2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
62 #include "probe_roms.h"
63 #include "remote_device.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
73 #define smu_max_ports(dcc_value) \
75 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
79 #define smu_max_task_contexts(dcc_value) \
81 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
85 #define smu_max_rncs(dcc_value) \
87 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
96 * The number of milliseconds to wait while a given phy is consuming power
97 * before allowing another set of phys to consume power. Ultimately, this will
98 * be specified by OEM parameter.
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
103 * NORMALIZE_PUT_POINTER() -
105 * This macro will normalize the completion queue put pointer so its value can
106 * be used as an array inde
108 #define NORMALIZE_PUT_POINTER(x) \
109 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
113 * NORMALIZE_EVENT_POINTER() -
115 * This macro will normalize the completion queue event entry so its value can
116 * be used as an index.
118 #define NORMALIZE_EVENT_POINTER(x) \
120 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
125 * NORMALIZE_GET_POINTER() -
127 * This macro will normalize the completion queue get pointer so its value can
128 * be used as an index into an array
130 #define NORMALIZE_GET_POINTER(x) \
131 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
134 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
136 * This macro will normalize the completion queue cycle pointer so it matches
137 * the completion queue cycle bit
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
143 * COMPLETION_QUEUE_CYCLE_BIT() -
145 * This macro will return the cycle bit of the completion queue entry
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine
*sm
,
151 const struct sci_base_state
*state_table
, u32 initial_state
)
153 sci_state_transition_t handler
;
155 sm
->initial_state_id
= initial_state
;
156 sm
->previous_state_id
= initial_state
;
157 sm
->current_state_id
= initial_state
;
158 sm
->state_table
= state_table
;
160 handler
= sm
->state_table
[initial_state
].enter_state
;
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine
*sm
, u32 next_state
)
168 sci_state_transition_t handler
;
170 handler
= sm
->state_table
[sm
->current_state_id
].exit_state
;
174 sm
->previous_state_id
= sm
->current_state_id
;
175 sm
->current_state_id
= next_state
;
177 handler
= sm
->state_table
[sm
->current_state_id
].enter_state
;
182 static bool sci_controller_completion_queue_has_entries(struct isci_host
*ihost
)
184 u32 get_value
= ihost
->completion_queue_get
;
185 u32 get_index
= get_value
& SMU_COMPLETION_QUEUE_GET_POINTER_MASK
;
187 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value
) ==
188 COMPLETION_QUEUE_CYCLE_BIT(ihost
->completion_queue
[get_index
]))
194 static bool sci_controller_isr(struct isci_host
*ihost
)
196 if (sci_controller_completion_queue_has_entries(ihost
)) {
200 * we have a spurious interrupt it could be that we have already
201 * emptied the completion queue from a previous interrupt */
202 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
205 * There is a race in the hardware that could cause us not to be notified
206 * of an interrupt completion if we do not take this step. We will mask
207 * then unmask the interrupts so if there is another interrupt pending
208 * the clearing of the interrupt source we get the next interrupt message. */
209 writel(0xFF000000, &ihost
->smu_registers
->interrupt_mask
);
210 writel(0, &ihost
->smu_registers
->interrupt_mask
);
216 irqreturn_t
isci_msix_isr(int vec
, void *data
)
218 struct isci_host
*ihost
= data
;
220 if (sci_controller_isr(ihost
))
221 tasklet_schedule(&ihost
->completion_tasklet
);
226 static bool sci_controller_error_isr(struct isci_host
*ihost
)
228 u32 interrupt_status
;
231 readl(&ihost
->smu_registers
->interrupt_status
);
232 interrupt_status
&= (SMU_ISR_QUEUE_ERROR
| SMU_ISR_QUEUE_SUSPEND
);
234 if (interrupt_status
!= 0) {
236 * There is an error interrupt pending so let it through and handle
242 * There is a race in the hardware that could cause us not to be notified
243 * of an interrupt completion if we do not take this step. We will mask
244 * then unmask the error interrupts so if there was another interrupt
245 * pending we will be notified.
246 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247 writel(0xff, &ihost
->smu_registers
->interrupt_mask
);
248 writel(0, &ihost
->smu_registers
->interrupt_mask
);
253 static void sci_controller_task_completion(struct isci_host
*ihost
, u32 ent
)
255 u32 index
= SCU_GET_COMPLETION_INDEX(ent
);
256 struct isci_request
*ireq
= ihost
->reqs
[index
];
258 /* Make sure that we really want to process this IO request */
259 if (test_bit(IREQ_ACTIVE
, &ireq
->flags
) &&
260 ireq
->io_tag
!= SCI_CONTROLLER_INVALID_IO_TAG
&&
261 ISCI_TAG_SEQ(ireq
->io_tag
) == ihost
->io_request_sequence
[index
])
262 /* Yep this is a valid io request pass it along to the
265 sci_io_request_tc_completion(ireq
, ent
);
268 static void sci_controller_sdma_completion(struct isci_host
*ihost
, u32 ent
)
271 struct isci_request
*ireq
;
272 struct isci_remote_device
*idev
;
274 index
= SCU_GET_COMPLETION_INDEX(ent
);
276 switch (scu_get_command_request_type(ent
)) {
277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC
:
278 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC
:
279 ireq
= ihost
->reqs
[index
];
280 dev_warn(&ihost
->pdev
->dev
, "%s: %x for io request %p\n",
281 __func__
, ent
, ireq
);
282 /* @todo For a post TC operation we need to fail the IO
286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC
:
287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC
:
288 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC
:
289 idev
= ihost
->device_table
[index
];
290 dev_warn(&ihost
->pdev
->dev
, "%s: %x for device %p\n",
291 __func__
, ent
, idev
);
292 /* @todo For a port RNC operation we need to fail the
297 dev_warn(&ihost
->pdev
->dev
, "%s: unknown completion type %x\n",
303 static void sci_controller_unsolicited_frame(struct isci_host
*ihost
, u32 ent
)
308 struct scu_unsolicited_frame_header
*frame_header
;
309 struct isci_phy
*iphy
;
310 struct isci_remote_device
*idev
;
312 enum sci_status result
= SCI_FAILURE
;
314 frame_index
= SCU_GET_FRAME_INDEX(ent
);
316 frame_header
= ihost
->uf_control
.buffers
.array
[frame_index
].header
;
317 ihost
->uf_control
.buffers
.array
[frame_index
].state
= UNSOLICITED_FRAME_IN_USE
;
319 if (SCU_GET_FRAME_ERROR(ent
)) {
321 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322 * / this cause a problem? We expect the phy initialization will
323 * / fail if there is an error in the frame. */
324 sci_controller_release_frame(ihost
, frame_index
);
328 if (frame_header
->is_address_frame
) {
329 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
330 iphy
= &ihost
->phys
[index
];
331 result
= sci_phy_frame_handler(iphy
, frame_index
);
334 index
= SCU_GET_COMPLETION_INDEX(ent
);
336 if (index
== SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
) {
338 * This is a signature fis or a frame from a direct attached SATA
339 * device that has not yet been created. In either case forwared
340 * the frame to the PE and let it take care of the frame data. */
341 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
342 iphy
= &ihost
->phys
[index
];
343 result
= sci_phy_frame_handler(iphy
, frame_index
);
345 if (index
< ihost
->remote_node_entries
)
346 idev
= ihost
->device_table
[index
];
351 result
= sci_remote_device_frame_handler(idev
, frame_index
);
353 sci_controller_release_frame(ihost
, frame_index
);
357 if (result
!= SCI_SUCCESS
) {
359 * / @todo Is there any reason to report some additional error message
360 * / when we get this failure notifiction? */
364 static void sci_controller_event_completion(struct isci_host
*ihost
, u32 ent
)
366 struct isci_remote_device
*idev
;
367 struct isci_request
*ireq
;
368 struct isci_phy
*iphy
;
371 index
= SCU_GET_COMPLETION_INDEX(ent
);
373 switch (scu_get_event_type(ent
)) {
374 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR
:
375 /* / @todo The driver did something wrong and we need to fix the condtion. */
376 dev_err(&ihost
->pdev
->dev
,
377 "%s: SCIC Controller 0x%p received SMU command error "
384 case SCU_EVENT_TYPE_SMU_PCQ_ERROR
:
385 case SCU_EVENT_TYPE_SMU_ERROR
:
386 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR
:
388 * / @todo This is a hardware failure and its likely that we want to
389 * / reset the controller. */
390 dev_err(&ihost
->pdev
->dev
,
391 "%s: SCIC Controller 0x%p received fatal controller "
398 case SCU_EVENT_TYPE_TRANSPORT_ERROR
:
399 ireq
= ihost
->reqs
[index
];
400 sci_io_request_event_handler(ireq
, ent
);
403 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT
:
404 switch (scu_get_event_specifier(ent
)) {
405 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE
:
406 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT
:
407 ireq
= ihost
->reqs
[index
];
409 sci_io_request_event_handler(ireq
, ent
);
411 dev_warn(&ihost
->pdev
->dev
,
412 "%s: SCIC Controller 0x%p received "
413 "event 0x%x for io request object "
414 "that doesnt exist.\n",
421 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT
:
422 idev
= ihost
->device_table
[index
];
424 sci_remote_device_event_handler(idev
, ent
);
426 dev_warn(&ihost
->pdev
->dev
,
427 "%s: SCIC Controller 0x%p received "
428 "event 0x%x for remote device object "
429 "that doesnt exist.\n",
438 case SCU_EVENT_TYPE_BROADCAST_CHANGE
:
440 * direct the broadcast change event to the phy first and then let
441 * the phy redirect the broadcast change to the port object */
442 case SCU_EVENT_TYPE_ERR_CNT_EVENT
:
444 * direct error counter event to the phy object since that is where
445 * we get the event notification. This is a type 4 event. */
446 case SCU_EVENT_TYPE_OSSP_EVENT
:
447 index
= SCU_GET_PROTOCOL_ENGINE_INDEX(ent
);
448 iphy
= &ihost
->phys
[index
];
449 sci_phy_event_handler(iphy
, ent
);
452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX
:
453 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX
:
454 case SCU_EVENT_TYPE_RNC_OPS_MISC
:
455 if (index
< ihost
->remote_node_entries
) {
456 idev
= ihost
->device_table
[index
];
459 sci_remote_device_event_handler(idev
, ent
);
461 dev_err(&ihost
->pdev
->dev
,
462 "%s: SCIC Controller 0x%p received event 0x%x "
463 "for remote device object 0x%0x that doesnt "
473 dev_warn(&ihost
->pdev
->dev
,
474 "%s: SCIC Controller received unknown event code %x\n",
481 static void sci_controller_process_completions(struct isci_host
*ihost
)
483 u32 completion_count
= 0;
490 dev_dbg(&ihost
->pdev
->dev
,
491 "%s: completion queue begining get:0x%08x\n",
493 ihost
->completion_queue_get
);
495 /* Get the component parts of the completion queue */
496 get_index
= NORMALIZE_GET_POINTER(ihost
->completion_queue_get
);
497 get_cycle
= SMU_CQGR_CYCLE_BIT
& ihost
->completion_queue_get
;
499 event_get
= NORMALIZE_EVENT_POINTER(ihost
->completion_queue_get
);
500 event_cycle
= SMU_CQGR_EVENT_CYCLE_BIT
& ihost
->completion_queue_get
;
503 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle
)
504 == COMPLETION_QUEUE_CYCLE_BIT(ihost
->completion_queue
[get_index
])
508 ent
= ihost
->completion_queue
[get_index
];
510 /* increment the get pointer and check for rollover to toggle the cycle bit */
511 get_cycle
^= ((get_index
+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES
) <<
512 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT
- SCU_MAX_COMPLETION_QUEUE_SHIFT
);
513 get_index
= (get_index
+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES
-1);
515 dev_dbg(&ihost
->pdev
->dev
,
516 "%s: completion queue entry:0x%08x\n",
520 switch (SCU_GET_COMPLETION_TYPE(ent
)) {
521 case SCU_COMPLETION_TYPE_TASK
:
522 sci_controller_task_completion(ihost
, ent
);
525 case SCU_COMPLETION_TYPE_SDMA
:
526 sci_controller_sdma_completion(ihost
, ent
);
529 case SCU_COMPLETION_TYPE_UFI
:
530 sci_controller_unsolicited_frame(ihost
, ent
);
533 case SCU_COMPLETION_TYPE_EVENT
:
534 sci_controller_event_completion(ihost
, ent
);
537 case SCU_COMPLETION_TYPE_NOTIFY
: {
538 event_cycle
^= ((event_get
+1) & SCU_MAX_EVENTS
) <<
539 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT
- SCU_MAX_EVENTS_SHIFT
);
540 event_get
= (event_get
+1) & (SCU_MAX_EVENTS
-1);
542 sci_controller_event_completion(ihost
, ent
);
546 dev_warn(&ihost
->pdev
->dev
,
547 "%s: SCIC Controller received unknown "
548 "completion type %x\n",
555 /* Update the get register if we completed one or more entries */
556 if (completion_count
> 0) {
557 ihost
->completion_queue_get
=
558 SMU_CQGR_GEN_BIT(ENABLE
) |
559 SMU_CQGR_GEN_BIT(EVENT_ENABLE
) |
561 SMU_CQGR_GEN_VAL(EVENT_POINTER
, event_get
) |
563 SMU_CQGR_GEN_VAL(POINTER
, get_index
);
565 writel(ihost
->completion_queue_get
,
566 &ihost
->smu_registers
->completion_queue_get
);
570 dev_dbg(&ihost
->pdev
->dev
,
571 "%s: completion queue ending get:0x%08x\n",
573 ihost
->completion_queue_get
);
577 static void sci_controller_error_handler(struct isci_host
*ihost
)
579 u32 interrupt_status
;
582 readl(&ihost
->smu_registers
->interrupt_status
);
584 if ((interrupt_status
& SMU_ISR_QUEUE_SUSPEND
) &&
585 sci_controller_completion_queue_has_entries(ihost
)) {
587 sci_controller_process_completions(ihost
);
588 writel(SMU_ISR_QUEUE_SUSPEND
, &ihost
->smu_registers
->interrupt_status
);
590 dev_err(&ihost
->pdev
->dev
, "%s: status: %#x\n", __func__
,
593 sci_change_state(&ihost
->sm
, SCIC_FAILED
);
598 /* If we dont process any completions I am not sure that we want to do this.
