Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / net / wireless / ath / ath5k / eeprom.c
blobcd708c15b77470a53b325e8856a003fc67ad1eaf
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include <linux/slab.h>
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
31 /******************\
32 * Helper functions *
33 \******************/
36 * Translate binary channel representation in EEPROM to frequency
38 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
39 unsigned int mode)
41 u16 val;
43 if (bin == AR5K_EEPROM_CHANNEL_DIS)
44 return bin;
46 if (mode == AR5K_EEPROM_MODE_11A) {
47 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
48 val = (5 * bin) + 4800;
49 else
50 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
51 (bin * 10) + 5100;
52 } else {
53 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
54 val = bin + 2300;
55 else
56 val = bin + 2400;
59 return val;
63 /*********\
64 * Parsers *
65 \*********/
68 * Initialize eeprom & capabilities structs
70 static int
71 ath5k_eeprom_init_header(struct ath5k_hw *ah)
73 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
74 u16 val;
75 u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
78 * Read values from EEPROM and store them in the capability structure
80 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
81 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
82 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
83 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
84 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
86 /* Return if we have an old EEPROM */
87 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
88 return 0;
91 * Validate the checksum of the EEPROM date. There are some
92 * devices with invalid EEPROMs.
94 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
95 if (val) {
96 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
97 AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
98 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
99 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
102 * Fail safe check to prevent stupid loops due
103 * to busted EEPROMs. XXX: This value is likely too
104 * big still, waiting on a better value.
106 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
107 ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
108 "%d (0x%04x) max expected: %d (0x%04x)\n",
109 eep_max, eep_max,
110 3 * AR5K_EEPROM_INFO_MAX,
111 3 * AR5K_EEPROM_INFO_MAX);
112 return -EIO;
116 for (cksum = 0, offset = 0; offset < eep_max; offset++) {
117 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
118 cksum ^= val;
120 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
121 ATH5K_ERR(ah, "Invalid EEPROM "
122 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
123 cksum, eep_max,
124 eep_max == AR5K_EEPROM_INFO_MAX ?
125 "default size" : "custom size");
126 return -EIO;
129 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
130 ee_ant_gain);
132 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
133 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
136 /* XXX: Don't know which versions include these two */
137 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
139 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
140 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
142 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
143 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
144 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
149 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
150 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
151 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
152 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
154 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
155 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
156 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
159 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
161 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
162 ee->ee_is_hb63 = true;
163 else
164 ee->ee_is_hb63 = false;
166 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
167 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
168 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
170 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
171 * and enable serdes programming if needed.
173 * XXX: Serdes values seem to be fixed so
174 * no need to read them here, we write them
175 * during ath5k_hw_init */
176 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
177 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
178 true : false;
180 return 0;
185 * Read antenna infos from eeprom
187 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
188 unsigned int mode)
190 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
191 u32 o = *offset;
192 u16 val;
193 int i = 0;
195 AR5K_EEPROM_READ(o++, val);
196 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
197 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
198 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
200 AR5K_EEPROM_READ(o++, val);
201 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
202 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
203 ee->ee_ant_control[mode][i++] = val & 0x3f;
205 AR5K_EEPROM_READ(o++, val);
206 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
207 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
208 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
210 AR5K_EEPROM_READ(o++, val);
211 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
212 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
213 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
214 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
216 AR5K_EEPROM_READ(o++, val);
217 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
218 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
219 ee->ee_ant_control[mode][i++] = val & 0x3f;
221 /* Get antenna switch tables */
222 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
223 (ee->ee_ant_control[mode][0] << 4);
224 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
225 ee->ee_ant_control[mode][1] |
226 (ee->ee_ant_control[mode][2] << 6) |
227 (ee->ee_ant_control[mode][3] << 12) |
228 (ee->ee_ant_control[mode][4] << 18) |
229 (ee->ee_ant_control[mode][5] << 24);
230 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
231 ee->ee_ant_control[mode][6] |
232 (ee->ee_ant_control[mode][7] << 6) |
233 (ee->ee_ant_control[mode][8] << 12) |
234 (ee->ee_ant_control[mode][9] << 18) |
235 (ee->ee_ant_control[mode][10] << 24);
237 /* return new offset */
238 *offset = o;
240 return 0;
244 * Read supported modes and some mode-specific calibration data
245 * from eeprom
247 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
248 unsigned int mode)
250 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
251 u32 o = *offset;
252 u16 val;
254 ee->ee_n_piers[mode] = 0;
255 AR5K_EEPROM_READ(o++, val);
256 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
257 switch (mode) {
