2 * Copyright (c) 2004-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/module.h>
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/mmc/host.h>
21 #include <linux/mmc/sdio_func.h>
22 #include <linux/mmc/sdio_ids.h>
23 #include <linux/mmc/sdio.h>
24 #include <linux/mmc/sd.h>
32 struct sdio_func
*func
;
37 struct list_head bus_req_freeq
;
39 /* available bus requests */
40 struct bus_request bus_req
[BUS_REQUEST_MAX_NUM
];
46 /* protects access to dma_buffer */
47 struct mutex dma_buffer_mutex
;
49 /* scatter request list head */
50 struct list_head scat_req
;
56 atomic_t irq_handling
;
57 const struct sdio_device_id
*id
;
58 struct work_struct wr_async_work
;
59 struct list_head wr_asyncq
;
60 spinlock_t wr_async_lock
;
63 #define CMD53_ARG_READ 0
64 #define CMD53_ARG_WRITE 1
65 #define CMD53_ARG_BLOCK_BASIS 1
66 #define CMD53_ARG_FIXED_ADDRESS 0
67 #define CMD53_ARG_INCR_ADDRESS 1
69 static inline struct ath6kl_sdio
*ath6kl_sdio_priv(struct ath6kl
*ar
)
75 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
76 * Most host controllers assume the buffer is DMA'able and will
77 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
78 * check fails on stack memory.
80 static inline bool buf_needs_bounce(u8
*buf
)
82 return ((unsigned long) buf
& 0x3) || !virt_addr_valid(buf
);
85 static void ath6kl_sdio_set_mbox_info(struct ath6kl
*ar
)
87 struct ath6kl_mbox_info
*mbox_info
= &ar
->mbox_info
;
89 /* EP1 has an extended range */
90 mbox_info
->htc_addr
= HIF_MBOX_BASE_ADDR
;
91 mbox_info
->htc_ext_addr
= HIF_MBOX0_EXT_BASE_ADDR
;
92 mbox_info
->htc_ext_sz
= HIF_MBOX0_EXT_WIDTH
;
93 mbox_info
->block_size
= HIF_MBOX_BLOCK_SIZE
;
94 mbox_info
->gmbox_addr
= HIF_GMBOX_BASE_ADDR
;
95 mbox_info
->gmbox_sz
= HIF_GMBOX_WIDTH
;
98 static inline void ath6kl_sdio_set_cmd53_arg(u32
*arg
, u8 rw
, u8 func
,
99 u8 mode
, u8 opcode
, u32 addr
,
102 *arg
= (((rw
& 1) << 31) |
103 ((func
& 0x7) << 28) |
105 ((opcode
& 1) << 26) |
106 ((addr
& 0x1FFFF) << 9) |
110 static inline void ath6kl_sdio_set_cmd52_arg(u32
*arg
, u8 write
, u8 raw
,
111 unsigned int address
,
116 *arg
= ((write
& 1) << 31) |
117 ((func
& 0x7) << 28) |
120 ((address
& 0x1FFFF) << 9) |
125 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card
*card
,
126 unsigned int address
,
129 struct mmc_command io_cmd
;
131 memset(&io_cmd
, 0, sizeof(io_cmd
));
132 ath6kl_sdio_set_cmd52_arg(&io_cmd
.arg
, 1, 0, address
, byte
);
133 io_cmd
.opcode
= SD_IO_RW_DIRECT
;
134 io_cmd
.flags
= MMC_RSP_R5
| MMC_CMD_AC
;
136 return mmc_wait_for_cmd(card
->host
, &io_cmd
, 0);
139 static int ath6kl_sdio_io(struct sdio_func
*func
, u32 request
, u32 addr
,
144 sdio_claim_host(func
);
146 if (request
& HIF_WRITE
) {
147 /* FIXME: looks like ugly workaround for something */
148 if (addr
>= HIF_MBOX_BASE_ADDR
&&
149 addr
<= HIF_MBOX_END_ADDR
)
150 addr
+= (HIF_MBOX_WIDTH
- len
);
152 /* FIXME: this also looks like ugly workaround */
153 if (addr
== HIF_MBOX0_EXT_BASE_ADDR
)
154 addr
+= HIF_MBOX0_EXT_WIDTH
- len
;
156 if (request
& HIF_FIXED_ADDRESS
)
157 ret
= sdio_writesb(func
, addr
, buf
, len
);
159 ret
= sdio_memcpy_toio(func
, addr
, buf
, len
);
161 if (request
& HIF_FIXED_ADDRESS
)
162 ret
= sdio_readsb(func
, buf
, addr
, len
);
164 ret
= sdio_memcpy_fromio(func
, buf
, addr
, len
);
167 sdio_release_host(func
);
169 ath6kl_dbg(ATH6KL_DBG_SDIO
, "%s addr 0x%x%s buf 0x%p len %d\n",
170 request
& HIF_WRITE
? "wr" : "rd", addr
,
171 request
& HIF_FIXED_ADDRESS
? " (fixed)" : "", buf
, len
);
172 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP
, NULL
, "sdio ", buf
, len
);
177 static struct bus_request
*ath6kl_sdio_alloc_busreq(struct ath6kl_sdio
*ar_sdio
)
179 struct bus_request
*bus_req
;
181 spin_lock_bh(&ar_sdio
->lock
);
183 if (list_empty(&ar_sdio
->bus_req_freeq
)) {
184 spin_unlock_bh(&ar_sdio