599 * We are in the middle of a hardware fault and should probably be reset.
601 writel(0, &ihost
->smu_registers
->interrupt_mask
);
604 irqreturn_t
isci_intx_isr(int vec
, void *data
)
606 irqreturn_t ret
= IRQ_NONE
;
607 struct isci_host
*ihost
= data
;
609 if (sci_controller_isr(ihost
)) {
610 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
611 tasklet_schedule(&ihost
->completion_tasklet
);
613 } else if (sci_controller_error_isr(ihost
)) {
614 spin_lock(&ihost
->scic_lock
);
615 sci_controller_error_handler(ihost
);
616 spin_unlock(&ihost
->scic_lock
);
623 irqreturn_t
isci_error_isr(int vec
, void *data
)
625 struct isci_host
*ihost
= data
;
627 if (sci_controller_error_isr(ihost
))
628 sci_controller_error_handler(ihost
);
634 * isci_host_start_complete() - This function is called by the core library,
635 * through the ISCI Module, to indicate controller start status.
636 * @isci_host: This parameter specifies the ISCI host object
637 * @completion_status: This parameter specifies the completion status from the
641 static void isci_host_start_complete(struct isci_host
*ihost
, enum sci_status completion_status
)
643 if (completion_status
!= SCI_SUCCESS
)
644 dev_info(&ihost
->pdev
->dev
,
645 "controller start timed out, continuing...\n");
646 isci_host_change_state(ihost
, isci_ready
);
647 clear_bit(IHOST_START_PENDING
, &ihost
->flags
);
648 wake_up(&ihost
->eventq
);
651 int isci_host_scan_finished(struct Scsi_Host
*shost
, unsigned long time
)
653 struct isci_host
*ihost
= SHOST_TO_SAS_HA(shost
)->lldd_ha
;
655 if (test_bit(IHOST_START_PENDING
, &ihost
->flags
))
658 /* todo: use sas_flush_discovery once it is upstream */
659 scsi_flush_work(shost
);
661 scsi_flush_work(shost
);
663 dev_dbg(&ihost
->pdev
->dev
,
664 "%s: ihost->status = %d, time = %ld\n",
665 __func__
, isci_host_get_state(ihost
), time
);
672 * sci_controller_get_suggested_start_timeout() - This method returns the
673 * suggested sci_controller_start() timeout amount. The user is free to
674 * use any timeout value, but this method provides the suggested minimum
675 * start timeout value. The returned value is based upon empirical
676 * information determined as a result of interoperability testing.
677 * @controller: the handle to the controller object for which to return the
678 * suggested start timeout.
680 * This method returns the number of milliseconds for the suggested start
683 static u32
sci_controller_get_suggested_start_timeout(struct isci_host
*ihost
)
685 /* Validate the user supplied parameters. */
690 * The suggested minimum timeout value for a controller start operation:
692 * Signature FIS Timeout
693 * + Phy Start Timeout
694 * + Number of Phy Spin Up Intervals
695 * ---------------------------------
696 * Number of milliseconds for the controller start operation.
698 * NOTE: The number of phy spin up intervals will be equivalent
699 * to the number of phys divided by the number phys allowed
700 * per interval - 1 (once OEM parameters are supported).
701 * Currently we assume only 1 phy per interval. */
703 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
704 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
705 + ((SCI_MAX_PHYS
- 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
708 static void sci_controller_enable_interrupts(struct isci_host
*ihost
)
710 BUG_ON(ihost
->smu_registers
== NULL
);
711 writel(0, &ihost
->smu_registers
->interrupt_mask
);
714 void sci_controller_disable_interrupts(struct isci_host
*ihost
)
716 BUG_ON(ihost
->smu_registers
== NULL
);
717 writel(0xffffffff, &ihost
->smu_registers
->interrupt_mask
);
720 static void sci_controller_enable_port_task_scheduler(struct isci_host
*ihost
)
722 u32 port_task_scheduler_value
;
724 port_task_scheduler_value
=
725 readl(&ihost
->scu_registers
->peg0
.ptsg
.control
);
726 port_task_scheduler_value
|=
727 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE
) |
728 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE
));
729 writel(port_task_scheduler_value
,
730 &ihost
->scu_registers
->peg0
.ptsg
.control
);
733 static void sci_controller_assign_task_entries(struct isci_host
*ihost
)
738 * Assign all the TCs to function 0
739 * TODO: Do we actually need to read this register to write it back?
743 readl(&ihost
->smu_registers
->task_context_assignment
[0]);
745 task_assignment
|= (SMU_TCA_GEN_VAL(STARTING
, 0)) |
746 (SMU_TCA_GEN_VAL(ENDING
, ihost
->task_context_entries
- 1)) |
747 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE
));
749 writel(task_assignment
,
750 &ihost
->smu_registers
->task_context_assignment
[0]);
754 static void sci_controller_initialize_completion_queue(struct isci_host
*ihost
)
757 u32 completion_queue_control_value
;
758 u32 completion_queue_get_value
;
759 u32 completion_queue_put_value
;
761 ihost
->completion_queue_get
= 0;
763 completion_queue_control_value
=
764 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES
- 1) |
765 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS
- 1));
767 writel(completion_queue_control_value
,
768 &ihost
->smu_registers
->completion_queue_control
);
771 /* Set the completion queue get pointer and enable the queue */
772 completion_queue_get_value
= (
773 (SMU_CQGR_GEN_VAL(POINTER
, 0))
774 | (SMU_CQGR_GEN_VAL(EVENT_POINTER
, 0))
775 | (SMU_CQGR_GEN_BIT(ENABLE
))
776 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE
))
779 writel(completion_queue_get_value
,
780 &ihost
->smu_registers
->completion_queue_get
);
782 /* Set the completion queue put pointer */
783 completion_queue_put_value
= (
784 (SMU_CQPR_GEN_VAL(POINTER
, 0))
785 | (SMU_CQPR_GEN_VAL(EVENT_POINTER
, 0))
788 writel(completion_queue_put_value
,
789 &ihost
->smu_registers
->completion_queue_put
);
791 /* Initialize the cycle bit of the completion queue entries */
792 for (index
= 0; index
< SCU_MAX_COMPLETION_QUEUE_ENTRIES
; index
++) {
794 * If get.cycle_bit != completion_queue.cycle_bit
795 * its not a valid completion queue entry
796 * so at system start all entries are invalid */
797 ihost
->completion_queue
[index
] = 0x80000000;
801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host
*ihost
)
803 u32 frame_queue_control_value
;
804 u32 frame_queue_get_value
;
805 u32 frame_queue_put_value
;
807 /* Write the queue size */
808 frame_queue_control_value
=
809 SCU_UFQC_GEN_VAL(QUEUE_SIZE
, SCU_MAX_UNSOLICITED_FRAMES
);
811 writel(frame_queue_control_value
,
812 &ihost
->scu_registers
->sdma
.unsolicited_frame_queue_control
);
814 /* Setup the get pointer for the unsolicited frame queue */
815 frame_queue_get_value
= (
816 SCU_UFQGP_GEN_VAL(POINTER
, 0)
817 | SCU_UFQGP_GEN_BIT(ENABLE_BIT
)
820 writel(frame_queue_get_value
,
821 &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
822 /* Setup the put pointer for the unsolicited frame queue */
823 frame_queue_put_value
= SCU_UFQPP_GEN_VAL(POINTER
, 0);
824 writel(frame_queue_put_value
,
825 &ihost
->scu_registers
->sdma
.unsolicited_frame_put_pointer
);
828 static void sci_controller_transition_to_ready(struct isci_host
*ihost
, enum sci_status status
)
830 if (ihost
->sm
.current_state_id
== SCIC_STARTING
) {
832 * We move into the ready state, because some of the phys/ports
833 * may be up and operational.
835 sci_change_state(&ihost
->sm
, SCIC_READY
);
837 isci_host_start_complete(ihost
, status
);
841 static bool is_phy_starting(struct isci_phy
*iphy
)
843 enum sci_phy_states state
;
845 state
= iphy
->sm
.current_state_id
;
847 case SCI_PHY_STARTING
:
848 case SCI_PHY_SUB_INITIAL
:
849 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN
:
850 case SCI_PHY_SUB_AWAIT_IAF_UF
:
851 case SCI_PHY_SUB_AWAIT_SAS_POWER
:
852 case SCI_PHY_SUB_AWAIT_SATA_POWER
:
853 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN
:
854 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN
:
855 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF
:
856 case SCI_PHY_SUB_FINAL
:
864 * sci_controller_start_next_phy - start phy
867 * If all the phys have been started, then attempt to transition the
868 * controller to the READY state and inform the user
869 * (sci_cb_controller_start_complete()).
871 static enum sci_status
sci_controller_start_next_phy(struct isci_host
*ihost
)
873 struct sci_oem_params
*oem
= &ihost
->oem_parameters
;
874 struct isci_phy
*iphy
;
875 enum sci_status status
;
877 status
= SCI_SUCCESS
;
879 if (ihost
->phy_startup_timer_pending
)
882 if (ihost
->next_phy_to_start
>= SCI_MAX_PHYS
) {
883 bool is_controller_start_complete
= true;
887 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
888 iphy
= &ihost
->phys
[index
];
889 state
= iphy
->sm
.current_state_id
;
891 if (!phy_get_non_dummy_port(iphy
))
894 /* The controller start operation is complete iff:
895 * - all links have been given an opportunity to start
896 * - have no indication of a connected device
897 * - have an indication of a connected device and it has
898 * finished the link training process.
