Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / drivers / net / wireless / ath / ath9k / xmit.c
blob3182408ffe35abcc08c075d8f950cf433d1ca9cf
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 static u16 bits_per_symbol[][2] = {
37 /* 20MHz 40MHz */
38 { 26, 54 }, /* 0: BPSK */
39 { 52, 108 }, /* 1: QPSK 1/2 */
40 { 78, 162 }, /* 2: QPSK 3/4 */
41 { 104, 216 }, /* 3: 16-QAM 1/2 */
42 { 156, 324 }, /* 4: 16-QAM 3/4 */
43 { 208, 432 }, /* 5: 64-QAM 2/3 */
44 { 234, 486 }, /* 6: 64-QAM 3/4 */
45 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb);
69 enum {
70 MCS_HT20,
71 MCS_HT20_SGI,
72 MCS_HT40,
73 MCS_HT40_SGI,
76 static int ath_max_4ms_framelen[4][32] = {
77 [MCS_HT20] = {
78 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
79 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
80 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
81 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
83 [MCS_HT20_SGI] = {
84 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
85 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
86 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
87 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
89 [MCS_HT40] = {
90 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
91 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
92 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
93 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
95 [MCS_HT40_SGI] = {
96 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
97 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
98 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
99 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
103 /*********************/
104 /* Aggregation logic */
105 /*********************/
107 static void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
108 __acquires(&txq->axq_lock)
110 spin_lock_bh(&txq->axq_lock);
113 static void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
114 __releases(&txq->axq_lock)
116 spin_unlock_bh(&txq->axq_lock);
119 static void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
120 __releases(&txq->axq_lock)
122 struct sk_buff_head q;
123 struct sk_buff *skb;
125 __skb_queue_head_init(&q);
126 skb_queue_splice_init(&txq->complete_q, &q);
127 spin_unlock_bh(&txq->axq_lock);
129 while ((skb = __skb_dequeue(&q)))
130 ieee80211_tx_status(sc->hw, skb);
133 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
135 struct ath_atx_ac *ac = tid->ac;
137 if (tid->paused)
138 return;
140 if (tid->sched)
141 return;
143 tid->sched = true;
144 list_add_tail(&tid->list, &ac->tid_q);
146 if (ac->sched)
147 return;
149 ac->sched = true;
150 list_add_tail(&ac->list, &txq->axq_acq);
153 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
155 struct ath_txq *txq = tid->ac->txq;
157 WARN_ON(!tid->paused);
159 ath_txq_lock(sc, txq);
160 tid->paused = false;
162 if (skb_queue_empty(&tid->buf_q))
163 goto unlock;
165 ath_tx_queue_tid(txq, tid);
166 ath_txq_schedule(sc, txq);
167 unlock:
168 ath_txq_unlock_complete(sc, txq);
171 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
173 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
174 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
175 sizeof(tx_info->rate_driver_data));
176 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
179 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
181 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
182 seqno << IEEE80211_SEQ_SEQ_SHIFT);
185 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
187 struct ath_txq *txq = tid->ac->txq;
188 struct sk_buff *skb;
189 struct ath_buf *bf;
190 struct list_head bf_head;
191 struct ath_tx_status ts;
192 struct ath_frame_info *fi;
193 bool sendbar = false;
195 INIT_LIST_HEAD(&bf_head);
197 memset(&ts, 0, sizeof(ts));
199 while ((skb = __skb_dequeue(&tid->buf_q))) {
200 fi = get_frame_info(skb);
201 bf = fi->bf;
203 if (bf && fi->retries) {
204 list_add_tail(&bf->list, &bf_head);
205 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
206 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
207 sendbar = true;
208 } else {
209 ath_tx_send_normal(sc, txq, NULL, skb);
213 if (tid->baw_head == tid->baw_tail) {
214 tid->state &= ~AGGR_ADDBA_COMPLETE;
215 tid->state &= ~AGGR_CLEANUP;
218 if (sendbar) {
219 ath_txq_unlock(sc, txq);
220 ath_send_bar(tid, tid->seq_start);
221 ath_txq_lock(sc, txq);
225 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
226 int seqno)
228 int index, cindex;
230 index = ATH_BA_INDEX(tid->seq_start, seqno);
231 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
233 __clear_bit(cindex, tid->tx_buf);
235 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
236 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
237 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
238 if (tid->bar_index >= 0)
239 tid->bar_index--;
243 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
244 u16 seqno)
246 int index, cindex;
248 index = ATH_BA_INDEX(tid->seq_start, seqno);
249 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
250 __set_bit(cindex, tid->tx_buf);
252 if (index >= ((tid->baw_tail - tid->baw_head) &
253 (ATH_TID_MAX_BUFS - 1))) {
254 tid->baw_tail = cindex;
255 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
260 * TODO: For frame(s) that are in the retry state, we will reuse the
261 * sequence number(s) without setting the retry bit. The
262 * alternative is to give up on these and BAR the receiver's window
263 * forward.
265 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
266 struct ath_atx_tid *tid)
269 struct sk_buff *skb;
270 struct ath_buf *bf;
271 struct list_head bf_head;
272 struct ath_tx_status ts;
273 struct ath_frame_info *fi;
275 memset(&ts, 0, sizeof(ts));
276 INIT_LIST_HEAD(&bf_head);
278 while ((skb = __skb_dequeue(&tid->buf_q))) {
279 fi = get_frame_info(skb);
280 bf = fi->bf;
282 if (!bf) {
283 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
284 continue;
287 list_add_tail(&bf->list, &bf_head);
289 if (fi->retries)
290 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
292 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
295 tid->seq_next = tid->seq_start;
296 tid->baw_tail = tid->baw_head;
297 tid->bar_index = -1;
300 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
301 struct sk_buff *skb, int count)
303 struct ath_frame_info *fi = get_frame_info(skb);
304 struct ath_buf *bf = fi->bf;
305 struct ieee80211_hdr *hdr;
306 int prev = fi->retries;
308 TX_STAT_INC(txq->axq_qnum, a_retries);
309 fi->retries += count;
311 if (prev > 0)
312 return;
314 hdr = (struct ieee80211_hdr *)skb->data;
315 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
316 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
317 sizeof(*hdr), DMA_TO_DEVICE);
320 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
322 struct ath_buf *bf = NULL;
324 spin_lock_bh(&sc->tx.txbuflock);
326 if (unlikely(list_empty(&sc->tx.txbuf))) {
327 spin_unlock_bh(&sc->tx.txbuflock);
328 return NULL;
331 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
332 list_del(&bf->list);
334 spin_unlock_bh(&sc->tx.txbuflock);
336 return bf;
339 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
341 spin_lock_bh(&sc->tx.txbuflock);
342 list_add_tail(&bf->list, &sc->tx.txbuf);
343 spin_unlock_bh(&sc->tx.txbuflock);
346 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
348 struct ath_buf *tbf;
350 tbf = ath_tx_get_buffer(sc);
351 if (WARN_ON(!tbf))
352 return NULL;
354 ATH_TXBUF_RESET(tbf);
356 tbf->bf_mpdu = bf->bf_mpdu;
357 tbf->bf_buf_addr = bf->bf_buf_addr;
358 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
359 tbf->bf_state = bf->bf_state;
361 return tbf;
364 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
365 struct ath_tx_status *ts, int txok,
366 int *nframes, int *nbad)
368 struct ath_frame_info *fi;
369 u16 seq_st = 0;
370 u32 ba[WME_BA_BMP_SIZE >> 5];
371 int ba_index;
372 int isaggr = 0;
374 *nbad = 0;
375 *nframes = 0;
377 isaggr = bf_isaggr(bf);
378 if (isaggr) {
379 seq_st = ts->ts_seqnum;
380 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
383 while (bf) {
384 fi = get_frame_info(bf->bf_mpdu);
385 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
387 (*nframes)++;
388 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
389 (*nbad)++;
391 bf = bf->bf_next;
396 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
397 struct ath_buf *bf, struct list_head *bf_q,
398 struct ath_tx_status *ts, int txok, bool retry)
400 struct ath_node *an = NULL;
401 struct sk_buff *skb;
402 struct ieee80211_sta *sta;
403 struct ieee80211_hw *hw = sc->hw;
404 struct ieee80211_hdr *hdr;
405 struct ieee80211_tx_info *tx_info;
406 struct ath_atx_tid *tid = NULL;
407 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
408 struct list_head bf_head;
409 struct sk_buff_head bf_pending;
410 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
411 u32 ba[WME_BA_BMP_SIZE >> 5];
412 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
413 bool rc_update = true;
414 struct ieee80211_tx_rate rates[4];
415 struct ath_frame_info *fi;
416 int nframes;
417 u8 tidno;
418 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
419 int i, retries;
420 int bar_index = -1;
422 skb = bf->bf_mpdu;
423 hdr = (struct ieee80211_hdr *)skb->data;
425 tx_info = IEEE80211_SKB_CB(skb);
427 memcpy(rates, tx_info->control.rates, sizeof(rates));
429 retries = ts->ts_longretry + 1;
430 for (i = 0; i < ts->ts_rateindex; i++)
431 retries += rates[i].count;
433 rcu_read_lock();
435 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
436 if (!sta) {
437 rcu_read_unlock();
439 INIT_LIST_HEAD(&bf_head);
440 while (bf) {
441 bf_next = bf->bf_next;
443 if (!bf->bf_stale || bf_next != NULL)
444 list_move_tail(&bf->list, &bf_head);
446 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
448 bf = bf_next;
450 return;
453 an = (struct ath_node *)sta->drv_priv;
454 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
455 tid = ATH_AN_2_TID(an, tidno);
456 seq_first = tid->seq_start;
459 * The hardware occasionally sends a tx status for the wrong TID.
