2 * Copyright (c) 2009 Atheros Communications Inc.
3 * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/export.h>
19 #include <asm/unaligned.h>
20 #include <net/mac80211.h>
25 #define REG_READ (common->ops->read)
26 #define REG_WRITE(_ah, _reg, _val) (common->ops->write)(_ah, _val, _reg)
27 #define ENABLE_REGWRITE_BUFFER(_ah) \
28 if (common->ops->enable_write_buffer) \
29 common->ops->enable_write_buffer((_ah));
31 #define REGWRITE_BUFFER_FLUSH(_ah) \
32 if (common->ops->write_flush) \
33 common->ops->write_flush((_ah));
36 #define IEEE80211_WEP_NKID 4 /* number of key ids */
38 /************************/
39 /* Key Cache Management */
40 /************************/
42 bool ath_hw_keyreset(struct ath_common
*common
, u16 entry
)
45 void *ah
= common
->ah
;
47 if (entry
>= common
->keymax
) {
48 ath_err(common
, "keycache entry %u out of range\n", entry
);
52 keyType
= REG_READ(ah
, AR_KEYTABLE_TYPE(entry
));
54 ENABLE_REGWRITE_BUFFER(ah
);
56 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), 0);
57 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), 0);
58 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), 0);
59 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), 0);
60 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), 0);
61 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), AR_KEYTABLE_TYPE_CLR
);
62 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), 0);
63 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), 0);
65 if (keyType
== AR_KEYTABLE_TYPE_TKIP
) {
66 u16 micentry
= entry
+ 64;
68 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), 0);
69 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
70 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), 0);
71 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
72 if (common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
) {
73 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), 0);
74 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
75 AR_KEYTABLE_TYPE_CLR
);
80 REGWRITE_BUFFER_FLUSH(ah
);
84 EXPORT_SYMBOL(ath_hw_keyreset
);
86 static bool ath_hw_keysetmac(struct ath_common
*common
,
87 u16 entry
, const u8
*mac
)
90 u32 unicast_flag
= AR_KEYTABLE_VALID
;
91 void *ah
= common
->ah
;
93 if (entry
>= common
->keymax
) {
94 ath_err(common
, "keycache entry %u out of range\n", entry
);
100 * AR_KEYTABLE_VALID indicates that the address is a unicast
101 * address, which must match the transmitter address for
103 * Not setting this bit allows the hardware to use the key
104 * for multicast frame decryption.
109 macLo
= get_unaligned_le32(mac
);
110 macHi
= get_unaligned_le16(mac
+ 4);
112 macLo
|= (macHi
& 1) << 31;
117 ENABLE_REGWRITE_BUFFER(ah
);
119 REG_WRITE(ah
, AR_KEYTABLE_MAC0(entry
), macLo
);
120 REG_WRITE(ah
, AR_KEYTABLE_MAC1(entry
), macHi
| unicast_flag
);
122 REGWRITE_BUFFER_FLUSH(ah
);
127 static bool ath_hw_set_keycache_entry(struct ath_common
*common
, u16 entry
,
128 const struct ath_keyval
*k
,
131 void *ah
= common
->ah
;
132 u32 key0
, key1
, key2
, key3
, key4
;
135 if (entry
>= common
->keymax
) {
