efx
, dma_addr
);
225 if (likely(dma_len
>= len
))
228 /* Fill out per descriptor fields */
229 buffer
->len
= dma_len
;
230 buffer
->dma_addr
= dma_addr
;
233 ++tx_queue
->insert_count
;
236 /* Transfer ownership of the unmapping to the final buffer */
237 buffer
->unmap_single
= unmap_single
;
238 buffer
->unmap_len
= unmap_len
;
241 /* Get address and size of next fragment */
242 if (i
>= skb_shinfo(skb
)->nr_frags
)
244 fragment
= &skb_shinfo(skb
)->frags
[i
];
245 len
= skb_frag_size(fragment
);
248 unmap_single
= false;
249 dma_addr
= skb_frag_dma_map(&pci_dev
->dev
, fragment
, 0, len
,
253 /* Transfer ownership of the skb to the final buffer */
255 buffer
->continuation
= false;
257 netdev_tx_sent_queue(tx_queue
->core_txq
, skb
->len
);
259 /* Pass off to hardware */
260 efx_nic_push_buffers(tx_queue
);
265 netif_err(efx
, tx_err
, efx
->net_dev
,
266 " TX queue %d could not map skb with %d bytes %d "
267 "fragments for DMA\n", tx_queue
->queue
, skb
->len
,
268 skb_shinfo(skb
)->nr_frags
+ 1);
270 /* Mark the packet as transmitted, and free the SKB ourselves */
271 dev_kfree_skb_any(skb
);
274 /* Work backwards until we hit the original insert pointer value */
275 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
276 unsigned int pkts_compl
= 0, bytes_compl
= 0;
277 --tx_queue
->insert_count
;
278 insert_ptr
= tx_queue
->insert_count
& tx_queue
->ptr_mask
;
279 buffer
= &tx_queue
->buffer
[insert_ptr
];
280 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
284 /* Free the fragment we were mid-way through pushing */
287 pci_unmap_single(pci_dev
, unmap_addr
, unmap_len
,
290 pci_unmap_page(pci_dev
, unmap_addr
, unmap_len
,
297 /* Remove packets from the TX queue
299 * This removes packets from the TX queue, up to and including the
302 static void efx_dequeue_buffers(struct efx_tx_queue
*tx_queue
,
304 unsigned int *pkts_compl
,
305 unsigned int *bytes_compl
)
307 struct efx_nic
*efx
= tx_queue
->efx
;
308 unsigned int stop_index
, read_ptr
;
310 stop_index
= (index
+ 1) & tx_queue
->ptr_mask
;
311 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
313 while (read_ptr
!= stop_index
) {
314 struct efx_tx_buffer
*buffer
= &tx_queue
->buffer
[read_ptr
];
315 if (unlikely(buffer
->len
== 0)) {
316 netif_err(efx
, tx_err
, efx
->net_dev
,
317 "TX queue %d spurious TX completion id %x\n",
318 tx_queue
->queue
, read_ptr
);
319 efx_schedule_reset(efx
, RESET_TYPE_TX_SKIP
);
323 efx_dequeue_buffer(tx_queue
, buffer
, pkts_compl
, bytes_compl
);
324 buffer
->continuation
= true;
327 ++tx_queue
->read_count
;
328 read_ptr
= tx_queue
->read_count
& tx_queue
->ptr_mask
;
332 /* Initiate a packet transmission. We use one channel per CPU
333 * (sharing when we have more CPUs than channels). On Falcon, the TX
334 * completion events will be directed back to the CPU that transmitted
335 * the packet, which should be cache-efficient.
337 * Context: non-blocking.
338 * Note that returning anything other than NETDEV_TX_OK will cause the
339 * OS to free the skb.