258 case AR5K_EEPROM_MODE_11A:
259 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
260 ee->ee_db[mode][3] = (val >> 2) & 0x7;
261 ee->ee_ob[mode][2] = (val << 1) & 0x7;
263 AR5K_EEPROM_READ(o++, val);
264 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
265 ee->ee_db[mode][2] = (val >> 12) & 0x7;
266 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
267 ee->ee_db[mode][1] = (val >> 6) & 0x7;
268 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
269 ee->ee_db[mode][0] = val & 0x7;
270 break;
271 case AR5K_EEPROM_MODE_11G:
272 case AR5K_EEPROM_MODE_11B:
273 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
274 ee->ee_db[mode][1] = val & 0x7;
275 break;
278 AR5K_EEPROM_READ(o++, val);
279 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
280 ee->ee_thr_62[mode] = val & 0xff;
282 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
283 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
285 AR5K_EEPROM_READ(o++, val);
286 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
287 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
289 AR5K_EEPROM_READ(o++, val);
290 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
292 if ((val & 0xff) & 0x80)
293 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
294 else
295 ee->ee_noise_floor_thr[mode] = val & 0xff;
297 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
298 ee->ee_noise_floor_thr[mode] =
299 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
301 AR5K_EEPROM_READ(o++, val);
302 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
303 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
304 ee->ee_xpd[mode] = val & 0x1;
306 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
307 mode != AR5K_EEPROM_MODE_11B)
308 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
310 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
311 AR5K_EEPROM_READ(o++, val);
312 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
314 if (mode == AR5K_EEPROM_MODE_11A)
315 ee->ee_xr_power[mode] = val & 0x3f;
316 else {
317 /* b_DB_11[bg] and b_OB_11[bg] */
318 ee->ee_ob[mode][0] = val & 0x7;
319 ee->ee_db[mode][0] = (val >> 3) & 0x7;
323 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
324 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
325 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
326 } else {
327 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
329 AR5K_EEPROM_READ(o++, val);
330 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
332 if (mode == AR5K_EEPROM_MODE_11G) {
333 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
334 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
335 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
339 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
340 mode == AR5K_EEPROM_MODE_11A) {
341 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
342 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
345 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
346 goto done;
348 /* Note: >= v5 have bg freq piers on another location
349 * so these freq piers are ignored for >= v5 (should be 0xff
350 * anyway) */
351 switch (mode) {
352 case AR5K_EEPROM_MODE_11A:
353 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
354 break;
356 AR5K_EEPROM_READ(o++, val);
357 ee->ee_margin_tx_rx[mode] = val & 0x3f;
358 break;
359 case AR5K_EEPROM_MODE_11B:
360 AR5K_EEPROM_READ(o++, val);
362 ee->ee_pwr_cal_b[0].freq =
363 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
364 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
365 ee->ee_n_piers[mode]++;
367 ee->ee_pwr_cal_b[1].freq =
368 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
369 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
370 ee->ee_n_piers[mode]++;
372 AR5K_EEPROM_READ(o++, val);
373 ee->ee_pwr_cal_b[2].freq =
374 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
375 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
376 ee->ee_n_piers[mode]++;
378 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
379 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
380 break;
381 case AR5K_EEPROM_MODE_11G:
382 AR5K_EEPROM_READ(o++, val);
384 ee->ee_pwr_cal_g[0].freq =
385 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
386 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
387 ee->ee_n_piers[mode]++;
389 ee->ee_pwr_cal_g[1].freq =
390 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
391 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
392 ee->ee_n_piers[mode]++;
394 AR5K_EEPROM_READ(o++, val);
395 ee->ee_turbo_max_power[mode] = val & 0x7f;
396 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
398 AR5K_EEPROM_READ(o++, val);
399 ee->ee_pwr_cal_g[2].freq =
400 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
401 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
402 ee->ee_n_piers[mode]++;
404 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
405 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
407 AR5K_EEPROM_READ(o++, val);
408 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
409 ee->ee_q_cal[mode] = val & 0x1f;
411 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
412 AR5K_EEPROM_READ(o++, val);
413 ee->ee_cck_ofdm_gain_delta = val & 0xff;
415 break;
419 * Read turbo mode information on newer EEPROM versions
421 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
422 goto done;
424 switch (mode) {
425 case AR5K_EEPROM_MODE_11A:
426 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
428 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
429 AR5K_EEPROM_READ(o++, val);
430 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
431 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
433 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
434 AR5K_EEPROM_READ(o++, val);
435 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
436 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
438 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
439 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
440 break;
441 case AR5K_EEPROM_MODE_11G:
442 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
444 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
445 AR5K_EEPROM_READ(o++, val);
446 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
447 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
449 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
450 AR5K_EEPROM_READ(o++, val);
451 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
452 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
453 break;
456 done:
457 /* return new offset */
458 *offset = o;
460 return 0;
463 /* Read mode-specific data (except power calibration data) */
464 static int
465 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
467 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
468 u32 mode_offset[3];
469 unsigned int mode;
470 u32 offset;
471 int ret;
474 * Get values for all modes
476 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
477 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
