Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / fs / proc / task_mmu.c
blobe476a6fa7fff65768086126aaa759f6139dc1768
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
15 #include <asm/elf.h>
16 #include <asm/uaccess.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
20 void task_mem(struct seq_file *m, struct mm_struct *mm)
22 unsigned long data, text, lib, swap;
23 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26 * Note: to minimize their overhead, mm maintains hiwater_vm and
27 * hiwater_rss only when about to *lower* total_vm or rss. Any
28 * collector of these hiwater stats must therefore get total_vm
29 * and rss too, which will usually be the higher. Barriers? not
30 * worth the effort, such snapshots can always be inconsistent.
32 hiwater_vm = total_vm = mm->total_vm;
33 if (hiwater_vm < mm->hiwater_vm)
34 hiwater_vm = mm->hiwater_vm;
35 hiwater_rss = total_rss = get_mm_rss(mm);
36 if (hiwater_rss < mm->hiwater_rss)
37 hiwater_rss = mm->hiwater_rss;
39 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
40 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
41 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
42 swap = get_mm_counter(mm, MM_SWAPENTS);
43 seq_printf(m,
44 "VmPeak:\t%8lu kB\n"
45 "VmSize:\t%8lu kB\n"
46 "VmLck:\t%8lu kB\n"
47 "VmPin:\t%8lu kB\n"
48 "VmHWM:\t%8lu kB\n"
49 "VmRSS:\t%8lu kB\n"
50 "VmData:\t%8lu kB\n"
51 "VmStk:\t%8lu kB\n"
52 "VmExe:\t%8lu kB\n"
53 "VmLib:\t%8lu kB\n"
54 "VmPTE:\t%8lu kB\n"
55 "VmSwap:\t%8lu kB\n",
56 hiwater_vm << (PAGE_SHIFT-10),
57 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
58 mm->locked_vm << (PAGE_SHIFT-10),
59 mm->pinned_vm << (PAGE_SHIFT-10),
60 hiwater_rss << (PAGE_SHIFT-10),
61 total_rss << (PAGE_SHIFT-10),
62 data << (PAGE_SHIFT-10),
63 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
64 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
65 swap << (PAGE_SHIFT-10));
68 unsigned long task_vsize(struct mm_struct *mm)
70 return PAGE_SIZE * mm->total_vm;
73 unsigned long task_statm(struct mm_struct *mm,
74 unsigned long *shared, unsigned long *text,
75 unsigned long *data, unsigned long *resident)
77 *shared = get_mm_counter(mm, MM_FILEPAGES);
78 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
79 >> PAGE_SHIFT;
80 *data = mm->total_vm - mm->shared_vm;
81 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
82 return mm->total_vm;
85 static void pad_len_spaces(struct seq_file *m, int len)
87 len = 25 + sizeof(void*) * 6 - len;
88 if (len < 1)
89 len = 1;
90 seq_printf(m, "%*c", len, ' ');
93 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
95 if (vma && vma != priv->tail_vma) {
96 struct mm_struct *mm = vma->vm_mm;
97 up_read(&mm->mmap_sem);
98 mmput(mm);
102 static void *m_start(struct seq_file *m, loff_t *pos)
104 struct proc_maps_private *priv = m->private;
105 unsigned long last_addr = m->version;
106 struct mm_struct *mm;
107 struct vm_area_struct *vma, *tail_vma = NULL;
108 loff_t l = *pos;
110 /* Clear the per syscall fields in priv */
111 priv->task = NULL;
112 priv->tail_vma = NULL;
115 * We remember last_addr rather than next_addr to hit with
116 * mmap_cache most of the time. We have zero last_addr at
117 * the beginning and also after lseek. We will have -1 last_addr
118 * after the end of the vmas.
121 if (last_addr == -1UL)
122 return NULL;
124 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
125 if (!priv->task)
126 return ERR_PTR(-ESRCH);
128 mm = mm_for_maps(priv->task);
129 if (!mm || IS_ERR(mm))
130 return mm;
131 down_read(&mm->mmap_sem);
133 tail_vma = get_gate_vma(priv->task->mm);
134 priv->tail_vma = tail_vma;
136 /* Start with last addr hint */
137 vma = find_vma(mm, last_addr);
138 if (last_addr && vma) {
139 vma = vma->vm_next;
140 goto out;
144 * Check the vma index is within the range and do
145 * sequential scan until m_index.