136 ath_err(common
, "keycache entry %u out of range\n", entry
);
140 switch (k
->kv_type
) {
141 case ATH_CIPHER_AES_OCB
:
142 keyType
= AR_KEYTABLE_TYPE_AES
;
144 case ATH_CIPHER_AES_CCM
:
145 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_CIPHER_AESCCM
)) {
147 "AES-CCM not supported by this mac rev\n");
150 keyType
= AR_KEYTABLE_TYPE_CCM
;
152 case ATH_CIPHER_TKIP
:
153 keyType
= AR_KEYTABLE_TYPE_TKIP
;
154 if (entry
+ 64 >= common
->keymax
) {
156 "entry %u inappropriate for TKIP\n", entry
);
161 if (k
->kv_len
< WLAN_KEY_LEN_WEP40
) {
162 ath_dbg(common
, ANY
, "WEP key length %u too small\n",
166 if (k
->kv_len
<= WLAN_KEY_LEN_WEP40
)
167 keyType
= AR_KEYTABLE_TYPE_40
;
168 else if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
169 keyType
= AR_KEYTABLE_TYPE_104
;
171 keyType
= AR_KEYTABLE_TYPE_128
;
174 keyType
= AR_KEYTABLE_TYPE_CLR
;
177 ath_err(common
, "cipher %u not supported\n", k
->kv_type
);
181 key0
= get_unaligned_le32(k
->kv_val
+ 0);
182 key1
= get_unaligned_le16(k
->kv_val
+ 4);
183 key2
= get_unaligned_le32(k
->kv_val
+ 6);
184 key3
= get_unaligned_le16(k
->kv_val
+ 10);
185 key4
= get_unaligned_le32(k
->kv_val
+ 12);
186 if (k
->kv_len
<= WLAN_KEY_LEN_WEP104
)
190 * Note: Key cache registers access special memory area that requires
191 * two 32-bit writes to actually update the values in the internal
192 * memory. Consequently, the exact order and pairs used here must be
196 if (keyType
== AR_KEYTABLE_TYPE_TKIP
) {
197 u16 micentry
= entry
+ 64;
200 * Write inverted key[47:0] first to avoid Michael MIC errors
201 * on frames that could be sent or received at the same time.
202 * The correct key will be written in the end once everything
205 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), ~key0
);
206 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), ~key1
);
208 /* Write key[95:48] */
209 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
210 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
212 /* Write key[127:96] and key type */
213 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
214 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
216 /* Write MAC address for the entry */
217 (void) ath_hw_keysetmac(common
, entry
, mac
);
219 if (common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
) {
221 * TKIP uses two key cache entries:
222 * Michael MIC TX/RX keys in the same key cache entry
223 * (idx = main index + 64):
224 * key0 [31:0] = RX key [31:0]
225 * key1 [15:0] = TX key [31:16]
226 * key1 [31:16] = reserved
227 * key2 [31:0] = RX key [63:32]
228 * key3 [15:0] = TX key [15:0]
229 * key3 [31:16] = reserved
230 * key4 [31:0] = TX key [63:32]
232 u32 mic0
, mic1
, mic2
, mic3
, mic4
;
234 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
235 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
236 mic1
= get_unaligned_le16(k
->kv_txmic
+ 2) & 0xffff;
237 mic3
= get_unaligned_le16(k
->kv_txmic
+ 0) & 0xffff;
238 mic4
= get_unaligned_le32(k
->kv_txmic
+ 4);
240 ENABLE_REGWRITE_BUFFER(ah
);
242 /* Write RX[31:0] and TX[31:16] */