341 netdev_tx_t
efx_hard_start_xmit(struct sk_buff
*skb
,
342 struct net_device
*net_dev
)
344 struct efx_nic
*efx
= netdev_priv(net_dev
);
345 struct efx_tx_queue
*tx_queue
;
346 unsigned index
, type
;
348 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev
));
350 index
= skb_get_queue_mapping(skb
);
351 type
= skb
->ip_summed
== CHECKSUM_PARTIAL
? EFX_TXQ_TYPE_OFFLOAD
: 0;
352 if (index
>= efx
->n_tx_channels
) {
353 index
-= efx
->n_tx_channels
;
354 type
|= EFX_TXQ_TYPE_HIGHPRI
;
356 tx_queue
= efx_get_tx_queue(efx
, index
, type
);
358 return efx_enqueue_skb(tx_queue
, skb
);
361 void efx_init_tx_queue_core_txq(struct efx_tx_queue
*tx_queue
)
363 struct efx_nic
*efx
= tx_queue
->efx
;
365 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
367 netdev_get_tx_queue(efx
->net_dev
,
368 tx_queue
->queue
/ EFX_TXQ_TYPES
+
369 ((tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
370 efx
->n_tx_channels
: 0));
373 int efx_setup_tc(struct net_device
*net_dev
, u8 num_tc
)
375 struct efx_nic
*efx
= netdev_priv(net_dev
);
376 struct efx_channel
*channel
;
377 struct efx_tx_queue
*tx_queue
;
381 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
|| num_tc
> EFX_MAX_TX_TC
)
384 if (num_tc
== net_dev
->num_tc
)
387 for (tc
= 0; tc
< num_tc
; tc
++) {
388 net_dev
->tc_to_txq
[tc
].offset
= tc
* efx
->n_tx_channels
;
389 net_dev
->tc_to_txq
[tc
].count
= efx
->n_tx_channels
;
392 if (num_tc
> net_dev
->num_tc
) {
393 /* Initialise high-priority queues as necessary */
394 efx_for_each_channel(channel
, efx
) {
395 efx_for_each_possible_channel_tx_queue(tx_queue
,
397 if (!(tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
))
399 if (!tx_queue
->buffer
) {
400 rc
= efx_probe_tx_queue(tx_queue
);
404 if (!tx_queue
->initialised
)
405 efx_init_tx_queue(tx_queue
);
406 efx_init_tx_queue_core_txq(tx_queue
);
410 /* Reduce number of classes before number of queues */
411 net_dev
->num_tc
= num_tc
;
414 rc
= netif_set_real_num_tx_queues(net_dev
,
415 max_t(int, num_tc
, 1) *
420 /* Do not destroy high-priority queues when they become
421 * unused. We would have to flush them first, and it is
422 * fairly difficult to flush a subset of TX queues. Leave
423 * it to efx_fini_channels().
426 net_dev
->num_tc
= num_tc
;
430 void efx_xmit_done(struct efx_tx_queue
*tx_queue
, unsigned int index
)
433 struct efx_nic
*efx
= tx_queue
->efx
;
434 unsigned int pkts_compl
= 0, bytes_compl
= 0;
436 EFX_BUG_ON_PARANOID(index
> tx_queue
->ptr_mask
);
438 efx_dequeue_buffers(tx_queue
, index
, &pkts_compl
, &bytes_compl
);
439 netdev_tx_completed_queue(tx_queue
->core_txq
, pkts_compl
, bytes_compl
);
441 /* See if we need to restart the netif queue. This barrier
442 * separates the update of read_count from the test of the
445 if (unlikely(netif_tx_queue_stopped(tx_queue
->core_txq
)) &&
446 likely(efx
->port_enabled
) &&
447 likely(netif_device_present(efx
->net_dev
))) {
448 fill_level
= tx_queue
->insert_count
- tx_queue
->read_count
;
449 if (fill_level
< EFX_TXQ_THRESHOLD(efx
)) {
450 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx
));
451 netif_tx_wake_queue(tx_queue
->core_txq
);
455 /* Check whether the hardware queue is now empty */
456 if ((int)(tx_queue
->read_count
- tx_queue
->old_write_count
) >= 0) {
457 tx_queue
->old_write_count
= ACCESS_ONCE(tx_queue
->write_count
);
458 if (tx_queue
->read_count
== tx_queue
->old_write_count
) {
460 tx_queue
->empty_read_count
=
461 tx_queue
->read_count
| EFX_EMPTY_COUNT_VALID
;
466 int efx_probe_tx_queue(struct efx_tx_queue
*tx_queue
)
468 struct efx_nic
*efx
= tx_queue
->efx
;
469 unsigned int entries
;
472 /* Create the smallest power-of-two aligned ring */
473 entries
= max(roundup_pow_of_two(efx
->txq_entries
), EFX_MIN_DMAQ_SIZE
);
474 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
475 tx_queue
->ptr_mask
= entries
- 1;
477 netif_dbg(efx
, probe
, efx
->net_dev
,
478 "creating TX queue %d size %#x mask %#x\n",
479 tx_queue
->queue
, efx
->txq_entries
