2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
37 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
39 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
41 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
46 * This returns the number of iovecs needed to log the given inode item.
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
54 struct xfs_log_item
*lip
)
56 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
57 struct xfs_inode
*ip
= iip
->ili_inode
;
61 * Only log the data/extents/b-tree root if there is something
64 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
66 switch (ip
->i_d
.di_format
) {
67 case XFS_DINODE_FMT_EXTENTS
:
68 iip
->ili_format
.ilf_fields
&=
69 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
70 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
71 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) &&
72 (ip
->i_d
.di_nextents
> 0) &&
73 (ip
->i_df
.if_bytes
> 0)) {
74 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
77 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DEXT
;
81 case XFS_DINODE_FMT_BTREE
:
82 iip
->ili_format
.ilf_fields
&=
83 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
84 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
85 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) &&
86 (ip
->i_df
.if_broot_bytes
> 0)) {
87 ASSERT(ip
->i_df
.if_broot
!= NULL
);
90 ASSERT(!(iip
->ili_format
.ilf_fields
&
92 #ifdef XFS_TRANS_DEBUG
93 if (iip
->ili_root_size
> 0) {
94 ASSERT(iip
->ili_root_size
==
95 ip
->i_df
.if_broot_bytes
);
96 ASSERT(memcmp(iip
->ili_orig_root
,
98 iip
->ili_root_size
) == 0);
100 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
103 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DBROOT
;
107 case XFS_DINODE_FMT_LOCAL
:
108 iip
->ili_format
.ilf_fields
&=
109 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
110 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
111 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) &&
112 (ip
->i_df
.if_bytes
> 0)) {
113 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
114 ASSERT(ip
->i_d
.di_size
> 0);
117 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_DDATA
;
121 case XFS_DINODE_FMT_DEV
:
122 iip
->ili_format
.ilf_fields
&=
123 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
124 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
127 case XFS_DINODE_FMT_UUID
:
128 iip
->ili_format
.ilf_fields
&=
129 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
130 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
139 * If there are no attributes associated with this file,
140 * then there cannot be anything more to log.
141 * Clear all attribute-related log flags.
143 if (!XFS_IFORK_Q(ip
)) {
144 iip
->ili_format
.ilf_fields
&=
145 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
150 * Log any necessary attribute data.
152 switch (ip
->i_d
.di_aformat
) {
153 case XFS_DINODE_FMT_EXTENTS
:
154 iip
->ili_format
.ilf_fields
&=
155 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
156 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) &&
157 (ip
->i_d
.di_anextents
> 0) &&
158 (ip
->i_afp
->if_bytes
> 0)) {
159 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
162 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_AEXT
;
166 case XFS_DINODE_FMT_BTREE
:
167 iip
->ili_format
.ilf_fields
&=
168 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
169 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) &&
170 (ip
->i_afp
->if_broot_bytes
> 0)) {
171 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
174 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ABROOT
;
178 case XFS_DINODE_FMT_LOCAL
:
179 iip
->ili_format
.ilf_fields
&=
180 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
181 if ((iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) &&
182 (ip
->i_afp
->if_bytes
> 0)) {
183 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
186 iip
->ili_format
.ilf_fields
&= ~XFS_ILOG_ADATA
;
199 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
201 * For either the data or attr fork in extent format, we need to endian convert
202 * the in-core extent as we place them into the on-disk inode. In this case, we
203 * need to do this conversion before we write the extents into the log. Because
204 * we don't have the disk inode to write into here, we allocate a buffer and
205 * format the extents into it via xfs_iextents_copy(). We free the buffer in
206 * the unlock routine after the copy for the log has been made.
208 * In the case of the data fork, the in-core and on-disk fork sizes can be
209 * different due to delayed allocation extents. We only log on-disk extents
210 * here, so always use the physical fork size to determine the size of the
211 * buffer we need to allocate.
214 xfs_inode_item_format_extents(
215 struct xfs_inode
*ip
,
216 struct xfs_log_iovec
*vecp
,
220 xfs_bmbt_rec_t
*ext_buffer
;
222 ext_buffer
= kmem_alloc(XFS_IFORK_SIZE(ip
, whichfork
), KM_SLEEP
);
223 if (whichfork
== XFS_DATA_FORK
)
224 ip
->i_itemp
->ili_extents_buf
= ext_buffer
;
226 ip
->i_itemp
->ili_aextents_buf
= ext_buffer
;
228 vecp
->i_addr
= ext_buffer
;
229 vecp
->i_len
= xfs_iextents_copy(ip
, ext_buffer
, whichfork
);
234 * This is called to fill in the vector of log iovecs for the
235 * given inode log item. It fills the first item with an inode
236 * log format structure, the second with the on-disk inode structure,
237 * and a possible third and/or fourth with the inode data/extents/b-tree
238 * root and inode attributes data/extents/b-tree root.