460 * In this case, the BA status cannot be considered valid and all
461 * subframes need to be retransmitted
463 if (tidno != ts->tid)
464 txok = false;
466 isaggr = bf_isaggr(bf);
467 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
469 if (isaggr && txok) {
470 if (ts->ts_flags & ATH9K_TX_BA) {
471 seq_st = ts->ts_seqnum;
472 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
473 } else {
475 * AR5416 can become deaf/mute when BA
476 * issue happens. Chip needs to be reset.
477 * But AP code may have sychronization issues
478 * when perform internal reset in this routine.
479 * Only enable reset in STA mode for now.
481 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
482 needreset = 1;
486 __skb_queue_head_init(&bf_pending);
488 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
489 while (bf) {
490 u16 seqno = bf->bf_state.seqno;
492 txfail = txpending = sendbar = 0;
493 bf_next = bf->bf_next;
495 skb = bf->bf_mpdu;
496 tx_info = IEEE80211_SKB_CB(skb);
497 fi = get_frame_info(skb);
499 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
500 /* transmit completion, subframe is
501 * acked by block ack */
502 acked_cnt++;
503 } else if (!isaggr && txok) {
504 /* transmit completion */
505 acked_cnt++;
506 } else if ((tid->state & AGGR_CLEANUP) || !retry) {
508 * cleanup in progress, just fail
509 * the un-acked sub-frames
511 txfail = 1;
512 } else if (flush) {
513 txpending = 1;
514 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
515 if (txok || !an->sleeping)
516 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
517 retries);
519 txpending = 1;
520 } else {
521 txfail = 1;
522 txfail_cnt++;
523 bar_index = max_t(int, bar_index,
524 ATH_BA_INDEX(seq_first, seqno));
528 * Make sure the last desc is reclaimed if it
529 * not a holding desc.
531 INIT_LIST_HEAD(&bf_head);
532 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
533 bf_next != NULL || !bf_last->bf_stale)
534 list_move_tail(&bf->list, &bf_head);
536 if (!txpending || (tid->state & AGGR_CLEANUP)) {
538 * complete the acked-ones/xretried ones; update
539 * block-ack window
541 ath_tx_update_baw(sc, tid, seqno);
543 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
544 memcpy(tx_info->control.rates, rates, sizeof(rates));
545 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
546 rc_update = false;
549 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
550 !txfail);
551 } else {
552 /* retry the un-acked ones */
553 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
554 bf->bf_next == NULL && bf_last->bf_stale) {
555 struct ath_buf *tbf;
557 tbf = ath_clone_txbuf(sc, bf_last);
559 * Update tx baw and complete the
560 * frame with failed status if we
561 * run out of tx buf.
563 if (!tbf) {
564 ath_tx_update_baw(sc, tid, seqno);
566 ath_tx_complete_buf(sc, bf, txq,
567 &bf_head, ts, 0);
568 bar_index = max_t(int, bar_index,
569 ATH_BA_INDEX(seq_first, seqno));
570 break;
573 fi->bf = tbf;
577 * Put this buffer to the temporary pending
578 * queue to retain ordering
580 __skb_queue_tail(&bf_pending, skb);
583 bf = bf_next;
586 /* prepend un-acked frames to the beginning of the pending frame queue */
587 if (!skb_queue_empty(&bf_pending)) {
588 if (an->sleeping)
589 ieee80211_sta_set_buffered(sta, tid->tidno, true);
591 skb_queue_splice(&bf_pending, &tid->buf_q);
592 if (!an->sleeping) {
593 ath_tx_queue_tid(txq, tid);
595 if (ts->ts_status & ATH9K_TXERR_FILT)
596 tid->ac->clear_ps_filter = true;
600 if (bar_index >= 0) {
601 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
603 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
604 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
606 ath_txq_unlock(sc, txq);
607 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
608 ath_txq_lock(sc, txq);
611 if (tid->state & AGGR_CLEANUP)
612 ath_tx_flush_tid(sc, tid);
614 rcu_read_unlock();
616 if (needreset) {
617 RESET_STAT_INC(sc, RESET_TYPE_TX_ERROR);
618 ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
622 static bool ath_lookup_legacy(struct ath_buf *bf)
624 struct sk_buff *skb;
625 struct ieee80211_tx_info *tx_info;
626 struct ieee80211_tx_rate *rates;
627 int i;
629 skb = bf->bf_mpdu;
630 tx_info = IEEE80211_SKB_CB(skb);
631 rates = tx_info->control.rates;
633 for (i = 0; i < 4; i++) {
634 if (!rates[i].count || rates[i].idx < 0)
635 break;
637 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
638 return true;
641 return false;
644 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
645 struct ath_atx_tid *tid)
647 struct sk_buff *skb;
648 struct ieee80211_tx_info *tx_info;
649 struct ieee80211_tx_rate *rates;
650 struct ath_mci_profile *mci = &sc->btcoex.mci;
651 u32 max_4ms_framelen, frmlen;
652 u16 aggr_limit, legacy = 0;
653 int i;
655 skb = bf->bf_mpdu;
656 tx_info = IEEE80211_SKB_CB(skb);
657 rates = tx_info->control.rates;
660 * Find the lowest frame length among the rate series that will have a
661 * 4ms transmit duration.
662 * TODO - TXOP limit needs to be considered.
664 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
666 for (i = 0; i < 4; i++) {
667 int modeidx;
669 if (!rates[i].count)
670 continue;
672 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
673 legacy = 1;
674 break;
677 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
678 modeidx = MCS_HT40;
679 else
680 modeidx = MCS_HT20;
682 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
683 modeidx++;
685 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
686 max_4ms_framelen = min(max_4ms_framelen, frmlen);
690 * limit aggregate size by the minimum rate if rate selected is
691 * not a probe rate, if rate selected is a probe rate then
692 * avoid aggregation of this packet.