, tx_queue
->ptr_mask
);
481 /* Allocate software ring */
482 tx_queue
->buffer
= kcalloc(entries
, sizeof(*tx_queue
->buffer
),
484 if (!tx_queue
->buffer
)
486 for (i
= 0; i
<= tx_queue
->ptr_mask
; ++i
)
487 tx_queue
->buffer
[i
].continuation
= true;
489 /* Allocate hardware ring */
490 rc
= efx_nic_probe_tx(tx_queue
);
497 kfree(tx_queue
->buffer
);
498 tx_queue
->buffer
= NULL
;
502 void efx_init_tx_queue(struct efx_tx_queue
*tx_queue
)
504 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
505 "initialising TX queue %d\n", tx_queue
->queue
);
507 tx_queue
->insert_count
= 0;
508 tx_queue
->write_count
= 0;
509 tx_queue
->old_write_count
= 0;
510 tx_queue
->read_count
= 0;
511 tx_queue
->old_read_count
= 0;
512 tx_queue
->empty_read_count
= 0 | EFX_EMPTY_COUNT_VALID
;
514 /* Set up TX descriptor ring */
515 efx_nic_init_tx(tx_queue
);
517 tx_queue
->initialised
= true;
520 void efx_release_tx_buffers(struct efx_tx_queue
*tx_queue
)
522 struct efx_tx_buffer
*buffer
;
524 if (!tx_queue
->buffer
)
527 /* Free any buffers left in the ring */
528 while (tx_queue
->read_count
!= tx_queue
->write_count
) {
529 unsigned int pkts_compl
= 0, bytes_compl
= 0;
530 buffer
= &tx_queue
->buffer
[tx_queue
->read_count
& tx_queue
->ptr_mask
];
531 efx_dequeue_buffer(tx_queue
, buffer
, &pkts_compl
, &bytes_compl
);
532 buffer
->continuation
= true;
535 ++tx_queue
->read_count
;
537 netdev_tx_reset_queue(tx_queue
->core_txq
);
540 void efx_fini_tx_queue(struct efx_tx_queue
*tx_queue
)
542 if (!tx_queue
->initialised
)
545 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
546 "shutting down TX queue %d\n", tx_queue
->queue
);
548 tx_queue
->initialised
= false;
550 /* Flush TX queue, remove descriptor ring */
551 efx_nic_fini_tx(tx_queue
);
553 efx_release_tx_buffers(tx_queue
);
555 /* Free up TSO header cache */
556 efx_fini_tso(tx_queue
);
559 void efx_remove_tx_queue(struct efx_tx_queue
*tx_queue
)
561 if (!tx_queue
->buffer
)
564 netif_dbg(tx_queue
->efx
, drv
, tx_queue
->efx
->net_dev
,
565 "destroying TX queue %d\n", tx_queue
->queue
);
566 efx_nic_remove_tx(tx_queue
);
568 kfree(tx_queue
->buffer
);
569 tx_queue
->buffer
= NULL
;
573 /* Efx TCP segmentation acceleration.
575 * Why? Because by doing it here in the driver we can go significantly
576 * faster than the GSO.
578 * Requires TX checksum offload support.
581 /* Number of bytes inserted at the start of a TSO header buffer,
582 * similar to NET_IP_ALIGN.
584 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
585 #define TSOH_OFFSET 0
587 #define TSOH_OFFSET NET_IP_ALIGN
590 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
592 /* Total size of struct efx_tso_header, buffer and padding */
593 #define TSOH_SIZE(hdr_len) \
594 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
596 /* Size of blocks on free list. Larger blocks must be allocated from
599 #define TSOH_STD_SIZE 128
601 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
602 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
603 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
604 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
605 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
608 * struct tso_state - TSO state for an SKB
609 * @out_len: Remaining length in current segment
610 * @seqnum: Current sequence number
611 * @ipv4_id: Current IPv4 ID, host endian
612 * @packet_space: Remaining space in current packet
613 * @dma_addr: DMA address of current position
614 * @in_len: Remaining length in current SKB fragment
615 * @unmap_len: Length of SKB fragment
616 * @unmap_addr: DMA address of SKB fragment
617 * @unmap_single: DMA single vs page mapping flag
618 * @protocol: Network protocol (after any VLAN header)
619 * @header_len: Number of bytes of header
620 * @full_packet_size: Number of bytes to put in each outgoing segment
622 * The state used during segmentation. It is put into this data structure
623 * just to make it easy to pass into inline functions.