->lock
);
188 bus_req
= list_first_entry(&ar_sdio
->bus_req_freeq
,
189 struct bus_request
, list
);
190 list_del(&bus_req
->list
);
192 spin_unlock_bh(&ar_sdio
->lock
);
193 ath6kl_dbg(ATH6KL_DBG_SCATTER
, "%s: bus request 0x%p\n",
199 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio
*ar_sdio
,
200 struct bus_request
*bus_req
)
202 ath6kl_dbg(ATH6KL_DBG_SCATTER
, "%s: bus request 0x%p\n",
205 spin_lock_bh(&ar_sdio
->lock
);
206 list_add_tail(&bus_req
->list
, &ar_sdio
->bus_req_freeq
);
207 spin_unlock_bh(&ar_sdio
->lock
);
210 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req
*scat_req
,
211 struct mmc_data
*data
)
213 struct scatterlist
*sg
;
216 data
->blksz
= HIF_MBOX_BLOCK_SIZE
;
217 data
->blocks
= scat_req
->len
/ HIF_MBOX_BLOCK_SIZE
;
219 ath6kl_dbg(ATH6KL_DBG_SCATTER
,
220 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
221 (scat_req
->req
& HIF_WRITE
) ? "WR" : "RD", scat_req
->addr
,
222 data
->blksz
, data
->blocks
, scat_req
->len
,
223 scat_req
->scat_entries
);
225 data
->flags
= (scat_req
->req
& HIF_WRITE
) ? MMC_DATA_WRITE
:
228 /* fill SG entries */
229 sg
= scat_req
->sgentries
;
230 sg_init_table(sg
, scat_req
->scat_entries
);
232 /* assemble SG list */
233 for (i
= 0; i
< scat_req
->scat_entries
; i
++, sg
++) {
234 ath6kl_dbg(ATH6KL_DBG_SCATTER
, "%d: addr:0x%p, len:%d\n",
235 i
, scat_req
->scat_list
[i
].buf
,
236 scat_req
->scat_list
[i
].len
);
238 sg_set_buf(sg
, scat_req
->scat_list
[i
].buf
,
239 scat_req
->scat_list
[i
].len
);
242 /* set scatter-gather table for request */
243 data
->sg
= scat_req
->sgentries
;
244 data
->sg_len
= scat_req
->scat_entries
;
247 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio
*ar_sdio
,
248 struct bus_request
*req
)
250 struct mmc_request mmc_req
;
251 struct mmc_command cmd
;
252 struct mmc_data data
;
253 struct hif_scatter_req
*scat_req
;
257 scat_req
= req
->scat_req
;
259 if (scat_req
->virt_scat
) {
261 if (scat_req
->req
& HIF_BLOCK_BASIS
)
262 len
= round_down(len
, HIF_MBOX_BLOCK_SIZE
);
264 status
= ath6kl_sdio_io(ar_sdio
->func
, scat_req
->req
,
265 scat_req
->addr
, scat_req
->virt_dma_buf
,
270 memset(&mmc_req
, 0, sizeof(struct mmc_request
));
271 memset(&cmd
, 0, sizeof(struct mmc_command
));
272 memset(&data
, 0, sizeof(struct mmc_data
));
274 ath6kl_sdio_setup_scat_data(scat_req
, &data
);
276 opcode
= (scat_req
->req
& HIF_FIXED_ADDRESS
) ?
277 CMD53_ARG_FIXED_ADDRESS
: CMD53_ARG_INCR_ADDRESS
;
279 rw
= (scat_req
->req
& HIF_WRITE
) ? CMD53_ARG_WRITE
: CMD53_ARG_READ
;
281 /* Fixup the address so that the last byte will fall on MBOX EOM */
282 if (scat_req
->req
& HIF_WRITE
) {
283 if (scat_req
->addr
== HIF_MBOX_BASE_ADDR
)
284 scat_req
->addr
+= HIF_MBOX_WIDTH
- scat_req
->len
;
286 /* Uses extended address range */
287 scat_req
->addr
+= HIF_MBOX0_EXT_WIDTH
- scat_req
->len
;
290 /* set command argument */
291 ath6kl_sdio_set_cmd53_arg(&cmd
.arg
, rw
, ar_sdio
->func
->num
,
292 CMD53_ARG_BLOCK_BASIS
, opcode
, scat_req
->addr
,
295 cmd
.opcode
= SD_IO_RW_EXTENDED
;
296 cmd
.flags
= MMC_RSP_SPI_R5
| MMC_RSP_R5
| MMC_CMD_ADTC
;
299 mmc_req
.data
= &data
;
301 sdio_claim_host(ar_sdio
->func
);
303 mmc_set_data_timeout(&data
, ar_sdio
->func
->card
);
304 /* synchronous call to process request */
305 mmc_wait_for_req(ar_sdio
->func
->card
->host
, &mmc_req
);
307 sdio_release_host(ar_sdio
->func
);
309 status
= cmd
.error
? cmd
.error
: data
.error
;
312 scat_req
->status
= status
;
314 if (scat_req
->status
)
315 ath6kl_err("Scatter write request failed:%d\n",
318 if (scat_req
->req
& HIF_ASYNCHRONOUS
)
319 scat_req
->complete(ar_sdio
->ar
->htc_target
, scat_req
);
324 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio
*ar_sdio
,
325 int n_scat_entry
, int n_scat_req
,
328 struct hif_scatter_req
*s_req
;
329 struct bus_request
