4 * AES Cipher Algorithm.
6 * Based on Brian Gladman's code.
9 * Alexander Kjeldaas <astor@fast.no>
10 * Herbert Valerio Riedel <hvr@hvrlab.org>
11 * Kyle McMartin <kyle@debian.org>
12 * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * ---------------------------------------------------------------------------
20 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
21 * All rights reserved.
25 * The free distribution and use of this software in both source and binary
26 * form is allowed (with or without changes) provided that:
28 * 1. distributions of this source code include the above copyright
29 * notice, this list of conditions and the following disclaimer;
31 * 2. distributions in binary form include the above copyright
32 * notice, this list of conditions and the following disclaimer
33 * in the documentation and/or other associated materials;
35 * 3. the copyright holder's name is not used to endorse products
36 * built using this software without specific written permission.
38 * ALTERNATIVELY, provided that this notice is retained in full, this product
39 * may be distributed under the terms of the GNU General Public License (GPL),
40 * in which case the provisions of the GPL apply INSTEAD OF those given above.
44 * This software is provided 'as is' with no explicit or implied warranties
45 * in respect of its properties, including, but not limited to, correctness
46 * and/or fitness for purpose.
47 * ---------------------------------------------------------------------------
50 /* Some changes from the Gladman version:
51 s/RIJNDAEL(e_key)/E_KEY/g
52 s/RIJNDAEL(d_key)/D_KEY/g
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/types.h>
58 #include <linux/errno.h>
59 //#include <linux/crypto.h>
60 #include "rtl_crypto.h"
61 #include <asm/byteorder.h>
63 #define AES_MIN_KEY_SIZE 16
64 #define AES_MAX_KEY_SIZE 32
66 #define AES_BLOCK_SIZE 16
69 u32
generic_rotr32 (const u32 x
, const unsigned bits
)
71 const unsigned n
= bits
% 32;
72 return (x
>> n
) | (x
<< (32 - n
));
76 u32
generic_rotl32 (const u32 x
, const unsigned bits
)
78 const unsigned n
= bits
% 32;
79 return (x
<< n
) | (x
>> (32 - n
));
82 #define rotl generic_rotl32
83 #define rotr generic_rotr32
86 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
89 byte(const u32 x
, const unsigned n
)
94 #define u32_in(x) le32_to_cpu(*(const u32 *)(x))
95 #define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from))
106 static u8 pow_tab
[256] __initdata
;
107 static u8 log_tab
[256] __initdata
;
108 static u8 sbx_tab
[256] __initdata
;
109 static u8 isb_tab
[256] __initdata
;
110 static u32 rco_tab
[10];
111 static u32 ft_tab
[4][256];
112 static u32 it_tab
[4][256];
114 static u32 fl_tab
[4][256];
115 static u32 il_tab
[4][256];
117 static inline u8 __init
120 u8 aa
= log_tab
[a
], cc
= aa
+ log_tab
[b
];
122 return pow_tab
[cc
+ (cc
< aa
? 1 : 0)];
125 #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
127 #define f_rn(bo, bi, n, k) \
128 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
129 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
130 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
131 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
133 #define i_rn(bo, bi, n, k) \
134 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
135 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
136 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
137 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
140 ( fl_tab[0][byte(x, 0)] ^ \
141 fl_tab[1][byte(x, 1)] ^ \
142 fl_tab[2][byte(x, 2)] ^ \
143 fl_tab[3][byte(x, 3)] )