626 /* Output position */
630 unsigned packet_space
;
636 dma_addr_t unmap_addr
;
641 int full_packet_size
;
646 * Verify that our various assumptions about sk_buffs and the conditions
647 * under which TSO will be attempted hold true. Return the protocol number.
649 static __be16
efx_tso_check_protocol(struct sk_buff
*skb
)
651 __be16 protocol
= skb
->protocol
;
653 EFX_BUG_ON_PARANOID(((struct ethhdr
*)skb
->data
)->h_proto
!=
655 if (protocol
== htons(ETH_P_8021Q
)) {
656 /* Find the encapsulated protocol; reset network header
657 * and transport header based on that. */
658 struct vlan_ethhdr
*veh
= (struct vlan_ethhdr
*)skb
->data
;
659 protocol
= veh
->h_vlan_encapsulated_proto
;
660 skb_set_network_header(skb
, sizeof(*veh
));
661 if (protocol
== htons(ETH_P_IP
))
662 skb_set_transport_header(skb
, sizeof(*veh
) +
663 4 * ip_hdr(skb
)->ihl
);
664 else if (protocol
== htons(ETH_P_IPV6
))
665 skb_set_transport_header(skb
, sizeof(*veh
) +
666 sizeof(struct ipv6hdr
));
669 if (protocol
== htons(ETH_P_IP
)) {
670 EFX_BUG_ON_PARANOID(ip_hdr(skb
)->protocol
!= IPPROTO_TCP
);
672 EFX_BUG_ON_PARANOID(protocol
!= htons(ETH_P_IPV6
));
673 EFX_BUG_ON_PARANOID(ipv6_hdr(skb
)->nexthdr
!= NEXTHDR_TCP
);
675 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb
), skb
->data
)
676 + (tcp_hdr(skb
)->doff
<< 2u)) >
684 * Allocate a page worth of efx_tso_header structures, and string them
685 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
687 static int efx_tsoh_block_alloc(struct efx_tx_queue
*tx_queue
)
690 struct pci_dev
*pci_dev
= tx_queue
->efx
->pci_dev
;
691 struct efx_tso_header
*tsoh
;
695 base_kva
= pci_alloc_consistent(pci_dev
, PAGE_SIZE
, &dma_addr
);
696 if (base_kva
== NULL
) {
697 netif_err(tx_queue
->efx
, tx_err
, tx_queue
->efx
->net_dev
,
698 "Unable to allocate page for TSO headers\n");
702 /* pci_alloc_consistent() allocates pages. */
703 EFX_BUG_ON_PARANOID(dma_addr
& (PAGE_SIZE
- 1u));
705 for (kva
= base_kva
; kva
< base_kva
+ PAGE_SIZE
; kva
+= TSOH_STD_SIZE
) {
706 tsoh
= (struct efx_tso_header
*)kva
;
707 tsoh
->dma_addr
= dma_addr
+ (TSOH_BUFFER(tsoh
) - base_kva
);
708 tsoh
->next
= tx_queue
->tso_headers_free
;
709 tx_queue
->tso_headers_free
= tsoh
;
716 /* Free up a TSO header, and all others in the same page. */
717 static void efx_tsoh_block_free(struct efx_tx_queue
*tx_queue
,
718 struct efx_tso_header
*tsoh
,
719 struct pci_dev
*pci_dev
)
721 struct efx_tso_header
**p
;
722 unsigned long base_kva
;
725 base_kva
= (unsigned long)tsoh
& PAGE_MASK
;
726 base_dma
= tsoh
->dma_addr
& PAGE_MASK
;
728 p
= &tx_queue
->tso_headers_free
;
730 if (((unsigned long)*p
& PAGE_MASK
) == base_kva
)
736 pci_free_consistent(pci_dev
, PAGE_SIZE
, (void *)base_kva
, base_dma
);
739 static struct efx_tso_header
*
740 efx_tsoh_heap_alloc(struct efx_tx_queue
*tx_queue
, size_t header_len
)
742 struct efx_tso_header
*tsoh
;
744 tsoh