*bus_req
;
330 int i
, scat_req_sz
, scat_list_sz
, sg_sz
, buf_sz
;
333 scat_list_sz
= (n_scat_entry
- 1) * sizeof(struct hif_scatter_item
);
334 scat_req_sz
= sizeof(*s_req
) + scat_list_sz
;
337 sg_sz
= sizeof(struct scatterlist
) * n_scat_entry
;
339 buf_sz
= 2 * L1_CACHE_BYTES
+
340 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER
;
342 for (i
= 0; i
< n_scat_req
; i
++) {
343 /* allocate the scatter request */
344 s_req
= kzalloc(scat_req_sz
, GFP_KERNEL
);
349 virt_buf
= kzalloc(buf_sz
, GFP_KERNEL
);
355 s_req
->virt_dma_buf
=
356 (u8
*)L1_CACHE_ALIGN((unsigned long)virt_buf
);
358 /* allocate sglist */
359 s_req
->sgentries
= kzalloc(sg_sz
, GFP_KERNEL
);
361 if (!s_req
->sgentries
) {
367 /* allocate a bus request for this scatter request */
368 bus_req
= ath6kl_sdio_alloc_busreq(ar_sdio
);
370 kfree(s_req
->sgentries
);
371 kfree(s_req
->virt_dma_buf
);
376 /* assign the scatter request to this bus request */
377 bus_req
->scat_req
= s_req
;
378 s_req
->busrequest
= bus_req
;
380 s_req
->virt_scat
= virt_scat
;
382 /* add it to the scatter pool */
383 hif_scatter_req_add(ar_sdio
->ar
, s_req
);
389 static int ath6kl_sdio_read_write_sync(struct ath6kl
*ar
, u32 addr
, u8
*buf
,
390 u32 len
, u32 request
)
392 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
395 bool bounced
= false;
397 if (request
& HIF_BLOCK_BASIS
)
398 len
= round_down(len
, HIF_MBOX_BLOCK_SIZE
);
400 if (buf_needs_bounce(buf
)) {
401 if (!ar_sdio
->dma_buffer
)
403 mutex_lock(&ar_sdio
->dma_buffer_mutex
);
404 tbuf
= ar_sdio
->dma_buffer
;
405 memcpy(tbuf
, buf
, len
);
410 ret
= ath6kl_sdio_io(ar_sdio
->func
, request
, addr
, tbuf
, len
);
411 if ((request
& HIF_READ
) && bounced
)
412 memcpy(buf
, tbuf
, len
);
415 mutex_unlock(&ar_sdio
->dma_buffer_mutex
);
420 static void __ath6kl_sdio_write_async(struct ath6kl_sdio
*ar_sdio
,
421 struct bus_request
*req
)
424 ath6kl_sdio_scat_rw(ar_sdio
, req
);
429 status
= ath6kl_sdio_read_write_sync(ar_sdio
->ar
, req
->address
,
430 req
->buffer
, req
->length
,
432 context
= req
->packet
;
433 ath6kl_sdio_free_bus_req(ar_sdio
, req
);
434 ath6kl_hif_rw_comp_handler(context
, status
);
438 static void ath6kl_sdio_write_async_work(struct work_struct
*work
)
440 struct ath6kl_sdio
*ar_sdio
;
441 struct bus_request
*req
, *tmp_req
;
443 ar_sdio
= container_of(work
, struct ath6kl_sdio
, wr_async_work
);
445 spin_lock_bh(&ar_sdio
->wr_async_lock
);
446 list_for_each_entry_safe(req
, tmp_req
, &ar_sdio
->wr_asyncq
, list
) {
447 list_del(&req
->list
);
448 spin_unlock_bh(&ar_sdio
->wr_async_lock
);
449 __ath6kl_sdio_write_async(ar_sdio
, req
);
450 spin_lock_bh(&ar_sdio
->wr_async_lock
);
452 spin_unlock_bh(&ar_sdio
->wr_async_lock
);
455 static void ath6kl_sdio_irq_handler(struct sdio_func
*func
)
458 struct ath6kl_sdio
*ar_sdio
;
460 ath6kl_dbg(ATH6KL_DBG_SDIO
, "irq\n");
462 ar_sdio
= sdio_get_drvdata(func
);
463 atomic_set(&ar_sdio
->irq_handling
, 1);
466 * Release the host during interrups so we can pick it back up when
467 * we process commands.
469 sdio_release_host(ar_sdio
->func
);
471 status
= ath6kl_hif_intr_bh_handler(ar_sdio
->ar
);
472 sdio_claim_host(ar_sdio
->func
);
473 atomic_set(&ar_sdio
->irq_handling
, 0);
474 WARN_ON(status
&& status
!= -ECANCELED
);
477 static int ath6kl_sdio_power_on(struct ath6kl
*ar
)
479 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
480 struct sdio_func
*func
= ar_sdio
->func
;
483 if (!ar_sdio
->is_disabled
)
486 ath6kl_dbg(ATH6KL_DBG_BOOT
, "sdio power on\n");
488 sdio_claim_host(func
);
490 ret
= sdio_enable_func(func
);
492 ath6kl_err("Unable to enable sdio func: %d)\n", ret
);
493 sdio_release_host(func
);
497 sdio_release_host(func
);
500 * Wait for hardware to initialise. It should take a lot less than
501 * 10 ms but let's be conservative here.