694 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
695 return 0;
697 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && mci->aggr_limit)
698 aggr_limit = (max_4ms_framelen * mci->aggr_limit) >> 4;
699 else if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
700 aggr_limit = min((max_4ms_framelen * 3) / 8,
701 (u32)ATH_AMPDU_LIMIT_MAX);
702 else
703 aggr_limit = min(max_4ms_framelen,
704 (u32)ATH_AMPDU_LIMIT_MAX);
707 * h/w can accept aggregates up to 16 bit lengths (65535).
708 * The IE, however can hold up to 65536, which shows up here
709 * as zero. Ignore 65536 since we are constrained by hw.
711 if (tid->an->maxampdu)
712 aggr_limit = min(aggr_limit, tid->an->maxampdu);
714 return aggr_limit;
718 * Returns the number of delimiters to be added to
719 * meet the minimum required mpdudensity.
721 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
722 struct ath_buf *bf, u16 frmlen,
723 bool first_subfrm)
725 #define FIRST_DESC_NDELIMS 60
726 struct sk_buff *skb = bf->bf_mpdu;
727 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
728 u32 nsymbits, nsymbols;
729 u16 minlen;
730 u8 flags, rix;
731 int width, streams, half_gi, ndelim, mindelim;
732 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
734 /* Select standard number of delimiters based on frame length alone */
735 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
738 * If encryption enabled, hardware requires some more padding between
739 * subframes.
740 * TODO - this could be improved to be dependent on the rate.
741 * The hardware can keep up at lower rates, but not higher rates
743 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
744 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
745 ndelim += ATH_AGGR_ENCRYPTDELIM;
748 * Add delimiter when using RTS/CTS with aggregation
749 * and non enterprise AR9003 card
751 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
752 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
753 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
756 * Convert desired mpdu density from microeconds to bytes based
757 * on highest rate in rate series (i.e. first rate) to determine
758 * required minimum length for subframe. Take into account
759 * whether high rate is 20 or 40Mhz and half or full GI.
761 * If there is no mpdu density restriction, no further calculation
762 * is needed.
765 if (tid->an->mpdudensity == 0)
766 return ndelim;
768 rix = tx_info->control.rates[0].idx;
769 flags = tx_info->control.rates[0].flags;
770 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
771 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
773 if (half_gi)
774 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
775 else
776 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
778 if (nsymbols == 0)
779 nsymbols = 1;
781 streams = HT_RC_2_STREAMS(rix);
782 nsymbits = bits_per_symbol[rix % 8][width] * streams;
783 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
785 if (frmlen < minlen) {
786 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
787 ndelim = max(mindelim, ndelim);
790 return ndelim;
793 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
794 struct ath_txq *txq,
795 struct ath_atx_tid *tid,
796 struct list_head *bf_q,
797 int *aggr_len)
799 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
800 struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
801 int rl = 0, nframes = 0, ndelim, prev_al = 0;
802 u16 aggr_limit = 0, al = 0, bpad = 0,
803 al_delta, h_baw = tid->baw_size / 2;
804 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
805 struct ieee80211_tx_info *tx_info;
806 struct ath_frame_info *fi;
807 struct sk_buff *skb;
808 u16 seqno;
810 do {
811 skb = skb_peek(&tid->buf_q);
812 fi = get_frame_info(skb);
813 bf = fi->bf;
814 if (!fi->bf)
815 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
817 if (!bf)
818 continue;
820 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
821 seqno = bf->bf_state.seqno;
823 /* do not step over block-ack window */
824 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
825 status = ATH_AGGR_BAW_CLOSED;
826 break;
829 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
830 struct ath_tx_status ts = {};
831 struct list_head bf_head;
833 INIT_LIST_HEAD(&bf_head);
834 list_add(&bf->list, &bf_head);
835 __skb_unlink(skb, &tid->buf_q);
836 ath_tx_update_baw(sc, tid, seqno);
837 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
838 continue;
841 if (!bf_first)
842 bf_first = bf;
844 if (!rl) {
845 aggr_limit = ath_lookup_rate(sc, bf, tid);
846 rl = 1;
849 /* do not exceed aggregation limit */
850 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
852 if (nframes &&
853 ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
854 ath_lookup_legacy(bf))) {
855 status = ATH_AGGR_LIMITED;
856 break;
859 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
860 if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
861 break;
863 /* do not exceed subframe limit */
864 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
865 status = ATH_AGGR_LIMITED;
866 break;
869 /* add padding for previous frame to aggregation length */
870 al += bpad + al_delta;
873 * Get the delimiters needed to meet the MPDU
874 * density for this node.
876 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
877 !nframes);
878 bpad = PADBYTES(al_delta) + (ndelim << 2);
880 nframes++;
881 bf->bf_next = NULL;
883 /* link buffers of this frame to the aggregate */
884 if (!fi->retries)
885 ath_tx_addto_baw(sc, tid, seqno);
886 bf->bf_state.ndelim = ndelim;
888 __skb_unlink(skb, &tid->buf_q);
889 list_add_tail(&bf->list, bf_q);
890 if (bf_prev)
891 bf_prev->bf_next = bf;
893 bf_prev = bf;
895 } while (!skb_queue_empty(&tid->buf_q));
897 *aggr_len = al;
899 return status;
900 #undef PADBYTES
904 * rix - rate index
905 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
906 * width - 0 for 20 MHz, 1 for 40 MHz
907 * half_gi - to use 4us v/s 3.6 us for symbol time
909 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
910 int width, int half_gi, bool shortPreamble)
912 u32 nbits, nsymbits, duration, nsymbols;
913 int streams;
915 /* find number of symbols: PLCP + data */
916 streams = HT_RC_2_STREAMS(rix);
917 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
918 nsymbits = bits_per_symbol[rix % 8][width] * streams;
919 nsymbols = (nbits + nsymbits - 1) / nsymbits;
921 if (!half_gi)
922 duration = SYMBOL_TIME(nsymbols);
923 else
924 duration = SYMBOL_TIME_HALFGI(nsymbols);
926 /* addup duration for legacy/ht training and signal fields */
927 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
929 return duration;
932 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
933 struct ath_tx_info *info, int len)
935 struct ath_hw *ah = sc->sc_ah;
936 struct sk_buff *skb;
937 struct ieee80211_tx_info *tx_info;
938 struct ieee80211_tx_rate *rates;
939 const struct ieee80211_rate *rate;
940 struct ieee80211_hdr *hdr;
941 int i;
942 u8 rix = 0;
944 skb = bf->bf_mpdu;
945 tx_info = IEEE80211_SKB_CB(skb);
946 rates = tx_info->control.rates;
947 hdr = (struct ieee80211_hdr *)skb->data;
949 /* set dur_update_en for l-sig computation except for PS-Poll frames */
950 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
953 * We check if Short Preamble is needed for the CTS rate by
954 * checking the BSS's global flag.