243 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
244 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), mic1
);
246 /* Write RX[63:32] and TX[15:0] */
247 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
248 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), mic3
);
250 /* Write TX[63:32] and keyType(reserved) */
251 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), mic4
);
252 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
253 AR_KEYTABLE_TYPE_CLR
);
255 REGWRITE_BUFFER_FLUSH(ah
);
259 * TKIP uses four key cache entries (two for group
261 * Michael MIC TX/RX keys are in different key cache
262 * entries (idx = main index + 64 for TX and
263 * main index + 32 + 96 for RX):
264 * key0 [31:0] = TX/RX MIC key [31:0]
265 * key1 [31:0] = reserved
266 * key2 [31:0] = TX/RX MIC key [63:32]
267 * key3 [31:0] = reserved
268 * key4 [31:0] = reserved
270 * Upper layer code will call this function separately
271 * for TX and RX keys when these registers offsets are
276 mic0
= get_unaligned_le32(k
->kv_mic
+ 0);
277 mic2
= get_unaligned_le32(k
->kv_mic
+ 4);
279 ENABLE_REGWRITE_BUFFER(ah
);
281 /* Write MIC key[31:0] */
282 REG_WRITE(ah
, AR_KEYTABLE_KEY0(micentry
), mic0
);
283 REG_WRITE(ah
, AR_KEYTABLE_KEY1(micentry
), 0);
285 /* Write MIC key[63:32] */
286 REG_WRITE(ah
, AR_KEYTABLE_KEY2(micentry
), mic2
);
287 REG_WRITE(ah
, AR_KEYTABLE_KEY3(micentry
), 0);
289 /* Write TX[63:32] and keyType(reserved) */
290 REG_WRITE(ah
, AR_KEYTABLE_KEY4(micentry
), 0);
291 REG_WRITE(ah
, AR_KEYTABLE_TYPE(micentry
),
292 AR_KEYTABLE_TYPE_CLR
);
294 REGWRITE_BUFFER_FLUSH(ah
);
297 ENABLE_REGWRITE_BUFFER(ah
);
299 /* MAC address registers are reserved for the MIC entry */
300 REG_WRITE(ah
, AR_KEYTABLE_MAC0(micentry
), 0);
301 REG_WRITE(ah
, AR_KEYTABLE_MAC1(micentry
), 0);
304 * Write the correct (un-inverted) key[47:0] last to enable
305 * TKIP now that all other registers are set with correct
308 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
309 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
311 REGWRITE_BUFFER_FLUSH(ah
);
313 ENABLE_REGWRITE_BUFFER(ah
);
315 /* Write key[47:0] */
316 REG_WRITE(ah
, AR_KEYTABLE_KEY0(entry
), key0
);
317 REG_WRITE(ah
, AR_KEYTABLE_KEY1(entry
), key1
);
319 /* Write key[95:48] */
320 REG_WRITE(ah
, AR_KEYTABLE_KEY2(entry
), key2
);
321 REG_WRITE(ah
, AR_KEYTABLE_KEY3(entry
), key3
);
323 /* Write key[127:96] and key type */
324 REG_WRITE(ah
, AR_KEYTABLE_KEY4(entry
), key4
);
325 REG_WRITE(ah
, AR_KEYTABLE_TYPE(entry
), keyType
);
327 REGWRITE_BUFFER_FLUSH(ah
);
329 /* Write MAC address for the entry */
330 (void) ath_hw_keysetmac(common
, entry
, mac
);
336 static int ath_setkey_tkip(struct ath_common
*common
, u16 keyix
, const u8
*key
,
337 struct ath_keyval
*hk
, const u8
*addr
,
343 key_txmic
= key
+ NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY
;
344 key_rxmic
= key
+ NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY
;
348 * Group key installation - only two key cache entries are used
349 * regardless of splitmic capability since group key is only
350 * used either for TX or RX.