900 if ((iphy
->is_in_link_training
== false && state
== SCI_PHY_INITIAL
) ||
901 (iphy
->is_in_link_training
== false && state
== SCI_PHY_STOPPED
) ||
902 (iphy
->is_in_link_training
== true && is_phy_starting(iphy
)) ||
903 (ihost
->port_agent
.phy_ready_mask
!= ihost
->port_agent
.phy_configured_mask
)) {
904 is_controller_start_complete
= false;
910 * The controller has successfully finished the start process.
911 * Inform the SCI Core user and transition to the READY state. */
912 if (is_controller_start_complete
== true) {
913 sci_controller_transition_to_ready(ihost
, SCI_SUCCESS
);
914 sci_del_timer(&ihost
->phy_timer
);
915 ihost
->phy_startup_timer_pending
= false;
918 iphy
= &ihost
->phys
[ihost
->next_phy_to_start
];
920 if (oem
->controller
.mode_type
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
) {
921 if (phy_get_non_dummy_port(iphy
) == NULL
) {
922 ihost
->next_phy_to_start
++;
924 /* Caution recursion ahead be forwarned
926 * The PHY was never added to a PORT in MPC mode
927 * so start the next phy in sequence This phy
928 * will never go link up and will not draw power
929 * the OEM parameters either configured the phy
930 * incorrectly for the PORT or it was never
933 return sci_controller_start_next_phy(ihost
);
937 status
= sci_phy_start(iphy
);
939 if (status
== SCI_SUCCESS
) {
940 sci_mod_timer(&ihost
->phy_timer
,
941 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
);
942 ihost
->phy_startup_timer_pending
= true;
944 dev_warn(&ihost
->pdev
->dev
,
945 "%s: Controller stop operation failed "
946 "to stop phy %d because of status "
949 ihost
->phys
[ihost
->next_phy_to_start
].phy_index
,
953 ihost
->next_phy_to_start
++;
959 static void phy_startup_timeout(unsigned long data
)
961 struct sci_timer
*tmr
= (struct sci_timer
*)data
;
962 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), phy_timer
);
964 enum sci_status status
;
966 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
971 ihost
->phy_startup_timer_pending
= false;
974 status
= sci_controller_start_next_phy(ihost
);
975 } while (status
!= SCI_SUCCESS
);
978 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
981 static u16
isci_tci_active(struct isci_host
*ihost
)
983 return CIRC_CNT(ihost
->tci_head
, ihost
->tci_tail
, SCI_MAX_IO_REQUESTS
);
986 static enum sci_status
sci_controller_start(struct isci_host
*ihost
,
989 enum sci_status result
;
992 if (ihost
->sm
.current_state_id
!= SCIC_INITIALIZED
) {
993 dev_warn(&ihost
->pdev
->dev
,
994 "SCIC Controller start operation requested in "
996 return SCI_FAILURE_INVALID_STATE
;
999 /* Build the TCi free pool */
1000 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS
> 1 << sizeof(ihost
->tci_pool
[0]) * 8);
1001 ihost
->tci_head
= 0;
1002 ihost
->tci_tail
= 0;
1003 for (index
= 0; index
< ihost
->task_context_entries
; index
++)
1004 isci_tci_free(ihost
, index
);
1006 /* Build the RNi free pool */
1007 sci_remote_node_table_initialize(&ihost
->available_remote_nodes
,
1008 ihost
->remote_node_entries
);
1011 * Before anything else lets make sure we will not be
1012 * interrupted by the hardware.
1014 sci_controller_disable_interrupts(ihost
);
1016 /* Enable the port task scheduler */
1017 sci_controller_enable_port_task_scheduler(ihost
);
1019 /* Assign all the task entries to ihost physical function */
1020 sci_controller_assign_task_entries(ihost
);
1022 /* Now initialize the completion queue */
1023 sci_controller_initialize_completion_queue(ihost
);
1025 /* Initialize the unsolicited frame queue for use */
1026 sci_controller_initialize_unsolicited_frame_queue(ihost
);
1028 /* Start all of the ports on this controller */
1029 for (index
= 0; index
< ihost
->logical_port_entries
; index
++) {
1030 struct isci_port
*iport
= &ihost
->ports
[index
];
1032 result
= sci_port_start(iport
);
1037 sci_controller_start_next_phy(ihost
);
1039 sci_mod_timer(&ihost
->timer
, timeout
);
1041 sci_change_state(&ihost
->sm
, SCIC_STARTING
);
1046 void isci_host_scan_start(struct Scsi_Host
*shost
)
1048 struct isci_host
*ihost
= SHOST_TO_SAS_HA(shost
)->lldd_ha
;
1049 unsigned long tmo
= sci_controller_get_suggested_start_timeout(ihost
);
1051 set_bit(IHOST_START_PENDING
, &ihost
->flags
);
1053 spin_lock_irq(&ihost
->scic_lock
);
1054 sci_controller_start(ihost
, tmo
);
1055 sci_controller_enable_interrupts(ihost
);
1056 spin_unlock_irq(&ihost
->scic_lock
);
1059 static void isci_host_stop_complete(struct isci_host
*ihost
, enum sci_status completion_status
)
1061 isci_host_change_state(ihost
, isci_stopped
);
1062 sci_controller_disable_interrupts(ihost
);
1063 clear_bit(IHOST_STOP_PENDING
, &ihost
->flags
);
1064 wake_up(&ihost
->eventq
);
1067 static void sci_controller_completion_handler(struct isci_host
*ihost
)
1069 /* Empty out the completion queue */
1070 if (sci_controller_completion_queue_has_entries(ihost
))
1071 sci_controller_process_completions(ihost
);
1073 /* Clear the interrupt and enable all interrupts again */
1074 writel(SMU_ISR_COMPLETION
, &ihost
->smu_registers
->interrupt_status
);
1075 /* Could we write the value of SMU_ISR_COMPLETION? */
1076 writel(0xFF000000, &ihost
->smu_registers
->interrupt_mask
);
1077 writel(0, &ihost
->smu_registers
->interrupt_mask
);
1081 * isci_host_completion_routine() - This function is the delayed service
1082 * routine that calls the sci core library's completion handler. It's
1083 * scheduled as a tasklet from the interrupt service routine when interrupts
1084 * in use, or set as the timeout function in polled mode.
1085 * @data: This parameter specifies the ISCI host object
1088 static void isci_host_completion_routine(unsigned long data
)
1090 struct isci_host
*ihost
= (struct isci_host
*)data
;
1091 struct list_head completed_request_list
;
1092 struct list_head errored_request_list
;
1093 struct list_head
*current_position
;
1094 struct list_head
*next_position
;
1095 struct isci_request
*request
;
1096 struct isci_request
*next_request
;
1097 struct sas_task
*task
;
1100 INIT_LIST_HEAD(&completed_request_list
);
1101 INIT_LIST_HEAD(&errored_request_list
);
1103 spin_lock_irq(&ihost
->scic_lock
);
1105 sci_controller_completion_handler(ihost
);
1107 /* Take the lists of completed I/Os from the host. */
1109 list_splice_init(&ihost
->requests_to_complete
,
1110 &completed_request_list
);
1112 /* Take the list of errored I/Os from the host. */
1113 list_splice_init(&ihost
->requests_to_errorback
,
1114 &errored_request_list
);
1116 spin_unlock_irq(&ihost
->scic_lock
);
1118 /* Process any completions in the lists. */
1119 list_for_each_safe(current_position
, next_position
,
1120 &completed_request_list
) {
1122 request
= list_entry(current_position
, struct isci_request
,
1124 task
= isci_request_access_task(request
);
1126 /* Normal notification (task_done) */
1127 dev_dbg(&ihost
->pdev
->dev
,
1128 "%s: Normal - request/task = %p/%p\n",
1133 /* Return the task to libsas */
1136 task
->lldd_task
= NULL
;
1137 if (!(task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
1139 /* If the task is already in the abort path,
1140 * the task_done callback cannot be called.
1142 task
->task_done(task
);
1146 spin_lock_irq(&ihost
->scic_lock
);
1147 isci_free_tag(ihost
, request
->io_tag
);
1148 spin_unlock_irq(&ihost
->scic_lock
);
1150 list_for_each_entry_safe(request
, next_request
, &errored_request_list
,
1153 task
= isci_request_access_task(request
);
1155 /* Use sas_task_abort */
1156 dev_warn(&ihost
->pdev
->dev
,
1157 "%s: Error - request/task = %p/%p\n",
1164 /* Put the task into the abort path if it's not there
1167 if (!(task
->task_state_flags
& SAS_TASK_STATE_ABORTED
))
1168 sas_task_abort(task
);
1171 /* This is a case where the request has completed with a
1172 * status such that it needed further target servicing,
1173 * but the sas_task reference has already been removed
1174 * from the request. Since it was errored, it was not
1175 * being aborted, so there is nothing to do except free
1179 spin_lock_irq(&ihost
->scic_lock
);
1180 /* Remove the request from the remote device's list
1181 * of pending requests.
1183 list_del_init(&request
->dev_node
);
1184 isci_free_tag(ihost
, request
->io_tag
);
1185 spin_unlock_irq(&ihost
->scic_lock
);
1189 /* the coalesence timeout doubles at each encoding step, so
1190 * update it based on the ilog2 value of the outstanding requests
1192 active
= isci_tci_active(ihost
);
1193 writel(SMU_ICC_GEN_VAL(NUMBER
, active
) |
1194 SMU_ICC_GEN_VAL(TIMER
, ISCI_COALESCE_BASE
+ ilog2(active
)),
1195 &ihost
->smu_registers
->interrupt_coalesce_control
);
1199 * sci_controller_stop() - This method will stop an individual controller
1200 * object.This method will invoke the associated user callback upon
1201 * completion. The completion callback is called when the following
1202 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1203 * controller has been quiesced. This method will ensure that all IO
1204 * requests are quiesced, phys are stopped, and all additional operation by
1205 * the hardware is halted.
1206 * @controller: the handle to the controller object to stop.
1207 * @timeout: This parameter specifies the number of milliseconds in which the
1208 * stop operation should complete.
1210 * The controller must be in the STARTED or STOPPED state. Indicate if the
1211 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1212 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1213 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1214 * controller is not either in the STARTED or STOPPED states.
1216 static enum sci_status
sci_controller_stop(struct isci_host
*ihost
, u32 timeout
)
1218 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
1219 dev_warn(&ihost
->pdev
->dev
,
1220 "SCIC Controller stop operation requested in "
1222 return SCI_FAILURE_INVALID_STATE
;
1225 sci_mod_timer(&ihost
->timer
, timeout
);
1226 sci_change_state(&ihost
->sm
, SCIC_STOPPING
);
1231 * sci_controller_reset() - This method will reset the supplied core
1232 * controller regardless of the state of said controller. This operation is
1233 * considered destructive. In other words, all current operations are wiped
1234 * out. No IO completions for outstanding devices occur. Outstanding IO
1235 * requests are not aborted or completed at the actual remote device.
1236 * @controller: the handle to the controller object to reset.
1238 * Indicate if the controller reset method succeeded or failed in some way.
1239 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1240 * the controller reset operation is unable to complete.
1242 static enum sci_status
sci_controller_reset(struct isci_host
*ihost
)
1244 switch (ihost
->sm
.current_state_id
) {
1250 * The reset operation is not a graceful cleanup, just
1251 * perform the state transition.
