Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / fs / nfs / write.c
blob51f55bba0d8b83ce0d88b96af4e4d0eba8ae122f
1 /*
2 * linux/fs/nfs/write.c
4 * Write file data over NFS.
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
25 #include <asm/uaccess.h>
27 #include "delegation.h"
28 #include "internal.h"
29 #include "iostat.h"
30 #include "nfs4_fs.h"
31 #include "fscache.h"
32 #include "pnfs.h"
34 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
36 #define MIN_POOL_WRITE (32)
37 #define MIN_POOL_COMMIT (4)
40 * Local function declarations
42 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
43 struct inode *inode, int ioflags);
44 static void nfs_redirty_request(struct nfs_page *req);
45 static const struct rpc_call_ops nfs_write_partial_ops;
46 static const struct rpc_call_ops nfs_write_full_ops;
47 static const struct rpc_call_ops nfs_commit_ops;
49 static struct kmem_cache *nfs_wdata_cachep;
50 static mempool_t *nfs_wdata_mempool;
51 static mempool_t *nfs_commit_mempool;
53 struct nfs_write_data *nfs_commitdata_alloc(void)
55 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
57 if (p) {
58 memset(p, 0, sizeof(*p));
59 INIT_LIST_HEAD(&p->pages);
61 return p;
63 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
65 void nfs_commit_free(struct nfs_write_data *p)
67 if (p && (p->pagevec != &p->page_array[0]))
68 kfree(p->pagevec);
69 mempool_free(p, nfs_commit_mempool);
71 EXPORT_SYMBOL_GPL(nfs_commit_free);
73 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
75 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
77 if (p) {
78 memset(p, 0, sizeof(*p));
79 INIT_LIST_HEAD(&p->pages);
80 p->npages = pagecount;
81 if (pagecount <= ARRAY_SIZE(p->page_array))
82 p->pagevec = p->page_array;
83 else {
84 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
85 if (!p->pagevec) {
86 mempool_free(p, nfs_wdata_mempool);
87 p = NULL;
91 return p;
94 void nfs_writedata_free(struct nfs_write_data *p)
96 if (p && (p->pagevec != &p->page_array[0]))
97 kfree(p->pagevec);
98 mempool_free(p, nfs_wdata_mempool);
101 void nfs_writedata_release(struct nfs_write_data *wdata)
103 put_lseg(wdata->lseg);
104 put_nfs_open_context(wdata->args.context);
105 nfs_writedata_free(wdata);
108 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
110 ctx->error = error;
111 smp_wmb();
112 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
115 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
117 struct nfs_page *req = NULL;
119 if (PagePrivate(page)) {
120 req = (struct nfs_page *)page_private(page);
121 if (req != NULL)
122 kref_get(&req->wb_kref);
124 return req;
127 static struct nfs_page *nfs_page_find_request(struct page *page)
129 struct inode *inode = page->mapping->host;
130 struct nfs_page *req = NULL;
132 spin_lock(&inode->i_lock);
133 req = nfs_page_find_request_locked(page);
134 spin_unlock(&inode->i_lock);
135 return req;
138 /* Adjust the file length if we're writing beyond the end */
139 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
141 struct inode *inode = page->mapping->host;
142 loff_t end, i_size;
143 pgoff_t end_index;
145 spin_lock(&inode->i_lock);
146 i_size = i_size_read(inode);
147 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
148 if (i_size > 0 && page->index < end_index)
149 goto out;
150 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
151 if (i_size >= end)
152 goto out;
153 i_size_write(inode, end);
154 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
155 out:
156 spin_unlock(&inode->i_lock);
159 /* A writeback failed: mark the page as bad, and invalidate the page cache */
160 static void nfs_set_pageerror(struct page *page)
162 SetPageError(page);
163 nfs_zap_mapping(page->mapping->host, page->mapping);
166 /* We can set the PG_uptodate flag if we see that a write request
167 * covers the full page.
169 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
171 if (PageUptodate(page))
172 return;
173 if (base != 0)
174 return;
175 if (count != nfs_page_length(page))
176 return;
177 SetPageUptodate(page);
180 static int wb_priority(struct writeback_control *wbc)
182 if (wbc->for_reclaim)
183 return FLUSH_HIGHPRI | FLUSH_STABLE;
184 if (wbc->for_kupdate || wbc->for_background)
185 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
186 return FLUSH_COND_STABLE;
190 * NFS congestion control
193 #define NFS_WAIT_PAGES (1024L >> (PAGE_SHIFT - 10))
194 int nfs_congestion_kb;
197 * SYNC requests will block on (2*limit) and wakeup on (2*limit-NFS_WAIT_PAGES)
198 * ASYNC requests will block on (limit) and wakeup on (limit - NFS_WAIT_PAGES)
199 * In this way SYNC writes will never be blocked by ASYNC ones.