505 ar_sdio
->is_disabled
= false;
510 static int ath6kl_sdio_power_off(struct ath6kl
*ar
)
512 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
515 if (ar_sdio
->is_disabled
)
518 ath6kl_dbg(ATH6KL_DBG_BOOT
, "sdio power off\n");
520 /* Disable the card */
521 sdio_claim_host(ar_sdio
->func
);
522 ret
= sdio_disable_func(ar_sdio
->func
);
523 sdio_release_host(ar_sdio
->func
);
528 ar_sdio
->is_disabled
= true;
533 static int ath6kl_sdio_write_async(struct ath6kl
*ar
, u32 address
, u8
*buffer
,
534 u32 length
, u32 request
,
535 struct htc_packet
*packet
)
537 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
538 struct bus_request
*bus_req
;
540 bus_req
= ath6kl_sdio_alloc_busreq(ar_sdio
);
545 bus_req
->address
= address
;
546 bus_req
->buffer
= buffer
;
547 bus_req
->length
= length
;
548 bus_req
->request
= request
;
549 bus_req
->packet
= packet
;
551 spin_lock_bh(&ar_sdio
->wr_async_lock
);
552 list_add_tail(&bus_req
->list
, &ar_sdio
->wr_asyncq
);
553 spin_unlock_bh(&ar_sdio
->wr_async_lock
);
554 queue_work(ar
->ath6kl_wq
, &ar_sdio
->wr_async_work
);
559 static void ath6kl_sdio_irq_enable(struct ath6kl
*ar
)
561 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
564 sdio_claim_host(ar_sdio
->func
);
566 /* Register the isr */
567 ret
= sdio_claim_irq(ar_sdio
->func
, ath6kl_sdio_irq_handler
);
569 ath6kl_err("Failed to claim sdio irq: %d\n", ret
);
571 sdio_release_host(ar_sdio
->func
);
574 static void ath6kl_sdio_irq_disable(struct ath6kl
*ar
)
576 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
579 sdio_claim_host(ar_sdio
->func
);
581 /* Mask our function IRQ */
582 while (atomic_read(&ar_sdio
->irq_handling
)) {
583 sdio_release_host(ar_sdio
->func
);
584 schedule_timeout(HZ
/ 10);
585 sdio_claim_host(ar_sdio
->func
);
588 ret
= sdio_release_irq(ar_sdio
->func
);
590 ath6kl_err("Failed to release sdio irq: %d\n", ret
);
592 sdio_release_host(ar_sdio
->func
);
595 static struct hif_scatter_req
*ath6kl_sdio_scatter_req_get(struct ath6kl
*ar
)
597 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
598 struct hif_scatter_req
*node
= NULL
;
600 spin_lock_bh(&ar_sdio
->scat_lock
);
602 if (!list_empty(&ar_sdio
->scat_req
)) {
603 node
= list_first_entry(&ar_sdio
->scat_req
,
604 struct hif_scatter_req
, list
);
605 list_del(&node
->list
);
608 spin_unlock_bh(&ar_sdio
->scat_lock
);
613 static void ath6kl_sdio_scatter_req_add(struct ath6kl
*ar
,
614 struct hif_scatter_req
*s_req
)
616 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
618 spin_lock_bh(&ar_sdio
->scat_lock
);
620 list_add_tail(&s_req
->list
, &ar_sdio
->scat_req
);
622 spin_unlock_bh(&ar_sdio
->scat_lock
);
626 /* scatter gather read write request */
627 static int ath6kl_sdio_async_rw_scatter(struct ath6kl
*ar
,
628 struct hif_scatter_req
*scat_req
)
630 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
631 u32 request
= scat_req
->req
;
637 ath6kl_dbg(ATH6KL_DBG_SCATTER
,
638 "hif-scatter: total len: %d scatter entries: %d\n",
639 scat_req
->len
, scat_req
->scat_entries
);
641 if (request
& HIF_SYNCHRONOUS
)
642 status
= ath6kl_sdio_scat_rw(ar_sdio
, scat_req
->busrequest
);
644 spin_lock_bh(&ar_sdio
->wr_async_lock
);
645 list_add_tail(&scat_req
->busrequest
->list
, &ar_sdio
->wr_asyncq
);
646 spin_unlock_bh(&ar_sdio
->wr_async_lock
);
647 queue_work(ar
->ath6kl_wq
, &ar_sdio
->wr_async_work
);
653 /* clean up scatter support */
654 static void ath6kl_sdio_cleanup_scatter(struct ath6kl
*ar
)
656 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
657 struct hif_scatter_req
*s_req
, *tmp_req
;
659 /* empty the free list */
660 spin_lock_bh(&ar_sdio
->scat_lock
);
661 list_for_each_entry_safe(s_req
, tmp_req
, &ar_sdio
->scat_req
, list
) {
662 list_del(&s_req
->list
);
663 spin_unlock_bh(&ar_sdio
->scat_lock
);
666 * FIXME: should we also call completion handler with
667 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
668 * that the packet is properly freed?