478 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
480 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
481 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
483 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
484 offset = mode_offset[mode];
486 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
487 if (ret)
488 return ret;
490 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
491 if (ret)
492 return ret;
495 /* override for older eeprom versions for better performance */
496 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
497 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
498 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
499 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
502 return 0;
505 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
506 * frequency mask) */
507 static inline int
508 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
509 struct ath5k_chan_pcal_info *pc, unsigned int mode)
511 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
512 int o = *offset;
513 int i = 0;
514 u8 freq1, freq2;
515 u16 val;
517 ee->ee_n_piers[mode] = 0;
518 while (i < max) {
519 AR5K_EEPROM_READ(o++, val);
521 freq1 = val & 0xff;
522 if (!freq1)
523 break;
525 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
526 freq1, mode);
527 ee->ee_n_piers[mode]++;
529 freq2 = (val >> 8) & 0xff;
530 if (!freq2)
531 break;
533 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
534 freq2, mode);
535 ee->ee_n_piers[mode]++;
538 /* return new offset */
539 *offset = o;
541 return 0;
544 /* Read frequency piers for 802.11a */
545 static int
546 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
548 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
549 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
550 int i;
551 u16 val;
552 u8 mask;
554 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
555 ath5k_eeprom_read_freq_list(ah, &offset,
556 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
557 AR5K_EEPROM_MODE_11A);
558 } else {
559 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
561 AR5K_EEPROM_READ(offset++, val);
562 pcal[0].freq = (val >> 9) & mask;
563 pcal[1].freq = (val >> 2) & mask;
564 pcal[2].freq = (val << 5) & mask;
566 AR5K_EEPROM_READ(offset++, val);
567 pcal[2].freq |= (val >> 11) & 0x1f;
568 pcal[3].freq = (val >> 4) & mask;
569 pcal[4].freq = (val << 3) & mask;
571 AR5K_EEPROM_READ(offset++, val);
572 pcal[4].freq |= (val >> 13) & 0x7;
573 pcal[5].freq = (val >> 6) & mask;
574 pcal[6].freq = (val << 1) & mask;
576 AR5K_EEPROM_READ(offset++, val);
577 pcal[6].freq |= (val >> 15) & 0x1;
578 pcal[7].freq = (val >> 8) & mask;
579 pcal[8].freq = (val >> 1) & mask;
580 pcal[9].freq = (val << 6) & mask;
582 AR5K_EEPROM_READ(offset++, val);
583 pcal[9].freq |= (val >> 10) & 0x3f;
585 /* Fixed number of piers */
586 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
588 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
589 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
590 pcal[i].freq, AR5K_EEPROM_MODE_11A);
594 return 0;
597 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
598 static inline int
599 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
601 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
602 struct ath5k_chan_pcal_info *pcal;
604 switch (mode) {
605 case AR5K_EEPROM_MODE_11B:
606 pcal = ee->ee_pwr_cal_b;
607 break;
608 case AR5K_EEPROM_MODE_11G:
609 pcal = ee->ee_pwr_cal_g;
610 break;
611 default:
612 return -EINVAL;
615 ath5k_eeprom_read_freq_list(ah, &offset,
616 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
617 mode);
619 return 0;
624 * Read power calibration for RF5111 chips
626 * For RF5111 we have an XPD -eXternal Power Detector- curve
627 * for each calibrated channel. Each curve has 0,5dB Power steps
628 * on x axis and PCDAC steps (offsets) on y axis and looks like an
629 * exponential function. To recreate the curve we read 11 points
630 * here and interpolate later.
633 /* Used to match PCDAC steps with power values on RF5111 chips
634 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
635 * steps that match with the power values we read from eeprom. On
636 * older eeprom versions (< 3.2) these steps are equally spaced at
637 * 10% of the pcdac curve -until the curve reaches its maximum-
638 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
639 * these 11 steps are spaced in a different way. This function returns
640 * the pcdac steps based on eeprom version and curve min/max so that we
641 * can have pcdac/pwr points.
643 static inline void
644 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
646 static const u16 intercepts3[] = {
647 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
649 static const u16 intercepts3_2[] = {
650 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
652 const u16 *ip;
653 int i;
655 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
656 ip = intercepts3_2;
657 else
658 ip = intercepts3;
660 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
661 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
664 static int
665 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
667 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
668 struct ath5k_chan_pcal_info *chinfo;
669 u8 pier, pdg;
671 switch (mode) {
672 case AR5K_EEPROM_MODE_11A:
673 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
674 return 0;
675 chinfo = ee->ee_pwr_cal_a;
676 break;
677 case AR5K_EEPROM_MODE_11B:
678 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
679 return 0;
680 chinfo = ee->ee_pwr_cal_b;
681 break;
682 case AR5K_EEPROM_MODE_11G:
683 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
684 return 0;
685 chinfo = ee->ee_pwr_cal_g;
686 break;
687 default:
688 return -EINVAL;
691 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
692 if (!chinfo[pier].pd_curves)
693 continue;
695 for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
696 struct ath5k_pdgain_info *pd =
697 &chinfo[pier].pd_curves[pdg];
699 kfree(pd->pd_step);
700 kfree(pd->pd_pwr);
703 kfree(chinfo[pier].pd_curves);
706 return 0;
709 /* Convert RF5111 specific data to generic raw data
710 * used by interpolation code */
711 static int
712 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
713 struct ath5k_chan_pcal_info *chinfo)
715 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
716 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
717 struct ath5k_pdgain_info *pd;
718 u8 pier, point, idx;
719 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
721 /* Fill raw data for each calibration pier */
722 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
724 pcinfo = &chinfo[pier].rf5111_info;
726 /* Allocate pd_curves for this cal pier */
727 chinfo[pier].pd_curves =
728 kcalloc(AR5K_EEPROM_N_PD_CURVES,
729 sizeof(struct ath5k_pdgain_info),
730 GFP_KERNEL);
732 if (!chinfo[pier].pd_curves)
733 goto err_out;
735 /* Only one curve for RF5111
736 * find out which one and place
737 * in pd_curves.