353 memcpy(hk
->kv_mic
, key_txmic
, sizeof(hk
->kv_mic
));
354 memcpy(hk
->kv_txmic
, key_txmic
, sizeof(hk
->kv_mic
));
356 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
357 memcpy(hk
->kv_txmic
, key_rxmic
, sizeof(hk
->kv_mic
));
359 return ath_hw_set_keycache_entry(common
, keyix
, hk
, addr
);
361 if (common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
) {
362 /* TX and RX keys share the same key cache entry. */
363 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
364 memcpy(hk
->kv_txmic
, key_txmic
, sizeof(hk
->kv_txmic
));
365 return ath_hw_set_keycache_entry(common
, keyix
, hk
, addr
);
368 /* Separate key cache entries for TX and RX */
370 /* TX key goes at first index, RX key at +32. */
371 memcpy(hk
->kv_mic
, key_txmic
, sizeof(hk
->kv_mic
));
372 if (!ath_hw_set_keycache_entry(common
, keyix
, hk
, NULL
)) {
373 /* TX MIC entry failed. No need to proceed further */
374 ath_err(common
, "Setting TX MIC Key Failed\n");
378 memcpy(hk
->kv_mic
, key_rxmic
, sizeof(hk
->kv_mic
));
379 /* XXX delete tx key on failure? */
380 return ath_hw_set_keycache_entry(common
, keyix
+ 32, hk
, addr
);
383 static int ath_reserve_key_cache_slot_tkip(struct ath_common
*common
)
387 for (i
= IEEE80211_WEP_NKID
; i
< common
->keymax
/ 2; i
++) {
388 if (test_bit(i
, common
->keymap
) ||
389 test_bit(i
+ 64, common
->keymap
))
390 continue; /* At least one part of TKIP key allocated */
391 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
) &&
392 (test_bit(i
+ 32, common
->keymap
) ||
393 test_bit(i
+ 64 + 32, common
->keymap
)))
394 continue; /* At least one part of TKIP key allocated */
396 /* Found a free slot for a TKIP key */
402 static int ath_reserve_key_cache_slot(struct ath_common
*common
,
407 if (cipher
== WLAN_CIPHER_SUITE_TKIP
)
408 return ath_reserve_key_cache_slot_tkip(common
);
410 /* First, try to find slots that would not be available for TKIP. */
411 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
)) {
412 for (i
= IEEE80211_WEP_NKID
; i
< common
->keymax
/ 4; i
++) {
413 if (!test_bit(i
, common
->keymap
) &&
414 (test_bit(i
+ 32, common
->keymap
) ||
415 test_bit(i
+ 64, common
->keymap
) ||
416 test_bit(i
+ 64 + 32, common
->keymap
)))
418 if (!test_bit(i
+ 32, common
->keymap
) &&
419 (test_bit(i
, common
->keymap
) ||
420 test_bit(i
+ 64, common
->keymap
) ||
421 test_bit(i
+ 64 + 32, common
->keymap
)))
423 if (!test_bit(i
+ 64, common
->keymap
) &&
424 (test_bit(i
, common
->keymap
) ||
425 test_bit(i
+ 32, common
->keymap
) ||
426 test_bit(i
+ 64 + 32, common
->keymap
)))
428 if (!test_bit(i
+ 64 + 32, common
->keymap
) &&
429 (test_bit(i
, common
->keymap
) ||
430 test_bit(i
+ 32, common
->keymap
) ||
431 test_bit(i
+ 64, common
->keymap
)))
435 for (i
= IEEE80211_WEP_NKID
; i
< common
->keymax
/ 2; i
++) {
436 if (!test_bit(i
, common
->keymap
) &&
437 test_bit(i
+ 64, common
->keymap
))
439 if (test_bit(i
, common
->keymap
) &&
440 !test_bit(i
+ 64, common
->keymap
))
445 /* No partially used TKIP slots, pick any available slot */
446 for (i
= IEEE80211_WEP_NKID
; i
< common
->keymax
; i
++) {
447 /* Do not allow slots that could be needed for TKIP group keys
448 * to be used. This limitation could be removed if we know that
449 * TKIP will not be used. */
450 if (i
>= 64 && i
< 64 + IEEE80211_WEP_NKID
)
452 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
)) {
453 if (i
>= 32 && i
< 32 + IEEE80211_WEP_NKID
)
455 if (i
>= 64 + 32 && i
< 64 + 32 + IEEE80211_WEP_NKID
)
459 if (!test_bit(i
, common
->keymap
))
460 return i
; /* Found a free slot for a key */
463 /* No free slot found */
468 * Configure encryption in the HW.