670 if (s_req
->busrequest
)
671 ath6kl_sdio_free_bus_req(ar_sdio
, s_req
->busrequest
);
672 kfree(s_req
->virt_dma_buf
);
673 kfree(s_req
->sgentries
);
676 spin_lock_bh(&ar_sdio
->scat_lock
);
678 spin_unlock_bh(&ar_sdio
->scat_lock
);
681 /* setup of HIF scatter resources */
682 static int ath6kl_sdio_enable_scatter(struct ath6kl
*ar
)
684 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
685 struct htc_target
*target
= ar
->htc_target
;
687 bool virt_scat
= false;
689 if (ar_sdio
->scatter_enabled
)
692 ar_sdio
->scatter_enabled
= true;
694 /* check if host supports scatter and it meets our requirements */
695 if (ar_sdio
->func
->card
->host
->max_segs
< MAX_SCATTER_ENTRIES_PER_REQ
) {
696 ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
697 ar_sdio
->func
->card
->host
->max_segs
,
698 MAX_SCATTER_ENTRIES_PER_REQ
);
703 ret
= ath6kl_sdio_alloc_prep_scat_req(ar_sdio
,
704 MAX_SCATTER_ENTRIES_PER_REQ
,
705 MAX_SCATTER_REQUESTS
, virt_scat
);
708 ath6kl_dbg(ATH6KL_DBG_BOOT
,
709 "hif-scatter enabled requests %d entries %d\n",
710 MAX_SCATTER_REQUESTS
,
711 MAX_SCATTER_ENTRIES_PER_REQ
);
713 target
->max_scat_entries
= MAX_SCATTER_ENTRIES_PER_REQ
;
714 target
->max_xfer_szper_scatreq
=
715 MAX_SCATTER_REQ_TRANSFER_SIZE
;
717 ath6kl_sdio_cleanup_scatter(ar
);
718 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
722 if (virt_scat
|| ret
) {
723 ret
= ath6kl_sdio_alloc_prep_scat_req(ar_sdio
,
724 ATH6KL_SCATTER_ENTRIES_PER_REQ
,
725 ATH6KL_SCATTER_REQS
, virt_scat
);
728 ath6kl_err("failed to alloc virtual scatter resources !\n");
729 ath6kl_sdio_cleanup_scatter(ar
);
733 ath6kl_dbg(ATH6KL_DBG_BOOT
,
734 "virtual scatter enabled requests %d entries %d\n",
735 ATH6KL_SCATTER_REQS
, ATH6KL_SCATTER_ENTRIES_PER_REQ
);
737 target
->max_scat_entries
= ATH6KL_SCATTER_ENTRIES_PER_REQ
;
738 target
->max_xfer_szper_scatreq
=
739 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER
;
745 static int ath6kl_sdio_config(struct ath6kl
*ar
)
747 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
748 struct sdio_func
*func
= ar_sdio
->func
;
751 sdio_claim_host(func
);
753 if ((ar_sdio
->id
->device
& MANUFACTURER_ID_ATH6KL_BASE_MASK
) >=
754 MANUFACTURER_ID_AR6003_BASE
) {
755 /* enable 4-bit ASYNC interrupt on AR6003 or later */
756 ret
= ath6kl_sdio_func0_cmd52_wr_byte(func
->card
,
757 CCCR_SDIO_IRQ_MODE_REG
,
758 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ
);
760 ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
765 ath6kl_dbg(ATH6KL_DBG_BOOT
, "4-bit async irq mode enabled\n");
768 /* give us some time to enable, in ms */
769 func
->enable_timeout
= 100;
771 ret
= sdio_set_block_size(func
, HIF_MBOX_BLOCK_SIZE
);
773 ath6kl_err("Set sdio block size %d failed: %d)\n",
774 HIF_MBOX_BLOCK_SIZE
, ret
);
775 sdio_release_host(func
);
780 sdio_release_host(func
);
785 static int ath6kl_sdio_suspend(struct ath6kl
*ar
, struct cfg80211_wowlan
*wow
)
787 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
788 struct sdio_func
*func
= ar_sdio
->func
;
792 flags
= sdio_get_host_pm_caps(func
);
794 ath6kl_dbg(ATH6KL_DBG_SUSPEND
, "sdio suspend pm_caps 0x%x\n", flags
);
796 if (!(flags
& MMC_PM_KEEP_POWER
) ||
797 (ar
->conf_flags
& ATH6KL_CONF_SUSPEND_CUTPOWER
)) {
798 /* as host doesn't support keep power we need to cut power */
799 return ath6kl_cfg80211_suspend(ar
, ATH6KL_CFG_SUSPEND_CUTPOWER
,
803 ret
= sdio_set_host_pm_flags(func
, MMC_PM_KEEP_POWER
);
805 printk(KERN_ERR
"ath6kl: set sdio pm flags failed: %d\n",
810 if (!(flags
& MMC_PM_WAKE_SDIO_IRQ
))
813 /* sdio irq wakes up host */
815 if (ar
->state
== ATH6KL_STATE_SCHED_SCAN
) {
816 ret
= ath6kl_cfg80211_suspend(ar
,
817 ATH6KL_CFG_SUSPEND_SCHED_SCAN
,
820 ath6kl_warn("Schedule scan suspend failed: %d", ret
);
824 ret
= sdio_set_host_pm_flags(func
, MMC_PM_WAKE_SDIO_IRQ
);
826 ath6kl_warn("set sdio wake irq flag failed: %d\n", ret
);
833 * The host sdio controller is capable of keep power and
834 * sdio irq wake up at this point. It's fine to continue
835 * wow suspend operation.