955 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
957 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
958 info->rtscts_rate = rate->hw_value;
959 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
960 info->rtscts_rate |= rate->hw_value_short;
962 for (i = 0; i < 4; i++) {
963 bool is_40, is_sgi, is_sp;
964 int phy;
966 if (!rates[i].count || (rates[i].idx < 0))
967 continue;
969 rix = rates[i].idx;
970 info->rates[i].Tries = rates[i].count;
972 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
973 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
974 info->flags |= ATH9K_TXDESC_RTSENA;
975 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
976 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
977 info->flags |= ATH9K_TXDESC_CTSENA;
980 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
981 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
982 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
983 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
985 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
986 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
987 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
989 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
990 /* MCS rates */
991 info->rates[i].Rate = rix | 0x80;
992 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
993 ah->txchainmask, info->rates[i].Rate);
994 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
995 is_40, is_sgi, is_sp);
996 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
997 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
998 continue;
1001 /* legacy rates */
1002 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1003 !(rate->flags & IEEE80211_RATE_ERP_G))
1004 phy = WLAN_RC_PHY_CCK;
1005 else
1006 phy = WLAN_RC_PHY_OFDM;
1008 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1009 info->rates[i].Rate = rate->hw_value;
1010 if (rate->hw_value_short) {
1011 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1012 info->rates[i].Rate |= rate->hw_value_short;
1013 } else {
1014 is_sp = false;
1017 if (bf->bf_state.bfs_paprd)
1018 info->rates[i].ChSel = ah->txchainmask;
1019 else
1020 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1021 ah->txchainmask, info->rates[i].Rate);
1023 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1024 phy, rate->bitrate * 100, len, rix, is_sp);
1027 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1028 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1029 info->flags &= ~ATH9K_TXDESC_RTSENA;
1031 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1032 if (info->flags & ATH9K_TXDESC_RTSENA)
1033 info->flags &= ~ATH9K_TXDESC_CTSENA;
1036 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1038 struct ieee80211_hdr *hdr;
1039 enum ath9k_pkt_type htype;
1040 __le16 fc;
1042 hdr = (struct ieee80211_hdr *)skb->data;
1043 fc = hdr->frame_control;
1045 if (ieee80211_is_beacon(fc))
1046 htype = ATH9K_PKT_TYPE_BEACON;
1047 else if (ieee80211_is_probe_resp(fc))
1048 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1049 else if (ieee80211_is_atim(fc))
1050 htype = ATH9K_PKT_TYPE_ATIM;
1051 else if (ieee80211_is_pspoll(fc))
1052 htype = ATH9K_PKT_TYPE_PSPOLL;
1053 else
1054 htype = ATH9K_PKT_TYPE_NORMAL;
1056 return htype;
1059 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1060 struct ath_txq *txq, int len)
1062 struct ath_hw *ah = sc->sc_ah;
1063 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1064 struct ath_buf *bf_first = bf;
1065 struct ath_tx_info info;
1066 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1068 memset(&info, 0, sizeof(info));
1069 info.is_first = true;
1070 info.is_last = true;
1071 info.txpower = MAX_RATE_POWER;
1072 info.qcu = txq->axq_qnum;
1074 info.flags = ATH9K_TXDESC_INTREQ;
1075 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1076 info.flags |= ATH9K_TXDESC_NOACK;
1077 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1078 info.flags |= ATH9K_TXDESC_LDPC;
1080 ath_buf_set_rate(sc, bf, &info, len);
1082 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1083 info.flags |= ATH9K_TXDESC_CLRDMASK;
1085 if (bf->bf_state.bfs_paprd)
1086 info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1089 while (bf) {
1090 struct sk_buff *skb = bf->bf_mpdu;
1091 struct ath_frame_info *fi = get_frame_info(skb);
1093 info.type = get_hw_packet_type(skb);
1094 if (bf->bf_next)
1095 info.link = bf->bf_next->bf_daddr;
1096 else
1097 info.link = 0;
1099 info.buf_addr[0] = bf->bf_buf_addr;
1100 info.buf_len[0] = skb->len;
1101 info.pkt_len = fi->framelen;
1102 info.keyix = fi->keyix;
1103 info.keytype = fi->keytype;
1105 if (aggr) {
1106 if (bf == bf_first)
1107 info.aggr = AGGR_BUF_FIRST;
1108 else if (!bf->bf_next)
1109 info.aggr = AGGR_BUF_LAST;
1110 else
1111 info.aggr = AGGR_BUF_MIDDLE;
1113 info.ndelim = bf->bf_state.ndelim;
1114 info.aggr_len = len;
1117 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1118 bf = bf->bf_next;
1122 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1123 struct ath_atx_tid *tid)
1125 struct ath_buf *bf;
1126 enum ATH_AGGR_STATUS status;
1127 struct ieee80211_tx_info *tx_info;
1128 struct list_head bf_q;
1129 int aggr_len;
1131 do {
1132 if (skb_queue_empty(&tid->buf_q))
1133 return;
1135 INIT_LIST_HEAD(&bf_q);
1137 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1140 * no frames picked up to be aggregated;
1141 * block-ack window is not open.
1143 if (list_empty(&bf_q))
1144 break;
1146 bf = list_first_entry(&bf_q, struct ath_buf, list);
1147 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1148 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1150 if (tid->ac->clear_ps_filter) {
1151 tid->ac->clear_ps_filter = false;
1152 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1153 } else {
1154 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1157 /* if only one frame, send as non-aggregate */
1158 if (bf == bf->bf_lastbf) {
1159 aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1160 bf->bf_state.bf_type = BUF_AMPDU;
1161 } else {
1162 TX_STAT_INC(txq->axq_qnum, a_aggr);
1165 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1166 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1167 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1168 status != ATH_AGGR_BAW_CLOSED);
1171 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1172 u16 tid, u16 *ssn)
1174 struct ath_atx_tid *txtid;
1175 struct ath_node *an;
1177 an = (struct ath_node *)sta->drv_priv;
1178 txtid = ATH_AN_2_TID(an, tid);
1180 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1181 return -EAGAIN;
1183 txtid->state |= AGGR_ADDBA_PROGRESS;
1184 txtid->paused = true;
1185 *ssn = txtid->seq_start = txtid->seq_next;
1186 txtid->bar_index = -1;
1188 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1189 txtid->baw_head = txtid->baw_tail = 0;
1191 return 0;
1194 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1196 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1197 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1198 struct ath_txq *txq = txtid->ac->txq;
1200 if (txtid->state & AGGR_CLEANUP)
1201 return;
1203 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1204 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1205 return;
1208 ath_txq_lock(sc, txq);
1209 txtid->paused = true;
1212 * If frames are still being transmitted for this TID, they will be
1213 * cleaned up during tx completion. To prevent race conditions, this
1214 * TID can only be reused after all in-progress subframes have been
1215 * completed.
1217 if (txtid->baw_head != txtid->baw_tail)
1218 txtid->state |= AGGR_CLEANUP;
1219 else
1220 txtid->state &= ~AGGR_ADDBA_COMPLETE;
1222 ath_tx_flush_tid(sc, txtid);
1223 ath_txq_unlock_complete(sc, txq);
1226 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1227 struct ath_node *an)
1229 struct ath_atx_tid *tid;
1230 struct ath_atx_ac *ac;
1231 struct ath_txq *txq;
1232 bool buffered;
1233 int tidno;
1235 for (tidno = 0, tid = &an->tid[tidno];
1236 tidno < WME_NUM_TID; tidno++, tid++) {
1238 if (!tid->sched)
1239 continue;
1241 ac = tid->ac;
1242 txq = ac->txq;
1244 ath_txq_lock(sc, txq);
1246 buffered = !skb_queue_empty(&tid->buf_q);
1248 tid->sched = false;
1249 list_del(&tid->list);
1251 if (ac->sched) {
1252 ac->sched = false;
1253 list_del(&ac->list);
1256 ath_txq_unlock(sc, txq);
1258 ieee80211_sta_set_buffered(sta, tidno, buffered);
1262 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1264 struct ath_atx_tid *tid;
1265 struct ath_atx_ac *ac;
1266 struct ath_txq *txq;
1267 int tidno;
1269 for (tidno = 0, tid = &an->tid[tidno];
1270 tidno < WME_NUM_TID; tidno++, tid++) {
1272 ac = tid->ac;
1273 txq = ac->txq;
1275 ath_txq_lock(sc, txq);
1276 ac->clear_ps_filter = true;
1278 if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1279 ath_tx_queue_tid(txq, tid);
1280 ath_txq_schedule(sc, txq);
1283 ath_txq_unlock_complete(sc, txq);
1287 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1289 struct ath_atx_tid *txtid;
1290 struct ath_node *an;
1292 an = (struct ath_node *)sta->drv_priv;
1294 if (sc->sc_flags & SC_OP_TXAGGR) {
1295 txtid = ATH_AN_2_TID(an, tid);
1296 txtid->baw_size =
1297 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1298 txtid->state |= AGGR_ADDBA_COMPLETE;
1299 txtid->state &= ~AGGR_ADDBA_PROGRESS;
1300 ath_tx_resume_tid(sc, txtid);
1304 /********************/
1305 /* Queue Management */
1306 /********************/
1308 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1309 struct ath_txq *txq)
1311 struct ath_atx_ac *ac, *ac_tmp;
1312 struct ath_atx_tid *tid, *tid_tmp;
1314 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1315 list_del(&ac->list);
1316 ac->sched = false;
1317 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1318 list_del(&tid->list);
1319 tid->sched = false;
1320 ath_tid_drain(sc, txq, tid);
1325 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1327 struct ath_hw *ah = sc->sc_ah;
1328 struct ath9k_tx_queue_info qi;
1329 static const int subtype_txq_to_hwq[] = {
1330 [WME_AC_BE] = ATH_TXQ_AC_BE,
1331 [WME_AC_BK] = ATH_TXQ_AC_BK,
1332 [WME_AC_VI] = ATH_TXQ_AC_VI,
1333 [WME_AC_VO] = ATH_TXQ_AC_VO,
1335 int axq_qnum, i;
1337 memset(&qi, 0, sizeof(qi));
1338 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1339 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1340 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1341 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1342 qi.tqi_physCompBuf = 0;
1345 * Enable interrupts only for EOL and DESC conditions.