1253 sci_change_state(&ihost
->sm
, SCIC_RESETTING
);
1256 dev_warn(&ihost
->pdev
->dev
,
1257 "SCIC Controller reset operation requested in "
1259 return SCI_FAILURE_INVALID_STATE
;
1263 void isci_host_deinit(struct isci_host
*ihost
)
1267 /* disable output data selects */
1268 for (i
= 0; i
< isci_gpio_count(ihost
); i
++)
1269 writel(SGPIO_HW_CONTROL
, &ihost
->scu_registers
->peg0
.sgpio
.output_data_select
[i
]);
1271 isci_host_change_state(ihost
, isci_stopping
);
1272 for (i
= 0; i
< SCI_MAX_PORTS
; i
++) {
1273 struct isci_port
*iport
= &ihost
->ports
[i
];
1274 struct isci_remote_device
*idev
, *d
;
1276 list_for_each_entry_safe(idev
, d
, &iport
->remote_dev_list
, node
) {
1277 if (test_bit(IDEV_ALLOCATED
, &idev
->flags
))
1278 isci_remote_device_stop(ihost
, idev
);
1282 set_bit(IHOST_STOP_PENDING
, &ihost
->flags
);
1284 spin_lock_irq(&ihost
->scic_lock
);
1285 sci_controller_stop(ihost
, SCIC_CONTROLLER_STOP_TIMEOUT
);
1286 spin_unlock_irq(&ihost
->scic_lock
);
1288 wait_for_stop(ihost
);
1290 /* disable sgpio: where the above wait should give time for the
1291 * enclosure to sample the gpios going inactive
1293 writel(0, &ihost
->scu_registers
->peg0
.sgpio
.interface_control
);
1295 sci_controller_reset(ihost
);
1297 /* Cancel any/all outstanding port timers */
1298 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
1299 struct isci_port
*iport
= &ihost
->ports
[i
];
1300 del_timer_sync(&iport
->timer
.timer
);
1303 /* Cancel any/all outstanding phy timers */
1304 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1305 struct isci_phy
*iphy
= &ihost
->phys
[i
];
1306 del_timer_sync(&iphy
->sata_timer
.timer
);
1309 del_timer_sync(&ihost
->port_agent
.timer
.timer
);
1311 del_timer_sync(&ihost
->power_control
.timer
.timer
);
1313 del_timer_sync(&ihost
->timer
.timer
);
1315 del_timer_sync(&ihost
->phy_timer
.timer
);
1318 static void __iomem
*scu_base(struct isci_host
*isci_host
)
1320 struct pci_dev
*pdev
= isci_host
->pdev
;
1321 int id
= isci_host
->id
;
1323 return pcim_iomap_table(pdev
)[SCI_SCU_BAR
* 2] + SCI_SCU_BAR_SIZE
* id
;
1326 static void __iomem
*smu_base(struct isci_host
*isci_host
)
1328 struct pci_dev
*pdev
= isci_host
->pdev
;
1329 int id
= isci_host
->id
;
1331 return pcim_iomap_table(pdev
)[SCI_SMU_BAR
* 2] + SCI_SMU_BAR_SIZE
* id
;
1334 static void isci_user_parameters_get(struct sci_user_parameters
*u
)
1338 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1339 struct sci_phy_user_params
*u_phy
= &u
->phys
[i
];
1341 u_phy
->max_speed_generation
= phy_gen
;
1343 /* we are not exporting these for now */
1344 u_phy
->align_insertion_frequency
= 0x7f;
1345 u_phy
->in_connection_align_insertion_frequency
= 0xff;
1346 u_phy
->notify_enable_spin_up_insertion_frequency
= 0x33;
1349 u
->stp_inactivity_timeout
= stp_inactive_to
;
1350 u
->ssp_inactivity_timeout
= ssp_inactive_to
;
1351 u
->stp_max_occupancy_timeout
= stp_max_occ_to
;
1352 u
->ssp_max_occupancy_timeout
= ssp_max_occ_to
;
1353 u
->no_outbound_task_timeout
= no_outbound_task_to
;
1354 u
->max_concurr_spinup
= max_concurr_spinup
;
1357 static void sci_controller_initial_state_enter(struct sci_base_state_machine
*sm
)
1359 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1361 sci_change_state(&ihost
->sm
, SCIC_RESET
);
1364 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine
*sm
)
1366 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1368 sci_del_timer(&ihost
->timer
);
1371 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1372 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1373 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1374 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1375 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1376 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1379 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1380 * configure the interrupt coalescence.
1381 * @controller: This parameter represents the handle to the controller object
1382 * for which its interrupt coalesce register is overridden.
1383 * @coalesce_number: Used to control the number of entries in the Completion
1384 * Queue before an interrupt is generated. If the number of entries exceed
1385 * this number, an interrupt will be generated. The valid range of the input
1386 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1387 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1388 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1389 * interrupt coalescing timeout.
1391 * Indicate if the user successfully set the interrupt coalesce parameters.
1392 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1393 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1395 static enum sci_status
1396 sci_controller_set_interrupt_coalescence(struct isci_host
*ihost
,
1397 u32 coalesce_number
,
1398 u32 coalesce_timeout
)
1400 u8 timeout_encode
= 0;
1404 /* Check if the input parameters fall in the range. */
1405 if (coalesce_number
> INTERRUPT_COALESCE_NUMBER_MAX
)
1406 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1409 * Defined encoding for interrupt coalescing timeout:
1410 * Value Min Max Units
1411 * ----- --- --- -----
1441 * Others Undefined */
1444 * Use the table above to decide the encode of interrupt coalescing timeout
1445 * value for register writing. */
1446 if (coalesce_timeout
== 0)
1449 /* make the timeout value in unit of (10 ns). */
1450 coalesce_timeout
= coalesce_timeout
* 100;
1451 min
= INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS
/ 10;
1452 max
= INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS
/ 10;
1454 /* get the encode of timeout for register writing. */
1455 for (timeout_encode
= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN
;
1456 timeout_encode
<= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX
;
1458 if (min
<= coalesce_timeout
&& max
> coalesce_timeout
)
1460 else if (coalesce_timeout
>= max
&& coalesce_timeout
< min
* 2
1461 && coalesce_timeout
<= INTERRUPT_COALESCE_TIMEOUT_MAX_US
* 100) {
1462 if ((coalesce_timeout
- max
) < (2 * min
- coalesce_timeout
))
1474 if (timeout_encode
== INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX
+ 1)
1475 /* the value is out of range. */
1476 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1479 writel(SMU_ICC_GEN_VAL(NUMBER
, coalesce_number
) |
1480 SMU_ICC_GEN_VAL(TIMER
, timeout_encode
),
1481 &ihost
->smu_registers
->interrupt_coalesce_control
);
1484 ihost
->interrupt_coalesce_number
= (u16
)coalesce_number
;
1485 ihost
->interrupt_coalesce_timeout
= coalesce_timeout
/ 100;
1491 static void sci_controller_ready_state_enter(struct sci_base_state_machine
*sm
)
1493 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1495 /* set the default interrupt coalescence number and timeout value. */
1496 sci_controller_set_interrupt_coalescence(ihost
, 0, 0);
1499 static void sci_controller_ready_state_exit(struct sci_base_state_machine
*sm
)
1501 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1503 /* disable interrupt coalescence. */
1504 sci_controller_set_interrupt_coalescence(ihost
, 0, 0);
1507 static enum sci_status
sci_controller_stop_phys(struct isci_host
*ihost
)
1510 enum sci_status status
;
1511 enum sci_status phy_status
;
1513 status
= SCI_SUCCESS
;
1515 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
1516 phy_status
= sci_phy_stop(&ihost
->phys
[index
]);
1518 if (phy_status
!= SCI_SUCCESS
&&
1519 phy_status
!= SCI_FAILURE_INVALID_STATE
) {
1520 status
= SCI_FAILURE
;
1522 dev_warn(&ihost
->pdev
->dev
,
1523 "%s: Controller stop operation failed to stop "
1524 "phy %d because of status %d.\n",
1526 ihost
->phys
[index
].phy_index
, phy_status
);
1533 static enum sci_status
sci_controller_stop_ports(struct isci_host
*ihost
)
1536 enum sci_status port_status
;
1537 enum sci_status status
= SCI_SUCCESS
;
1539 for (index
= 0; index
< ihost
->logical_port_entries
; index
++) {
1540 struct isci_port
*iport
= &ihost
->ports
[index
];
1542 port_status
= sci_port_stop(iport
);
1544 if ((port_status
!= SCI_SUCCESS
) &&
1545 (port_status
!= SCI_FAILURE_INVALID_STATE
)) {
1546 status
= SCI_FAILURE
;
1548 dev_warn(&ihost
->pdev
->dev
,
1549 "%s: Controller stop operation failed to "
1550 "stop port %d because of status %d.\n",
1552 iport
->logical_port_index
,
1560 static enum sci_status
sci_controller_stop_devices(struct isci_host
*ihost
)
1563 enum sci_status status
;
1564 enum sci_status device_status
;
1566 status
= SCI_SUCCESS
;
1568 for (index
= 0; index
< ihost
->remote_node_entries
; index
++) {
1569 if (ihost
->device_table
[index
] != NULL
) {
1570 /* / @todo What timeout value do we want to provide to this request? */
1571 device_status
= sci_remote_device_stop(ihost
->device_table
[index
], 0);
1573 if ((device_status
!= SCI_SUCCESS
) &&
1574 (device_status
!= SCI_FAILURE_INVALID_STATE
)) {
1575 dev_warn(&ihost
->pdev
->dev
,
1576 "%s: Controller stop operation failed "
1577 "to stop device 0x%p because of "
1580 ihost
->device_table
[index
], device_status
);
1588 static void sci_controller_stopping_state_enter(struct sci_base_state_machine
*sm
)
1590 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1592 /* Stop all of the components for this controller */
1593 sci_controller_stop_phys(ihost
);
1594 sci_controller_stop_ports(ihost
);
1595 sci_controller_stop_devices(ihost
);
1598 static void sci_controller_stopping_state_exit(struct sci_base_state_machine
*sm
)
1600 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1602 sci_del_timer(&ihost
->timer
);
1605 static void sci_controller_reset_hardware(struct isci_host
*ihost
)
1607 /* Disable interrupts so we dont take any spurious interrupts */
1608 sci_controller_disable_interrupts(ihost
);
1611 writel(0xFFFFFFFF, &ihost
->smu_registers
->soft_reset_control
);
1613 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1616 /* The write to the CQGR clears the CQP */
1617 writel(0x00000000, &ihost
->smu_registers
->completion_queue_get
);
1619 /* The write to the UFQGP clears the UFQPR */
1620 writel(0, &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
1623 static void sci_controller_resetting_state_enter(struct sci_base_state_machine
*sm
)
1625 struct isci_host
*ihost
= container_of(sm
, typeof(*ihost
), sm
);
1627 sci_controller_reset_hardware(ihost
);
1628 sci_change_state(&ihost
->sm
, SCIC_RESET
);
1631 static const struct sci_base_state sci_controller_state_table
[] = {
1633 .enter_state
= sci_controller_initial_state_enter
,
1636 [SCIC_INITIALIZING
] = {},
1637 [SCIC_INITIALIZED
] = {},
1639 .exit_state
= sci_controller_starting_state_exit
,
1642 .enter_state
= sci_controller_ready_state_enter
,
1643 .exit_state
= sci_controller_ready_state_exit
,
1645 [SCIC_RESETTING
] = {
1646 .enter_state
= sci_controller_resetting_state_enter
,
1649 .enter_state
= sci_controller_stopping_state_enter
,
1650 .exit_state
= sci_controller_stopping_state_exit
,
1652 [SCIC_STOPPED
] = {},
1656 static void sci_controller_set_default_config_parameters(struct isci_host
*ihost
)
1658 /* these defaults are overridden by the platform / firmware */
1661 /* Default to APC mode. */
1662 ihost
->oem_parameters
.controller
.mode_type
= SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE
;
1664 /* Default to APC mode. */
1665 ihost
->oem_parameters
.controller
.max_concurr_spin_up
= 1;
1667 /* Default to no SSC operation. */
1668 ihost
->oem_parameters
.controller
.do_enable_ssc
= false;
1670 /* Default to short cables on all phys. */
1671 ihost
->oem_parameters
.controller
.cable_selection_mask
= 0;
1673 /* Initialize all of the port parameter information to narrow ports. */
1674 for (index
= 0; index
< SCI_MAX_PORTS
; index
++) {
1675 ihost
->oem_parameters
.ports
[index
].phy_mask
= 0;
1678 /* Initialize all of the phy parameter information. */
1679 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
1680 /* Default to 3G (i.e. Gen 2). */
1681 ihost
->user_parameters
.phys
[index
].max_speed_generation
=
1682 SCIC_SDS_PARM_GEN2_SPEED
;
1684 /* the frequencies cannot be 0 */
1685 ihost
->user_parameters
.phys
[index
].align_insertion_frequency
= 0x7f;
1686 ihost
->user_parameters
.phys
[index
].in_connection_align_insertion_frequency
= 0xff;
1687 ihost
->user_parameters
.phys
[index
].notify_enable_spin_up_insertion_frequency
= 0x33;
1690 * Previous Vitesse based expanders had a arbitration issue that
1691 * is worked around by having the upper 32-bits of SAS address
1692 * with a value greater then the Vitesse company identifier.