241 xfs_inode_item_format(
242 struct xfs_log_item
*lip
,
243 struct xfs_log_iovec
*vecp
)
245 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
246 struct xfs_inode
*ip
= iip
->ili_inode
;
251 vecp
->i_addr
= &iip
->ili_format
;
252 vecp
->i_len
= sizeof(xfs_inode_log_format_t
);
253 vecp
->i_type
= XLOG_REG_TYPE_IFORMAT
;
258 * Clear i_update_core if the timestamps (or any other
259 * non-transactional modification) need flushing/logging
260 * and we're about to log them with the rest of the core.
262 * This is the same logic as xfs_iflush() but this code can't
263 * run at the same time as xfs_iflush because we're in commit
264 * processing here and so we have the inode lock held in
265 * exclusive mode. Although it doesn't really matter
266 * for the timestamps if both routines were to grab the
267 * timestamps or not. That would be ok.
269 * We clear i_update_core before copying out the data.
270 * This is for coordination with our timestamp updates
271 * that don't hold the inode lock. They will always
272 * update the timestamps BEFORE setting i_update_core,
273 * so if we clear i_update_core after they set it we
274 * are guaranteed to see their updates to the timestamps
275 * either here. Likewise, if they set it after we clear it
276 * here, we'll see it either on the next commit of this
277 * inode or the next time the inode gets flushed via
278 * xfs_iflush(). This depends on strongly ordered memory
279 * semantics, but we have that. We use the SYNCHRONIZE
280 * macro to make sure that the compiler does not reorder
281 * the i_update_core access below the data copy below.
283 if (ip
->i_update_core
) {
284 ip
->i_update_core
= 0;
289 * Make sure to get the latest timestamps from the Linux inode.
291 xfs_synchronize_times(ip
);
293 vecp
->i_addr
= &ip
->i_d
;
294 vecp
->i_len
= sizeof(struct xfs_icdinode
);
295 vecp
->i_type
= XLOG_REG_TYPE_ICORE
;
298 iip
->ili_format
.ilf_fields
|= XFS_ILOG_CORE
;
301 * If this is really an old format inode, then we need to
302 * log it as such. This means that we have to copy the link
303 * count from the new field to the old. We don't have to worry
304 * about the new fields, because nothing trusts them as long as
305 * the old inode version number is there. If the superblock already
306 * has a new version number, then we don't bother converting back.
309 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
310 if (ip
->i_d
.di_version
== 1) {
311 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
315 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
316 ip
->i_d
.di_onlink
= ip
->i_d
.di_nlink
;
319 * The superblock version has already been bumped,
320 * so just make the conversion to the new inode
323 ip
->i_d
.di_version
= 2;
324 ip
->i_d
.di_onlink
= 0;
325 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
329 switch (ip
->i_d
.di_format
) {
330 case XFS_DINODE_FMT_EXTENTS
:
331 ASSERT(!(iip
->ili_format
.ilf_fields
&
332 (XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
333 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
334 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
) {
335 ASSERT(ip
->i_df
.if_bytes
> 0);
336 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
337 ASSERT(ip
->i_d
.di_nextents
> 0);
338 ASSERT(iip
->ili_extents_buf
== NULL
);
339 ASSERT((ip
->i_df
.if_bytes
/
340 (uint
)sizeof(xfs_bmbt_rec_t
)) > 0);
341 #ifdef XFS_NATIVE_HOST
342 if (ip
->i_d
.di_nextents
== ip
->i_df
.if_bytes
/
343 (uint
)sizeof(xfs_bmbt_rec_t
)) {
345 * There are no delayed allocation
346 * extents, so just point to the
347 * real extents array.