837 ret
= ath6kl_cfg80211_suspend(ar
, ATH6KL_CFG_SUSPEND_WOW
, wow
);
841 ret
= sdio_set_host_pm_flags(func
, MMC_PM_WAKE_SDIO_IRQ
);
843 ath6kl_err("set sdio wake irq flag failed: %d\n", ret
);
849 return ath6kl_cfg80211_suspend(ar
, ATH6KL_CFG_SUSPEND_DEEPSLEEP
, NULL
);
852 static int ath6kl_sdio_resume(struct ath6kl
*ar
)
855 case ATH6KL_STATE_OFF
:
856 case ATH6KL_STATE_CUTPOWER
:
857 ath6kl_dbg(ATH6KL_DBG_SUSPEND
,
858 "sdio resume configuring sdio\n");
860 /* need to set sdio settings after power is cut from sdio */
861 ath6kl_sdio_config(ar
);
864 case ATH6KL_STATE_ON
:
867 case ATH6KL_STATE_DEEPSLEEP
:
870 case ATH6KL_STATE_WOW
:
872 case ATH6KL_STATE_SCHED_SCAN
:
876 ath6kl_cfg80211_resume(ar
);
881 /* set the window address register (using 4-byte register access ). */
882 static int ath6kl_set_addrwin_reg(struct ath6kl
*ar
, u32 reg_addr
, u32 addr
)
889 * Write bytes 1,2,3 of the register to set the upper address bytes,
890 * the LSB is written last to initiate the access cycle
893 for (i
= 1; i
<= 3; i
++) {
895 * Fill the buffer with the address byte value we want to
898 memset(addr_val
, ((u8
*)&addr
)[i
], 4);
901 * Hit each byte of the register address with a 4-byte
902 * write operation to the same address, this is a harmless
905 status
= ath6kl_sdio_read_write_sync(ar
, reg_addr
+ i
, addr_val
,
906 4, HIF_WR_SYNC_BYTE_FIX
);
912 ath6kl_err("%s: failed to write initial bytes of 0x%x "
913 "to window reg: 0x%X\n", __func__
,
919 * Write the address register again, this time write the whole
920 * 4-byte value. The effect here is that the LSB write causes the
921 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
922 * effect since we are writing the same values again
924 status
= ath6kl_sdio_read_write_sync(ar
, reg_addr
, (u8
*)(&addr
),
925 4, HIF_WR_SYNC_BYTE_INC
);
928 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
929 __func__
, addr
, reg_addr
);
936 static int ath6kl_sdio_diag_read32(struct ath6kl
*ar
, u32 address
, u32
*data
)
940 /* set window register to start read cycle */
941 status
= ath6kl_set_addrwin_reg(ar
, WINDOW_READ_ADDR_ADDRESS
,
948 status
= ath6kl_sdio_read_write_sync(ar
, WINDOW_DATA_ADDRESS
,
949 (u8
*)data
, sizeof(u32
), HIF_RD_SYNC_BYTE_INC
);
951 ath6kl_err("%s: failed to read from window data addr\n",
959 static int ath6kl_sdio_diag_write32(struct ath6kl
*ar
, u32 address
,
963 u32 val
= (__force u32
) data
;
966 status
= ath6kl_sdio_read_write_sync(ar
, WINDOW_DATA_ADDRESS
,
967 (u8
*) &val
, sizeof(u32
), HIF_WR_SYNC_BYTE_INC
);
969 ath6kl_err("%s: failed to write 0x%x to window data addr\n",
974 /* set window register, which starts the write cycle */
975 return ath6kl_set_addrwin_reg(ar
, WINDOW_WRITE_ADDR_ADDRESS
,
979 static int ath6kl_sdio_bmi_credits(struct ath6kl
*ar
)
982 unsigned long timeout
;
985 ar
->bmi
.cmd_credits
= 0;
987 /* Read the counter register to get the command credits */
988 addr
= COUNT_DEC_ADDRESS
+ (HTC_MAILBOX_NUM_MAX
+ ENDPOINT1
) * 4;
990 timeout
= jiffies
+ msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT
);
991 while (time_before(jiffies
, timeout
) && !ar
->bmi
.cmd_credits
) {
994 * Hit the credit counter with a 4-byte access, the first byte
995 * read will hit the counter and cause a decrement, while the
996 * remaining 3 bytes has no effect. The rationale behind this
997 * is to make all HIF accesses 4-byte aligned.
999 ret
= ath6kl_sdio_read_write_sync(ar
, addr
,
1000 (u8
*)&ar
->bmi
.cmd_credits
, 4,
1001 HIF_RD_SYNC_BYTE_INC
);
1003 ath6kl_err("Unable to decrement the command credit "
1004 "count register: %d\n", ret
);
1008 /* The counter is only 8 bits.
1009 * Ignore anything in the upper 3 bytes
1011 ar
->bmi
.cmd_credits
&= 0xFF;
1014 if (!ar
->bmi
.cmd_credits
) {
1015 ath6kl_err("bmi communication timeout\n");
1022 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl
*ar
)
1024 unsigned long timeout
;
1028 timeout
= jiffies
+ msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT
);
1029 while ((time_before(jiffies
, timeout
)) && !rx_word
) {
1030 ret
= ath6kl_sdio_read_write_sync(ar
,
1031 RX_LOOKAHEAD_VALID_ADDRESS
,
1032 (u8
*)&rx_word
, sizeof(rx_word
),
1033 HIF_RD_SYNC_BYTE_INC
);
1035 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1039 /* all we really want is one bit */
1040 rx_word
&= (1 << ENDPOINT1
);
1044 ath6kl_err("bmi_recv_buf FIFO empty\n");
1051 static int ath6kl_sdio_bmi_write(struct ath6kl
*ar
, u8
*buf
, u32 len
)
1056 ret
= ath6kl_sdio_bmi_credits(ar
);
1060 addr
= ar
->mbox_info
.htc_addr
;
1062 ret
= ath6kl_sdio_read_write_sync(ar
, addr
, buf
, len
,
1063 HIF_WR_SYNC_BYTE_INC
);
1065 ath6kl_err("unable to send the bmi data to the device\n");
1070 static int ath6kl_sdio_bmi_read(struct ath6kl
*ar
, u8
*buf
, u32 len
)
1076 * During normal bootup, small reads may be required.
1077 * Rather than issue an HIF Read and then wait as the Target
1078 * adds successive bytes to the FIFO, we wait here until
1079 * we know that response data is available.
1081 * This allows us to cleanly timeout on an unexpected
1082 * Target failure rather than risk problems at the HIF level.
1083 * In particular, this avoids SDIO timeouts and possibly garbage
1084 * data on some host controllers. And on an interconnect
1085 * such as Compact Flash (as well as some SDIO masters) which
1086 * does not provide any indication on data timeout, it avoids
1087 * a potential hang or garbage response.