145 #define f_rl(bo, bi, n, k) \
146 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
147 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
148 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
149 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
151 #define i_rl(bo, bi, n, k) \
152 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
153 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
154 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
155 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
163 /* log and power tables for GF(2**8) finite field with
164 0x011b as modular polynomial - the simplest primitive
165 root is 0x03, used here to generate the tables */
167 for (i
= 0, p
= 1; i
< 256; ++i
) {
171 p
^= (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
176 for (i
= 0, p
= 1; i
< 10; ++i
) {
179 p
= (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
182 for (i
= 0; i
< 256; ++i
) {
183 p
= (i
? pow_tab
[255 - log_tab
[i
]] : 0);
184 q
= ((p
>> 7) | (p
<< 1)) ^ ((p
>> 6) | (p
<< 2));
185 p
^= 0x63 ^ q
^ ((q
>> 6) | (q
<< 2));
190 for (i
= 0; i
< 256; ++i
) {
195 fl_tab
[1][i
] = rotl (t
, 8);
196 fl_tab
[2][i
] = rotl (t
, 16);
197 fl_tab
[3][i
] = rotl (t
, 24);
199 t
= ((u32
) ff_mult (2, p
)) |
201 ((u32
) p
<< 16) | ((u32
) ff_mult (3, p
) << 24);
204 ft_tab
[1][i
] = rotl (t
, 8);
205 ft_tab
[2][i
] = rotl (t
, 16);
206 ft_tab
[3][i
] = rotl (t
, 24);
212 il_tab
[1][i
] = rotl (t
, 8);
213 il_tab
[2][i
] = rotl (t
, 16);
214 il_tab
[3][i
] = rotl (t
, 24);
216 t
= ((u32
) ff_mult (14, p
)) |
217 ((u32
) ff_mult (9, p
) << 8) |
218 ((u32
) ff_mult (13, p
) << 16) |
219 ((u32
) ff_mult (11, p
) << 24);
222 it_tab
[1][i
] = rotl (t
, 8);
223 it_tab
[2][i
] = rotl (t
, 16);
224 it_tab
[3][i
] = rotl (t
, 24);
228 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
230 #define imix_col(y,x) \
236 (y) ^= rotr(u ^ t, 8) ^ \
240 /* initialise the key schedule from the user supplied key */
243 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
244 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
245 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
246 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
247 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
251 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
252 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
253 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
254 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
255 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
256 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
257 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
261 { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
262 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
263 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
264 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
265 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
266 t = E_KEY[8 * i + 4] ^ ls_box(t); \
267 E_KEY[8 * i + 12] = t; \
268 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
269 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
270 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
274 aes_set_key(void *ctx_arg
, const u8
*in_key
, unsigned int key_len
, u32
*flags
)
276 struct aes_ctx
*ctx
= ctx_arg
;
279 if (key_len
!= 16 && key_len
!= 24 && key_len
!= 32) {
280 *flags
|= CRYPTO_TFM_RES_BAD_KEY_LEN
;
284 ctx
->key_length
= key_len
;
286 E_KEY
[0] = u32_in (in_key
);
287 E_KEY
[1] = u32_in (in_key
+ 4);
288 E_KEY
[2] = u32_in (in_key
+ 8);
289 E_KEY
[3] = u32_in (in_key