349 vecp
->i_addr
= ip
->i_df
.if_u1
.if_extents
;
350 vecp
->i_len
= ip
->i_df
.if_bytes
;
351 vecp
->i_type
= XLOG_REG_TYPE_IEXT
;
355 xfs_inode_item_format_extents(ip
, vecp
,
356 XFS_DATA_FORK
, XLOG_REG_TYPE_IEXT
);
358 ASSERT(vecp
->i_len
<= ip
->i_df
.if_bytes
);
359 iip
->ili_format
.ilf_dsize
= vecp
->i_len
;
365 case XFS_DINODE_FMT_BTREE
:
366 ASSERT(!(iip
->ili_format
.ilf_fields
&
367 (XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
368 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
369 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DBROOT
) {
370 ASSERT(ip
->i_df
.if_broot_bytes
> 0);
371 ASSERT(ip
->i_df
.if_broot
!= NULL
);
372 vecp
->i_addr
= ip
->i_df
.if_broot
;
373 vecp
->i_len
= ip
->i_df
.if_broot_bytes
;
374 vecp
->i_type
= XLOG_REG_TYPE_IBROOT
;
377 iip
->ili_format
.ilf_dsize
= ip
->i_df
.if_broot_bytes
;
381 case XFS_DINODE_FMT_LOCAL
:
382 ASSERT(!(iip
->ili_format
.ilf_fields
&
383 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
384 XFS_ILOG_DEV
| XFS_ILOG_UUID
)));
385 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DDATA
) {
386 ASSERT(ip
->i_df
.if_bytes
> 0);
387 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
388 ASSERT(ip
->i_d
.di_size
> 0);
390 vecp
->i_addr
= ip
->i_df
.if_u1
.if_data
;
392 * Round i_bytes up to a word boundary.
393 * The underlying memory is guaranteed to
394 * to be there by xfs_idata_realloc().
396 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
397 ASSERT((ip
->i_df
.if_real_bytes
== 0) ||
398 (ip
->i_df
.if_real_bytes
== data_bytes
));
399 vecp
->i_len
= (int)data_bytes
;
400 vecp
->i_type
= XLOG_REG_TYPE_ILOCAL
;
403 iip
->ili_format
.ilf_dsize
= (unsigned)data_bytes
;
407 case XFS_DINODE_FMT_DEV
:
408 ASSERT(!(iip
->ili_format
.ilf_fields
&
409 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
410 XFS_ILOG_DDATA
| XFS_ILOG_UUID
)));
411 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
412 iip
->ili_format
.ilf_u
.ilfu_rdev
=
413 ip
->i_df
.if_u2
.if_rdev
;
417 case XFS_DINODE_FMT_UUID
:
418 ASSERT(!(iip
->ili_format
.ilf_fields
&
419 (XFS_ILOG_DBROOT
| XFS_ILOG_DEXT
|
420 XFS_ILOG_DDATA
| XFS_ILOG_DEV
)));
421 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
422 iip
->ili_format
.ilf_u
.ilfu_uuid
=
423 ip
->i_df
.if_u2
.if_uuid
;
433 * If there are no attributes associated with the file,
435 * Assert that no attribute-related log flags are set.
437 if (!XFS_IFORK_Q(ip
)) {
438 iip
->ili_format
.ilf_size
= nvecs
;
439 ASSERT(!(iip
->ili_format
.ilf_fields
&
440 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
444 switch (ip
->i_d
.di_aformat
) {
445 case XFS_DINODE_FMT_EXTENTS
:
446 ASSERT(!(iip
->ili_format
.ilf_fields
&
447 (XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
)));
448 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
) {
450 int nrecs
= ip
->i_afp
->if_bytes
/
451 (uint
)sizeof(xfs_bmbt_rec_t
);
453 ASSERT(nrecs
== ip
->i_d
.di_anextents
);
454 ASSERT(ip
->i_afp
->if_bytes
> 0);
455 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
456 ASSERT(ip
->i_d
.di_anextents
> 0);
458 #ifdef XFS_NATIVE_HOST
460 * There are not delayed allocation extents
461 * for attributes, so just point at the array.