202 static void nfs_set_congested(long nr, struct backing_dev_info *bdi)
204 long limit = nfs_congestion_kb >> (PAGE_SHIFT - 10);
206 if (nr > limit && !test_bit(BDI_async_congested, &bdi->state))
207 set_bdi_congested(bdi, BLK_RW_ASYNC);
208 else if (nr > 2 * limit && !test_bit(BDI_sync_congested, &bdi->state))
209 set_bdi_congested(bdi, BLK_RW_SYNC);
212 static void nfs_wait_congested(int is_sync,
213 struct backing_dev_info *bdi,
214 wait_queue_head_t *wqh)
216 int waitbit = is_sync ? BDI_sync_congested : BDI_async_congested;
217 DEFINE_WAIT(wait);
219 if (!test_bit(waitbit, &bdi->state))
220 return;
222 for (;;) {
223 prepare_to_wait(&wqh[is_sync], &wait, TASK_UNINTERRUPTIBLE);
224 if (!test_bit(waitbit, &bdi->state))
225 break;
227 io_schedule();
229 finish_wait(&wqh[is_sync], &wait);
232 static void nfs_wakeup_congested(long nr,
233 struct backing_dev_info *bdi,
234 wait_queue_head_t *wqh)
236 long limit = nfs_congestion_kb >> (PAGE_SHIFT - 10);
238 if (nr < 2 * limit - min(limit / 8, NFS_WAIT_PAGES)) {
239 if (test_bit(BDI_sync_congested, &bdi->state))
240 clear_bdi_congested(bdi, BLK_RW_SYNC);
241 if (waitqueue_active(&wqh[BLK_RW_SYNC]))
242 wake_up(&wqh[BLK_RW_SYNC]);
244 if (nr < limit - min(limit / 8, NFS_WAIT_PAGES)) {
245 if (test_bit(BDI_async_congested, &bdi->state))
246 clear_bdi_congested(bdi, BLK_RW_ASYNC);
247 if (waitqueue_active(&wqh[BLK_RW_ASYNC]))
248 wake_up(&wqh[BLK_RW_ASYNC]);
252 static int nfs_set_page_writeback(struct page *page)
254 int ret = test_set_page_writeback(page);
256 if (!ret) {
257 struct inode *inode = page->mapping->host;
258 struct nfs_server *nfss = NFS_SERVER(inode);
260 page_cache_get(page);
261 nfs_set_congested(atomic_long_inc_return(&nfss->writeback),
262 &nfss->backing_dev_info);
264 return ret;
267 static void nfs_end_page_writeback(struct page *page)
269 struct inode *inode = page->mapping->host;
270 struct nfs_server *nfss = NFS_SERVER(inode);
272 end_page_writeback(page);
273 page_cache_release(page);
275 nfs_wakeup_congested(atomic_long_dec_return(&nfss->writeback),
276 &nfss->backing_dev_info,
277 nfss->writeback_wait);
280 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
282 struct inode *inode = page->mapping->host;
283 struct nfs_page *req;
284 int ret;
286 spin_lock(&inode->i_lock);
287 for (;;) {
288 req = nfs_page_find_request_locked(page);
289 if (req == NULL)
290 break;
291 if (nfs_set_page_tag_locked(req))
292 break;
293 /* Note: If we hold the page lock, as is the case in nfs_writepage,
294 * then the call to nfs_set_page_tag_locked() will always
295 * succeed provided that someone hasn't already marked the
296 * request as dirty (in which case we don't care).
298 spin_unlock(&inode->i_lock);
299 if (!nonblock)
300 ret = nfs_wait_on_request(req);
301 else
302 ret = -EAGAIN;
303 nfs_release_request(req);
304 if (ret != 0)
305 return ERR_PTR(ret);
306 spin_lock(&inode->i_lock);
308 spin_unlock(&inode->i_lock);
309 return req;
313 * Find an associated nfs write request, and prepare to flush it out
314 * May return an error if the user signalled nfs_wait_on_request().
316 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
317 struct page *page, bool nonblock)
319 struct nfs_page *req;
320 int ret = 0;
322 req = nfs_find_and_lock_request(page, nonblock);
323 if (!req)
324 goto out;
325 ret = PTR_ERR(req);
326 if (IS_ERR(req))
327 goto out;
329 ret = nfs_set_page_writeback(page);
330 BUG_ON(ret != 0);
331 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
333 if (!nfs_pageio_add_request(pgio, req)) {
334 nfs_redirty_request(req);
335 ret = pgio->pg_error;
337 out:
338 return ret;
341 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
343 struct inode *inode = page->mapping->host;
344 int ret;
346 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
347 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
349 nfs_pageio_cond_complete(pgio, page->index);
350 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
351 if (ret == -EAGAIN) {
352 redirty_page_for_writepage(wbc, page);
353 ret = 0;
355 return ret;
359 * Write an mmapped page to the server.
361 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
363 struct nfs_pageio_descriptor pgio;
364 int err;
366 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
367 err = nfs_do_writepage(page, wbc, &pgio);
368 nfs_pageio_complete(&pgio);
369 if (err < 0)
370 return err;
371 if (pgio.pg_error < 0)
372 return pgio.pg_error;
373 return 0;
376 int nfs_writepage(struct page *page, struct writeback_control *wbc)
378 struct inode *inode = page->mapping->host;
379 struct nfs_server *nfss = NFS_SERVER(inode);
380 int ret;
382 ret = nfs_writepage_locked(page, wbc);
383 unlock_page(page);
385 nfs_wait_congested(wbc->sync_mode == WB_SYNC_ALL,
386 &nfss->backing_dev_info,
387 nfss->writeback_wait);
389 return ret;
392 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
394 int ret;
396 ret = nfs_do_writepage(page, wbc, data);
397 unlock_page(page);
398 return ret;
401 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
403 struct inode *inode = mapping->host;
404 struct nfs_server *nfss = NFS_SERVER(inode);
405 unsigned long *bitlock = &NFS_I(inode)->flags;
406 struct nfs_pageio_descriptor pgio;
407 int err;
409 /* Stop dirtying of new pages while we sync */
410 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
411 nfs_wait_bit_killable, TASK_KILLABLE);
412 if (err)
413 goto out_err;
415 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
417 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
418 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
419 nfs_pageio_complete(&pgio);
421 nfs_wait_congested(wbc->sync_mode == WB_SYNC_ALL,
422 &nfss->backing_dev_info,
423 nfss->writeback_wait);
425 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
426 smp_mb__after_clear_bit();
427 wake_up_bit(bitlock, NFS_INO_FLUSHING);
429 if (err < 0)
430 goto out_err;
431 err = pgio.pg_error;
432 if (err < 0)
433 goto out_err;
434 return 0;
435 out_err:
436 return err;
440 * Insert a write request into an inode
442 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
444 struct nfs_inode *nfsi = NFS_I(inode);
445 int error;
447 error = radix_tree_preload(GFP_NOFS);
448 if (error != 0)
449 goto out;
451 /* Lock the request! */
452 nfs_lock_request_dontget(req);
454 spin_lock(&inode->i_lock);
455 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
456 BUG_ON(error);
457 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
458 inode->i_version++;
459 set_bit(PG_MAPPED, &req->wb_flags);
460 SetPagePrivate(req->wb_page);
461 set_page_private(req->wb_page, (unsigned long)req);
462 nfsi->npages++;
463 kref_get(&req->wb_kref);
464 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
465 NFS_PAGE_TAG_LOCKED);
466 spin_unlock(&inode->i_lock);
467 radix_tree_preload_end();
468 out:
469 return error;
473 * Remove a write request from an inode
475 static void nfs_inode_remove_request(struct nfs_page *req)
477 struct inode *inode = req->wb_context->dentry->d_inode;
478 struct nfs_inode *nfsi = NFS_I(inode);
480 BUG_ON (!NFS_WBACK_BUSY(req));
482 spin_lock(&inode->i_lock);
483 set_page_private(req->wb_page, 0);
484 ClearPagePrivate(req->wb_page);
485 clear_bit(PG_MAPPED, &req->wb_flags);
486 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
487 nfsi->npages--;
488 spin_unlock(&inode->i_lock);
489 nfs_release_request(req);
492 static void
493 nfs_mark_request_dirty(struct nfs_page *req)
495 __set_page_dirty_nobuffers(req->wb_page);
498 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
500 * Add a request to the inode's commit list.