147 vma = NULL;
148 if ((unsigned long)l < mm->map_count) {
149 vma = mm->mmap;
150 while (l-- && vma)
151 vma = vma->vm_next;
152 goto out;
155 if (l != mm->map_count)
156 tail_vma = NULL; /* After gate vma */
158 out:
159 if (vma)
160 return vma;
162 /* End of vmas has been reached */
163 m->version = (tail_vma != NULL)? 0: -1UL;
164 up_read(&mm->mmap_sem);
165 mmput(mm);
166 return tail_vma;
169 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
171 struct proc_maps_private *priv = m->private;
172 struct vm_area_struct *vma = v;
173 struct vm_area_struct *tail_vma = priv->tail_vma;
175 (*pos)++;
176 if (vma && (vma != tail_vma) && vma->vm_next)
177 return vma->vm_next;
178 vma_stop(priv, vma);
179 return (vma != tail_vma)? tail_vma: NULL;
182 static void m_stop(struct seq_file *m, void *v)
184 struct proc_maps_private *priv = m->private;
185 struct vm_area_struct *vma = v;
187 if (!IS_ERR(vma))
188 vma_stop(priv, vma);
189 if (priv->task)
190 put_task_struct(priv->task);
193 static int do_maps_open(struct inode *inode, struct file *file,
194 const struct seq_operations *ops)
196 struct proc_maps_private *priv;
197 int ret = -ENOMEM;
198 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
199 if (priv) {
200 priv->pid = proc_pid(inode);
201 ret = seq_open(file, ops);
202 if (!ret) {
203 struct seq_file *m = file->private_data;
204 m->private = priv;
205 } else {
206 kfree(priv);
209 return ret;
212 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
214 struct mm_struct *mm = vma->vm_mm;
215 struct file *file = vma->vm_file;
216 vm_flags_t flags = vma->vm_flags;
217 unsigned long ino = 0;
218 unsigned long long pgoff = 0;
219 unsigned long start, end;
220 dev_t dev = 0;
221 int len;
223 if (file) {
224 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
225 if (vma->vm_prfile) {
226 file = vma->vm_prfile;
227 inode = file->f_path.dentry->d_inode;
229 dev = inode->i_sb->s_dev;
230 ino = inode->i_ino;
231 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
234 /* We don't show the stack guard page in /proc/maps */
235 start = vma->vm_start;
236 if (stack_guard_page_start(vma, start))
237 start += PAGE_SIZE;
238 end = vma->vm_end;
239 if (stack_guard_page_end(vma, end))
240 end -= PAGE_SIZE;
242 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
243 start,
244 end,
245 flags & VM_READ ? 'r' : '-',
246 flags & VM_WRITE ? 'w' : '-',
247 flags & VM_EXEC ? 'x' : '-',
248 flags & VM_MAYSHARE ? 's' : 'p',
249 pgoff,
250 MAJOR(dev), MINOR(dev), ino, &len);
253 * Print the dentry name for named mappings, and a
254 * special [heap] marker for the heap:
256 if (file) {
257 pad_len_spaces(m, len);
258 seq_path(m, &file->f_path, "\n");
259 } else {
260 const char *name = arch_vma_name(vma);
261 if (!name) {
262 if (mm) {
263 if (vma->vm_start <= mm->brk &&
264 vma->vm_end >= mm->start_brk) {
265 name = "[heap]";
266 } else if (vma->vm_start <= mm->start_stack &&
267 vma->vm_end >= mm->start_stack) {
268 name = "[stack]";
270 } else {
271 name = "[vdso]";
274 if (name) {
275 pad_len_spaces(m, len);
276 seq_puts(m, name);
279 seq_putc(m, '\n');
282 static int show_map(struct seq_file *m, void *v)
284 struct vm_area_struct *vma = v;
285 struct proc_maps_private *priv = m->private;
286 struct task_struct *task = priv->task;
288 show_map_vma(m, vma);
290 if (m->count < m->size) /* vma is copied successfully */
291 m->version = (vma != get_gate_vma(task->mm))
292 ? vma->vm_start : 0;
293 return 0;
296 static const struct seq_operations proc_pid_maps_op = {
297 .start = m_start,
298 .next = m_next,
299 .stop = m_stop,
300 .show = show_map
303 static int maps_open(struct inode *inode, struct file *file)
305 return do_maps_open(inode, file, &proc_pid_maps_op);
308 const struct file_operations proc_maps_operations = {
309 .open = maps_open,
310 .read = seq_read,
311 .llseek = seq_lseek,
312 .release = seq_release_private,
316 * Proportional Set Size(PSS): my share of RSS.