738 * Note: ee_x_gain is reversed here */
739 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
741 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
742 pdgain_idx[0] = idx;
743 break;
747 ee->ee_pd_gains[mode] = 1;
749 pd = &chinfo[pier].pd_curves[idx];
751 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
753 /* Allocate pd points for this curve */
754 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
755 sizeof(u8), GFP_KERNEL);
756 if (!pd->pd_step)
757 goto err_out;
759 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
760 sizeof(s16), GFP_KERNEL);
761 if (!pd->pd_pwr)
762 goto err_out;
764 /* Fill raw dataset
765 * (convert power to 0.25dB units
766 * for RF5112 compatibility) */
767 for (point = 0; point < pd->pd_points; point++) {
769 /* Absolute values */
770 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
772 /* Already sorted */
773 pd->pd_step[point] = pcinfo->pcdac[point];
776 /* Set min/max pwr */
777 chinfo[pier].min_pwr = pd->pd_pwr[0];
778 chinfo[pier].max_pwr = pd->pd_pwr[10];
782 return 0;
784 err_out:
785 ath5k_eeprom_free_pcal_info(ah, mode);
786 return -ENOMEM;
789 /* Parse EEPROM data */
790 static int
791 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
793 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
794 struct ath5k_chan_pcal_info *pcal;
795 int offset, ret;
796 int i;
797 u16 val;
799 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
800 switch (mode) {
801 case AR5K_EEPROM_MODE_11A:
802 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
803 return 0;
805 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
806 offset + AR5K_EEPROM_GROUP1_OFFSET);
807 if (ret < 0)
808 return ret;
810 offset += AR5K_EEPROM_GROUP2_OFFSET;
811 pcal = ee->ee_pwr_cal_a;
812 break;
813 case AR5K_EEPROM_MODE_11B:
814 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
815 !AR5K_EEPROM_HDR_11G(ee->ee_header))
816 return 0;
818 pcal = ee->ee_pwr_cal_b;
819 offset += AR5K_EEPROM_GROUP3_OFFSET;
821 /* fixed piers */
822 pcal[0].freq = 2412;
823 pcal[1].freq = 2447;
824 pcal[2].freq = 2484;
825 ee->ee_n_piers[mode] = 3;
826 break;
827 case AR5K_EEPROM_MODE_11G:
828 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
829 return 0;
831 pcal = ee->ee_pwr_cal_g;
832 offset += AR5K_EEPROM_GROUP4_OFFSET;
834 /* fixed piers */
835 pcal[0].freq = 2312;
836 pcal[1].freq = 2412;
837 pcal[2].freq = 2484;
838 ee->ee_n_piers[mode] = 3;
839 break;
840 default:
841 return -EINVAL;
844 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
845 struct ath5k_chan_pcal_info_rf5111 *cdata =
846 &pcal[i].rf5111_info;
848 AR5K_EEPROM_READ(offset++, val);
849 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
850 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
851 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
853 AR5K_EEPROM_READ(offset++, val);
854 cdata->pwr[0] |= ((val >> 14) & 0x3);
855 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
856 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
857 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
859 AR5K_EEPROM_READ(offset++, val);
860 cdata->pwr[3] |= ((val >> 12) & 0xf);
861 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
862 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
864 AR5K_EEPROM_READ(offset++, val);
865 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
866 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
867 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
869 AR5K_EEPROM_READ(offset++, val);
870 cdata->pwr[8] |= ((val >> 14) & 0x3);
871 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
872 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
874 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
875 cdata->pcdac_max, cdata->pcdac);
878 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
883 * Read power calibration for RF5112 chips
885 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
886 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
887 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
888 * power steps on x axis and PCDAC steps on y axis and looks like a
889 * linear function. To recreate the curve and pass the power values
890 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
891 * and 3 points for xpd 3 (higher gain -> lower power) here and
892 * interpolate later.
894 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
897 /* Convert RF5112 specific data to generic raw data
898 * used by interpolation code */
899 static int
900 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
901 struct ath5k_chan_pcal_info *chinfo)
903 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
904 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
905 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
906 unsigned int pier, pdg, point;
908 /* Fill raw data for each calibration pier */
909 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
911 pcinfo = &chinfo[pier].rf5112_info;
913 /* Allocate pd_curves for this cal pier */
914 chinfo[pier].pd_curves =
915 kcalloc(AR5K_EEPROM_N_PD_CURVES,
916 sizeof(struct ath5k_pdgain_info),
917 GFP_KERNEL);
919 if (!chinfo[pier].pd_curves)
920 goto err_out;
922 /* Fill pd_curves */
923 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
925 u8 idx = pdgain_idx[pdg];
926 struct ath5k_pdgain_info *pd =
927 &chinfo[pier].pd_curves[idx];
929 /* Lowest gain curve (max power) */
930 if (pdg == 0) {
931 /* One more point for better accuracy */
932 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
934 /* Allocate pd points for this curve */
935 pd->pd_step = kcalloc(pd->pd_points,
936 sizeof(u8), GFP_KERNEL);
938 if (!pd->pd_step)
939 goto err_out;
941 pd->pd_pwr = kcalloc(pd->pd_points,
942 sizeof(s16), GFP_KERNEL);
944 if (!pd->pd_pwr)
945 goto err_out;