= kmalloc(TSOH_SIZE(header_len
), GFP_ATOMIC
| GFP_DMA
);
748 tsoh
->dma_addr
= pci_map_single(tx_queue
->efx
->pci_dev
,
749 TSOH_BUFFER(tsoh
), header_len
,
751 if (unlikely(pci_dma_mapping_error(tx_queue
->efx
->pci_dev
,
757 tsoh
->unmap_len
= header_len
;
762 efx_tsoh_heap_free(struct efx_tx_queue
*tx_queue
, struct efx_tso_header
*tsoh
)
764 pci_unmap_single(tx_queue
->efx
->pci_dev
,
765 tsoh
->dma_addr
, tsoh
->unmap_len
,
771 * efx_tx_queue_insert - push descriptors onto the TX queue
772 * @tx_queue: Efx TX queue
773 * @dma_addr: DMA address of fragment
774 * @len: Length of fragment
775 * @final_buffer: The final buffer inserted into the queue
777 * Push descriptors onto the TX queue. Return 0 on success or 1 if
780 static int efx_tx_queue_insert(struct efx_tx_queue
*tx_queue
,
781 dma_addr_t dma_addr
, unsigned len
,
782 struct efx_tx_buffer
**final_buffer
)
784 struct efx_tx_buffer
*buffer
;
785 struct efx_nic
*efx
= tx_queue
->efx
;
786 unsigned dma_len
, fill_level
, insert_ptr
;
789 EFX_BUG_ON_PARANOID(len
<= 0);
791 fill_level
= tx_queue
->insert_count
- tx_queue
->old_read_count
;
792 /* -1 as there is no way to represent all descriptors used */
793 q_space
= efx
->txq_entries
- 1 - fill_level
;
796 if (unlikely(q_space
-- <= 0)) {
797 /* It might be that completions have happened
798 * since the xmit path last checked. Update
799 * the xmit path's copy of read_count.
801 netif_tx_stop_queue(tx_queue
->core_txq
);
802 /* This memory barrier protects the change of
803 * queue state from the access of read_count. */
805 tx_queue
->old_read_count
=
806 ACCESS_ONCE(tx_queue
->read_count
);
807 fill_level
= (tx_queue
->insert_count
808 - tx_queue
->old_read_count
);
809 q_space
= efx
->txq_entries
- 1 - fill_level
;
810 if (unlikely(q_space
-- <= 0)) {
811 *final_buffer
= NULL
;
815 netif_tx_start_queue(tx_queue
->core_txq
);
818 insert_ptr
= tx_queue
->insert_count
& tx_queue
->ptr_mask
;
819 buffer
= &tx_queue
->buffer
[insert_ptr
];
820 ++tx_queue
->insert_count
;
822 EFX_BUG_ON_PARANOID(tx_queue
->insert_count
-
823 tx_queue
->read_count
>=
826 efx_tsoh_free(tx_queue
, buffer
);
827 EFX_BUG_ON_PARANOID(buffer
->len
);
828 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
829 EFX_BUG_ON_PARANOID(buffer
->skb
);
830 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
831 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
833 buffer
->dma_addr
= dma_addr
;
835 dma_len
= efx_max_tx_len(efx
, dma_addr
);
837 /* If there is enough space to send then do so */
841 buffer
->len
= dma_len
; /* Don't set the other members */
846 EFX_BUG_ON_PARANOID(!len
);
848 *final_buffer
= buffer
;
854 * Put a TSO header into the TX queue.
856 * This is special-cased because we know that it is small enough to fit in
857 * a single fragment, and we know it doesn't cross a page boundary. It
858 * also allows us to not worry about end-of-packet etc.