318 * PSS of a process is the count of pages it has in memory, where each
319 * page is divided by the number of processes sharing it. So if a
320 * process has 1000 pages all to itself, and 1000 shared with one other
321 * process, its PSS will be 1500.
323 * To keep (accumulated) division errors low, we adopt a 64bit
324 * fixed-point pss counter to minimize division errors. So (pss >>
325 * PSS_SHIFT) would be the real byte count.
327 * A shift of 12 before division means (assuming 4K page size):
328 * - 1M 3-user-pages add up to 8KB errors;
329 * - supports mapcount up to 2^24, or 16M;
330 * - supports PSS up to 2^52 bytes, or 4PB.
332 #define PSS_SHIFT 12
334 #ifdef CONFIG_PROC_PAGE_MONITOR
335 struct mem_size_stats {
336 struct vm_area_struct *vma;
337 unsigned long resident;
338 unsigned long shared_clean;
339 unsigned long shared_dirty;
340 unsigned long private_clean;
341 unsigned long private_dirty;
342 unsigned long referenced;
343 unsigned long anonymous;
344 unsigned long anonymous_thp;
345 unsigned long swap;
346 u64 pss;
350 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
351 unsigned long ptent_size, struct mm_walk *walk)
353 struct mem_size_stats *mss = walk->private;
354 struct vm_area_struct *vma = mss->vma;
355 struct page *page;
356 int mapcount;
358 if (is_swap_pte(ptent)) {
359 mss->swap += ptent_size;
360 return;
363 if (!pte_present(ptent))
364 return;
366 page = vm_normal_page(vma, addr, ptent);
367 if (!page)
368 return;
370 if (PageAnon(page))
371 mss->anonymous += ptent_size;
373 mss->resident += ptent_size;
374 /* Accumulate the size in pages that have been accessed. */
375 if (pte_young(ptent) || PageReferenced(page))
376 mss->referenced += ptent_size;
377 mapcount = page_mapcount(page);
378 if (mapcount >= 2) {
379 if (pte_dirty(ptent) || PageDirty(page))
380 mss->shared_dirty += ptent_size;
381 else
382 mss->shared_clean += ptent_size;
383 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
384 } else {
385 if (pte_dirty(ptent) || PageDirty(page))
386 mss->private_dirty += ptent_size;
387 else
388 mss->private_clean += ptent_size;
389 mss->pss += (ptent_size << PSS_SHIFT);
393 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
394 struct mm_walk *walk)
396 struct mem_size_stats *mss = walk->private;
397 struct vm_area_struct *vma = mss->vma;
398 pte_t *pte;
399 spinlock_t *ptl;
401 spin_lock(&walk->mm->page_table_lock);
402 if (pmd_trans_huge(*pmd)) {
403 if (pmd_trans_splitting(*pmd)) {
404 spin_unlock(&walk->mm->page_table_lock);
405 wait_split_huge_page(vma->anon_vma, pmd);
406 } else {
407 smaps_pte_entry(*(pte_t *)pmd, addr,
408 HPAGE_PMD_SIZE, walk);
409 spin_unlock(&walk->mm->page_table_lock);
410 mss->anonymous_thp += HPAGE_PMD_SIZE;
411 return 0;
413 } else {
414 spin_unlock(&walk->mm->page_table_lock);
417 if (pmd_trans_unstable(pmd))
418 return 0;
420 * The mmap_sem held all the way back in m_start() is what
421 * keeps khugepaged out of here and from collapsing things
422 * in here.