1089 * Synchronization is more difficult for reads larger than the
1090 * size of the MBOX FIFO (128B), because the Target is unable
1091 * to push the 129th byte of data until AFTER the Host posts an
1092 * HIF Read and removes some FIFO data. So for large reads the
1093 * Host proceeds to post an HIF Read BEFORE all the data is
1094 * actually available to read. Fortunately, large BMI reads do
1095 * not occur in practice -- they're supported for debug/development.
1097 * So Host/Target BMI synchronization is divided into these cases:
1098 * CASE 1: length < 4
1101 * CASE 2: 4 <= length <= 128
1102 * Wait for first 4 bytes to be in FIFO
1103 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1104 * a BMI command credit, which indicates that the ENTIRE
1105 * response is available in the the FIFO
1107 * CASE 3: length > 128
1108 * Wait for the first 4 bytes to be in FIFO
1110 * For most uses, a small timeout should be sufficient and we will
1111 * usually see a response quickly; but there may be some unusual
1112 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1113 * For now, we use an unbounded busy loop while waiting for
1116 * If BMI_EXECUTE ever needs to support longer-latency execution,
1117 * especially in production, this code needs to be enhanced to sleep
1118 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1119 * a function of Host processor speed.
1121 if (len
>= 4) { /* NB: Currently, always true */
1122 ret
= ath6kl_bmi_get_rx_lkahd(ar
);
1127 addr
= ar
->mbox_info
.htc_addr
;
1128 ret
= ath6kl_sdio_read_write_sync(ar
, addr
, buf
, len
,
1129 HIF_RD_SYNC_BYTE_INC
);
1131 ath6kl_err("Unable to read the bmi data from the device: %d\n",
1139 static void ath6kl_sdio_stop(struct ath6kl
*ar
)
1141 struct ath6kl_sdio
*ar_sdio
= ath6kl_sdio_priv(ar
);
1142 struct bus_request
*req
, *tmp_req
;
1145 /* FIXME: make sure that wq is not queued again */
1147 cancel_work_sync(&ar_sdio
->wr_async_work
);
1149 spin_lock_bh(&ar_sdio
->wr_async_lock
);
1151 list_for_each_entry_safe(req
, tmp_req
, &ar_sdio
->wr_asyncq
, list
) {
1152 list_del(&req
->list
);
1154 if (req
->scat_req
) {
1155 /* this is a scatter gather request */
1156 req
->scat_req
->status
= -ECANCELED
;
1157 req
->scat_req
->complete(ar_sdio
->ar
->htc_target
,
1160 context
= req
->packet
;
1161 ath6kl_sdio_free_bus_req(ar_sdio
, req
);
1162 ath6kl_hif_rw_comp_handler(context
, -ECANCELED
);
1166 spin_unlock_bh(&ar_sdio
->wr_async_lock
);
1168 WARN_ON(get_queue_depth(&ar_sdio
->scat_req
) != 4);
1171 static const struct ath6kl_hif_ops ath6kl_sdio_ops
= {
1172 .read_write_sync
= ath6kl_sdio_read_write_sync
,
1173 .write_async
= ath6kl_sdio_write_async
,
1174 .irq_enable
= ath6kl_sdio_irq_enable
,
1175 .irq_disable
= ath6kl_sdio_irq_disable
,
1176 .scatter_req_get
= ath6kl_sdio_scatter_req_get
,
1177 .scatter_req_add
= ath6kl_sdio_scatter_req_add
,
1178 .enable_scatter
= ath6kl_sdio_enable_scatter
,
1179 .scat_req_rw
= ath6kl_sdio_async_rw_scatter
,
1180 .cleanup_scatter
= ath6kl_sdio_cleanup_scatter
,
1181 .suspend
= ath6kl_sdio_suspend
,
1182 .resume
= ath6kl_sdio_resume
,
1183 .diag_read32
= ath6kl_sdio_diag_read32
,
1184 .diag_write32
= ath6kl_sdio_diag_write32
,
1185 .bmi_read
= ath6kl_sdio_bmi_read
,
1186 .bmi_write
= ath6kl_sdio_bmi_write
,
1187 .power_on
= ath6kl_sdio_power_on
,
1188 .power_off
= ath6kl_sdio_power_off
,
1189 .stop
= ath6kl_sdio_stop
,
1192 #ifdef CONFIG_PM_SLEEP
1195 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1196 * suspend. We instead follow cfg80211 suspend/resume handlers.