1693 * Hence, usage of 0x5FCFFFFF. */
1694 ihost
->oem_parameters
.phys
[index
].sas_address
.low
= 0x1 + ihost
->id
;
1695 ihost
->oem_parameters
.phys
[index
].sas_address
.high
= 0x5FCFFFFF;
1698 ihost
->user_parameters
.stp_inactivity_timeout
= 5;
1699 ihost
->user_parameters
.ssp_inactivity_timeout
= 5;
1700 ihost
->user_parameters
.stp_max_occupancy_timeout
= 5;
1701 ihost
->user_parameters
.ssp_max_occupancy_timeout
= 20;
1702 ihost
->user_parameters
.no_outbound_task_timeout
= 2;
1705 static void controller_timeout(unsigned long data
)
1707 struct sci_timer
*tmr
= (struct sci_timer
*)data
;
1708 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), timer
);
1709 struct sci_base_state_machine
*sm
= &ihost
->sm
;
1710 unsigned long flags
;
1712 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
1717 if (sm
->current_state_id
== SCIC_STARTING
)
1718 sci_controller_transition_to_ready(ihost
, SCI_FAILURE_TIMEOUT
);
1719 else if (sm
->current_state_id
== SCIC_STOPPING
) {
1720 sci_change_state(sm
, SCIC_FAILED
);
1721 isci_host_stop_complete(ihost
, SCI_FAILURE_TIMEOUT
);
1722 } else /* / @todo Now what do we want to do in this case? */
1723 dev_err(&ihost
->pdev
->dev
,
1724 "%s: Controller timer fired when controller was not "
1725 "in a state being timed.\n",
1729 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
1732 static enum sci_status
sci_controller_construct(struct isci_host
*ihost
,
1733 void __iomem
*scu_base
,
1734 void __iomem
*smu_base
)
1738 sci_init_sm(&ihost
->sm
, sci_controller_state_table
, SCIC_INITIAL
);
1740 ihost
->scu_registers
= scu_base
;
1741 ihost
->smu_registers
= smu_base
;
1743 sci_port_configuration_agent_construct(&ihost
->port_agent
);
1745 /* Construct the ports for this controller */
1746 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
1747 sci_port_construct(&ihost
->ports
[i
], i
, ihost
);
1748 sci_port_construct(&ihost
->ports
[i
], SCIC_SDS_DUMMY_PORT
, ihost
);
1750 /* Construct the phys for this controller */
1751 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1752 /* Add all the PHYs to the dummy port */
1753 sci_phy_construct(&ihost
->phys
[i
],
1754 &ihost
->ports
[SCI_MAX_PORTS
], i
);
1757 ihost
->invalid_phy_mask
= 0;
1759 sci_init_timer(&ihost
->timer
, controller_timeout
);
1761 /* Initialize the User and OEM parameters to default values. */
1762 sci_controller_set_default_config_parameters(ihost
);
1764 return sci_controller_reset(ihost
);
1767 int sci_oem_parameters_validate(struct sci_oem_params
*oem
, u8 version
)
1771 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
1772 if (oem
->ports
[i
].phy_mask
> SCIC_SDS_PARM_PHY_MASK_MAX
)
1775 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1776 if (oem
->phys
[i
].sas_address
.high
== 0 &&
1777 oem
->phys
[i
].sas_address
.low
== 0)
1780 if (oem
->controller
.mode_type
== SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE
) {
1781 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1782 if (oem
->ports
[i
].phy_mask
!= 0)
1784 } else if (oem
->controller
.mode_type
== SCIC_PORT_MANUAL_CONFIGURATION_MODE
) {
1787 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
1788 phy_mask
|= oem
->ports
[i
].phy_mask
;
1795 if (oem
->controller
.max_concurr_spin_up
> MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT
||
1796 oem
->controller
.max_concurr_spin_up
< 1)
1799 if (oem
->controller
.do_enable_ssc
) {
1800 if (version
< ISCI_ROM_VER_1_1
&& oem
->controller
.do_enable_ssc
!= 1)
1803 if (version
>= ISCI_ROM_VER_1_1
) {
1804 u8 test
= oem
->controller
.ssc_sata_tx_spread_level
;
1817 test
= oem
->controller
.ssc_sas_tx_spread_level
;
1818 if (oem
->controller
.ssc_sas_tx_type
== 0) {
1827 } else if (oem
->controller
.ssc_sas_tx_type
== 1) {
1843 static enum sci_status
sci_oem_parameters_set(struct isci_host
*ihost
)
1845 u32 state
= ihost
->sm
.current_state_id
;
1846 struct isci_pci_info
*pci_info
= to_pci_info(ihost
->pdev
);
1848 if (state
== SCIC_RESET
||
1849 state
== SCIC_INITIALIZING
||
1850 state
== SCIC_INITIALIZED
) {
1851 u8 oem_version
= pci_info
->orom
? pci_info
->orom
->hdr
.version
:
1854 if (sci_oem_parameters_validate(&ihost
->oem_parameters
,
1856 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
1861 return SCI_FAILURE_INVALID_STATE
;
1864 static u8
max_spin_up(struct isci_host
*ihost
)
1866 if (ihost
->user_parameters
.max_concurr_spinup
)
1867 return min_t(u8
, ihost
->user_parameters
.max_concurr_spinup
,
1868 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT
);
1870 return min_t(u8
, ihost
->oem_parameters
.controller
.max_concurr_spin_up
,
1871 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT
);
1874 static void power_control_timeout(unsigned long data
)
1876 struct sci_timer
*tmr
= (struct sci_timer
*)data
;
1877 struct isci_host
*ihost
= container_of(tmr
, typeof(*ihost
), power_control
.timer
);
1878 struct isci_phy
*iphy
;
1879 unsigned long flags
;
1882 spin_lock_irqsave(&ihost
->scic_lock
, flags
);
1887 ihost
->power_control
.phys_granted_power
= 0;
1889 if (ihost
->power_control
.phys_waiting
== 0) {
1890 ihost
->power_control
.timer_started
= false;
1894 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1896 if (ihost
->power_control
.phys_waiting
== 0)
1899 iphy
= ihost
->power_control
.requesters
[i
];
1903 if (ihost
->power_control
.phys_granted_power
>= max_spin_up(ihost
))
1906 ihost
->power_control
.requesters
[i
] = NULL
;
1907 ihost
->power_control
.phys_waiting
--;
1908 ihost
->power_control
.phys_granted_power
++;
1909 sci_phy_consume_power_handler(iphy
);
1911 if (iphy
->protocol
== SCIC_SDS_PHY_PROTOCOL_SAS
) {
1914 for (j
= 0; j
< SCI_MAX_PHYS
; j
++) {
1915 struct isci_phy
*requester
= ihost
->power_control
.requesters
[j
];
1918 * Search the power_control queue to see if there are other phys
1919 * attached to the same remote device. If found, take all of
1920 * them out of await_sas_power state.
1922 if (requester
!= NULL
&& requester
!= iphy
) {
1923 u8 other
= memcmp(requester
->frame_rcvd
.iaf
.sas_addr
,
1924 iphy
->frame_rcvd
.iaf
.sas_addr
,
1925 sizeof(requester
->frame_rcvd
.iaf
.sas_addr
));
1928 ihost
->power_control
.requesters
[j
] = NULL
;
1929 ihost
->power_control
.phys_waiting
--;
1930 sci_phy_consume_power_handler(requester
);
1938 * It doesn't matter if the power list is empty, we need to start the
1939 * timer in case another phy becomes ready.
1941 sci_mod_timer(tmr
, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
1942 ihost
->power_control
.timer_started
= true;
1945 spin_unlock_irqrestore(&ihost
->scic_lock
, flags
);
1948 void sci_controller_power_control_queue_insert(struct isci_host
*ihost
,
1949 struct isci_phy
*iphy
)
1951 BUG_ON(iphy
== NULL
);
1953 if (ihost
->power_control
.phys_granted_power
< max_spin_up(ihost
)) {
1954 ihost
->power_control
.phys_granted_power
++;
1955 sci_phy_consume_power_handler(iphy
);
1958 * stop and start the power_control timer. When the timer fires, the
1959 * no_of_phys_granted_power will be set to 0
1961 if (ihost
->power_control
.timer_started
)
1962 sci_del_timer(&ihost
->power_control
.timer
);
1964 sci_mod_timer(&ihost
->power_control
.timer
,
1965 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL
);
1966 ihost
->power_control
.timer_started
= true;
1970 * There are phys, attached to the same sas address as this phy, are
1971 * already in READY state, this phy don't need wait.