1346 * We mark tx descriptors to receive a DESC interrupt
1347 * when a tx queue gets deep; otherwise waiting for the
1348 * EOL to reap descriptors. Note that this is done to
1349 * reduce interrupt load and this only defers reaping
1350 * descriptors, never transmitting frames. Aside from
1351 * reducing interrupts this also permits more concurrency.
1352 * The only potential downside is if the tx queue backs
1353 * up in which case the top half of the kernel may backup
1354 * due to a lack of tx descriptors.
1356 * The UAPSD queue is an exception, since we take a desc-
1357 * based intr on the EOSP frames.
1359 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1360 qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
1361 TXQ_FLAG_TXERRINT_ENABLE;
1362 } else {
1363 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1364 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1365 else
1366 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1367 TXQ_FLAG_TXDESCINT_ENABLE;
1369 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1370 if (axq_qnum == -1) {
1372 * NB: don't print a message, this happens
1373 * normally on parts with too few tx queues
1375 return NULL;
1377 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1378 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1380 txq->axq_qnum = axq_qnum;
1381 txq->mac80211_qnum = -1;
1382 txq->axq_link = NULL;
1383 __skb_queue_head_init(&txq->complete_q);
1384 INIT_LIST_HEAD(&txq->axq_q);
1385 INIT_LIST_HEAD(&txq->axq_acq);
1386 spin_lock_init(&txq->axq_lock);
1387 txq->axq_depth = 0;
1388 txq->axq_ampdu_depth = 0;
1389 txq->axq_tx_inprogress = false;
1390 sc->tx.txqsetup |= 1<<axq_qnum;
1392 txq->txq_headidx = txq->txq_tailidx = 0;
1393 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1394 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1396 return &sc->tx.txq[axq_qnum];
1399 int ath_txq_update(struct ath_softc *sc, int qnum,
1400 struct ath9k_tx_queue_info *qinfo)
1402 struct ath_hw *ah = sc->sc_ah;
1403 int error = 0;
1404 struct ath9k_tx_queue_info qi;
1406 if (qnum == sc->beacon.beaconq) {
1408 * XXX: for beacon queue, we just save the parameter.
1409 * It will be picked up by ath_beaconq_config when
1410 * it's necessary.
1412 sc->beacon.beacon_qi = *qinfo;
1413 return 0;
1416 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1418 ath9k_hw_get_txq_props(ah, qnum, &qi);
1419 qi.tqi_aifs = qinfo->tqi_aifs;
1420 qi.tqi_cwmin = qinfo->tqi_cwmin;
1421 qi.tqi_cwmax = qinfo->tqi_cwmax;
1422 qi.tqi_burstTime = qinfo->tqi_burstTime;
1423 qi.tqi_readyTime = qinfo->tqi_readyTime;
1425 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1426 ath_err(ath9k_hw_common(sc->sc_ah),
1427 "Unable to update hardware queue %u!\n", qnum);
1428 error = -EIO;
1429 } else {
1430 ath9k_hw_resettxqueue(ah, qnum);
1433 return error;
1436 int ath_cabq_update(struct ath_softc *sc)
1438 struct ath9k_tx_queue_info qi;
1439 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1440 int qnum = sc->beacon.cabq->axq_qnum;
1442 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1444 * Ensure the readytime % is within the bounds.
1446 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1447 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1448 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1449 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1451 qi.tqi_readyTime = (cur_conf->beacon_interval *
1452 sc->config.cabqReadytime) / 100;
1453 ath_txq_update(sc, qnum, &qi);
1455 return 0;
1458 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
1460 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
1461 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1464 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1465 struct list_head *list, bool retry_tx)
1467 struct ath_buf *bf, *lastbf;
1468 struct list_head bf_head;
1469 struct ath_tx_status ts;
1471 memset(&ts, 0, sizeof(ts));
1472 ts.ts_status = ATH9K_TX_FLUSH;
1473 INIT_LIST_HEAD(&bf_head);
1475 while (!list_empty(list)) {
1476 bf = list_first_entry(list, struct ath_buf, list);
1478 if (bf->bf_stale) {
1479 list_del(&bf->list);
1481 ath_tx_return_buffer(sc, bf);
1482 continue;
1485 lastbf = bf->bf_lastbf;
1486 list_cut_position(&bf_head, list, &lastbf->list);
1488 txq->axq_depth--;
1489 if (bf_is_ampdu_not_probing(bf))
1490 txq->axq_ampdu_depth--;
1492 if (bf_isampdu(bf))
1493 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
1494 retry_tx);
1495 else
1496 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
1501 * Drain a given TX queue (could be Beacon or Data)
1503 * This assumes output has been stopped and
1504 * we do not need to block ath_tx_tasklet.
1506 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1508 ath_txq_lock(sc, txq);
1510 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1511 int idx = txq->txq_tailidx;
1513 while (!list_empty(&txq->txq_fifo[idx])) {
1514 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
1515 retry_tx);
1517 INCR(idx, ATH_TXFIFO_DEPTH);
1519 txq->txq_tailidx = idx;
1522 txq->axq_link = NULL;
1523 txq->axq_tx_inprogress = false;
1524 ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
1526 /* flush any pending frames if aggregation is enabled */
1527 if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx)
1528 ath_txq_drain_pending_buffers(sc, txq);
1530 ath_txq_unlock_complete(sc, txq);
1533 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1535 struct ath_hw *ah = sc->sc_ah;
1536 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1537 struct ath_txq *txq;
1538 int i;
1539 u32 npend = 0;
1541 if (sc->sc_flags & SC_OP_INVALID)
1542 return true;
1544 ath9k_hw_abort_tx_dma(ah);
1546 /* Check if any queue remains active */
1547 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1548 if (!ATH_TXQ_SETUP(sc, i))
1549 continue;
1551 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1552 npend |= BIT(i);
1555 if (npend)
1556 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1558 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1559 if (!ATH_TXQ_SETUP(sc, i))
1560 continue;
1563 * The caller will resume queues with ieee80211_wake_queues.
1564 * Mark the queue as not stopped to prevent ath_tx_complete
1565 * from waking the queue too early.
1567 txq = &sc->tx.txq[i];
1568 txq->stopped = false;
1569 ath_draintxq(sc, txq, retry_tx);
1572 return !npend;
1575 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1577 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1578 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1581 /* For each axq_acq entry, for each tid, try to schedule packets
1582 * for transmit until ampdu_depth has reached min Q depth.