860 static void efx_tso_put_header(struct efx_tx_queue
*tx_queue
,
861 struct efx_tso_header
*tsoh
, unsigned len
)
863 struct efx_tx_buffer
*buffer
;
865 buffer
= &tx_queue
->buffer
[tx_queue
->insert_count
& tx_queue
->ptr_mask
];
866 efx_tsoh_free(tx_queue
, buffer
);
867 EFX_BUG_ON_PARANOID(buffer
->len
);
868 EFX_BUG_ON_PARANOID(buffer
->unmap_len
);
869 EFX_BUG_ON_PARANOID(buffer
->skb
);
870 EFX_BUG_ON_PARANOID(!buffer
->continuation
);
871 EFX_BUG_ON_PARANOID(buffer
->tsoh
);
873 buffer
->dma_addr
= tsoh
->dma_addr
;
876 ++tx_queue
->insert_count
;
880 /* Remove descriptors put into a tx_queue. */
881 static void efx_enqueue_unwind(struct efx_tx_queue
*tx_queue
)
883 struct efx_tx_buffer
*buffer
;
884 dma_addr_t unmap_addr
;
886 /* Work backwards until we hit the original insert pointer value */
887 while (tx_queue
->insert_count
!= tx_queue
->write_count
) {
888 --tx_queue
->insert_count
;
889 buffer
= &tx_queue
->buffer
[tx_queue
->insert_count
&
891 efx_tsoh_free(tx_queue
, buffer
);
892 EFX_BUG_ON_PARANOID(buffer
->skb
);
893 if (buffer
->unmap_len
) {
894 unmap_addr
= (buffer
->dma_addr
+ buffer
->len
-
896 if (buffer
->unmap_single
)
897 pci_unmap_single(tx_queue
->efx
->pci_dev
,
898 unmap_addr
, buffer
->unmap_len
,
901 pci_unmap_page(tx_queue
->efx
->pci_dev
,
902 unmap_addr
, buffer
->unmap_len
,
904 buffer
->unmap_len
= 0;
907 buffer
->continuation
= true;
912 /* Parse the SKB header and initialise state. */
913 static void tso_start(struct tso_state
*st
, const struct sk_buff
*skb
)
915 /* All ethernet/IP/TCP headers combined size is TCP header size
916 * plus offset of TCP header relative to start of packet.
918 st
->header_len
= ((tcp_hdr(skb
)->doff
<< 2u)
919 + PTR_DIFF(tcp_hdr(skb
), skb
->data
));
920 st
->full_packet_size
= st
->header_len
+ skb_shinfo(skb
)->gso_size
;
922 if (st
->protocol
== htons(ETH_P_IP
))
923 st
->ipv4_id
= ntohs(ip_hdr(skb
)->id
);
926 st
->seqnum
= ntohl(tcp_hdr(skb
)->seq
);
928 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->urg
);
929 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->syn
);
930 EFX_BUG_ON_PARANOID(tcp_hdr(skb
)->rst
);
932 st
->packet_space
= st
->full_packet_size
;
933 st
->out_len
= skb
->len
- st
->header_len
;
935 st
->unmap_single
= false;
938 static int tso_get_fragment(struct tso_state
*st
, struct efx_nic
*efx
,
941 st
->unmap_addr
= skb_frag_dma_map(&efx
->pci_dev
->dev
, frag
, 0,
942 skb_frag_size(frag
), DMA_TO_DEVICE
);
943 if (likely(!dma_mapping_error(&efx
->pci_dev
->dev
, st
->unmap_addr
))) {
944 st
->unmap_single
= false;
945 st
->unmap_len
= skb_frag_size(frag
);
946 st
->in_len
= skb_frag_size(frag
);
947 st
->dma_addr
= st
->unmap_addr
;
953 static int tso_get_head_fragment(struct tso_state
*st
, struct efx_nic
*efx
,
954 const struct sk_buff
*skb
)
956 int hl
= st
->header_len
;
957 int len
= skb_headlen(skb
) - hl
;
959 st
->unmap_addr
= pci_map_single(efx
->pci_dev
, skb
->data
+ hl
,
960 len
, PCI_DMA_TODEVICE
);
961 if (likely(!pci_dma_mapping_error(efx
->pci_dev
, st
->unmap_addr
))) {
962 st
->unmap_single
= true;
965 st
->dma_addr
= st
->unmap_addr
;
973 * tso_fill_packet_with_fragment - form descriptors for the current fragment
974 * @tx_queue: Efx TX queue
975 * @skb: Socket buffer
978 * Form descriptors for the current fragment, until we reach the end
979 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
980 * space in @tx_queue.