1974 struct isci_phy
*current_phy
;
1976 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
1978 current_phy
= &ihost
->phys
[i
];
1980 other
= memcmp(current_phy
->frame_rcvd
.iaf
.sas_addr
,
1981 iphy
->frame_rcvd
.iaf
.sas_addr
,
1982 sizeof(current_phy
->frame_rcvd
.iaf
.sas_addr
));
1984 if (current_phy
->sm
.current_state_id
== SCI_PHY_READY
&&
1985 current_phy
->protocol
== SCIC_SDS_PHY_PROTOCOL_SAS
&&
1987 sci_phy_consume_power_handler(iphy
);
1992 if (i
== SCI_MAX_PHYS
) {
1993 /* Add the phy in the waiting list */
1994 ihost
->power_control
.requesters
[iphy
->phy_index
] = iphy
;
1995 ihost
->power_control
.phys_waiting
++;
2000 void sci_controller_power_control_queue_remove(struct isci_host
*ihost
,
2001 struct isci_phy
*iphy
)
2003 BUG_ON(iphy
== NULL
);
2005 if (ihost
->power_control
.requesters
[iphy
->phy_index
])
2006 ihost
->power_control
.phys_waiting
--;
2008 ihost
->power_control
.requesters
[iphy
->phy_index
] = NULL
;
2011 static int is_long_cable(int phy
, unsigned char selection_byte
)
2013 return !!(selection_byte
& (1 << phy
));
2016 static int is_medium_cable(int phy
, unsigned char selection_byte
)
2018 return !!(selection_byte
& (1 << (phy
+ 4)));
2021 static enum cable_selections
decode_selection_byte(
2023 unsigned char selection_byte
)
2025 return ((selection_byte
& (1 << phy
)) ? 1 : 0)
2026 + (selection_byte
& (1 << (phy
+ 4)) ? 2 : 0);
2029 static unsigned char *to_cable_select(struct isci_host
*ihost
)
2031 if (is_cable_select_overridden())
2032 return ((unsigned char *)&cable_selection_override
)
2035 return &ihost
->oem_parameters
.controller
.cable_selection_mask
;
2038 enum cable_selections
decode_cable_selection(struct isci_host
*ihost
, int phy
)
2040 return decode_selection_byte(phy
, *to_cable_select(ihost
));
2043 char *lookup_cable_names(enum cable_selections selection
)
2045 static char *cable_names
[] = {
2046 [short_cable
] = "short",
2047 [long_cable
] = "long",
2048 [medium_cable
] = "medium",
2049 [undefined_cable
] = "<undefined, assumed long>" /* bit 0==1 */
2051 return (selection
<= undefined_cable
) ? cable_names
[selection
]
2052 : cable_names
[undefined_cable
];
2055 #define AFE_REGISTER_WRITE_DELAY 10
2057 static void sci_controller_afe_initialization(struct isci_host
*ihost
)
2059 struct scu_afe_registers __iomem
*afe
= &ihost
->scu_registers
->afe
;
2060 const struct sci_oem_params
*oem
= &ihost
->oem_parameters
;
2061 struct pci_dev
*pdev
= ihost
->pdev
;
2064 unsigned char cable_selection_mask
= *to_cable_select(ihost
);
2066 /* Clear DFX Status registers */
2067 writel(0x0081000f, &afe
->afe_dfx_master_control0
);
2068 udelay(AFE_REGISTER_WRITE_DELAY
);
2070 if (is_b0(pdev
) || is_c0(pdev
) || is_c1(pdev
)) {
2071 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2072 * Timer, PM Stagger Timer
2074 writel(0x0007FFFF, &afe
->afe_pmsn_master_control2
);
2075 udelay(AFE_REGISTER_WRITE_DELAY
);
2078 /* Configure bias currents to normal */
2080 writel(0x00005A00, &afe
->afe_bias_control
);
2081 else if (is_b0(pdev
) || is_c0(pdev
))
2082 writel(0x00005F00, &afe
->afe_bias_control
);
2083 else if (is_c1(pdev
))
2084 writel(0x00005500, &afe
->afe_bias_control
);
2086 udelay(AFE_REGISTER_WRITE_DELAY
);
2090 writel(0x80040908, &afe
->afe_pll_control0
);
2091 else if (is_b0(pdev
) || is_c0(pdev
))
2092 writel(0x80040A08, &afe
->afe_pll_control0
);
2093 else if (is_c1(pdev
)) {
2094 writel(0x80000B08, &afe
->afe_pll_control0
);
2095 udelay(AFE_REGISTER_WRITE_DELAY
);
2096 writel(0x00000B08, &afe
->afe_pll_control0
);
2097 udelay(AFE_REGISTER_WRITE_DELAY
);
2098 writel(0x80000B08, &afe
->afe_pll_control0
);
2101 udelay(AFE_REGISTER_WRITE_DELAY
);
2103 /* Wait for the PLL to lock */
2105 afe_status
= readl(&afe
->afe_common_block_status
);
2106 udelay(AFE_REGISTER_WRITE_DELAY
);
2107 } while ((afe_status
& 0x00001000) == 0);
2110 /* Shorten SAS SNW lock time (RxLock timer value from 76
2113 writel(0x7bcc96ad, &afe
->afe_pmsn_master_control0
);
2114 udelay(AFE_REGISTER_WRITE_DELAY
);
2117 for (phy_id
= 0; phy_id
< SCI_MAX_PHYS
; phy_id
++) {
2118 struct scu_afe_transceiver
*xcvr
= &afe
->scu_afe_xcvr
[phy_id
];
2119 const struct sci_phy_oem_params
*oem_phy
= &oem
->phys
[phy_id
];
2120 int cable_length_long
=
2121 is_long_cable(phy_id
, cable_selection_mask
);
2122 int cable_length_medium
=
2123 is_medium_cable(phy_id
, cable_selection_mask
);
2126 /* All defaults, except the Receive Word
2127 * Alignament/Comma Detect Enable....(0xe800)
2129 writel(0x00004512, &xcvr
->afe_xcvr_control0
);
2130 udelay(AFE_REGISTER_WRITE_DELAY
);
2132 writel(0x0050100F, &xcvr
->afe_xcvr_control1
);
2133 udelay(AFE_REGISTER_WRITE_DELAY
);
2134 } else if (is_b0(pdev
)) {
2135 /* Configure transmitter SSC parameters */
2136 writel(0x00030000, &xcvr
->afe_tx_ssc_control
);
2137 udelay(AFE_REGISTER_WRITE_DELAY
);
2138 } else if (is_c0(pdev
)) {
2139 /* Configure transmitter SSC parameters */
2140 writel(0x00010202, &xcvr
->afe_tx_ssc_control
);
2141 udelay(AFE_REGISTER_WRITE_DELAY
);
2143 /* All defaults, except the Receive Word
2144 * Alignament/Comma Detect Enable....(0xe800)
2146 writel(0x00014500, &xcvr
->afe_xcvr_control0
);
2147 udelay(AFE_REGISTER_WRITE_DELAY
);
2148 } else if (is_c1(pdev
)) {
2149 /* Configure transmitter SSC parameters */
2150 writel(0x00010202, &xcvr
->afe_tx_ssc_control
);
2151 udelay(AFE_REGISTER_WRITE_DELAY
);
2153 /* All defaults, except the Receive Word
2154 * Alignament/Comma Detect Enable....(0xe800)
2156 writel(0x0001C500, &xcvr
->afe_xcvr_control0
);
2157 udelay(AFE_REGISTER_WRITE_DELAY
);
2160 /* Power up TX and RX out from power down (PWRDNTX and
2161 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2164 writel(0x000003F0, &xcvr
->afe_channel_control
);
2165 else if (is_b0(pdev
)) {
2166 writel(0x000003D7, &xcvr
->afe_channel_control
);
2167 udelay(AFE_REGISTER_WRITE_DELAY
);
2169 writel(0x000003D4, &xcvr
->afe_channel_control
);
2170 } else if (is_c0(pdev
)) {
2171 writel(0x000001E7, &xcvr
->afe_channel_control
);
2172 udelay(AFE_REGISTER_WRITE_DELAY
);
2174 writel(0x000001E4, &xcvr
->afe_channel_control
);
2175 } else if (is_c1(pdev
)) {
2176 writel(cable_length_long
? 0x000002F7 : 0x000001F7,
2177 &xcvr
->afe_channel_control
);
2178 udelay(AFE_REGISTER_WRITE_DELAY
);
2180 writel(cable_length_long
? 0x000002F4 : 0x000001F4,
2181 &xcvr
->afe_channel_control
);
2183 udelay(AFE_REGISTER_WRITE_DELAY
);
2186 /* Enable TX equalization (0xe824) */
2187 writel(0x00040000, &xcvr
->afe_tx_control
);
2188 udelay(AFE_REGISTER_WRITE_DELAY
);
2191 if (is_a2(pdev
) || is_b0(pdev
))
2192 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2193 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2194 * Enabled) ....(0xe800)
2196 writel(0x00004100, &xcvr
->afe_xcvr_control0
);
2197 else if (is_c0(pdev
))
2198 writel(0x00014100, &xcvr
->afe_xcvr_control0
);
2199 else if (is_c1(pdev
))
2200 writel(0x0001C100, &xcvr
->afe_xcvr_control0
);
2201 udelay(AFE_REGISTER_WRITE_DELAY
);
2203 /* Leave DFE/FFE on */
2205 writel(0x3F11103F, &xcvr
->afe_rx_ssc_control0
);
2206 else if (is_b0(pdev
)) {
2207 writel(0x3F11103F, &xcvr
->afe_rx_ssc_control0
);
2208 udelay(AFE_REGISTER_WRITE_DELAY
);
2209 /* Enable TX equalization (0xe824) */
2210 writel(0x00040000, &xcvr
->afe_tx_control
);
2211 } else if (is_c0(pdev
)) {
2212 writel(0x01400C0F, &xcvr
->afe_rx_ssc_control1
);
2213 udelay(AFE_REGISTER_WRITE_DELAY
);
2215 writel(0x3F6F103F, &xcvr
->afe_rx_ssc_control0
);
2216 udelay(AFE_REGISTER_WRITE_DELAY
);
2218 /* Enable TX equalization (0xe824) */
2219 writel(0x00040000, &xcvr
->afe_tx_control
);
2220 } else if (is_c1(pdev
)) {
2221 writel(cable_length_long
? 0x01500C0C :
2222 cable_length_medium
? 0x01400C0D : 0x02400C0D,
2223 &xcvr
->afe_xcvr_control1
);
2224 udelay(AFE_REGISTER_WRITE_DELAY
);
2226 writel(0x000003E0, &xcvr
->afe_dfx_rx_control1
);
2227 udelay(AFE_REGISTER_WRITE_DELAY
);
2229 writel(cable_length_long
? 0x33091C1F :
2230 cable_length_medium
? 0x3315181F : 0x2B17161F,
2231 &xcvr
->afe_rx_ssc_control0
);
2232 udelay(AFE_REGISTER_WRITE_DELAY
);
2234 /* Enable TX equalization (0xe824) */
2235 writel(0x00040000, &xcvr
->afe_tx_control
);
2238 udelay(AFE_REGISTER_WRITE_DELAY
);
2240 writel(oem_phy
->afe_tx_amp_control0
, &xcvr
->afe_tx_amp_control0
);
2241 udelay(AFE_REGISTER_WRITE_DELAY
);
2243 writel(oem_phy
->afe_tx_amp_control1
, &xcvr
->afe_tx_amp_control1
);
2244 udelay(AFE_REGISTER_WRITE_DELAY
);
2246 writel(oem_phy
->afe_tx_amp_control2
, &xcvr
->afe_tx_amp_control2
);
2247 udelay(AFE_REGISTER_WRITE_DELAY
);
2249 writel(oem_phy
->afe_tx_amp_control3
, &xcvr
->afe_tx_amp_control3
);
2250 udelay(AFE_REGISTER_WRITE_DELAY
);
2253 /* Transfer control to the PEs */
2254 writel(0x00010f00, &afe
->afe_dfx_master_control0
);
2255 udelay(AFE_REGISTER_WRITE_DELAY
);
2258 static void sci_controller_initialize_power_control(struct isci_host
*ihost
)
2260 sci_init_timer(&ihost
->power_control
.timer
, power_control_timeout
);
2262 memset(ihost
->power_control
.requesters
, 0,
2263 sizeof(ihost
->power_control
.requesters
));
2265 ihost
->power_control
.phys_waiting
= 0;
2266 ihost
->power_control
.phys_granted_power
= 0;
2269 static enum sci_status
sci_controller_initialize(struct isci_host
*ihost
)
2271 struct sci_base_state_machine
*sm
= &ihost
->sm
;
2272 enum sci_status result
= SCI_FAILURE
;
2273 unsigned long i
, state
, val
;
2275 if (ihost
->sm
.current_state_id
!= SCIC_RESET
) {
2276 dev_warn(&ihost
->pdev
->dev
,
2277 "SCIC Controller initialize operation requested "
2278 "in invalid state\n");
2279 return SCI_FAILURE_INVALID_STATE
;
2282 sci_change_state(sm
, SCIC_INITIALIZING
);
2284 sci_init_timer(&ihost
->phy_timer
, phy_startup_timeout
);
2286 ihost
->next_phy_to_start
= 0;
2287 ihost
->phy_startup_timer_pending
= false;
2289 sci_controller_initialize_power_control(ihost
);
2292 * There is nothing to do here for B0 since we do not have to
2293 * program the AFE registers.