502 static void
503 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
505 struct inode *inode = req->wb_context->dentry->d_inode;
506 struct nfs_inode *nfsi = NFS_I(inode);
508 spin_lock(&inode->i_lock);
509 set_bit(PG_CLEAN, &(req)->wb_flags);
510 radix_tree_tag_set(&nfsi->nfs_page_tree,
511 req->wb_index,
512 NFS_PAGE_TAG_COMMIT);
513 nfsi->ncommit++;
514 spin_unlock(&inode->i_lock);
515 pnfs_mark_request_commit(req, lseg);
516 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
517 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
518 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
521 static int
522 nfs_clear_request_commit(struct nfs_page *req)
524 struct page *page = req->wb_page;
526 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
527 dec_zone_page_state(page, NR_UNSTABLE_NFS);
528 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
529 return 1;
531 return 0;
534 static inline
535 int nfs_write_need_commit(struct nfs_write_data *data)
537 if (data->verf.committed == NFS_DATA_SYNC)
538 return data->lseg == NULL;
539 else
540 return data->verf.committed != NFS_FILE_SYNC;
543 static inline
544 int nfs_reschedule_unstable_write(struct nfs_page *req,
545 struct nfs_write_data *data)
547 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
548 nfs_mark_request_commit(req, data->lseg);
549 return 1;
551 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
552 nfs_mark_request_dirty(req);
553 return 1;
555 return 0;
557 #else
558 static inline void
559 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
563 static inline int
564 nfs_clear_request_commit(struct nfs_page *req)
566 return 0;
569 static inline
570 int nfs_write_need_commit(struct nfs_write_data *data)
572 return 0;
575 static inline
576 int nfs_reschedule_unstable_write(struct nfs_page *req,
577 struct nfs_write_data *data)
579 return 0;
581 #endif
583 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
584 static int
585 nfs_need_commit(struct nfs_inode *nfsi)
587 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
591 * nfs_scan_commit - Scan an inode for commit requests
592 * @inode: NFS inode to scan
593 * @dst: destination list
594 * @idx_start: lower bound of page->index to scan.
595 * @npages: idx_start + npages sets the upper bound to scan.
597 * Moves requests from the inode's 'commit' request list.
598 * The requests are *not* checked to ensure that they form a contiguous set.
600 static int
601 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
603 struct nfs_inode *nfsi = NFS_I(inode);
604 int ret;
606 if (!nfs_need_commit(nfsi))
607 return 0;
609 spin_lock(&inode->i_lock);
610 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
611 if (ret > 0)
612 nfsi->ncommit -= ret;
613 spin_unlock(&inode->i_lock);
615 if (nfs_need_commit(NFS_I(inode)))
616 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
618 return ret;
620 #else
621 static inline int nfs_need_commit(struct nfs_inode *nfsi)
623 return 0;
626 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
628 return 0;
630 #endif
633 * Search for an existing write request, and attempt to update
634 * it to reflect a new dirty region on a given page.
636 * If the attempt fails, then the existing request is flushed out
637 * to disk.
639 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
640 struct page *page,
641 unsigned int offset,
642 unsigned int bytes)
644 struct nfs_page *req;
645 unsigned int rqend;
646 unsigned int end;
647 int error;
649 if (!PagePrivate(page))
650 return NULL;
652 end = offset + bytes;
653 spin_lock(&inode->i_lock);
655 for (;;) {
656 req = nfs_page_find_request_locked(page);
657 if (req == NULL)
658 goto out_unlock;
660 rqend = req->wb_offset + req->wb_bytes;
662 * Tell the caller to flush out the request if
663 * the offsets are non-contiguous.
664 * Note: nfs_flush_incompatible() will already
665 * have flushed out requests having wrong owners.
667 if (offset > rqend
668 || end < req->wb_offset)
669 goto out_flushme;
671 if (nfs_set_page_tag_locked(req))
672 break;
674 /* The request is locked, so wait and then retry */
675 spin_unlock(&inode->i_lock);
676 error = nfs_wait_on_request(req);
677 nfs_release_request(req);
678 if (error != 0)
679 goto out_err;
680 spin_lock(&inode->i_lock);
683 if (nfs_clear_request_commit(req) &&
684 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
685 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
686 NFS_I(inode)->ncommit--;
687 pnfs_clear_request_commit(req);
690 /* Okay, the request matches. Update the region */
691 if (offset < req->wb_offset) {
692 req->wb_offset = offset;
693 req->wb_pgbase = offset;
695 if (end > rqend)
696 req->wb_bytes = end - req->wb_offset;
697 else
698 req->wb_bytes = rqend - req->wb_offset;
699 out_unlock:
700 spin_unlock(&inode->i_lock);
701 return req;
702 out_flushme:
703 spin_unlock(&inode->i_lock);
704 nfs_release_request(req);
705 error = nfs_wb_page(inode, page);
706 out_err:
707 return ERR_PTR(error);
711 * Try to update an existing write request, or create one if there is none.
713 * Note: Should always be called with the Page Lock held to prevent races
714 * if we have to add a new request. Also assumes that the caller has
715 * already called nfs_flush_incompatible() if necessary.