982 static int tso_fill_packet_with_fragment(struct efx_tx_queue
*tx_queue
,
983 const struct sk_buff
*skb
,
984 struct tso_state
*st
)
986 struct efx_tx_buffer
*buffer
;
987 int n
, end_of_packet
, rc
;
991 if (st
->packet_space
== 0)
994 EFX_BUG_ON_PARANOID(st
->in_len
<= 0);
995 EFX_BUG_ON_PARANOID(st
->packet_space
<= 0);
997 n
= min(st
->in_len
, st
->packet_space
);
999 st
->packet_space
-= n
;
1003 rc
= efx_tx_queue_insert(tx_queue
, st
->dma_addr
, n
, &buffer
);
1004 if (likely(rc
== 0)) {
1005 if (st
->out_len
== 0)
1006 /* Transfer ownership of the skb */
1009 end_of_packet
= st
->out_len
== 0 || st
->packet_space
== 0;
1010 buffer
->continuation
= !end_of_packet
;
1012 if (st
->in_len
== 0) {
1013 /* Transfer ownership of the pci mapping */
1014 buffer
->unmap_len
= st
->unmap_len
;
1015 buffer
->unmap_single
= st
->unmap_single
;
1026 * tso_start_new_packet - generate a new header and prepare for the new packet
1027 * @tx_queue: Efx TX queue
1028 * @skb: Socket buffer
1031 * Generate a new header and prepare for the new packet. Return 0 on
1032 * success, or -1 if failed to alloc header.
1034 static int tso_start_new_packet(struct efx_tx_queue
*tx_queue
,
1035 const struct sk_buff
*skb
,
1036 struct tso_state
*st
)
1038 struct efx_tso_header
*tsoh
;
1039 struct tcphdr
*tsoh_th
;
1043 /* Allocate a DMA-mapped header buffer. */
1044 if (likely(TSOH_SIZE(st
->header_len
) <= TSOH_STD_SIZE
)) {
1045 if (tx_queue
->tso_headers_free
== NULL
) {
1046 if (efx_tsoh_block_alloc(tx_queue
))
1049 EFX_BUG_ON_PARANOID(!tx_queue
->tso_headers_free
);
1050 tsoh
= tx_queue
->tso_headers_free
;
1051 tx_queue
->tso_headers_free
= tsoh
->next
;
1052 tsoh
->unmap_len
= 0;
1054 tx_queue
->tso_long_headers
++;
1055 tsoh
= efx_tsoh_heap_alloc(tx_queue
, st
->header_len
);
1056 if (unlikely(!tsoh
))
1060 header
= TSOH_BUFFER(tsoh
);
1061 tsoh_th
= (struct tcphdr
*)(header
+ SKB_TCP_OFF(skb
));
1063 /* Copy and update the headers. */
1064 memcpy(header
, skb
->data
, st
->header_len
);
1066 tsoh_th
->seq
= htonl(st
->seqnum
);
1067 st
->seqnum
+= skb_shinfo(skb
)->gso_size
;
1068 if (st
->out_len
> skb_shinfo(skb
)->gso_size
) {
1069 /* This packet will not finish the TSO burst. */
1070 ip_length
= st
->full_packet_size
- ETH_HDR_LEN(skb
);
1074 /* This packet will be the last in the TSO burst. */
1075 ip_length
= st
->header_len
- ETH_HDR_LEN(skb
) + st
->out_len
;
1076 tsoh_th
->fin
= tcp_hdr(skb
)->fin
;
1077 tsoh_th
->psh
= tcp_hdr(skb
)->psh
;
1080 if (st
->protocol
== htons(ETH_P_IP
)) {
1081 struct iphdr
*tsoh_iph
=
1082 (struct iphdr
*)(header
+ SKB_IPV4_OFF(skb
));
1084 tsoh_iph
->tot_len
= htons(ip_length
);
1086 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1087 tsoh_iph
->id
= htons(st
->ipv4_id
);
1090 struct ipv6hdr
*tsoh_iph
=
1091 (struct ipv6hdr
*)(header
+ SKB_IPV6_OFF(skb
));
1093 tsoh_iph
->payload_len
= htons(ip_length
- sizeof(*tsoh_iph
));
1096 st
->packet_space
= skb_shinfo(skb
)->gso_size
;
1097 ++tx_queue
->tso_packets
;
1099 /* Form a descriptor for this header. */
1100 efx_tso_put_header(tx_queue
, tsoh
, st
->header_len
);
1107 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1108 * @tx_queue: Efx TX queue
1109 * @skb: Socket buffer
1111 * Context: You must hold netif_tx_lock() to call this function.