1584 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1586 struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1587 struct ath_atx_tid *tid, *last_tid;
1589 if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
1590 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1591 return;
1593 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1594 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1596 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1597 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1598 list_del(&ac->list);
1599 ac->sched = false;
1601 while (!list_empty(&ac->tid_q)) {
1602 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1603 list);
1604 list_del(&tid->list);
1605 tid->sched = false;
1607 if (tid->paused)
1608 continue;
1610 ath_tx_sched_aggr(sc, txq, tid);
1613 * add tid to round-robin queue if more frames
1614 * are pending for the tid
1616 if (!skb_queue_empty(&tid->buf_q))
1617 ath_tx_queue_tid(txq, tid);
1619 if (tid == last_tid ||
1620 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1621 break;
1624 if (!list_empty(&ac->tid_q) && !ac->sched) {
1625 ac->sched = true;
1626 list_add_tail(&ac->list, &txq->axq_acq);
1629 if (ac == last_ac ||
1630 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1631 return;
1635 /***********/
1636 /* TX, DMA */
1637 /***********/
1640 * Insert a chain of ath_buf (descriptors) on a txq and
1641 * assume the descriptors are already chained together by caller.
1643 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1644 struct list_head *head, bool internal)
1646 struct ath_hw *ah = sc->sc_ah;
1647 struct ath_common *common = ath9k_hw_common(ah);
1648 struct ath_buf *bf, *bf_last;
1649 bool puttxbuf = false;
1650 bool edma;
1653 * Insert the frame on the outbound list and
1654 * pass it on to the hardware.
1657 if (list_empty(head))
1658 return;
1660 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1661 bf = list_first_entry(head, struct ath_buf, list);
1662 bf_last = list_entry(head->prev, struct ath_buf, list);
1664 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1665 txq->axq_qnum, txq->axq_depth);
1667 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1668 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1669 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1670 puttxbuf = true;
1671 } else {
1672 list_splice_tail_init(head, &txq->axq_q);
1674 if (txq->axq_link) {
1675 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1676 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1677 txq->axq_qnum, txq->axq_link,
1678 ito64(bf->bf_daddr), bf->bf_desc);
1679 } else if (!edma)
1680 puttxbuf = true;
1682 txq->axq_link = bf_last->bf_desc;
1685 if (puttxbuf) {
1686 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1687 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1688 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1689 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1692 if (!edma) {
1693 TX_STAT_INC(txq->axq_qnum, txstart);
1694 ath9k_hw_txstart(ah, txq->axq_qnum);
1697 if (!internal) {
1698 txq->axq_depth++;
1699 if (bf_is_ampdu_not_probing(bf))
1700 txq->axq_ampdu_depth++;
1704 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1705 struct sk_buff *skb, struct ath_tx_control *txctl)
1707 struct ath_frame_info *fi = get_frame_info(skb);
1708 struct list_head bf_head;
1709 struct ath_buf *bf;
1712 * Do not queue to h/w when any of the following conditions is true:
1713 * - there are pending frames in software queue
1714 * - the TID is currently paused for ADDBA/BAR request
1715 * - seqno is not within block-ack window
1716 * - h/w queue depth exceeds low water mark
1718 if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1719 !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1720 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1722 * Add this frame to software queue for scheduling later
1723 * for aggregation.
1725 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1726 __skb_queue_tail(&tid->buf_q, skb);
1727 if (!txctl->an || !txctl->an->sleeping)
1728 ath_tx_queue_tid(txctl->txq, tid);
1729 return;
1732 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1733 if (!bf)
1734 return;
1736 bf->bf_state.bf_type = BUF_AMPDU;
1737 INIT_LIST_HEAD(&bf_head);
1738 list_add(&bf->list, &bf_head);
1740 /* Add sub-frame to BAW */
1741 ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1743 /* Queue to h/w without aggregation */
1744 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1745 bf->bf_lastbf = bf;
1746 ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1747 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1750 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1751 struct ath_atx_tid *tid, struct sk_buff *skb)
1753 struct ath_frame_info *fi = get_frame_info(skb);
1754 struct list_head bf_head;
1755 struct ath_buf *bf;
1757 bf = fi->bf;
1758 if (!bf)
1759 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
1761 if (!bf)
1762 return;
1764 INIT_LIST_HEAD(&bf_head);
1765 list_add_tail(&bf->list, &bf_head);
1766 bf->bf_state.bf_type = 0;
1768 bf->bf_lastbf = bf;
1769 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1770 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1771 TX_STAT_INC(txq->axq_qnum, queued);
1774 static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
1775 int framelen)
1777 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1778 struct ieee80211_sta *sta = tx_info->control.sta;
1779 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1780 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1781 struct ath_frame_info *fi = get_frame_info(skb);
1782 struct ath_node *an = NULL;
1783 enum ath9k_key_type keytype;
1785 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1787 if (sta)
1788 an = (struct ath_node *) sta->drv_priv;
1790 memset(fi, 0, sizeof(*fi));
1791 if (hw_key)
1792 fi->keyix = hw_key->hw_key_idx;
1793 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1794 fi->keyix = an->ps_key;
1795 else
1796 fi->keyix = ATH9K_TXKEYIX_INVALID;
1797 fi->keytype = keytype;
1798 fi->framelen = framelen;
1801 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1803 struct ath_hw *ah = sc->sc_ah;
1804 struct ath9k_channel *curchan = ah->curchan;
1805 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1806 (curchan->channelFlags & CHANNEL_5GHZ) &&
1807 (chainmask == 0x7) && (rate < 0x90))
1808 return 0x3;
1809 else
1810 return chainmask;
1814 * Assign a descriptor (and sequence number if necessary,
1815 * and map buffer for DMA. Frees skb on error
1817 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1818 struct ath_txq *txq,
1819 struct ath_atx_tid *tid,
1820 struct sk_buff *skb)
1822 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1823 struct ath_frame_info *fi = get_frame_info(skb);
1824 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1825 struct ath_buf *bf;
1826 u16 seqno;
1828 bf = ath_tx_get_buffer(sc);
1829 if (!bf) {
1830 ath_dbg(common, XMIT, "TX buffers are full\n");
1831 goto error;
1834 ATH_TXBUF_RESET(bf);
1836 if (tid) {
1837 seqno = tid->seq_next;
1838 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1839 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1840 bf->bf_state.seqno = seqno;
1843 bf->bf_mpdu = skb;
1845 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1846 skb->len, DMA_TO_DEVICE);
1847 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1848 bf->bf_mpdu = NULL;
1849 bf->bf_buf_addr = 0;
1850 ath_err(ath9k_hw_common(sc->sc_ah),
1851 "dma_mapping_error() on TX\n");
1852 ath_tx_return_buffer(sc, bf);
1853 goto error;
1856 fi->bf = bf;
1858 return bf;
1860 error:
1861 dev_kfree_skb_any(skb);
1862 return NULL;
1865 /* FIXME: tx power */
1866 static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
1867 struct ath_tx_control *txctl)
1869 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1870 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1871 struct ath_atx_tid *tid = NULL;
1872 struct ath_buf *bf;
1873 u8 tidno;
1875 if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an &&
1876 ieee80211_is_data_qos(hdr->frame_control)) {
1877 tidno = ieee80211_get_qos_ctl(hdr)[0] &
1878 IEEE80211_QOS_CTL_TID_MASK;
1879 tid = ATH_AN_2_TID(txctl->an, tidno);
1881 WARN_ON(tid->ac->txq != txctl->txq);
1884 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1886 * Try aggregation if it's a unicast data frame
1887 * and the destination is HT capable.