+ 12);
294 for (i
= 0; i
< 10; ++i
)
299 E_KEY
[4] = u32_in (in_key
+ 16);
300 t
= E_KEY
[5] = u32_in (in_key
+ 20);
301 for (i
= 0; i
< 8; ++i
)
306 E_KEY
[4] = u32_in (in_key
+ 16);
307 E_KEY
[5] = u32_in (in_key
+ 20);
308 E_KEY
[6] = u32_in (in_key
+ 24);
309 t
= E_KEY
[7] = u32_in (in_key
+ 28);
310 for (i
= 0; i
< 7; ++i
)
320 for (i
= 4; i
< key_len
+ 24; ++i
) {
321 imix_col (D_KEY
[i
], E_KEY
[i
]);
327 /* encrypt a block of text */
329 #define f_nround(bo, bi, k) \
330 f_rn(bo, bi, 0, k); \
331 f_rn(bo, bi, 1, k); \
332 f_rn(bo, bi, 2, k); \
333 f_rn(bo, bi, 3, k); \
336 #define f_lround(bo, bi, k) \
337 f_rl(bo, bi, 0, k); \
338 f_rl(bo, bi, 1, k); \
339 f_rl(bo, bi, 2, k); \
342 static void aes_encrypt(void *ctx_arg
, u8
*out
, const u8
*in
)
344 const struct aes_ctx
*ctx
= ctx_arg
;
346 const u32
*kp
= E_KEY
+ 4;
348 b0
[0] = u32_in (in
) ^ E_KEY
[0];
349 b0
[1] = u32_in (in
+ 4) ^ E_KEY
[1];
350 b0
[2] = u32_in (in
+ 8) ^ E_KEY
[2];
351 b0
[3] = u32_in (in
+ 12) ^ E_KEY
[3];
353 if (ctx
->key_length
> 24) {
354 f_nround (b1
, b0
, kp
);
355 f_nround (b0
, b1
, kp
);
358 if (ctx
->key_length
> 16) {
359 f_nround (b1
, b0
, kp
);
360 f_nround (b0
, b1
, kp
);
363 f_nround (b1
, b0
, kp
);
364 f_nround (b0
, b1
, kp
);
365 f_nround (b1
, b0
, kp
);
366 f_nround (b0
, b1
, kp
);
367 f_nround (b1
, b0
, kp
);
368 f_nround (b0
, b1
, kp
);
369 f_nround (b1
, b0
, kp
);
370 f_nround (b0
, b1
, kp
);
371 f_nround (b1
, b0
, kp
);
372 f_lround (b0
, b1
, kp
);
374 u32_out (out
, b0
[0]);
375 u32_out (out
+ 4, b0
[1]);
376 u32_out (out
+ 8, b0
[2]);
377 u32_out (out
+ 12, b0
[3]);
380 /* decrypt a block of text */
382 #define i_nround(bo, bi, k) \
383 i_rn(bo, bi, 0, k); \
384 i_rn(bo, bi, 1, k); \
385 i_rn(bo, bi, 2, k); \
386 i_rn(bo, bi, 3, k); \
389 #define i_lround(bo, bi, k) \
390 i_rl(bo, bi, 0, k); \
391 i_rl(bo, bi, 1, k); \
392 i_rl(bo, bi, 2, k); \
395 static void aes_decrypt(void *ctx_arg
, u8
*out
, const u8
*in
)
397 const struct aes_ctx
*ctx
= ctx_arg
;
399 const int key_len
= ctx
->key_length
;
400 const u32
*kp
= D_KEY
+ key_len
+ 20;
402 b0
[0] = u32_in (in
) ^ E_KEY
[key_len
+ 24];
403 b0
[1] = u32_in (in
+ 4) ^ E_KEY
[key_len
+ 25];
404 b0
[2] = u32_in (in
+ 8) ^ E_KEY
[key_len
+ 26];
405 b0
[3] = u32_in (in
+ 12) ^ E_KEY
[key_len
+ 27];
408 i_nround (b1
, b0
, kp
);
409 i_nround (b0
, b1
, kp
);
413 i_nround (b1
, b0
, kp
);
414 i_nround (b0
, b1
, kp
);
417 i_nround (b1
, b0
, kp
);
418 i_nround (b0
, b1
, kp
);
419 i_nround (b1
, b0
, kp
);
420 i_nround (b0
, b1
, kp
);
421 i_nround (b1
, b0
, kp
);
422 i_nround (b0
, b1
, kp
);
423 i_nround (b1
, b0
, kp
);
424 i_nround (b0
, b1
, kp
);
425 i_nround (b1
, b0
, kp
);
426 i_lround (b0
, b1
, kp
);
428 u32_out (out
, b0
[0]);
429 u32_out (out
+ 4, b0
[1]);
430 u32_out (out
+ 8, b0
[2]);
431 u32_out (out
+ 12, b0
[3]);
435 static struct crypto_alg aes_alg
= {
437 .cra_flags
= CRYPTO_ALG_TYPE_CIPHER
,
438 .cra_blocksize
= AES_BLOCK_SIZE
,
439 .cra_ctxsize
= sizeof(struct aes_ctx
),
440 .cra_module
= THIS_MODULE
,
441 .cra_list
= LIST_HEAD_INIT(aes_alg
.cra_list
),
444 .cia_min_keysize
= AES_MIN_KEY_SIZE
,
445 .cia_max_keysize
= AES_MAX_KEY_SIZE
,
446 .cia_setkey
= aes_set_key
,
447 .cia_encrypt
= aes_encrypt
,
448 .cia_decrypt
= aes_decrypt
453 static int __init
aes_init(void)
456 return crypto_register_alg(&aes_alg
);
459 static void __exit
aes_fini(void)
461 crypto_unregister_alg(&aes_alg
);
464 module_init(aes_init
);
465 module_exit(aes_fini
);
467 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
468 MODULE_LICENSE("Dual BSD/GPL");