424 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
425 for (; addr != end; pte++, addr += PAGE_SIZE)
426 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
427 pte_unmap_unlock(pte - 1, ptl);
428 cond_resched();
429 return 0;
432 static int show_smap(struct seq_file *m, void *v)
434 struct proc_maps_private *priv = m->private;
435 struct task_struct *task = priv->task;
436 struct vm_area_struct *vma = v;
437 struct mem_size_stats mss;
438 struct mm_walk smaps_walk = {
439 .pmd_entry = smaps_pte_range,
440 .mm = vma->vm_mm,
441 .private = &mss,
444 memset(&mss, 0, sizeof mss);
445 mss.vma = vma;
446 /* mmap_sem is held in m_start */
447 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
448 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
450 show_map_vma(m, vma);
452 seq_printf(m,
453 "Size: %8lu kB\n"
454 "Rss: %8lu kB\n"
455 "Pss: %8lu kB\n"
456 "Shared_Clean: %8lu kB\n"
457 "Shared_Dirty: %8lu kB\n"
458 "Private_Clean: %8lu kB\n"
459 "Private_Dirty: %8lu kB\n"
460 "Referenced: %8lu kB\n"
461 "Anonymous: %8lu kB\n"
462 "AnonHugePages: %8lu kB\n"
463 "Swap: %8lu kB\n"
464 "KernelPageSize: %8lu kB\n"
465 "MMUPageSize: %8lu kB\n"
466 "Locked: %8lu kB\n",
467 (vma->vm_end - vma->vm_start) >> 10,
468 mss.resident >> 10,
469 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
470 mss.shared_clean >> 10,
471 mss.shared_dirty >> 10,
472 mss.private_clean >> 10,
473 mss.private_dirty >> 10,
474 mss.referenced >> 10,
475 mss.anonymous >> 10,
476 mss.anonymous_thp >> 10,
477 mss.swap >> 10,
478 vma_kernel_pagesize(vma) >> 10,
479 vma_mmu_pagesize(vma) >> 10,
480 (vma->vm_flags & VM_LOCKED) ?
481 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
483 if (m->count < m->size) /* vma is copied successfully */
484 m->version = (vma != get_gate_vma(task->mm))
485 ? vma->vm_start : 0;
486 return 0;
489 static const struct seq_operations proc_pid_smaps_op = {
490 .start = m_start,
491 .next = m_next,
492 .stop = m_stop,
493 .show = show_smap
496 static int smaps_open(struct inode *inode, struct file *file)
498 return do_maps_open(inode, file, &proc_pid_smaps_op);
501 const struct file_operations proc_smaps_operations = {
502 .open = smaps_open,
503 .read = seq_read,
504 .llseek = seq_lseek,
505 .release = seq_release_private,
508 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
509 unsigned long end, struct mm_walk *walk)
511 struct vm_area_struct *vma = walk->private;
512 pte_t *pte, ptent;
513 spinlock_t *ptl;
514 struct page *page;
516 split_huge_page_pmd(walk->mm, pmd);
517 if (pmd_trans_unstable(pmd))
518 return 0;
520 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 ptent = *pte;
523 if (!pte_present(ptent))
524 continue;
526 page = vm_normal_page(vma, addr, ptent);
527 if (!page)
528 continue;
530 if (PageReserved(page))
531 continue;
533 /* Clear accessed and referenced bits. */
534 ptep_test_and_clear_young(vma, addr, pte);
535 ClearPageReferenced(page);
537 pte_unmap_unlock(pte - 1, ptl);
538 cond_resched();
539 return 0;
542 #define CLEAR_REFS_ALL 1
543 #define CLEAR_REFS_ANON 2
544 #define CLEAR_REFS_MAPPED 3
546 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
547 size_t count, loff_t *ppos)
549 struct task_struct *task;
550 char buffer[PROC_NUMBUF];
551 struct mm_struct *mm;
552 struct vm_area_struct *vma;
553 int type;
554 int rv;
556 memset(buffer, 0, sizeof(buffer));
557 if (count > sizeof(buffer) - 1)
558 count = sizeof(buffer) - 1;
559 if (copy_from_user(buffer, buf, count))
560 return -EFAULT;
561 rv = kstrtoint(strstrip(buffer), 10, &type);
562 if (rv < 0)
563 return rv;
564 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
565 return -EINVAL;
566 task = get_proc_task(file->f_path.dentry->d_inode);
567 if (!task)
568 return -ESRCH;
569 mm = get_task_mm(task);
570 if (mm) {
571 struct mm_walk clear_refs_walk = {
572 .pmd_entry = clear_refs_pte_range,
573 .mm = mm,
575 down_read(&mm->mmap_sem);
576 for (vma = mm->mmap; vma; vma = vma->vm_next) {
577 clear_refs_walk.private = vma;
578 if (is_vm_hugetlb_page(vma))
579 continue;
581 * Writing 1 to /proc/pid/clear_refs affects all pages.