947 /* Fill raw dataset
948 * (all power levels are in 0.25dB units) */
949 pd->pd_step[0] = pcinfo->pcdac_x0[0];
950 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
952 for (point = 1; point < pd->pd_points;
953 point++) {
954 /* Absolute values */
955 pd->pd_pwr[point] =
956 pcinfo->pwr_x0[point];
958 /* Deltas */
959 pd->pd_step[point] =
960 pd->pd_step[point - 1] +
961 pcinfo->pcdac_x0[point];
964 /* Set min power for this frequency */
965 chinfo[pier].min_pwr = pd->pd_pwr[0];
967 /* Highest gain curve (min power) */
968 } else if (pdg == 1) {
970 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
972 /* Allocate pd points for this curve */
973 pd->pd_step = kcalloc(pd->pd_points,
974 sizeof(u8), GFP_KERNEL);
976 if (!pd->pd_step)
977 goto err_out;
979 pd->pd_pwr = kcalloc(pd->pd_points,
980 sizeof(s16), GFP_KERNEL);
982 if (!pd->pd_pwr)
983 goto err_out;
985 /* Fill raw dataset
986 * (all power levels are in 0.25dB units) */
987 for (point = 0; point < pd->pd_points;
988 point++) {
989 /* Absolute values */
990 pd->pd_pwr[point] =
991 pcinfo->pwr_x3[point];
993 /* Fixed points */
994 pd->pd_step[point] =
995 pcinfo->pcdac_x3[point];
998 /* Since we have a higher gain curve
999 * override min power */
1000 chinfo[pier].min_pwr = pd->pd_pwr[0];
1005 return 0;
1007 err_out:
1008 ath5k_eeprom_free_pcal_info(ah, mode);
1009 return -ENOMEM;
1012 /* Parse EEPROM data */
1013 static int
1014 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1016 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1017 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1018 struct ath5k_chan_pcal_info *gen_chan_info;
1019 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1020 u32 offset;
1021 u8 i, c;
1022 u16 val;
1023 u8 pd_gains = 0;
1025 /* Count how many curves we have and
1026 * identify them (which one of the 4
1027 * available curves we have on each count).
1028 * Curves are stored from lower (x0) to
1029 * higher (x3) gain */
1030 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1031 /* ee_x_gain[mode] is x gain mask */
1032 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1033 pdgain_idx[pd_gains++] = i;
1035 ee->ee_pd_gains[mode] = pd_gains;
1037 if (pd_gains == 0 || pd_gains > 2)
1038 return -EINVAL;
1040 switch (mode) {
1041 case AR5K_EEPROM_MODE_11A:
1043 * Read 5GHz EEPROM channels
1045 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1046 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1048 offset += AR5K_EEPROM_GROUP2_OFFSET;
1049 gen_chan_info = ee->ee_pwr_cal_a;
1050 break;
1051 case AR5K_EEPROM_MODE_11B:
1052 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1053 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1054 offset += AR5K_EEPROM_GROUP3_OFFSET;
1056 /* NB: frequency piers parsed during mode init */
1057 gen_chan_info = ee->ee_pwr_cal_b;
1058 break;
1059 case AR5K_EEPROM_MODE_11G:
1060 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1061 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1062 offset += AR5K_EEPROM_GROUP4_OFFSET;
1063 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1064 offset += AR5K_EEPROM_GROUP2_OFFSET;
1066 /* NB: frequency piers parsed during mode init */
1067 gen_chan_info = ee->ee_pwr_cal_g;
1068 break;
1069 default:
1070 return -EINVAL;
1073 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1074 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1076 /* Power values in quarter dB
1077 * for the lower xpd gain curve
1078 * (0 dBm -> higher output power) */
1079 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1080 AR5K_EEPROM_READ(offset++, val);
1081 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1082 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1085 /* PCDAC steps
1086 * corresponding to the above power
1087 * measurements */
1088 AR5K_EEPROM_READ(offset++, val);
1089 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1090 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1091 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1093 /* Power values in quarter dB
1094 * for the higher xpd gain curve
1095 * (18 dBm -> lower output power) */
1096 AR5K_EEPROM_READ(offset++, val);
1097 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1098 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1100 AR5K_EEPROM_READ(offset++, val);
1101 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1103 /* PCDAC steps
1104 * corresponding to the above power
1105 * measurements (fixed) */
1106 chan_pcal_info->pcdac_x3[0] = 20;
1107 chan_pcal_info->pcdac_x3[1] = 35;
1108 chan_pcal_info->pcdac_x3[2] = 63;
1110 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1111 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1113 /* Last xpd0 power level is also channel maximum */
1114 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1115 } else {
1116 chan_pcal_info->pcdac_x0[0] = 1;
1117 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1122 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1127 * Read power calibration for RF2413 chips
1129 * For RF2413 we have a Power to PDDAC table (Power Detector)
1130 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1131 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1132 * axis and looks like an exponential function like the RF5111 curve.
1134 * To recreate the curves we read here the points and interpolate
1135 * later. Note that in most cases only 2 (higher and lower) curves are
1136 * used (like RF5112) but vendors have the opportunity to include all
1137 * 4 curves on eeprom. The final curve (higher power) has an extra
1138 * point for better accuracy like RF5112.
1141 /* For RF2413 power calibration data doesn't start on a fixed location and
1142 * if a mode is not supported, its section is missing -not zeroed-.