717 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
718 struct page *page, unsigned int offset, unsigned int bytes)
720 struct inode *inode = page->mapping->host;
721 struct nfs_page *req;
722 int error;
724 req = nfs_try_to_update_request(inode, page, offset, bytes);
725 if (req != NULL)
726 goto out;
727 req = nfs_create_request(ctx, inode, page, offset, bytes);
728 if (IS_ERR(req))
729 goto out;
730 error = nfs_inode_add_request(inode, req);
731 if (error != 0) {
732 nfs_release_request(req);
733 req = ERR_PTR(error);
735 out:
736 return req;
739 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
740 unsigned int offset, unsigned int count)
742 struct nfs_page *req;
744 req = nfs_setup_write_request(ctx, page, offset, count);
745 if (IS_ERR(req))
746 return PTR_ERR(req);
747 /* Update file length */
748 nfs_grow_file(page, offset, count);
749 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
750 nfs_mark_request_dirty(req);
751 nfs_clear_page_tag_locked(req);
752 return 0;
755 int nfs_flush_incompatible(struct file *file, struct page *page)
757 struct nfs_open_context *ctx = nfs_file_open_context(file);
758 struct nfs_page *req;
759 int do_flush, status;
761 * Look for a request corresponding to this page. If there
762 * is one, and it belongs to another file, we flush it out
763 * before we try to copy anything into the page. Do this
764 * due to the lack of an ACCESS-type call in NFSv2.
765 * Also do the same if we find a request from an existing
766 * dropped page.
768 do {
769 req = nfs_page_find_request(page);
770 if (req == NULL)
771 return 0;
772 do_flush = req->wb_page != page || req->wb_context != ctx ||
773 req->wb_lock_context->lockowner != current->files ||
774 req->wb_lock_context->pid != current->tgid;
775 nfs_release_request(req);
776 if (!do_flush)
777 return 0;
778 status = nfs_wb_page(page->mapping->host, page);
779 } while (status == 0);
780 return status;
784 * If the page cache is marked as unsafe or invalid, then we can't rely on
785 * the PageUptodate() flag. In this case, we will need to turn off
786 * write optimisations that depend on the page contents being correct.
788 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
790 return PageUptodate(page) &&
791 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
795 * Update and possibly write a cached page of an NFS file.
797 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
798 * things with a page scheduled for an RPC call (e.g. invalidate it).
800 int nfs_updatepage(struct file *file, struct page *page,
801 unsigned int offset, unsigned int count)
803 struct nfs_open_context *ctx = nfs_file_open_context(file);
804 struct inode *inode = page->mapping->host;
805 int status = 0;
807 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
809 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
810 file->f_path.dentry->d_parent->d_name.name,
811 file->f_path.dentry->d_name.name, count,
812 (long long)(page_offset(page) + offset));
814 /* If we're not using byte range locks, and we know the page
815 * is up to date, it may be more efficient to extend the write
816 * to cover the entire page in order to avoid fragmentation
817 * inefficiencies.
819 if (nfs_write_pageuptodate(page, inode) &&
820 inode->i_flock == NULL &&
821 !(file->f_flags & O_DSYNC)) {
822 count = max(count + offset, nfs_page_length(page));
823 offset = 0;
826 status = nfs_writepage_setup(ctx, page, offset, count);
827 if (status < 0)
828 nfs_set_pageerror(page);
829 else
830 __set_page_dirty_nobuffers(page);
832 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
833 status, (long long)i_size_read(inode));
834 return status;
837 static void nfs_writepage_release(struct nfs_page *req,
838 struct nfs_write_data *data)
840 struct page *page = req->wb_page;
842 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
843 nfs_inode_remove_request(req);
844 nfs_clear_page_tag_locked(req);
845 nfs_end_page_writeback(page);
848 static int flush_task_priority(int how)
850 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
851 case FLUSH_HIGHPRI:
852 return RPC_PRIORITY_HIGH;
853 case FLUSH_LOWPRI:
854 return RPC_PRIORITY_LOW;
856 return RPC_PRIORITY_NORMAL;
859 int nfs_initiate_write(struct nfs_write_data *data,
860 struct rpc_clnt *clnt,
861 const struct rpc_call_ops *call_ops,
862 int how)
864 struct inode *inode = data->inode;
865 int priority = flush_task_priority(how);
866 struct rpc_task *task;
867 struct rpc_message msg = {
868 .rpc_argp = &data->args,
869 .rpc_resp = &data->res,
870 .rpc_cred = data->cred,
872 struct rpc_task_setup task_setup_data = {
873 .rpc_client = clnt,
874 .task = &data->task,
875 .rpc_message = &msg,
876 .callback_ops = call_ops,
877 .callback_data = data,
878 .workqueue = nfsiod_workqueue,
879 .flags = RPC_TASK_ASYNC,
880 .priority = priority,
882 int ret = 0;
884 /* Set up the initial task struct. */
885 NFS_PROTO(inode)->write_setup(data, &msg);
887 dprintk("NFS: %5u initiated write call "
888 "(req %s/%lld, %u bytes @ offset %llu)\n",
889 data->task.tk_pid,
890 inode->i_sb->s_id,
891 (long long)NFS_FILEID(inode),
892 data->args.count,
893 (unsigned long long)data->args.offset);
895 task = rpc_run_task(&task_setup_data);
896 if (IS_ERR(task)) {
897 ret = PTR_ERR(task);
898 goto out;
900 if (how & FLUSH_SYNC) {
901 ret = rpc_wait_for_completion_task(task);
902 if (ret == 0)
903 ret = task->tk_status;
905 rpc_put_task(task);
906 out:
907 return ret;
909 EXPORT_SYMBOL_GPL(nfs_initiate_write);
912 * Set up the argument/result storage required for the RPC call.