1889 ath_tx_send_ampdu(sc, tid, skb, txctl);
1890 } else {
1891 bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1892 if (!bf)
1893 return;
1895 bf->bf_state.bfs_paprd = txctl->paprd;
1897 if (txctl->paprd)
1898 bf->bf_state.bfs_paprd_timestamp = jiffies;
1900 ath_tx_send_normal(sc, txctl->txq, tid, skb);
1904 /* Upon failure caller should free skb */
1905 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1906 struct ath_tx_control *txctl)
1908 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1909 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1910 struct ieee80211_sta *sta = info->control.sta;
1911 struct ieee80211_vif *vif = info->control.vif;
1912 struct ath_softc *sc = hw->priv;
1913 struct ath_txq *txq = txctl->txq;
1914 int padpos, padsize;
1915 int frmlen = skb->len + FCS_LEN;
1916 int q;
1918 /* NOTE: sta can be NULL according to net/mac80211.h */
1919 if (sta)
1920 txctl->an = (struct ath_node *)sta->drv_priv;
1922 if (info->control.hw_key)
1923 frmlen += info->control.hw_key->icv_len;
1926 * As a temporary workaround, assign seq# here; this will likely need
1927 * to be cleaned up to work better with Beacon transmission and virtual
1928 * BSSes.
1930 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1931 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1932 sc->tx.seq_no += 0x10;
1933 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1934 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1937 /* Add the padding after the header if this is not already done */
1938 padpos = ath9k_cmn_padpos(hdr->frame_control);
1939 padsize = padpos & 3;
1940 if (padsize && skb->len > padpos) {
1941 if (skb_headroom(skb) < padsize)
1942 return -ENOMEM;
1944 skb_push(skb, padsize);
1945 memmove(skb->data, skb->data + padsize, padpos);
1946 hdr = (struct ieee80211_hdr *) skb->data;
1949 if ((vif && vif->type != NL80211_IFTYPE_AP &&
1950 vif->type != NL80211_IFTYPE_AP_VLAN) ||
1951 !ieee80211_is_data(hdr->frame_control))
1952 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1954 setup_frame_info(hw, skb, frmlen);
1957 * At this point, the vif, hw_key and sta pointers in the tx control
1958 * info are no longer valid (overwritten by the ath_frame_info data.
1961 q = skb_get_queue_mapping(skb);
1963 ath_txq_lock(sc, txq);
1964 if (txq == sc->tx.txq_map[q] &&
1965 ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
1966 ieee80211_stop_queue(sc->hw, q);
1967 txq->stopped = true;
1970 ath_tx_start_dma(sc, skb, txctl);
1972 ath_txq_unlock(sc, txq);
1974 return 0;
1977 /*****************/
1978 /* TX Completion */
1979 /*****************/
1981 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
1982 int tx_flags, struct ath_txq *txq)
1984 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1985 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1986 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1987 int q, padpos, padsize;
1989 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
1991 if (!(tx_flags & ATH_TX_ERROR))
1992 /* Frame was ACKed */
1993 tx_info->flags |= IEEE80211_TX_STAT_ACK;
1995 padpos = ath9k_cmn_padpos(hdr->frame_control);
1996 padsize = padpos & 3;
1997 if (padsize && skb->len>padpos+padsize) {
1999 * Remove MAC header padding before giving the frame back to
2000 * mac80211.
2002 memmove(skb->data + padsize, skb->data, padpos);
2003 skb_pull(skb, padsize);
2006 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2007 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2008 ath_dbg(common, PS,
2009 "Going back to sleep after having received TX status (0x%lx)\n",
2010 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2011 PS_WAIT_FOR_CAB |
2012 PS_WAIT_FOR_PSPOLL_DATA |
2013 PS_WAIT_FOR_TX_ACK));
2016 q = skb_get_queue_mapping(skb);
2017 if (txq == sc->tx.txq_map[q]) {
2018 if (WARN_ON(--txq->pending_frames < 0))
2019 txq->pending_frames = 0;
2021 if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
2022 ieee80211_wake_queue(sc->hw, q);
2023 txq->stopped = false;
2027 __skb_queue_tail(&txq->complete_q, skb);
2030 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2031 struct ath_txq *txq, struct list_head *bf_q,
2032 struct ath_tx_status *ts, int txok)
2034 struct sk_buff *skb = bf->bf_mpdu;
2035 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2036 unsigned long flags;
2037 int tx_flags = 0;
2039 if (!txok)
2040 tx_flags |= ATH_TX_ERROR;
2042 if (ts->ts_status & ATH9K_TXERR_FILT)
2043 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2045 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2046 bf->bf_buf_addr = 0;
2048 if (bf->bf_state.bfs_paprd) {
2049 if (time_after(jiffies,
2050 bf->bf_state.bfs_paprd_timestamp +
2051 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2052 dev_kfree_skb_any(skb);
2053 else
2054 complete(&sc->paprd_complete);
2055 } else {
2056 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2057 ath_tx_complete(sc, skb, tx_flags, txq);
2059 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2060 * accidentally reference it later.
2062 bf->bf_mpdu = NULL;
2065 * Return the list of ath_buf of this mpdu to free queue
2067 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2068 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2069 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2072 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2073 struct ath_tx_status *ts, int nframes, int nbad,
2074 int txok)
2076 struct sk_buff *skb = bf->bf_mpdu;
2077 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2078 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2079 struct ieee80211_hw *hw = sc->hw;
2080 struct ath_hw *ah = sc->sc_ah;
2081 u8 i, tx_rateindex;
2083 if (txok)
2084 tx_info->status.ack_signal = ts->ts_rssi;
2086 tx_rateindex = ts->ts_rateindex;
2087 WARN_ON(tx_rateindex >= hw->max_rates);
2089 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2090 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2092 BUG_ON(nbad > nframes);
2094 tx_info->status.ampdu_len = nframes;
2095 tx_info->status.ampdu_ack_len = nframes - nbad;
2097 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2098 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2100 * If an underrun error is seen assume it as an excessive
2101 * retry only if max frame trigger level has been reached
2102 * (2 KB for single stream, and 4 KB for dual stream).
2103 * Adjust the long retry as if the frame was tried
2104 * hw->max_rate_tries times to affect how rate control updates
2105 * PER for the failed rate.
2106 * In case of congestion on the bus penalizing this type of
2107 * underruns should help hardware actually transmit new frames
2108 * successfully by eventually preferring slower rates.
2109 * This itself should also alleviate congestion on the bus.
2111 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2112 ATH9K_TX_DELIM_UNDERRUN)) &&
2113 ieee80211_is_data(hdr->frame_control) &&
2114 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2115 tx_info->status.rates[tx_rateindex].count =
2116 hw->max_rate_tries;
2119 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2120 tx_info->status.rates[i].count = 0;
2121 tx_info->status.rates[i].idx = -1;
2124 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2127 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
2128 struct ath_tx_status *ts, struct ath_buf *bf,
2129 struct list_head *bf_head)
2131 int txok;
2133 txq->axq_depth--;
2134 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
2135 txq->axq_tx_inprogress = false;
2136 if (bf_is_ampdu_not_probing(bf))
2137 txq->axq_ampdu_depth--;
2139 if (!bf_isampdu(bf)) {
2140 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
2141 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
2142 } else
2143 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
2145 if (sc->sc_flags & SC_OP_TXAGGR)
2146 ath_txq_schedule(sc, txq);
2149 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2151 struct ath_hw *ah = sc->sc_ah;
2152 struct ath_common *common = ath9k_hw_common(ah);
2153 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2154 struct list_head bf_head;
2155 struct ath_desc *ds;
2156 struct ath_tx_status ts;
2157 int status;
2159 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2160 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2161 txq->axq_link);
2163 ath_txq_lock(sc, txq);
2164 for (;;) {
2165 if (work_pending(&sc->hw_reset_work))
2166 break;
2168 if (list_empty(&txq->axq_q)) {
2169 txq->axq_link = NULL;
2170 if (sc->sc_flags & SC_OP_TXAGGR)
2171 ath_txq_schedule(sc, txq);
2172 break;
2174 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2177 * There is a race condition that a BH gets scheduled
2178 * after sw writes TxE and before hw re-load the last
2179 * descriptor to get the newly chained one.
2180 * Software must keep the last DONE descriptor as a
2181 * holding descriptor - software does so by marking
2182 * it with the STALE flag.