1113 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1114 * @skb was not enqueued. In all cases @skb is consumed. Return
1115 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1117 static int efx_enqueue_skb_tso(struct efx_tx_queue
*tx_queue
,
1118 struct sk_buff
*skb
)
1120 struct efx_nic
*efx
= tx_queue
->efx
;
1121 int frag_i
, rc
, rc2
= NETDEV_TX_OK
;
1122 struct tso_state state
;
1124 /* Find the packet protocol and sanity-check it */
1125 state
.protocol
= efx_tso_check_protocol(skb
);
1127 EFX_BUG_ON_PARANOID(tx_queue
->write_count
!= tx_queue
->insert_count
);
1129 tso_start(&state
, skb
);
1131 /* Assume that skb header area contains exactly the headers, and
1132 * all payload is in the frag list.
1134 if (skb_headlen(skb
) == state
.header_len
) {
1135 /* Grab the first payload fragment. */
1136 EFX_BUG_ON_PARANOID(skb_shinfo(skb
)->nr_frags
< 1);
1138 rc
= tso_get_fragment(&state
, efx
,
1139 skb_shinfo(skb
)->frags
+ frag_i
);
1143 rc
= tso_get_head_fragment(&state
, efx
, skb
);
1149 if (tso_start_new_packet(tx_queue
, skb
, &state
) < 0)
1153 rc
= tso_fill_packet_with_fragment(tx_queue
, skb
, &state
);
1155 rc2
= NETDEV_TX_BUSY
;
1159 /* Move onto the next fragment? */
1160 if (state
.in_len
== 0) {
1161 if (++frag_i
>= skb_shinfo(skb
)->nr_frags
)
1162 /* End of payload reached. */
1164 rc
= tso_get_fragment(&state
, efx
,
1165 skb_shinfo(skb
)->frags
+ frag_i
);
1170 /* Start at new packet? */
1171 if (state
.packet_space
== 0 &&
1172 tso_start_new_packet(tx_queue
, skb
, &state
) < 0)
1176 netdev_tx_sent_queue(tx_queue
->core_txq
, skb
->len
);
1178 /* Pass off to hardware */
1179 efx_nic_push_buffers(tx_queue
);
1181 tx_queue
->tso_bursts
++;
1182 return NETDEV_TX_OK
;
1185 netif_err(efx
, tx_err
, efx
->net_dev
,
1186 "Out of memory for TSO headers, or PCI mapping error\n");
1187 dev_kfree_skb_any(skb
);
1190 /* Free the DMA mapping we were in the process of writing out */
1191 if (state
.unmap_len
) {
1192 if (state
.unmap_single
)
1193 pci_unmap_single(efx
->pci_dev
, state
.unmap_addr
,
1194 state
.unmap_len
, PCI_DMA_TODEVICE
);
1196 pci_unmap_page(efx
->pci_dev
, state
.unmap_addr
,
1197 state
.unmap_len
, PCI_DMA_TODEVICE
);
1200 efx_enqueue_unwind(tx_queue
);
1206 * Free up all TSO datastructures associated with tx_queue. This
1207 * routine should be called only once the tx_queue is both empty and
1208 * will no longer be used.
1210 static void efx_fini_tso(struct efx_tx_queue
*tx_queue
)
1214 if (tx_queue
->buffer
) {
1215 for (i
= 0; i
<= tx_queue
->ptr_mask
; ++i
)
1216 efx_tsoh_free(tx_queue
, &tx_queue
->buffer
[i
]);
1219 while (tx_queue
->tso_headers_free
!= NULL
)
1220 efx_tsoh_block_free(tx_queue
, tx_queue
->tso_headers_free
,
1221 tx_queue
->efx
->pci_dev
);