583 * Writing 2 to /proc/pid/clear_refs only affects
584 * Anonymous pages.
586 * Writing 3 to /proc/pid/clear_refs only affects file
587 * mapped pages.
589 if (type == CLEAR_REFS_ANON && vma->vm_file)
590 continue;
591 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
592 continue;
593 walk_page_range(vma->vm_start, vma->vm_end,
594 &clear_refs_walk);
596 flush_tlb_mm(mm);
597 up_read(&mm->mmap_sem);
598 mmput(mm);
600 put_task_struct(task);
602 return count;
605 const struct file_operations proc_clear_refs_operations = {
606 .write = clear_refs_write,
607 .llseek = noop_llseek,
610 struct pagemapread {
611 int pos, len;
612 u64 *buffer;
615 #define PM_ENTRY_BYTES sizeof(u64)
616 #define PM_STATUS_BITS 3
617 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
618 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
619 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
620 #define PM_PSHIFT_BITS 6
621 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
622 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
623 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
624 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
625 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
627 #define PM_PRESENT PM_STATUS(4LL)
628 #define PM_SWAP PM_STATUS(2LL)
629 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
630 #define PM_END_OF_BUFFER 1
632 static int add_to_pagemap(unsigned long addr, u64 pfn,
633 struct pagemapread *pm)
635 pm->buffer[pm->pos++] = pfn;
636 if (pm->pos >= pm->len)
637 return PM_END_OF_BUFFER;
638 return 0;
641 static int pagemap_pte_hole(unsigned long start, unsigned long end,
642 struct mm_walk *walk)
644 struct pagemapread *pm = walk->private;
645 unsigned long addr;
646 int err = 0;
647 for (addr = start; addr < end; addr += PAGE_SIZE) {
648 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
649 if (err)
650 break;
652 return err;
655 static u64 swap_pte_to_pagemap_entry(pte_t pte)
657 swp_entry_t e = pte_to_swp_entry(pte);
658 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
661 static u64 pte_to_pagemap_entry(pte_t pte)
663 u64 pme = 0;
664 if (is_swap_pte(pte))
665 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
666 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
667 else if (pte_present(pte))
668 pme = PM_PFRAME(pte_pfn(pte))
669 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
670 return pme;
673 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
674 struct mm_walk *walk)
676 struct vm_area_struct *vma;
677 struct pagemapread *pm = walk->private;
678 pte_t *pte;
679 int err = 0;
681 split_huge_page_pmd(walk->mm, pmd);
682 if (pmd_trans_unstable(pmd))
683 return 0;
685 /* find the first VMA at or above 'addr' */
686 vma = find_vma(walk->mm, addr);
687 for (; addr != end; addr += PAGE_SIZE) {
688 u64 pfn = PM_NOT_PRESENT;
690 /* check to see if we've left 'vma' behind
691 * and need a new, higher one */
692 if (vma && (addr >= vma->vm_end))
693 vma = find_vma(walk->mm, addr);
695 /* check that 'vma' actually covers this address,
696 * and that it isn't a huge page vma */
697 if (vma && (vma->vm_start <= addr) &&
698 !is_vm_hugetlb_page(vma)) {
699 pte = pte_offset_map(pmd, addr);
700 pfn = pte_to_pagemap_entry(*pte);
701 /* unmap before userspace copy */
702 pte_unmap(pte);
704 err = add_to_pagemap(addr, pfn, pm);
705 if (err)
706 return err;
709 cond_resched();
711 return err;