2294 * / @todo The AFE settings are supposed to be correct for the B0 but
2295 * / presently they seem to be wrong. */
2296 sci_controller_afe_initialization(ihost
);
2299 /* Take the hardware out of reset */
2300 writel(0, &ihost
->smu_registers
->soft_reset_control
);
2303 * / @todo Provide meaningfull error code for hardware failure
2304 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2305 for (i
= 100; i
>= 1; i
--) {
2308 /* Loop until the hardware reports success */
2309 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME
);
2310 status
= readl(&ihost
->smu_registers
->control_status
);
2312 if ((status
& SCU_RAM_INIT_COMPLETED
) == SCU_RAM_INIT_COMPLETED
)
2319 * Determine what are the actaul device capacities that the
2320 * hardware will support */
2321 val
= readl(&ihost
->smu_registers
->device_context_capacity
);
2323 /* Record the smaller of the two capacity values */
2324 ihost
->logical_port_entries
= min(smu_max_ports(val
), SCI_MAX_PORTS
);
2325 ihost
->task_context_entries
= min(smu_max_task_contexts(val
), SCI_MAX_IO_REQUESTS
);
2326 ihost
->remote_node_entries
= min(smu_max_rncs(val
), SCI_MAX_REMOTE_DEVICES
);
2329 * Make all PEs that are unassigned match up with the
2332 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
2333 struct scu_port_task_scheduler_group_registers __iomem
2334 *ptsg
= &ihost
->scu_registers
->peg0
.ptsg
;
2336 writel(i
, &ptsg
->protocol_engine
[i
]);
2339 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2340 val
= readl(&ihost
->scu_registers
->sdma
.pdma_configuration
);
2341 val
|= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE
);
2342 writel(val
, &ihost
->scu_registers
->sdma
.pdma_configuration
);
2344 val
= readl(&ihost
->scu_registers
->sdma
.cdma_configuration
);
2345 val
|= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE
);
2346 writel(val
, &ihost
->scu_registers
->sdma
.cdma_configuration
);
2349 * Initialize the PHYs before the PORTs because the PHY registers
2350 * are accessed during the port initialization.
2352 for (i
= 0; i
< SCI_MAX_PHYS
; i
++) {
2353 result
= sci_phy_initialize(&ihost
->phys
[i
],
2354 &ihost
->scu_registers
->peg0
.pe
[i
].tl
,
2355 &ihost
->scu_registers
->peg0
.pe
[i
].ll
);
2356 if (result
!= SCI_SUCCESS
)
2360 for (i
= 0; i
< ihost
->logical_port_entries
; i
++) {
2361 struct isci_port
*iport
= &ihost
->ports
[i
];
2363 iport
->port_task_scheduler_registers
= &ihost
->scu_registers
->peg0
.ptsg
.port
[i
];
2364 iport
->port_pe_configuration_register
= &ihost
->scu_registers
->peg0
.ptsg
.protocol_engine
[0];
2365 iport
->viit_registers
= &ihost
->scu_registers
->peg0
.viit
[i
];
2368 result
= sci_port_configuration_agent_initialize(ihost
, &ihost
->port_agent
);
2371 /* Advance the controller state machine */
2372 if (result
== SCI_SUCCESS
)
2373 state
= SCIC_INITIALIZED
;
2375 state
= SCIC_FAILED
;
2376 sci_change_state(sm
, state
);
2381 static enum sci_status
sci_user_parameters_set(struct isci_host
*ihost
,
2382 struct sci_user_parameters
*sci_parms
)
2384 u32 state
= ihost
->sm
.current_state_id
;
2386 if (state
== SCIC_RESET
||
2387 state
== SCIC_INITIALIZING
||
2388 state
== SCIC_INITIALIZED
) {
2392 * Validate the user parameters. If they are not legal, then
2395 for (index
= 0; index
< SCI_MAX_PHYS
; index
++) {
2396 struct sci_phy_user_params
*user_phy
;
2398 user_phy
= &sci_parms
->phys
[index
];
2400 if (!((user_phy
->max_speed_generation
<=
2401 SCIC_SDS_PARM_MAX_SPEED
) &&
2402 (user_phy
->max_speed_generation
>
2403 SCIC_SDS_PARM_NO_SPEED
)))
2404 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2406 if (user_phy
->in_connection_align_insertion_frequency
<
2408 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2410 if ((user_phy
->in_connection_align_insertion_frequency
<
2412 (user_phy
->align_insertion_frequency
== 0) ||
2414 notify_enable_spin_up_insertion_frequency
==
2416 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2419 if ((sci_parms
->stp_inactivity_timeout
== 0) ||
2420 (sci_parms
->ssp_inactivity_timeout
== 0) ||
2421 (sci_parms
->stp_max_occupancy_timeout
== 0) ||
2422 (sci_parms
->ssp_max_occupancy_timeout
== 0) ||
2423 (sci_parms
->no_outbound_task_timeout
== 0))
2424 return SCI_FAILURE_INVALID_PARAMETER_VALUE
;
2426 memcpy(&ihost
->user_parameters
, sci_parms
, sizeof(*sci_parms
));
2431 return SCI_FAILURE_INVALID_STATE
;
2434 static int sci_controller_mem_init(struct isci_host
*ihost
)
2436 struct device
*dev
= &ihost
->pdev
->dev
;
2441 size
= SCU_MAX_COMPLETION_QUEUE_ENTRIES
* sizeof(u32
);
2442 ihost
->completion_queue
= dmam_alloc_coherent(dev
, size
, &dma
, GFP_KERNEL
);
2443 if (!ihost
->completion_queue
)
2446 writel(lower_32_bits(dma
), &ihost
->smu_registers
->completion_queue_lower
);
2447 writel(upper_32_bits(dma
), &ihost
->smu_registers
->completion_queue_upper
);
2449 size
= ihost
->remote_node_entries
* sizeof(union scu_remote_node_context
);
2450 ihost
->remote_node_context_table
= dmam_alloc_coherent(dev
, size
, &dma
,
2452 if (!ihost
->remote_node_context_table
)
2455 writel(lower_32_bits(dma
), &ihost
->smu_registers
->remote_node_context_lower
);
2456 writel(upper_32_bits(dma
), &ihost
->smu_registers
->remote_node_context_upper
);
2458 size
= ihost
->task_context_entries
* sizeof(struct scu_task_context
),
2459 ihost
->task_context_table
= dmam_alloc_coherent(dev
, size
, &dma
, GFP_KERNEL
);
2460 if (!ihost
->task_context_table
)
2463 ihost
->task_context_dma
= dma
;
2464 writel(lower_32_bits(dma
), &ihost
->smu_registers
->host_task_table_lower
);
2465 writel(upper_32_bits(dma
), &ihost
->smu_registers
->host_task_table_upper
);
2467 err
= sci_unsolicited_frame_control_construct(ihost
);
2472 * Inform the silicon as to the location of the UF headers and
2475 writel(lower_32_bits(ihost
->uf_control
.headers
.physical_address
),
2476 &ihost
->scu_registers
->sdma
.uf_header_base_address_lower
);
2477 writel(upper_32_bits(ihost
->uf_control
.headers
.physical_address
),
2478 &ihost
->scu_registers
->sdma
.uf_header_base_address_upper
);
2480 writel(lower_32_bits(ihost
->uf_control
.address_table
.physical_address
),
2481 &ihost
->scu_registers
->sdma
.uf_address_table_lower
);
2482 writel(upper_32_bits(ihost
->uf_control
.address_table
.physical_address
),
2483 &ihost
->scu_registers
->sdma
.uf_address_table_upper
);
2488 int isci_host_init(struct isci_host
*ihost
)
2491 enum sci_status status
;
2492 struct sci_user_parameters sci_user_params
;
2493 struct isci_pci_info
*pci_info
= to_pci_info(ihost
->pdev
);
2495 spin_lock_init(&ihost
->state_lock
);
2496 spin_lock_init(&ihost
->scic_lock
);
2497 init_waitqueue_head(&ihost
->eventq
);
2499 isci_host_change_state(ihost
, isci_starting
);
2501 status
= sci_controller_construct(ihost
, scu_base(ihost
),
2504 if (status
!= SCI_SUCCESS
) {
2505 dev_err(&ihost
->pdev
->dev
,
2506 "%s: sci_controller_construct failed - status = %x\n",
2512 ihost
->sas_ha
.dev
= &ihost
->pdev
->dev
;
2513 ihost
->sas_ha
.lldd_ha
= ihost
;
2516 * grab initial values stored in the controller object for OEM and USER
2519 isci_user_parameters_get(&sci_user_params
);
2520 status
= sci_user_parameters_set(ihost
, &sci_user_params
);
2521 if (status
!= SCI_SUCCESS
) {
2522 dev_warn(&ihost
->pdev
->dev
,
2523 "%s: sci_user_parameters_set failed\n",
2528 /* grab any OEM parameters specified in orom */
2529 if (pci_info
->orom
) {
2530 status
= isci_parse_oem_parameters(&ihost
->oem_parameters
,
2533 if (status
!= SCI_SUCCESS
) {
2534 dev_warn(&ihost
->pdev
->dev
,
2535 "parsing firmware oem parameters failed\n");
2540 status
= sci_oem_parameters_set(ihost
);
2541 if (status
!= SCI_SUCCESS
) {
2542 dev_warn(&ihost
->pdev
->dev
,
2543 "%s: sci_oem_parameters_set failed\n",
2548 tasklet_init(&ihost
->completion_tasklet
,
2549 isci_host_completion_routine
, (unsigned long)ihost
);
2551 INIT_LIST_HEAD(&ihost
->requests_to_complete
);
2552 INIT_LIST_HEAD(&ihost
->requests_to_errorback
);
2554 spin_lock_irq(&ihost
->scic_lock
);
2555 status
= sci_controller_initialize(ihost
);
2556 spin_unlock_irq(&ihost
->scic_lock
);
2557 if (status
!= SCI_SUCCESS
) {
2558 dev_warn(&ihost
->pdev
->dev
,
2559 "%s: sci_controller_initialize failed -"
2565 err
= sci_controller_mem_init(ihost
);
2569 for (i
= 0; i
< SCI_MAX_PORTS
; i
++)
2570 isci_port_init(&ihost
->ports
[i
], ihost
, i
);
2572 for (i
= 0; i
< SCI_MAX_PHYS
; i
++)
2573 isci_phy_init(&ihost
->phys
[i
], ihost
, i
);
2576 writel(1, &ihost
->scu_registers
->peg0
.sgpio
.interface_control
);
2577 for (i
= 0; i
< isci_gpio_count(ihost
); i
++)
2578 writel(SGPIO_HW_CONTROL
, &ihost
->scu_registers
->peg0
.sgpio
.output_data_select
[i
]);
2579 writel(0, &ihost
->scu_registers
->peg0
.sgpio
.vendor_specific_code
);
2581 for (i
= 0; i
< SCI_MAX_REMOTE_DEVICES
; i
++) {
2582 struct isci_remote_device
*idev
= &ihost
->devices
[i
];
2584 INIT_LIST_HEAD(&idev
->reqs_in_process
);
2585 INIT_LIST_HEAD(&idev
->node
);
2588 for (i
= 0; i
< SCI_MAX_IO_REQUESTS
; i
++) {
2589 struct isci_request
*ireq
;
2592 ireq
= dmam_alloc_coherent(&ihost
->pdev
->dev
,
2593 sizeof(struct isci_request
), &dma
,
2598 ireq
->tc
= &ihost
->task_context_table
[i
];
2599 ireq
->owning_controller
= ihost
;
2600 spin_lock_init(&ireq
->state_lock
);
2601 ireq
->request_daddr
= dma
;
2602 ireq
->isci_host
= ihost
;
2603 ihost
->reqs
[i
] = ireq
;
2609 void sci_controller_link_up(struct isci_host
*ihost
, struct isci_port
*iport
,
2610 struct isci_phy
*iphy
)
2612 switch (ihost
->sm
.current_state_id
) {
2614 sci_del_timer(&ihost
->phy_timer
);
2615 ihost
->phy_startup_timer_pending
= false;
2616 ihost
->port_agent
.link_up_handler(ihost
, &ihost
->port_agent
,
2618 sci_controller_start_next_phy(ihost
);
2621 ihost
->port_agent
.link_up_handler(ihost
, &ihost
->port_agent
,
2625 dev_dbg(&ihost
->pdev
->dev
,
2626 "%s: SCIC Controller linkup event from phy %d in "
2627 "unexpected state %d\n", __func__
, iphy
->phy_index
,
2628 ihost
->sm
.current_state_id
);
2632 void sci_controller_link_down(struct isci_host
*ihost
, struct isci_port
*iport
,
2633 struct isci_phy
*iphy
)
2635 switch (ihost
->sm
.current_state_id
) {
2638 ihost
->port_agent
.link_down_handler(ihost
, &ihost
->port_agent
,
2642 dev_dbg(&ihost
->pdev
->dev
,
2643 "%s: SCIC Controller linkdown event from phy %d in "
2644 "unexpected state %d\n",
2647 ihost
->sm
.current_state_id
);
2651 static bool sci_controller_has_remote_devices_stopping(struct isci_host
*ihost
)
2655 for (index
= 0; index
< ihost
->remote_node_entries
; index
++) {
2656 if ((ihost
->device_table
[index
] != NULL
) &&
2657 (ihost
->device_table
[index
]->sm
.current_state_id
== SCI_DEV_STOPPING
))
2664 void sci_controller_remote_device_stopped(struct isci_host
*ihost
,
2665 struct isci_remote_device
*idev
)
2667 if (ihost
->sm
.current_state_id
!= SCIC_STOPPING
) {
2668 dev_dbg(&ihost
->pdev
->dev
,
2669 "SCIC Controller 0x%p remote device stopped event "
2670 "from device 0x%p in unexpected state %d\n",
2672 ihost
->sm
.current_state_id
);
2676 if (!sci_controller_has_remote_devices_stopping(ihost
))
2677 sci_change_state(&ihost
->sm
, SCIC_STOPPED
);
2680 void sci_controller_post_request(struct isci_host
*ihost
, u32 request
)
2682 dev_dbg(&ihost
->pdev
->dev
, "%s[%d]: %#x\n",
2683 __func__
, ihost
->id
, request
);
2685 writel(request
, &ihost
->smu_registers
->post_context_port
);
2688 struct isci_request
*sci_request_by_tag(struct isci_host
*ihost
, u16 io_tag
)
2693 task_index
= ISCI_TAG_TCI(io_tag
);
2695 if (task_index
< ihost
->task_context_entries
) {
2696 struct isci_request
*ireq
= ihost
->reqs
[task_index
];
2698 if (test_bit(IREQ_ACTIVE
, &ireq
->flags
)) {
2699 task_sequence
= ISCI_TAG_SEQ(io_tag
);
2701 if (task_sequence
== ihost
->io_request_sequence
[task_index
])
2710 * This method allocates remote node index and the reserves the remote node
2711 * context space for use. This method can fail if there are no more remote
2712 * node index available.