470 int ath_key_config(struct ath_common
*common
,
471 struct ieee80211_vif
*vif
,
472 struct ieee80211_sta
*sta
,
473 struct ieee80211_key_conf
*key
)
475 struct ath_keyval hk
;
476 const u8
*mac
= NULL
;
481 memset(&hk
, 0, sizeof(hk
));
483 switch (key
->cipher
) {
485 hk
.kv_type
= ATH_CIPHER_CLR
;
487 case WLAN_CIPHER_SUITE_WEP40
:
488 case WLAN_CIPHER_SUITE_WEP104
:
489 hk
.kv_type
= ATH_CIPHER_WEP
;
491 case WLAN_CIPHER_SUITE_TKIP
:
492 hk
.kv_type
= ATH_CIPHER_TKIP
;
494 case WLAN_CIPHER_SUITE_CCMP
:
495 hk
.kv_type
= ATH_CIPHER_AES_CCM
;
501 hk
.kv_len
= key
->keylen
;
503 memcpy(hk
.kv_val
, key
->key
, key
->keylen
);
505 if (!(key
->flags
& IEEE80211_KEY_FLAG_PAIRWISE
)) {
507 case NL80211_IFTYPE_AP
:
508 memcpy(gmac
, vif
->addr
, ETH_ALEN
);
511 idx
= ath_reserve_key_cache_slot(common
, key
->cipher
);
513 case NL80211_IFTYPE_ADHOC
:
518 memcpy(gmac
, sta
->addr
, ETH_ALEN
);
521 idx
= ath_reserve_key_cache_slot(common
, key
->cipher
);
527 } else if (key
->keyidx
) {
532 if (vif
->type
!= NL80211_IFTYPE_AP
) {
533 /* Only keyidx 0 should be used with unicast key, but
534 * allow this for client mode for now. */
543 idx
= ath_reserve_key_cache_slot(common
, key
->cipher
);
547 return -ENOSPC
; /* no free key cache entries */
549 if (key
->cipher
== WLAN_CIPHER_SUITE_TKIP
)
550 ret
= ath_setkey_tkip(common
, idx
, key
->key
, &hk
, mac
,
551 vif
->type
== NL80211_IFTYPE_AP
);
553 ret
= ath_hw_set_keycache_entry(common
, idx
, &hk
, mac
);
558 set_bit(idx
, common
->keymap
);
559 if (key
->cipher
== WLAN_CIPHER_SUITE_TKIP
) {
560 set_bit(idx
+ 64, common
->keymap
);
561 set_bit(idx
, common
->tkip_keymap
);
562 set_bit(idx
+ 64, common
->tkip_keymap
);
563 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
)) {
564 set_bit(idx
+ 32, common
->keymap
);
565 set_bit(idx
+ 64 + 32, common
->keymap
);
566 set_bit(idx
+ 32, common
->tkip_keymap
);
567 set_bit(idx
+ 64 + 32, common
->tkip_keymap
);
573 EXPORT_SYMBOL(ath_key_config
);
578 void ath_key_delete(struct ath_common
*common
, struct ieee80211_key_conf
*key
)
580 ath_hw_keyreset(common
, key
->hw_key_idx
);
581 if (key
->hw_key_idx
< IEEE80211_WEP_NKID
)
584 clear_bit(key
->hw_key_idx
, common
->keymap
);
585 if (key
->cipher
!= WLAN_CIPHER_SUITE_TKIP
)
588 clear_bit(key
->hw_key_idx
+ 64, common
->keymap
);
590 clear_bit(key
->hw_key_idx
, common
->tkip_keymap
);
591 clear_bit(key
->hw_key_idx
+ 64, common
->tkip_keymap
);
593 if (!(common
->crypt_caps
& ATH_CRYPT_CAP_MIC_COMBINED
)) {
594 ath_hw_keyreset(common
, key
->hw_key_idx
+ 32);
595 clear_bit(key
->hw_key_idx
+ 32, common
->keymap
);
596 clear_bit(key
->hw_key_idx
+ 64 + 32, common
->keymap
);
598 clear_bit(key
->hw_key_idx
+ 32, common
->tkip_keymap
);
599 clear_bit(key
->hw_key_idx
+ 64 + 32, common
->tkip_keymap
);
602 EXPORT_SYMBOL(ath_key_delete
);