714 #ifdef CONFIG_HUGETLB_PAGE
715 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
717 u64 pme = 0;
718 if (pte_present(pte))
719 pme = PM_PFRAME(pte_pfn(pte) + offset)
720 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
721 return pme;
724 /* This function walks within one hugetlb entry in the single call */
725 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
726 unsigned long addr, unsigned long end,
727 struct mm_walk *walk)
729 struct pagemapread *pm = walk->private;
730 int err = 0;
731 u64 pfn;
733 for (; addr != end; addr += PAGE_SIZE) {
734 int offset = (addr & ~hmask) >> PAGE_SHIFT;
735 pfn = huge_pte_to_pagemap_entry(*pte, offset);
736 err = add_to_pagemap(addr, pfn, pm);
737 if (err)
738 return err;
741 cond_resched();
743 return err;
745 #endif /* HUGETLB_PAGE */
748 * /proc/pid/pagemap - an array mapping virtual pages to pfns
750 * For each page in the address space, this file contains one 64-bit entry
751 * consisting of the following:
753 * Bits 0-55 page frame number (PFN) if present
754 * Bits 0-4 swap type if swapped
755 * Bits 5-55 swap offset if swapped
756 * Bits 55-60 page shift (page size = 1<<page shift)
757 * Bit 61 reserved for future use
758 * Bit 62 page swapped
759 * Bit 63 page present
761 * If the page is not present but in swap, then the PFN contains an
762 * encoding of the swap file number and the page's offset into the
763 * swap. Unmapped pages return a null PFN. This allows determining
764 * precisely which pages are mapped (or in swap) and comparing mapped
765 * pages between processes.
767 * Efficient users of this interface will use /proc/pid/maps to
768 * determine which areas of memory are actually mapped and llseek to
769 * skip over unmapped regions.
771 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
772 #define PAGEMAP_WALK_MASK (PMD_MASK)
773 static ssize_t pagemap_read(struct file *file, char __user *buf,
774 size_t count, loff_t *ppos)
776 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
777 struct mm_struct *mm;
778 struct pagemapread pm;
779 int ret = -ESRCH;
780 struct mm_walk pagemap_walk = {};
781 unsigned long src;
782 unsigned long svpfn;
783 unsigned long start_vaddr;
784 unsigned long end_vaddr;
785 int copied = 0;
787 if (!task)
788 goto out;
790 ret = -EINVAL;
791 /* file position must be aligned */
792 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
793 goto out_task;
795 ret = 0;
796 if (!count)
797 goto out_task;
799 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
800 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
801 ret = -ENOMEM;
802 if (!pm.buffer)
803 goto out_task;
805 mm = mm_for_maps(task);
806 ret = PTR_ERR(mm);
807 if (!mm || IS_ERR(mm))
808 goto out_free;
810 pagemap_walk.pmd_entry = pagemap_pte_range;
811 pagemap_walk.pte_hole = pagemap_pte_hole;
812 #ifdef CONFIG_HUGETLB_PAGE
813 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
814 #endif
815 pagemap_walk.mm = mm;
816 pagemap_walk.private = &pm;
818 src = *ppos;
819 svpfn = src / PM_ENTRY_BYTES;
820 start_vaddr = svpfn << PAGE_SHIFT;
821 end_vaddr = TASK_SIZE_OF(task);
823 /* watch out for wraparound */
824 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
825 start_vaddr = end_vaddr;
828 * The odds are that this will stop walking way
829 * before end_vaddr, because the length of the
830 * user buffer is tracked in "pm", and the walk
831 * will stop when we hit the end of the buffer.