1198 static int ath6kl_sdio_pm_suspend(struct device
*device
)
1200 ath6kl_dbg(ATH6KL_DBG_SUSPEND
, "sdio pm suspend\n");
1205 static int ath6kl_sdio_pm_resume(struct device
*device
)
1207 ath6kl_dbg(ATH6KL_DBG_SUSPEND
, "sdio pm resume\n");
1212 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops
, ath6kl_sdio_pm_suspend
,
1213 ath6kl_sdio_pm_resume
);
1215 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1219 #define ATH6KL_SDIO_PM_OPS NULL
1221 #endif /* CONFIG_PM_SLEEP */
1223 static int ath6kl_sdio_probe(struct sdio_func
*func
,
1224 const struct sdio_device_id
*id
)
1227 struct ath6kl_sdio
*ar_sdio
;
1231 ath6kl_dbg(ATH6KL_DBG_BOOT
,
1232 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1233 func
->num
, func
->vendor
, func
->device
,
1234 func
->max_blksize
, func
->cur_blksize
);
1236 ar_sdio
= kzalloc(sizeof(struct ath6kl_sdio
), GFP_KERNEL
);
1240 ar_sdio
->dma_buffer
= kzalloc(HIF_DMA_BUFFER_SIZE
, GFP_KERNEL
);
1241 if (!ar_sdio
->dma_buffer
) {
1246 ar_sdio
->func
= func
;
1247 sdio_set_drvdata(func
, ar_sdio
);
1250 ar_sdio
->is_disabled
= true;
1252 spin_lock_init(&ar_sdio
->lock
);
1253 spin_lock_init(&ar_sdio
->scat_lock
);
1254 spin_lock_init(&ar_sdio
->wr_async_lock
);
1255 mutex_init(&ar_sdio
->dma_buffer_mutex
);
1257 INIT_LIST_HEAD(&ar_sdio
->scat_req
);
1258 INIT_LIST_HEAD(&ar_sdio
->bus_req_freeq
);
1259 INIT_LIST_HEAD(&ar_sdio
->wr_asyncq
);
1261 INIT_WORK(&ar_sdio
->wr_async_work
, ath6kl_sdio_write_async_work
);
1263 for (count
= 0; count
< BUS_REQUEST_MAX_NUM
; count
++)
1264 ath6kl_sdio_free_bus_req(ar_sdio
, &ar_sdio
->bus_req
[count
]);
1266 ar
= ath6kl_core_alloc(&ar_sdio
->func
->dev
);
1268 ath6kl_err("Failed to alloc ath6kl core\n");
1274 ar
->hif_type
= ATH6KL_HIF_TYPE_SDIO
;
1275 ar
->hif_priv
= ar_sdio
;
1276 ar
->hif_ops
= &ath6kl_sdio_ops
;
1277 ar
->bmi
.max_data_size
= 256;
1279 ath6kl_sdio_set_mbox_info(ar
);
1281 ret
= ath6kl_sdio_config(ar
);
1283 ath6kl_err("Failed to config sdio: %d\n", ret
);
1284 goto err_core_alloc
;
1287 ret
= ath6kl_core_init(ar
);
1289 ath6kl_err("Failed to init ath6kl core\n");
1290 goto err_core_alloc
;
1296 ath6kl_core_free(ar_sdio
->ar
);
1298 kfree(ar_sdio
->dma_buffer
);
1305 static void ath6kl_sdio_remove(struct sdio_func
*func
)
1307 struct ath6kl_sdio
*ar_sdio
;
1309 ath6kl_dbg(ATH6KL_DBG_BOOT
,
1310 "sdio removed func %d vendor 0x%x device 0x%x\n",
1311 func
->num
, func
->vendor
, func
->device
);
1313 ar_sdio
= sdio_get_drvdata(func
);
1315 ath6kl_stop_txrx(ar_sdio
->ar
);
1316 cancel_work_sync(&ar_sdio
->wr_async_work
);
1318 ath6kl_core_cleanup(ar_sdio
->ar
);
1320 kfree(ar_sdio
->dma_buffer
);
1324 static const struct sdio_device_id ath6kl_sdio_devices
[] = {
1325 {SDIO_DEVICE(MANUFACTURER_CODE
, (MANUFACTURER_ID_AR6003_BASE
| 0x0))},
1326 {SDIO_DEVICE(MANUFACTURER_CODE
, (MANUFACTURER_ID_AR6003_BASE
| 0x1))},
1327 {SDIO_DEVICE(MANUFACTURER_CODE
, (MANUFACTURER_ID_AR6004_BASE
| 0x0))},
1328 {SDIO_DEVICE(MANUFACTURER_CODE
, (MANUFACTURER_ID_AR6004_BASE
| 0x1))},
1332 MODULE_DEVICE_TABLE(sdio
, ath6kl_sdio_devices
);
1334 static struct sdio_driver ath6kl_sdio_driver
= {
1336 .id_table
= ath6kl_sdio_devices
,
1337 .probe
= ath6kl_sdio_probe
,
1338 .remove
= ath6kl_sdio_remove
,
1339 .drv
.pm
= ATH6KL_SDIO_PM_OPS
,
1342 static int __init
ath6kl_sdio_init(void)
1346 ret
= sdio_register_driver(&ath6kl_sdio_driver
);
1348 ath6kl_err("sdio driver registration failed: %d\n", ret
);
1353 static void __exit
ath6kl_sdio_exit(void)
1355 sdio_unregister_driver(&ath6kl_sdio_driver
);
1358 module_init(ath6kl_sdio_init
);
1359 module_exit(ath6kl_sdio_exit
);
1361 MODULE_AUTHOR("Atheros Communications, Inc.");
1362 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1363 MODULE_LICENSE("Dual BSD/GPL");
1365 MODULE_FIRMWARE(AR6003_HW_2_0_OTP_FILE
);
1366 MODULE_FIRMWARE(AR6003_HW_2_0_FIRMWARE_FILE
);
1367 MODULE_FIRMWARE(AR6003_HW_2_0_PATCH_FILE
);
1368 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE
);
1369 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE
);
1370 MODULE_FIRMWARE(AR6003_HW_2_1_1_OTP_FILE
);
1371 MODULE_FIRMWARE(AR6003_HW_2_1_1_FIRMWARE_FILE
);
1372 MODULE_FIRMWARE(AR6003_HW_2_1_1_PATCH_FILE
);
1373 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE
);
1374 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE
);
1375 MODULE_FIRMWARE(AR6004_HW_1_0_FIRMWARE_FILE
);
1376 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE
);
1377 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE
);
1378 MODULE_FIRMWARE(AR6004_HW_1_1_FIRMWARE_FILE
);
1379 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE
);
1380 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE
);