1143 * So we need to calculate the starting offset for each section by using
1144 * these two functions */
1146 /* Return the size of each section based on the mode and the number of pd
1147 * gains available (maximum 4). */
1148 static inline unsigned int
1149 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1151 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1152 unsigned int sz;
1154 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1155 sz *= ee->ee_n_piers[mode];
1157 return sz;
1160 /* Return the starting offset for a section based on the modes supported
1161 * and each section's size. */
1162 static unsigned int
1163 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1165 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1167 switch (mode) {
1168 case AR5K_EEPROM_MODE_11G:
1169 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1170 offset += ath5k_pdgains_size_2413(ee,
1171 AR5K_EEPROM_MODE_11B) +
1172 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1173 /* fall through */
1174 case AR5K_EEPROM_MODE_11B:
1175 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1176 offset += ath5k_pdgains_size_2413(ee,
1177 AR5K_EEPROM_MODE_11A) +
1178 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1179 /* fall through */
1180 case AR5K_EEPROM_MODE_11A:
1181 break;
1182 default:
1183 break;
1186 return offset;
1189 /* Convert RF2413 specific data to generic raw data
1190 * used by interpolation code */
1191 static int
1192 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1193 struct ath5k_chan_pcal_info *chinfo)
1195 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1196 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1197 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1198 unsigned int pier, pdg, point;
1200 /* Fill raw data for each calibration pier */
1201 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1203 pcinfo = &chinfo[pier].rf2413_info;
1205 /* Allocate pd_curves for this cal pier */
1206 chinfo[pier].pd_curves =
1207 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1208 sizeof(struct ath5k_pdgain_info),
1209 GFP_KERNEL);
1211 if (!chinfo[pier].pd_curves)
1212 goto err_out;
1214 /* Fill pd_curves */
1215 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1217 u8 idx = pdgain_idx[pdg];
1218 struct ath5k_pdgain_info *pd =
1219 &chinfo[pier].pd_curves[idx];
1221 /* One more point for the highest power
1222 * curve (lowest gain) */
1223 if (pdg == ee->ee_pd_gains[mode] - 1)
1224 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1225 else
1226 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1228 /* Allocate pd points for this curve */
1229 pd->pd_step = kcalloc(pd->pd_points,
1230 sizeof(u8), GFP_KERNEL);
1232 if (!pd->pd_step)
1233 goto err_out;
1235 pd->pd_pwr = kcalloc(pd->pd_points,
1236 sizeof(s16), GFP_KERNEL);
1238 if (!pd->pd_pwr)
1239 goto err_out;
1241 /* Fill raw dataset
1242 * convert all pwr levels to
1243 * quarter dB for RF5112 compatibility */
1244 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1245 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1247 for (point = 1; point < pd->pd_points; point++) {
1249 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1250 2 * pcinfo->pwr[pdg][point - 1];
1252 pd->pd_step[point] = pd->pd_step[point - 1] +
1253 pcinfo->pddac[pdg][point - 1];
1257 /* Highest gain curve -> min power */
1258 if (pdg == 0)
1259 chinfo[pier].min_pwr = pd->pd_pwr[0];
1261 /* Lowest gain curve -> max power */
1262 if (pdg == ee->ee_pd_gains[mode] - 1)
1263 chinfo[pier].max_pwr =
1264 pd->pd_pwr[pd->pd_points - 1];
1268 return 0;
1270 err_out:
1271 ath5k_eeprom_free_pcal_info(ah, mode);
1272 return -ENOMEM;
1275 /* Parse EEPROM data */
1276 static int
1277 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1279 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1280 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1281 struct ath5k_chan_pcal_info *chinfo;
1282 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1283 u32 offset;
1284 int idx, i;
1285 u16 val;
1286 u8 pd_gains = 0;
1288 /* Count how many curves we have and
1289 * identify them (which one of the 4
1290 * available curves we have on each count).
1291 * Curves are stored from higher to
1292 * lower gain so we go backwards */
1293 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1294 /* ee_x_gain[mode] is x gain mask */
1295 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1296 pdgain_idx[pd_gains++] = idx;
1299 ee->ee_pd_gains[mode] = pd_gains;
1301 if (pd_gains == 0)
1302 return -EINVAL;
1304 offset = ath5k_cal_data_offset_2413(ee, mode);
1305 switch (mode) {
1306 case AR5K_EEPROM_MODE_11A:
1307 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1308 return 0;
1310 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1311 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1312 chinfo = ee->ee_pwr_cal_a;
1313 break;
1314 case AR5K_EEPROM_MODE_11B:
1315 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1316 return 0;
1318 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1319 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1320 chinfo = ee->ee_pwr_cal_b;
1321 break;
1322 case AR5K_EEPROM_MODE_11G:
1323 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1324 return 0;
1326 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1327 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1328 chinfo = ee->ee_pwr_cal_g;
1329 break;
1330 default:
1331 return -EINVAL;
1334 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1335 pcinfo = &chinfo[i].rf2413_info;
1338 * Read pwr_i, pddac_i and the first
1339 * 2 pd points (pwr, pddac)
1341 AR5K_EEPROM_READ(offset++, val);
1342 pcinfo->pwr_i[0] = val & 0x1f;
1343 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1344 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1346 AR5K_EEPROM_READ(offset++, val);
1347 pcinfo->pddac[0][0] = val & 0x3f;
1348 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1349 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1351 AR5K_EEPROM_READ(offset++, val);
1352 pcinfo->pwr[0][2] = val & 0xf;
1353 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1355 pcinfo->pwr[0][3] = 0;
1356 pcinfo->pddac[0][3] = 0;
1358 if (pd_gains > 1) {
1360 * Pd gain 0 is not the last pd gain
1361 * so it only has 2 pd points.