914 static void nfs_write_rpcsetup(struct nfs_page *req,
915 struct nfs_write_data *data,
916 unsigned int count, unsigned int offset,
917 int how)
919 struct inode *inode = req->wb_context->dentry->d_inode;
921 /* Set up the RPC argument and reply structs
922 * NB: take care not to mess about with data->commit et al. */
924 data->req = req;
925 data->inode = inode = req->wb_context->dentry->d_inode;
926 data->cred = req->wb_context->cred;
928 data->args.fh = NFS_FH(inode);
929 data->args.offset = req_offset(req) + offset;
930 /* pnfs_set_layoutcommit needs this */
931 data->mds_offset = data->args.offset;
932 data->args.pgbase = req->wb_pgbase + offset;
933 data->args.pages = data->pagevec;
934 data->args.count = count;
935 data->args.context = get_nfs_open_context(req->wb_context);
936 data->args.lock_context = req->wb_lock_context;
937 data->args.stable = NFS_UNSTABLE;
938 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
939 case 0:
940 break;
941 case FLUSH_COND_STABLE:
942 if (nfs_need_commit(NFS_I(inode)))
943 break;
944 default:
945 data->args.stable = NFS_FILE_SYNC;
948 data->res.fattr = &data->fattr;
949 data->res.count = count;
950 data->res.verf = &data->verf;
951 nfs_fattr_init(&data->fattr);
954 static int nfs_do_write(struct nfs_write_data *data,
955 const struct rpc_call_ops *call_ops,
956 int how)
958 struct inode *inode = data->args.context->dentry->d_inode;
960 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
963 static int nfs_do_multiple_writes(struct list_head *head,
964 const struct rpc_call_ops *call_ops,
965 int how)
967 struct nfs_write_data *data;
968 int ret = 0;
970 while (!list_empty(head)) {
971 int ret2;
973 data = list_entry(head->next, struct nfs_write_data, list);
974 list_del_init(&data->list);
976 ret2 = nfs_do_write(data, call_ops, how);
977 if (ret == 0)
978 ret = ret2;
980 return ret;
983 /* If a nfs_flush_* function fails, it should remove reqs from @head and
984 * call this on each, which will prepare them to be retried on next
985 * writeback using standard nfs.
987 static void nfs_redirty_request(struct nfs_page *req)
989 struct page *page = req->wb_page;
991 nfs_mark_request_dirty(req);
992 nfs_clear_page_tag_locked(req);
993 nfs_end_page_writeback(page);
997 * Generate multiple small requests to write out a single
998 * contiguous dirty area on one page.
1000 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
1002 struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
1003 struct page *page = req->wb_page;
1004 struct nfs_write_data *data;
1005 size_t wsize = desc->pg_bsize, nbytes;
1006 unsigned int offset;
1007 int requests = 0;
1008 int ret = 0;
1010 nfs_list_remove_request(req);
1012 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1013 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
1014 desc->pg_count > wsize))
1015 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1018 offset = 0;
1019 nbytes = desc->pg_count;
1020 do {
1021 size_t len = min(nbytes, wsize);
1023 data = nfs_writedata_alloc(1);
1024 if (!data)
1025 goto out_bad;
1026 data->pagevec[0] = page;
1027 nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags);
1028 list_add(&data->list, res);
1029 requests++;
1030 nbytes -= len;
1031 offset += len;
1032 } while (nbytes != 0);
1033 atomic_set(&req->wb_complete, requests);
1034 desc->pg_rpc_callops = &nfs_write_partial_ops;
1035 return ret;
1037 out_bad:
1038 while (!list_empty(res)) {
1039 data = list_entry(res->next, struct nfs_write_data, list);
1040 list_del(&data->list);
1041 nfs_writedata_release(data);
1043 nfs_redirty_request(req);
1044 return -ENOMEM;
1048 * Create an RPC task for the given write request and kick it.
1049 * The page must have been locked by the caller.
1051 * It may happen that the page we're passed is not marked dirty.
1052 * This is the case if nfs_updatepage detects a conflicting request
1053 * that has been written but not committed.
1055 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
1057 struct nfs_page *req;
1058 struct page **pages;
1059 struct nfs_write_data *data;
1060 struct list_head *head = &desc->pg_list;
1061 int ret = 0;
1063 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
1064 desc->pg_count));
1065 if (!data) {
1066 while (!list_empty(head)) {
1067 req = nfs_list_entry(head->next);
1068 nfs_list_remove_request(req);
1069 nfs_redirty_request(req);
1071 ret = -ENOMEM;
1072 goto out;
1074 pages = data->pagevec;
1075 while (!list_empty(head)) {
1076 req = nfs_list_entry(head->next);
1077 nfs_list_remove_request(req);
1078 nfs_list_add_request(req, &data->pages);
1079 *pages++ = req->wb_page;
1081 req = nfs_list_entry(data->pages.next);
1083 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1084 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1085 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1087 /* Set up the argument struct */
1088 nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
1089 list_add(&data->list, res);
1090 desc->pg_rpc_callops = &nfs_write_full_ops;
1091 out:
1092 return ret;
1095 int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head)
1097 if (desc->pg_bsize < PAGE_CACHE_SIZE)
1098 return nfs_flush_multi(desc, head);
1099 return nfs_flush_one(desc, head);
1102 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1104 LIST_HEAD(head);
1105 int ret;
1107 ret = nfs_generic_flush(desc, &head);
1108 if (ret == 0)
1109 ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops,
1110 desc->pg_ioflags);
1111 return ret;
1114 static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1115 .pg_test = nfs_generic_pg_test,
1116 .pg_doio = nfs_generic_pg_writepages,
1119 void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
1120 struct inode *inode, int ioflags)
1122 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
1123 NFS_SERVER(inode)->wsize, ioflags);
1126 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1128 pgio->pg_ops = &nfs_pageio_write_ops;
1129 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1131 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1133 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1134 struct inode *inode, int ioflags)
1136 if (!pnfs_pageio_init_write(pgio, inode, ioflags))
1137 nfs_pageio_init_write_mds(pgio, inode, ioflags);
1141 * Handle a write reply that flushed part of a page.