833 ret = 0;
834 while (count && (start_vaddr < end_vaddr)) {
835 int len;
836 unsigned long end;
838 pm.pos = 0;
839 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
840 /* overflow ? */
841 if (end < start_vaddr || end > end_vaddr)
842 end = end_vaddr;
843 down_read(&mm->mmap_sem);
844 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
845 up_read(&mm->mmap_sem);
846 start_vaddr = end;
848 len = min(count, PM_ENTRY_BYTES * pm.pos);
849 if (copy_to_user(buf, pm.buffer, len)) {
850 ret = -EFAULT;
851 goto out_mm;
853 copied += len;
854 buf += len;
855 count -= len;
857 *ppos += copied;
858 if (!ret || ret == PM_END_OF_BUFFER)
859 ret = copied;
861 out_mm:
862 mmput(mm);
863 out_free:
864 kfree(pm.buffer);
865 out_task:
866 put_task_struct(task);
867 out:
868 return ret;
871 const struct file_operations proc_pagemap_operations = {
872 .llseek = mem_lseek, /* borrow this */
873 .read = pagemap_read,
875 #endif /* CONFIG_PROC_PAGE_MONITOR */
877 #ifdef CONFIG_NUMA
879 struct numa_maps {
880 struct vm_area_struct *vma;
881 unsigned long pages;
882 unsigned long anon;
883 unsigned long active;
884 unsigned long writeback;
885 unsigned long mapcount_max;
886 unsigned long dirty;
887 unsigned long swapcache;
888 unsigned long node[MAX_NUMNODES];
891 struct numa_maps_private {
892 struct proc_maps_private proc_maps;
893 struct numa_maps md;
896 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
897 unsigned long nr_pages)
899 int count = page_mapcount(page);
901 md->pages += nr_pages;
902 if (pte_dirty || PageDirty(page))
903 md->dirty += nr_pages;
905 if (PageSwapCache(page))
906 md->swapcache += nr_pages;
908 if (PageActive(page) || PageUnevictable(page))
909 md->active += nr_pages;
911 if (PageWriteback(page))
912 md->writeback += nr_pages;
914 if (PageAnon(page))
915 md->anon += nr_pages;
917 if (count > md->mapcount_max)
918 md->mapcount_max = count;
920 md->node[page_to_nid(page)] += nr_pages;
923 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
924 unsigned long addr)
926 struct page *page;
927 int nid;
929 if (!pte_present(pte))
930 return NULL;
932 page = vm_normal_page(vma, addr, pte);
933 if (!page)
934 return NULL;
936 if (PageReserved(page))
937 return NULL;
939 nid = page_to_nid(page);
940 if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
941 return NULL;
943 return page;
946 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
947 unsigned long end, struct mm_walk *walk)
949 struct numa_maps *md;
950 spinlock_t *ptl;
951 pte_t *orig_pte;
952 pte_t *pte;
954 md = walk->private;
955 spin_lock(&walk->mm->page_table_lock);
956 if (pmd_trans_huge(*pmd)) {
957 if (pmd_trans_splitting(*pmd)) {
958 spin_unlock(&walk->mm->page_table_lock);
959 wait_split_huge_page(md->vma->anon_vma, pmd);
960 } else {
961 pte_t huge_pte = *(pte_t *)pmd;
962 struct page *page;
964 page = can_gather_numa_stats(huge_pte, md->vma, addr);
965 if (page)
966 gather_stats(page, md, pte_dirty(huge_pte),
967 HPAGE_PMD_SIZE/PAGE_SIZE);
968 spin_unlock(&walk->mm->page_table_lock);
969 return 0;
971 } else {
972 spin_unlock(&walk->mm->page_table_lock);
975 if (pmd_trans_unstable(pmd))
976 return 0;
977 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
978 do {
979 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
980 if (!page)
981 continue;
982 gather_stats(page, md, pte_dirty(*pte), 1);
984 } while (pte++, addr += PAGE_SIZE, addr != end);
985 pte_unmap_unlock(orig_pte, ptl);
986 return 0;
988 #ifdef CONFIG_HUGETLB_PAGE
989 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
990 unsigned long addr, unsigned long end, struct mm_walk *walk)
992 struct numa_maps *md;
993 struct page *page;
995 if (pte_none(*pte))
996 return 0;
998 page = pte_page(*pte);
999 if (!page)
1000 return 0;
1002 md = walk->private;
1003 gather_stats(page, md, pte_dirty(*pte), 1);
1004 return 0;
1007 #else
1008 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1009 unsigned long addr, unsigned long end, struct mm_walk *walk)
1011 return 0;
1013 #endif
1016 * Display pages allocated per node and memory policy via /proc.