1362 * Continue with pd gain 1.
1364 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1366 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1367 AR5K_EEPROM_READ(offset++, val);
1368 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1370 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1371 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1373 AR5K_EEPROM_READ(offset++, val);
1374 pcinfo->pwr[1][1] = val & 0xf;
1375 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1376 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1378 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1379 AR5K_EEPROM_READ(offset++, val);
1380 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1382 pcinfo->pwr[1][3] = 0;
1383 pcinfo->pddac[1][3] = 0;
1384 } else if (pd_gains == 1) {
1386 * Pd gain 0 is the last one so
1387 * read the extra point.
1389 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1391 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1392 AR5K_EEPROM_READ(offset++, val);
1393 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1397 * Proceed with the other pd_gains
1398 * as above.
1400 if (pd_gains > 2) {
1401 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1402 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1404 AR5K_EEPROM_READ(offset++, val);
1405 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1406 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1407 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1409 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1410 AR5K_EEPROM_READ(offset++, val);
1411 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1413 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1414 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1416 pcinfo->pwr[2][3] = 0;
1417 pcinfo->pddac[2][3] = 0;
1418 } else if (pd_gains == 2) {
1419 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1420 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1423 if (pd_gains > 3) {
1424 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1425 AR5K_EEPROM_READ(offset++, val);
1426 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1428 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1429 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1430 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1432 AR5K_EEPROM_READ(offset++, val);
1433 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1434 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1435 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1437 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1438 AR5K_EEPROM_READ(offset++, val);
1439 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1441 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1442 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1444 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1445 AR5K_EEPROM_READ(offset++, val);
1446 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1447 } else if (pd_gains == 3) {
1448 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1449 AR5K_EEPROM_READ(offset++, val);
1450 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1452 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1456 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1461 * Read per rate target power (this is the maximum tx power
1462 * supported by the card). This info is used when setting
1463 * tx power, no matter the channel.
1465 * This also works for v5 EEPROMs.
1467 static int
1468 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1470 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1471 struct ath5k_rate_pcal_info *rate_pcal_info;
1472 u8 *rate_target_pwr_num;
1473 u32 offset;
1474 u16 val;
1475 int i;
1477 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1478 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1479 switch (mode) {
1480 case AR5K_EEPROM_MODE_11A:
1481 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1482 rate_pcal_info = ee->ee_rate_tpwr_a;
1483 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1484 break;
1485 case AR5K_EEPROM_MODE_11B:
1486 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1487 rate_pcal_info = ee->ee_rate_tpwr_b;
1488 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1489 break;
1490 case AR5K_EEPROM_MODE_11G:
1491 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1492 rate_pcal_info = ee->ee_rate_tpwr_g;
1493 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1494 break;
1495 default:
1496 return -EINVAL;
1499 /* Different freq mask for older eeproms (<= v3.2) */
1500 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1501 for (i = 0; i < (*rate_target_pwr_num); i++) {
1502 AR5K_EEPROM_READ(offset++, val);
1503 rate_pcal_info[i].freq =
1504 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1506 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1507 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1509 AR5K_EEPROM_READ(offset++, val);
1511 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1512 val == 0) {
1513 (*rate_target_pwr_num) = i;
1514 break;
1517 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1518 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1519 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1521 } else {
1522 for (i = 0; i < (*rate_target_pwr_num); i++) {
1523 AR5K_EEPROM_READ(offset++, val);
1524 rate_pcal_info[i].freq =
1525 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1527 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1528 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1530 AR5K_EEPROM_READ(offset++, val);
1532 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1533 val == 0) {
1534 (*rate_target_pwr_num) = i;
1535 break;
1538 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1539 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1540 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1544 return 0;
1549 * Read per channel calibration info from EEPROM
1551 * This info is used to calibrate the baseband power table. Imagine
1552 * that for each channel there is a power curve that's hw specific
1553 * (depends on amplifier etc) and we try to "correct" this curve using
1554 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1555 * it can use accurate power values when setting tx power (takes amplifier's
1556 * performance on each channel into account).
1558 * EEPROM provides us with the offsets for some pre-calibrated channels
1559 * and we have to interpolate to create the full table for these channels and
1560 * also the table for any channel.