1143 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1145 struct nfs_write_data *data = calldata;
1147 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1148 task->tk_pid,
1149 data->req->wb_context->dentry->d_inode->i_sb->s_id,
1150 (long long)
1151 NFS_FILEID(data->req->wb_context->dentry->d_inode),
1152 data->req->wb_bytes, (long long)req_offset(data->req));
1154 nfs_writeback_done(task, data);
1157 static void nfs_writeback_release_partial(void *calldata)
1159 struct nfs_write_data *data = calldata;
1160 struct nfs_page *req = data->req;
1161 struct page *page = req->wb_page;
1162 int status = data->task.tk_status;
1164 if (status < 0) {
1165 nfs_set_pageerror(page);
1166 nfs_context_set_write_error(req->wb_context, status);
1167 dprintk(", error = %d\n", status);
1168 goto out;
1171 if (nfs_write_need_commit(data)) {
1172 struct inode *inode = page->mapping->host;
1174 spin_lock(&inode->i_lock);
1175 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1176 /* Do nothing we need to resend the writes */
1177 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1178 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1179 dprintk(" defer commit\n");
1180 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1181 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1182 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1183 dprintk(" server reboot detected\n");
1185 spin_unlock(&inode->i_lock);
1186 } else
1187 dprintk(" OK\n");
1189 out:
1190 if (atomic_dec_and_test(&req->wb_complete))
1191 nfs_writepage_release(req, data);
1192 nfs_writedata_release(calldata);
1195 #if defined(CONFIG_NFS_V4_1)
1196 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1198 struct nfs_write_data *data = calldata;
1200 if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1201 &data->args.seq_args,
1202 &data->res.seq_res, 1, task))
1203 return;
1204 rpc_call_start(task);
1206 #endif /* CONFIG_NFS_V4_1 */
1208 static const struct rpc_call_ops nfs_write_partial_ops = {
1209 #if defined(CONFIG_NFS_V4_1)
1210 .rpc_call_prepare = nfs_write_prepare,
1211 #endif /* CONFIG_NFS_V4_1 */
1212 .rpc_call_done = nfs_writeback_done_partial,
1213 .rpc_release = nfs_writeback_release_partial,
1217 * Handle a write reply that flushes a whole page.
1219 * FIXME: There is an inherent race with invalidate_inode_pages and
1220 * writebacks since the page->count is kept > 1 for as long
1221 * as the page has a write request pending.
1223 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1225 struct nfs_write_data *data = calldata;
1227 nfs_writeback_done(task, data);
1230 static void nfs_writeback_release_full(void *calldata)
1232 struct nfs_write_data *data = calldata;
1233 int status = data->task.tk_status;
1235 /* Update attributes as result of writeback. */
1236 while (!list_empty(&data->pages)) {
1237 struct nfs_page *req = nfs_list_entry(data->pages.next);
1238 struct page *page = req->wb_page;
1240 nfs_list_remove_request(req);
1242 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1243 data->task.tk_pid,
1244 req->wb_context->dentry->d_inode->i_sb->s_id,
1245 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1246 req->wb_bytes,
1247 (long long)req_offset(req));
1249 if (status < 0) {
1250 nfs_set_pageerror(page);
1251 nfs_context_set_write_error(req->wb_context, status);
1252 dprintk(", error = %d\n", status);
1253 goto remove_request;
1256 if (nfs_write_need_commit(data)) {
1257 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1258 nfs_mark_request_commit(req, data->lseg);
1259 dprintk(" marked for commit\n");
1260 goto next;
1262 dprintk(" OK\n");
1263 remove_request:
1264 nfs_inode_remove_request(req);
1265 next:
1266 nfs_clear_page_tag_locked(req);
1267 nfs_end_page_writeback(page);
1269 nfs_writedata_release(calldata);
1272 static const struct rpc_call_ops nfs_write_full_ops = {
1273 #if defined(CONFIG_NFS_V4_1)
1274 .rpc_call_prepare = nfs_write_prepare,
1275 #endif /* CONFIG_NFS_V4_1 */
1276 .rpc_call_done = nfs_writeback_done_full,
1277 .rpc_release = nfs_writeback_release_full,
1282 * This function is called when the WRITE call is complete.
1284 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1286 struct nfs_writeargs *argp = &data->args;
1287 struct nfs_writeres *resp = &data->res;
1288 int status;
1290 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1291 task->tk_pid, task->tk_status);
1294 * ->write_done will attempt to use post-op attributes to detect
1295 * conflicting writes by other clients. A strict interpretation
1296 * of close-to-open would allow us to continue caching even if
1297 * another writer had changed the file, but some applications
1298 * depend on tighter cache coherency when writing.
1300 status = NFS_PROTO(data->inode)->write_done(task, data);
1301 if (status != 0)
1302 return;
1303 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1305 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1306 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1307 /* We tried a write call, but the server did not
1308 * commit data to stable storage even though we
1309 * requested it.
1310 * Note: There is a known bug in Tru64 < 5.0 in which
1311 * the server reports NFS_DATA_SYNC, but performs
1312 * NFS_FILE_SYNC. We therefore implement this checking
1313 * as a dprintk() in order to avoid filling syslog.
1315 static unsigned long complain;
1317 /* Note this will print the MDS for a DS write */
1318 if (time_before(complain, jiffies)) {
1319 dprintk("NFS: faulty NFS server %s:"
1320 " (committed = %d) != (stable = %d)\n",
1321 NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1322 resp->verf->committed, argp->stable);
1323 complain = jiffies + 300 * HZ;
1326 #endif
1327 /* Is this a short write? */
1328 if (task->tk_status >= 0 && resp->count < argp->count) {
1329 static unsigned long complain;
1331 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1333 /* Has the server at least made some progress? */
1334 if (resp->count != 0) {
1335 /* Was this an NFSv2 write or an NFSv3 stable write? */
1336 if (resp->verf->committed != NFS_UNSTABLE) {
1337 /* Resend from where the server left off */
1338 data->mds_offset += resp->count;
1339 argp->offset += resp->count;
1340 argp->pgbase += resp->count;
1341 argp->count -= resp->count;
1342 } else {
1343 /* Resend as a stable write in order to avoid
1344 * headaches in the case of a server crash.