1018 static int show_numa_map(struct seq_file *m, void *v)
1020 struct numa_maps_private *numa_priv = m->private;
1021 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1022 struct vm_area_struct *vma = v;
1023 struct numa_maps *md = &numa_priv->md;
1024 struct file *file = vma->vm_file;
1025 struct mm_struct *mm = vma->vm_mm;
1026 struct mm_walk walk = {};
1027 struct mempolicy *pol;
1028 int n;
1029 char buffer[50];
1031 if (!mm)
1032 return 0;
1034 /* Ensure we start with an empty set of numa_maps statistics. */
1035 memset(md, 0, sizeof(*md));
1037 md->vma = vma;
1039 walk.hugetlb_entry = gather_hugetbl_stats;
1040 walk.pmd_entry = gather_pte_stats;
1041 walk.private = md;
1042 walk.mm = mm;
1044 pol = get_vma_policy(proc_priv->task, vma, vma->vm_start);
1045 mpol_to_str(buffer, sizeof(buffer), pol, 0);
1046 mpol_cond_put(pol);
1048 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1050 if (file) {
1051 seq_printf(m, " file=");
1052 if (vma->vm_prfile)
1053 file = vma->vm_prfile;
1054 seq_path(m, &file->f_path, "\n\t= ");
1055 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1056 seq_printf(m, " heap");
1057 } else if (vma->vm_start <= mm->start_stack &&
1058 vma->vm_end >= mm->start_stack) {
1059 seq_printf(m, " stack");
1062 if (is_vm_hugetlb_page(vma))
1063 seq_printf(m, " huge");
1065 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1067 if (!md->pages)
1068 goto out;
1070 if (md->anon)
1071 seq_printf(m, " anon=%lu", md->anon);
1073 if (md->dirty)
1074 seq_printf(m, " dirty=%lu", md->dirty);
1076 if (md->pages != md->anon && md->pages != md->dirty)
1077 seq_printf(m, " mapped=%lu", md->pages);
1079 if (md->mapcount_max > 1)
1080 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1082 if (md->swapcache)
1083 seq_printf(m, " swapcache=%lu", md->swapcache);
1085 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1086 seq_printf(m, " active=%lu", md->active);
1088 if (md->writeback)
1089 seq_printf(m, " writeback=%lu", md->writeback);
1091 for_each_node_state(n, N_HIGH_MEMORY)
1092 if (md->node[n])
1093 seq_printf(m, " N%d=%lu", n, md->node[n]);
1094 out:
1095 seq_putc(m, '\n');
1097 if (m->count < m->size)
1098 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1099 return 0;
1102 static const struct seq_operations proc_pid_numa_maps_op = {
1103 .start = m_start,
1104 .next = m_next,
1105 .stop = m_stop,
1106 .show = show_numa_map,
1109 static int numa_maps_open(struct inode *inode, struct file *file)
1111 struct numa_maps_private *priv;
1112 int ret = -ENOMEM;
1113 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1114 if (priv) {
1115 priv->proc_maps.pid = proc_pid(inode);
1116 ret = seq_open(file, &proc_pid_numa_maps_op);
1117 if (!ret) {
1118 struct seq_file *m = file->private_data;
1119 m->private = priv;
1120 } else {
1121 kfree(priv);
1124 return ret;
1127 const struct file_operations proc_numa_maps_operations = {
1128 .open = numa_maps_open,
1129 .read = seq_read,
1130 .llseek = seq_lseek,
1131 .release = seq_release_private,
1133 #endif /* CONFIG_NUMA */