2184 bf_held = NULL;
2185 if (bf->bf_stale) {
2186 bf_held = bf;
2187 if (list_is_last(&bf_held->list, &txq->axq_q))
2188 break;
2190 bf = list_entry(bf_held->list.next, struct ath_buf,
2191 list);
2194 lastbf = bf->bf_lastbf;
2195 ds = lastbf->bf_desc;
2197 memset(&ts, 0, sizeof(ts));
2198 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2199 if (status == -EINPROGRESS)
2200 break;
2202 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2205 * Remove ath_buf's of the same transmit unit from txq,
2206 * however leave the last descriptor back as the holding
2207 * descriptor for hw.
2209 lastbf->bf_stale = true;
2210 INIT_LIST_HEAD(&bf_head);
2211 if (!list_is_singular(&lastbf->list))
2212 list_cut_position(&bf_head,
2213 &txq->axq_q, lastbf->list.prev);
2215 if (bf_held) {
2216 list_del(&bf_held->list);
2217 ath_tx_return_buffer(sc, bf_held);
2220 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2222 ath_txq_unlock_complete(sc, txq);
2225 static void ath_tx_complete_poll_work(struct work_struct *work)
2227 struct ath_softc *sc = container_of(work, struct ath_softc,
2228 tx_complete_work.work);
2229 struct ath_txq *txq;
2230 int i;
2231 bool needreset = false;
2232 #ifdef CONFIG_ATH9K_DEBUGFS
2233 sc->tx_complete_poll_work_seen++;
2234 #endif
2236 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
2237 if (ATH_TXQ_SETUP(sc, i)) {
2238 txq = &sc->tx.txq[i];
2239 ath_txq_lock(sc, txq);
2240 if (txq->axq_depth) {
2241 if (txq->axq_tx_inprogress) {
2242 needreset = true;
2243 ath_txq_unlock(sc, txq);
2244 break;
2245 } else {
2246 txq->axq_tx_inprogress = true;
2249 ath_txq_unlock_complete(sc, txq);
2252 if (needreset) {
2253 ath_dbg(ath9k_hw_common(sc->sc_ah), RESET,
2254 "tx hung, resetting the chip\n");
2255 RESET_STAT_INC(sc, RESET_TYPE_TX_HANG);
2256 ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
2259 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2260 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
2265 void ath_tx_tasklet(struct ath_softc *sc)
2267 int i;
2268 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2270 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2272 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2273 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2274 ath_tx_processq(sc, &sc->tx.txq[i]);
2278 void ath_tx_edma_tasklet(struct ath_softc *sc)
2280 struct ath_tx_status ts;
2281 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2282 struct ath_hw *ah = sc->sc_ah;
2283 struct ath_txq *txq;
2284 struct ath_buf *bf, *lastbf;
2285 struct list_head bf_head;
2286 int status;
2288 for (;;) {
2289 if (work_pending(&sc->hw_reset_work))
2290 break;
2292 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2293 if (status == -EINPROGRESS)
2294 break;
2295 if (status == -EIO) {
2296 ath_dbg(common, XMIT, "Error processing tx status\n");
2297 break;
2300 /* Skip beacon completions */
2301 if (ts.qid == sc->beacon.beaconq)
2302 continue;
2304 txq = &sc->tx.txq[ts.qid];
2306 ath_txq_lock(sc, txq);
2308 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2309 ath_txq_unlock(sc, txq);
2310 return;
2313 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2314 struct ath_buf, list);
2315 lastbf = bf->bf_lastbf;
2317 INIT_LIST_HEAD(&bf_head);
2318 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2319 &lastbf->list);
2321 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2322 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2324 if (!list_empty(&txq->axq_q)) {
2325 struct list_head bf_q;
2327 INIT_LIST_HEAD(&bf_q);
2328 txq->axq_link = NULL;
2329 list_splice_tail_init(&txq->axq_q, &bf_q);
2330 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2334 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2335 ath_txq_unlock_complete(sc, txq);
2339 /*****************/
2340 /* Init, Cleanup */
2341 /*****************/
2343 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2345 struct ath_descdma *dd = &sc->txsdma;
2346 u8 txs_len = sc->sc_ah->caps.txs_len;
2348 dd->dd_desc_len = size * txs_len;
2349 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2350 &dd->dd_desc_paddr, GFP_KERNEL);
2351 if (!dd->dd_desc)
2352 return -ENOMEM;
2354 return 0;
2357 static int ath_tx_edma_init(struct ath_softc *sc)
2359 int err;
2361 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2362 if (!err)
2363 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2364 sc->txsdma.dd_desc_paddr,
2365 ATH_TXSTATUS_RING_SIZE);
2367 return err;
2370 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2372 struct ath_descdma *dd = &sc->txsdma;
2374 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2375 dd->dd_desc_paddr);
2378 int ath_tx_init(struct ath_softc *sc, int nbufs)
2380 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2381 int error = 0;
2383 spin_lock_init(&sc->tx.txbuflock);
2385 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2386 "tx", nbufs, 1, 1);
2387 if (error != 0) {
2388 ath_err(common,
2389 "Failed to allocate tx descriptors: %d\n", error);
2390 goto err;
2393 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2394 "beacon", ATH_BCBUF, 1, 1);
2395 if (error != 0) {
2396 ath_err(common,
2397 "Failed to allocate beacon descriptors: %d\n", error);
2398 goto err;
2401 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2403 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2404 error = ath_tx_edma_init(sc);
2405 if (error)
2406 goto err;
2409 err:
2410 if (error != 0)
2411 ath_tx_cleanup(sc);
2413 return error;
2416 void ath_tx_cleanup(struct ath_softc *sc)
2418 if (sc->beacon.bdma.dd_desc_len != 0)
2419 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2421 if (sc->tx.txdma.dd_desc_len != 0)
2422 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2424 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2425 ath_tx_edma_cleanup(sc);
2428 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2430 struct ath_atx_tid *tid;
2431 struct ath_atx_ac *ac;
2432 int tidno, acno;
2434 for (tidno = 0, tid = &an->tid[tidno];
2435 tidno < WME_NUM_TID;
2436 tidno++, tid++) {
2437 tid->an = an;
2438 tid->tidno = tidno;
2439 tid->seq_start = tid->seq_next = 0;
2440 tid->baw_size = WME_MAX_BA;
2441 tid->baw_head = tid->baw_tail = 0;
2442 tid->sched = false;
2443 tid->paused = false;
2444 tid->state &= ~AGGR_CLEANUP;
2445 __skb_queue_head_init(&tid->buf_q);
2446 acno = TID_TO_WME_AC(tidno);
2447 tid->ac = &an->ac[acno];
2448 tid->state &= ~AGGR_ADDBA_COMPLETE;
2449 tid->state &= ~AGGR_ADDBA_PROGRESS;
2452 for (acno = 0, ac = &an->ac[acno];
2453 acno < WME_NUM_AC; acno++, ac++) {
2454 ac->sched = false;
2455 ac->txq = sc->tx.txq_map[acno];
2456 INIT_LIST_HEAD(&ac->tid_q);
2460 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2462 struct ath_atx_ac *ac;
2463 struct ath_atx_tid *tid;
2464 struct ath_txq *txq;
2465 int tidno;
2467 for (tidno = 0, tid = &an->tid[tidno];
2468 tidno < WME_NUM_TID; tidno++, tid++) {
2470 ac = tid->ac;
2471 txq = ac->txq;
2473 ath_txq_lock(sc, txq);
2475 if (tid->sched) {
2476 list_del(&tid->list);
2477 tid->sched = false;
2480 if (ac->sched) {
2481 list_del(&ac->list);
2482 tid->ac->sched = false;
2485 ath_tid_drain(sc, txq, tid);
2486 tid->state &= ~AGGR_ADDBA_COMPLETE;
2487 tid->state &= ~AGGR_CLEANUP;
2489 ath_txq_unlock(sc, txq);