1346 argp->stable = NFS_FILE_SYNC;
1348 rpc_restart_call_prepare(task);
1349 return;
1351 if (time_before(complain, jiffies)) {
1352 printk(KERN_WARNING
1353 "NFS: Server wrote zero bytes, expected %u.\n",
1354 argp->count);
1355 complain = jiffies + 300 * HZ;
1357 /* Can't do anything about it except throw an error. */
1358 task->tk_status = -EIO;
1360 return;
1364 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1365 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1367 int ret;
1369 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1370 return 1;
1371 if (!may_wait)
1372 return 0;
1373 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1374 NFS_INO_COMMIT,
1375 nfs_wait_bit_killable,
1376 TASK_KILLABLE);
1377 return (ret < 0) ? ret : 1;
1380 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1382 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1383 smp_mb__after_clear_bit();
1384 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1386 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1388 void nfs_commitdata_release(void *data)
1390 struct nfs_write_data *wdata = data;
1392 put_lseg(wdata->lseg);
1393 put_nfs_open_context(wdata->args.context);
1394 nfs_commit_free(wdata);
1396 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1398 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1399 const struct rpc_call_ops *call_ops,
1400 int how)
1402 struct rpc_task *task;
1403 int priority = flush_task_priority(how);
1404 struct rpc_message msg = {
1405 .rpc_argp = &data->args,
1406 .rpc_resp = &data->res,
1407 .rpc_cred = data->cred,
1409 struct rpc_task_setup task_setup_data = {
1410 .task = &data->task,
1411 .rpc_client = clnt,
1412 .rpc_message = &msg,
1413 .callback_ops = call_ops,
1414 .callback_data = data,
1415 .workqueue = nfsiod_workqueue,
1416 .flags = RPC_TASK_ASYNC,
1417 .priority = priority,
1419 /* Set up the initial task struct. */
1420 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1422 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1424 task = rpc_run_task(&task_setup_data);
1425 if (IS_ERR(task))
1426 return PTR_ERR(task);
1427 if (how & FLUSH_SYNC)
1428 rpc_wait_for_completion_task(task);
1429 rpc_put_task(task);
1430 return 0;
1432 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1435 * Set up the argument/result storage required for the RPC call.
1437 void nfs_init_commit(struct nfs_write_data *data,
1438 struct list_head *head,
1439 struct pnfs_layout_segment *lseg)
1441 struct nfs_page *first = nfs_list_entry(head->next);
1442 struct inode *inode = first->wb_context->dentry->d_inode;
1444 /* Set up the RPC argument and reply structs
1445 * NB: take care not to mess about with data->commit et al. */
1447 list_splice_init(head, &data->pages);
1449 data->inode = inode;
1450 data->cred = first->wb_context->cred;
1451 data->lseg = lseg; /* reference transferred */
1452 data->mds_ops = &nfs_commit_ops;
1454 data->args.fh = NFS_FH(data->inode);
1455 /* Note: we always request a commit of the entire inode */
1456 data->args.offset = 0;
1457 data->args.count = 0;
1458 data->args.context = get_nfs_open_context(first->wb_context);
1459 data->res.count = 0;
1460 data->res.fattr = &data->fattr;
1461 data->res.verf = &data->verf;
1462 nfs_fattr_init(&data->fattr);
1464 EXPORT_SYMBOL_GPL(nfs_init_commit);
1466 void nfs_retry_commit(struct list_head *page_list,
1467 struct pnfs_layout_segment *lseg)
1469 struct nfs_page *req;
1471 while (!list_empty(page_list)) {
1472 req = nfs_list_entry(page_list->next);
1473 nfs_list_remove_request(req);
1474 nfs_mark_request_commit(req, lseg);
1475 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1476 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1477 BDI_RECLAIMABLE);
1478 nfs_clear_page_tag_locked(req);
1481 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1484 * Commit dirty pages
1486 static int
1487 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1489 struct nfs_write_data *data;
1491 data = nfs_commitdata_alloc();
1493 if (!data)
1494 goto out_bad;
1496 /* Set up the argument struct */
1497 nfs_init_commit(data, head, NULL);
1498 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1499 out_bad:
1500 nfs_retry_commit(head, NULL);
1501 nfs_commit_clear_lock(NFS_I(inode));
1502 return -ENOMEM;
1506 * COMMIT call returned
1508 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1510 struct nfs_write_data *data = calldata;
1512 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1513 task->tk_pid, task->tk_status);
1515 /* Call the NFS version-specific code */
1516 NFS_PROTO(data->inode)->commit_done(task, data);
1519 void nfs_commit_release_pages(struct nfs_write_data *data)
1521 struct nfs_page *req;
1522 int status = data->task.tk_status;
1524 while (!list_empty(&data->pages)) {
1525 req = nfs_list_entry(data->pages.next);
1526 nfs_list_remove_request(req);
1527 nfs_clear_request_commit(req);
1529 dprintk("NFS: commit (%s/%lld %d@%lld)",
1530 req->wb_context->dentry->d_sb->s_id,
1531 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1532 req->wb_bytes,
1533 (long long)req_offset(req));
1534 if (status < 0) {
1535 nfs_context_set_write_error(req->wb_context, status);
1536 nfs_inode_remove_request(req);
1537 dprintk(", error = %d\n", status);
1538 goto next;
1541 /* Okay, COMMIT succeeded, apparently. Check the verifier
1542 * returned by the server against all stored verfs. */
1543 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1544 /* We have a match */
1545 nfs_inode_remove_request(req);
1546 dprintk(" OK\n");
1547 goto next;
1549 /* We have a mismatch. Write the page again */
1550 dprintk(" mismatch\n");
1551 nfs_mark_request_dirty(req);
1552 next:
1553 nfs_clear_page_tag_locked(req);
1556 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1558 static void nfs_commit_release(void *calldata)
1560 struct nfs_write_data *data = calldata;
1562 nfs_commit_release_pages(data);
1563 nfs_commit_clear_lock(NFS_I(data->inode));
1564 nfs_commitdata_release(calldata);
1567 static const struct rpc_call_ops nfs_commit_ops = {
1568 #if defined(CONFIG_NFS_V4_1)
1569 .rpc_call_prepare = nfs_write_prepare,
1570 #endif /* CONFIG_NFS_V4_1 */
1571 .rpc_call_done = nfs_commit_done,
1572 .rpc_release = nfs_commit_release,
1575 int nfs_commit_inode(struct inode *inode, int how)
1577 LIST_HEAD(head);
1578 int may_wait = how & FLUSH_SYNC;
1579 int res;
1581 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1582 if (res <= 0)
1583 goto out_mark_dirty;
1584 res = nfs_scan_commit(inode, &head, 0, 0);
1585 if (res) {
1586 int error;
1588 error = pnfs_commit_list(inode, &head, how);
1589 if (error == PNFS_NOT_ATTEMPTED)
1590 error = nfs_commit_list(inode, &head, how);
1591 if (error < 0)
1592 return error;
1593 if (!may_wait)
1594 goto out_mark_dirty;
1595 error = wait_on_bit(&NFS_I(inode)->flags,
1596 NFS_INO_COMMIT,
1597 nfs_wait_bit_killable,
1598 TASK_KILLABLE);
1599 if (error < 0)
1600 return error;
1601 } else
1602 nfs_commit_clear_lock(NFS_I(inode));
1603 return res;
1604 /* Note: If we exit without ensuring that the commit is complete,
1605 * we must mark the inode as dirty. Otherwise, future calls to
1606 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1607 * that the data is on the disk.