2713 * @scic: This is the controller object which contains the set of
2714 * free remote node ids
2715 * @sci_dev: This is the device object which is requesting the a remote node
2717 * @node_id: This is the remote node id that is assinged to the device if one
2720 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2721 * node index available.
2723 enum sci_status
sci_controller_allocate_remote_node_context(struct isci_host
*ihost
,
2724 struct isci_remote_device
*idev
,
2728 u32 remote_node_count
= sci_remote_device_node_count(idev
);
2730 node_index
= sci_remote_node_table_allocate_remote_node(
2731 &ihost
->available_remote_nodes
, remote_node_count
2734 if (node_index
!= SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX
) {
2735 ihost
->device_table
[node_index
] = idev
;
2737 *node_id
= node_index
;
2742 return SCI_FAILURE_INSUFFICIENT_RESOURCES
;
2745 void sci_controller_free_remote_node_context(struct isci_host
*ihost
,
2746 struct isci_remote_device
*idev
,
2749 u32 remote_node_count
= sci_remote_device_node_count(idev
);
2751 if (ihost
->device_table
[node_id
] == idev
) {
2752 ihost
->device_table
[node_id
] = NULL
;
2754 sci_remote_node_table_release_remote_node_index(
2755 &ihost
->available_remote_nodes
, remote_node_count
, node_id
2760 void sci_controller_copy_sata_response(void *response_buffer
,
2764 /* XXX type safety? */
2765 memcpy(response_buffer
, frame_header
, sizeof(u32
));
2767 memcpy(response_buffer
+ sizeof(u32
),
2769 sizeof(struct dev_to_host_fis
) - sizeof(u32
));
2772 void sci_controller_release_frame(struct isci_host
*ihost
, u32 frame_index
)
2774 if (sci_unsolicited_frame_control_release_frame(&ihost
->uf_control
, frame_index
))
2775 writel(ihost
->uf_control
.get
,
2776 &ihost
->scu_registers
->sdma
.unsolicited_frame_get_pointer
);
2779 void isci_tci_free(struct isci_host
*ihost
, u16 tci
)
2781 u16 tail
= ihost
->tci_tail
& (SCI_MAX_IO_REQUESTS
-1);
2783 ihost
->tci_pool
[tail
] = tci
;
2784 ihost
->tci_tail
= tail
+ 1;
2787 static u16
isci_tci_alloc(struct isci_host
*ihost
)
2789 u16 head
= ihost
->tci_head
& (SCI_MAX_IO_REQUESTS
-1);
2790 u16 tci
= ihost
->tci_pool
[head
];
2792 ihost
->tci_head
= head
+ 1;
2796 static u16
isci_tci_space(struct isci_host
*ihost
)
2798 return CIRC_SPACE(ihost
->tci_head
, ihost
->tci_tail
, SCI_MAX_IO_REQUESTS
);
2801 u16
isci_alloc_tag(struct isci_host
*ihost
)
2803 if (isci_tci_space(ihost
)) {
2804 u16 tci
= isci_tci_alloc(ihost
);
2805 u8 seq
= ihost
->io_request_sequence
[tci
];
2807 return ISCI_TAG(seq
, tci
);
2810 return SCI_CONTROLLER_INVALID_IO_TAG
;
2813 enum sci_status
isci_free_tag(struct isci_host
*ihost
, u16 io_tag
)
2815 u16 tci
= ISCI_TAG_TCI(io_tag
);
2816 u16 seq
= ISCI_TAG_SEQ(io_tag
);
2818 /* prevent tail from passing head */
2819 if (isci_tci_active(ihost
) == 0)
2820 return SCI_FAILURE_INVALID_IO_TAG
;
2822 if (seq
== ihost
->io_request_sequence
[tci
]) {
2823 ihost
->io_request_sequence
[tci
] = (seq
+1) & (SCI_MAX_SEQ
-1);
2825 isci_tci_free(ihost
, tci
);
2829 return SCI_FAILURE_INVALID_IO_TAG
;
2832 enum sci_status
sci_controller_start_io(struct isci_host
*ihost
,
2833 struct isci_remote_device
*idev
,
2834 struct isci_request
*ireq
)
2836 enum sci_status status
;
2838 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2839 dev_warn(&ihost
->pdev
->dev
, "invalid state to start I/O");
2840 return SCI_FAILURE_INVALID_STATE
;
2843 status
= sci_remote_device_start_io(ihost
, idev
, ireq
);
2844 if (status
!= SCI_SUCCESS
)
2847 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2848 sci_controller_post_request(ihost
, ireq
->post_context
);
2852 enum sci_status
sci_controller_terminate_request(struct isci_host
*ihost
,
2853 struct isci_remote_device
*idev
,
2854 struct isci_request
*ireq
)
2856 /* terminate an ongoing (i.e. started) core IO request. This does not
2857 * abort the IO request at the target, but rather removes the IO
2858 * request from the host controller.
2860 enum sci_status status
;
2862 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2863 dev_warn(&ihost
->pdev
->dev
,
2864 "invalid state to terminate request\n");
2865 return SCI_FAILURE_INVALID_STATE
;
2868 status
= sci_io_request_terminate(ireq
);
2869 if (status
!= SCI_SUCCESS
)
2873 * Utilize the original post context command and or in the POST_TC_ABORT
2876 sci_controller_post_request(ihost
,
2877 ireq
->post_context
| SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT
);
2882 * sci_controller_complete_io() - This method will perform core specific
2883 * completion operations for an IO request. After this method is invoked,
2884 * the user should consider the IO request as invalid until it is properly
2885 * reused (i.e. re-constructed).
2886 * @ihost: The handle to the controller object for which to complete the
2888 * @idev: The handle to the remote device object for which to complete
2890 * @ireq: the handle to the io request object to complete.
2892 enum sci_status
sci_controller_complete_io(struct isci_host
*ihost
,
2893 struct isci_remote_device
*idev
,
2894 struct isci_request
*ireq
)
2896 enum sci_status status
;
2899 switch (ihost
->sm
.current_state_id
) {
2901 /* XXX: Implement this function */
2904 status
= sci_remote_device_complete_io(ihost
, idev
, ireq
);
2905 if (status
!= SCI_SUCCESS
)
2908 index
= ISCI_TAG_TCI(ireq
->io_tag
);
2909 clear_bit(IREQ_ACTIVE
, &ireq
->flags
);
2912 dev_warn(&ihost
->pdev
->dev
, "invalid state to complete I/O");
2913 return SCI_FAILURE_INVALID_STATE
;
2918 enum sci_status
sci_controller_continue_io(struct isci_request
*ireq
)
2920 struct isci_host
*ihost
= ireq
->owning_controller
;
2922 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2923 dev_warn(&ihost
->pdev
->dev
, "invalid state to continue I/O");
2924 return SCI_FAILURE_INVALID_STATE
;
2927 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2928 sci_controller_post_request(ihost
, ireq
->post_context
);
2933 * sci_controller_start_task() - This method is called by the SCIC user to
2934 * send/start a framework task management request.
2935 * @controller: the handle to the controller object for which to start the task
2936 * management request.
2937 * @remote_device: the handle to the remote device object for which to start
2938 * the task management request.
2939 * @task_request: the handle to the task request object to start.
2941 enum sci_task_status
sci_controller_start_task(struct isci_host
*ihost
,
2942 struct isci_remote_device
*idev
,
2943 struct isci_request
*ireq
)
2945 enum sci_status status
;
2947 if (ihost
->sm
.current_state_id
!= SCIC_READY
) {
2948 dev_warn(&ihost
->pdev
->dev
,
2949 "%s: SCIC Controller starting task from invalid "
2952 return SCI_TASK_FAILURE_INVALID_STATE
;
2955 status
= sci_remote_device_start_task(ihost
, idev
, ireq
);
2957 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS
:
2958 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2961 * We will let framework know this task request started successfully,
2962 * although core is still woring on starting the request (to post tc when
2967 set_bit(IREQ_ACTIVE
, &ireq
->flags
);
2968 sci_controller_post_request(ihost
, ireq
->post_context
);
2977 static int sci_write_gpio_tx_gp(struct isci_host
*ihost
, u8 reg_index
, u8 reg_count
, u8
*write_data
)
2981 /* no support for TX_GP_CFG */
2985 for (d
= 0; d
< isci_gpio_count(ihost
); d
++) {
2986 u32 val
= 0x444; /* all ODx.n clear */
2989 for (i
= 0; i
< 3; i
++) {
2990 int bit
= (i
<< 2) + 2;
2992 bit
= try_test_sas_gpio_gp_bit(to_sas_gpio_od(d
, i
),
2993 write_data
, reg_index
,
2998 /* if od is set, clear the 'invert' bit */
2999 val
&= ~(bit
<< ((i
<< 2) + 2));
3004 writel(val
, &ihost
->scu_registers
->peg0
.sgpio
.output_data_select
[d
]);
3007 /* unless reg_index is > 1, we should always be able to write at
3008 * least one register
3013 int isci_gpio_write(struct sas_ha_struct
*sas_ha
, u8 reg_type
, u8 reg_index
,
3014 u8 reg_count
, u8
*write_data
)
3016 struct isci_host
*ihost
= sas_ha
->lldd_ha
;
3020 case SAS_GPIO_REG_TX_GP
:
3021 written
= sci_write_gpio_tx_gp(ihost
, reg_index
, reg_count
, write_data
);