1562 static int
1563 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1565 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1566 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1567 int mode;
1568 int err;
1570 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1571 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1572 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1573 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1574 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1575 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1576 else
1577 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1580 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1581 mode++) {
1582 err = read_pcal(ah, mode);
1583 if (err)
1584 return err;
1586 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1587 if (err < 0)
1588 return err;
1591 return 0;
1594 /* Read conformance test limits used for regulatory control */
1595 static int
1596 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1598 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1599 struct ath5k_edge_power *rep;
1600 unsigned int fmask, pmask;
1601 unsigned int ctl_mode;
1602 int i, j;
1603 u32 offset;
1604 u16 val;
1606 pmask = AR5K_EEPROM_POWER_M;
1607 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1608 offset = AR5K_EEPROM_CTL(ee->ee_version);
1609 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1610 for (i = 0; i < ee->ee_ctls; i += 2) {
1611 AR5K_EEPROM_READ(offset++, val);
1612 ee->ee_ctl[i] = (val >> 8) & 0xff;
1613 ee->ee_ctl[i + 1] = val & 0xff;
1616 offset = AR5K_EEPROM_GROUP8_OFFSET;
1617 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1618 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1619 AR5K_EEPROM_GROUP5_OFFSET;
1620 else
1621 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1623 rep = ee->ee_ctl_pwr;
1624 for (i = 0; i < ee->ee_ctls; i++) {
1625 switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1626 case AR5K_CTL_11A:
1627 case AR5K_CTL_TURBO:
1628 ctl_mode = AR5K_EEPROM_MODE_11A;
1629 break;
1630 default:
1631 ctl_mode = AR5K_EEPROM_MODE_11G;
1632 break;
1634 if (ee->ee_ctl[i] == 0) {
1635 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1636 offset += 8;
1637 else
1638 offset += 7;
1639 rep += AR5K_EEPROM_N_EDGES;
1640 continue;
1642 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1643 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1644 AR5K_EEPROM_READ(offset++, val);
1645 rep[j].freq = (val >> 8) & fmask;
1646 rep[j + 1].freq = val & fmask;
1648 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1649 AR5K_EEPROM_READ(offset++, val);
1650 rep[j].edge = (val >> 8) & pmask;
1651 rep[j].flag = (val >> 14) & 1;
1652 rep[j + 1].edge = val & pmask;
1653 rep[j + 1].flag = (val >> 6) & 1;
1655 } else {
1656 AR5K_EEPROM_READ(offset++, val);
1657 rep[0].freq = (val >> 9) & fmask;
1658 rep[1].freq = (val >> 2) & fmask;
1659 rep[2].freq = (val << 5) & fmask;
1661 AR5K_EEPROM_READ(offset++, val);
1662 rep[2].freq |= (val >> 11) & 0x1f;
1663 rep[3].freq = (val >> 4) & fmask;
1664 rep[4].freq = (val << 3) & fmask;
1666 AR5K_EEPROM_READ(offset++, val);
1667 rep[4].freq |= (val >> 13) & 0x7;
1668 rep[5].freq = (val >> 6) & fmask;
1669 rep[6].freq = (val << 1) & fmask;
1671 AR5K_EEPROM_READ(offset++, val);
1672 rep[6].freq |= (val >> 15) & 0x1;
1673 rep[7].freq = (val >> 8) & fmask;
1675 rep[0].edge = (val >> 2) & pmask;
1676 rep[1].edge = (val << 4) & pmask;
1678 AR5K_EEPROM_READ(offset++, val);
1679 rep[1].edge |= (val >> 12) & 0xf;
1680 rep[2].edge = (val >> 6) & pmask;
1681 rep[3].edge = val & pmask;
1683 AR5K_EEPROM_READ(offset++, val);
1684 rep[4].edge = (val >> 10) & pmask;
1685 rep[5].edge = (val >> 4) & pmask;
1686 rep[6].edge = (val << 2) & pmask;
1688 AR5K_EEPROM_READ(offset++, val);
1689 rep[6].edge |= (val >> 14) & 0x3;
1690 rep[7].edge = (val >> 8) & pmask;
1692 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1693 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1694 rep[j].freq, ctl_mode);
1696 rep += AR5K_EEPROM_N_EDGES;
1699 return 0;
1702 static int
1703 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1705 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1706 u32 offset;
1707 u16 val;
1708 int ret = 0, i;
1710 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1711 AR5K_EEPROM_N_CTLS(ee->ee_version);
1713 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1714 /* No spur info for 5GHz */
1715 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1716 /* 2 channels for 2GHz (2464/2420) */
1717 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1718 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1719 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1720 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1721 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1722 AR5K_EEPROM_READ(offset, val);
1723 ee->ee_spur_chans[i][0] = val;
1724 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1725 val);
1726 ee->ee_spur_chans[i][1] = val;
1727 offset++;
1731 return ret;
1735 /***********************\
1736 * Init/Detach functions *
1737 \***********************/
1740 * Initialize eeprom data structure
1743 ath5k_eeprom_init(struct ath5k_hw *ah)
1745 int err;
1747 err = ath5k_eeprom_init_header(ah);
1748 if (err < 0)
1749 return err;
1751 err = ath5k_eeprom_init_modes(ah);
1752 if (err < 0)
1753 return err;
1755 err = ath5k_eeprom_read_pcal_info(ah);
1756 if (err < 0)
1757 return err;
1759 err = ath5k_eeprom_read_ctl_info(ah);
1760 if (err < 0)
1761 return err;
1763 err = ath5k_eeprom_read_spur_chans(ah);
1764 if (err < 0)
1765 return err;
1767 return 0;
1770 void
1771 ath5k_eeprom_detach(struct ath5k_hw *ah)
1773 u8 mode;
1775 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1776 ath5k_eeprom_free_pcal_info(ah, mode);
1780 ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
1782 switch (channel->hw_value) {
1783 case AR5K_MODE_11A:
1784 return AR5K_EEPROM_MODE_11A;
1785 case AR5K_MODE_11G:
1786 return AR5K_EEPROM_MODE_11G;
1787 case AR5K_MODE_11B:
1788 return AR5K_EEPROM_MODE_11B;
1789 default:
1790 return -1;