1609 out_mark_dirty:
1610 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1611 return res;
1614 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1616 struct nfs_inode *nfsi = NFS_I(inode);
1617 int flags = FLUSH_SYNC;
1618 int ret = 0;
1620 /* no commits means nothing needs to be done */
1621 if (!nfsi->ncommit)
1622 return ret;
1624 if (wbc->sync_mode == WB_SYNC_NONE) {
1625 /* Don't commit yet if this is a non-blocking flush and there
1626 * are a lot of outstanding writes for this mapping.
1628 if (nfsi->ncommit <= (nfsi->npages >> 1))
1629 goto out_mark_dirty;
1631 /* don't wait for the COMMIT response */
1632 flags = 0;
1635 ret = nfs_commit_inode(inode, flags);
1636 if (ret >= 0) {
1637 if (wbc->sync_mode == WB_SYNC_NONE) {
1638 if (ret < wbc->nr_to_write)
1639 wbc->nr_to_write -= ret;
1640 else
1641 wbc->nr_to_write = 0;
1643 return 0;
1645 out_mark_dirty:
1646 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1647 return ret;
1649 #else
1650 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1652 return 0;
1654 #endif
1656 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1658 int ret;
1660 ret = nfs_commit_unstable_pages(inode, wbc);
1661 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1662 int status;
1663 bool sync = true;
1665 if (wbc->sync_mode == WB_SYNC_NONE)
1666 sync = false;
1668 status = pnfs_layoutcommit_inode(inode, sync);
1669 if (status < 0)
1670 return status;
1672 return ret;
1676 * flush the inode to disk.
1678 int nfs_wb_all(struct inode *inode)
1680 struct writeback_control wbc = {
1681 .sync_mode = WB_SYNC_ALL,
1682 .nr_to_write = LONG_MAX,
1683 .range_start = 0,
1684 .range_end = LLONG_MAX,
1687 return sync_inode(inode, &wbc);
1690 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1692 struct nfs_page *req;
1693 int ret = 0;
1695 BUG_ON(!PageLocked(page));
1696 for (;;) {
1697 wait_on_page_writeback(page);
1698 req = nfs_page_find_request(page);
1699 if (req == NULL)
1700 break;
1701 if (nfs_lock_request_dontget(req)) {
1702 nfs_inode_remove_request(req);
1704 * In case nfs_inode_remove_request has marked the
1705 * page as being dirty
1707 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1708 nfs_unlock_request(req);
1709 break;
1711 ret = nfs_wait_on_request(req);
1712 nfs_release_request(req);
1713 if (ret < 0)
1714 break;
1716 return ret;
1720 * Write back all requests on one page - we do this before reading it.
1722 int nfs_wb_page(struct inode *inode, struct page *page)
1724 loff_t range_start = page_offset(page);
1725 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1726 struct writeback_control wbc = {
1727 .sync_mode = WB_SYNC_ALL,
1728 .nr_to_write = 0,
1729 .range_start = range_start,
1730 .range_end = range_end,
1732 int ret;
1734 for (;;) {
1735 wait_on_page_writeback(page);
1736 if (clear_page_dirty_for_io(page)) {
1737 ret = nfs_writepage_locked(page, &wbc);
1738 if (ret < 0)
1739 goto out_error;
1740 continue;
1742 if (!PagePrivate(page))
1743 break;
1744 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1745 if (ret < 0)
1746 goto out_error;
1748 return 0;
1749 out_error:
1750 return ret;
1753 #ifdef CONFIG_MIGRATION
1754 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1755 struct page *page, enum migrate_mode mode)
1758 * If PagePrivate is set, then the page is currently associated with
1759 * an in-progress read or write request. Don't try to migrate it.
1761 * FIXME: we could do this in principle, but we'll need a way to ensure
1762 * that we can safely release the inode reference while holding
1763 * the page lock.
1765 if (PagePrivate(page))
1766 return -EBUSY;
1768 nfs_fscache_release_page(page, GFP_KERNEL);
1770 return migrate_page(mapping, newpage, page, mode);
1772 #endif
1774 int __init nfs_init_writepagecache(void)
1776 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1777 sizeof(struct nfs_write_data),
1778 0, SLAB_HWCACHE_ALIGN,
1779 NULL);
1780 if (nfs_wdata_cachep == NULL)
1781 return -ENOMEM;
1783 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1784 nfs_wdata_cachep);
1785 if (nfs_wdata_mempool == NULL)
1786 return -ENOMEM;
1788 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1789 nfs_wdata_cachep);
1790 if (nfs_commit_mempool == NULL)
1791 return -ENOMEM;
1794 * NFS congestion size, scale with available memory.
1796 * 64MB: 8192k
1797 * 128MB: 11585k
1798 * 256MB: 16384k
1799 * 512MB: 23170k
1800 * 1GB: 32768k
1801 * 2GB: 46340k
1802 * 4GB: 65536k
1803 * 8GB: 92681k
1804 * 16GB: 131072k
1806 * This allows larger machines to have larger/more transfers.
1807 * Limit the default to 256M
1809 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1810 if (nfs_congestion_kb > 256*1024)
1811 nfs_congestion_kb = 256*1024;
1813 return 0;
1816 void nfs_destroy_writepagecache(void)
1818 mempool_destroy(nfs_commit_mempool);
1819 mempool_destroy(nfs_wdata_mempool);
1820 kmem_cache_destroy(nfs_wdata_cachep);