463 vecp
->i_addr
= ip
->i_afp
->if_u1
.if_extents
;
464 vecp
->i_len
= ip
->i_afp
->if_bytes
;
465 vecp
->i_type
= XLOG_REG_TYPE_IATTR_EXT
;
467 ASSERT(iip
->ili_aextents_buf
== NULL
);
468 xfs_inode_item_format_extents(ip
, vecp
,
469 XFS_ATTR_FORK
, XLOG_REG_TYPE_IATTR_EXT
);
471 iip
->ili_format
.ilf_asize
= vecp
->i_len
;
477 case XFS_DINODE_FMT_BTREE
:
478 ASSERT(!(iip
->ili_format
.ilf_fields
&
479 (XFS_ILOG_ADATA
| XFS_ILOG_AEXT
)));
480 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ABROOT
) {
481 ASSERT(ip
->i_afp
->if_broot_bytes
> 0);
482 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
483 vecp
->i_addr
= ip
->i_afp
->if_broot
;
484 vecp
->i_len
= ip
->i_afp
->if_broot_bytes
;
485 vecp
->i_type
= XLOG_REG_TYPE_IATTR_BROOT
;
488 iip
->ili_format
.ilf_asize
= ip
->i_afp
->if_broot_bytes
;
492 case XFS_DINODE_FMT_LOCAL
:
493 ASSERT(!(iip
->ili_format
.ilf_fields
&
494 (XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
)));
495 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_ADATA
) {
496 ASSERT(ip
->i_afp
->if_bytes
> 0);
497 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
499 vecp
->i_addr
= ip
->i_afp
->if_u1
.if_data
;
501 * Round i_bytes up to a word boundary.
502 * The underlying memory is guaranteed to
503 * to be there by xfs_idata_realloc().
505 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
506 ASSERT((ip
->i_afp
->if_real_bytes
== 0) ||
507 (ip
->i_afp
->if_real_bytes
== data_bytes
));
508 vecp
->i_len
= (int)data_bytes
;
509 vecp
->i_type
= XLOG_REG_TYPE_IATTR_LOCAL
;
512 iip
->ili_format
.ilf_asize
= (unsigned)data_bytes
;
521 iip
->ili_format
.ilf_size
= nvecs
;
526 * This is called to pin the inode associated with the inode log
527 * item in memory so it cannot be written out.
531 struct xfs_log_item
*lip
)
533 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
535 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
537 trace_xfs_inode_pin(ip
, _RET_IP_
);
538 atomic_inc(&ip
->i_pincount
);
543 * This is called to unpin the inode associated with the inode log
544 * item which was previously pinned with a call to xfs_inode_item_pin().
546 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
549 xfs_inode_item_unpin(
550 struct xfs_log_item
*lip
,
553 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
555 trace_xfs_inode_unpin(ip
, _RET_IP_
);
556 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
557 if (atomic_dec_and_test(&ip
->i_pincount
))
558 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
562 * This is called to attempt to lock the inode associated with this
563 * inode log item, in preparation for the push routine which does the actual
564 * iflush. Don't sleep on the inode lock or the flush lock.
566 * If the flush lock is already held, indicating that the inode has
567 * been or is in the process of being flushed, then (ideally) we'd like to
568 * see if the inode's buffer is still incore, and if so give it a nudge.
569 * We delay doing so until the pushbuf routine, though, to avoid holding
570 * the AIL lock across a call to the blackhole which is the buffer cache.
571 * Also we don't want to sleep in any device strategy routines, which can happen
572 * if we do the subsequent bawrite in here.
575 xfs_inode_item_trylock(
576 struct xfs_log_item
*lip
)
578 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
579 struct xfs_inode
*ip
= iip
->ili_inode
;
581 if (xfs_ipincount(ip
) > 0)
582 return XFS_ITEM_PINNED
;
584 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
585 return XFS_ITEM_LOCKED
;
587 if (!xfs_iflock_nowait(ip
)) {
589 * inode has already been flushed to the backing buffer,
590 * leave it locked in shared mode, pushbuf routine will
593 return XFS_ITEM_PUSHBUF
;
596 /* Stale items should force out the iclog */
597 if (ip
->i_flags
& XFS_ISTALE
) {
600 * we hold the AIL lock - notify the unlock routine of this
601 * so it doesn't try to get the lock again.
603 xfs_iunlock(ip
, XFS_ILOCK_SHARED
|XFS_IUNLOCK_NONOTIFY
);
604 return XFS_ITEM_PINNED
;
608 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
609 ASSERT(iip
->ili_format
.ilf_fields
!= 0);
610 ASSERT(iip
->ili_logged
== 0);
611 ASSERT(lip
->li_flags
& XFS_LI_IN_AIL
);
614 return XFS_ITEM_SUCCESS
;
618 * Unlock the inode associated with the inode log item.
619 * Clear the fields of the inode and inode log item that
620 * are specific to the current transaction. If the
621 * hold flags is set, do not unlock the inode.
624 xfs_inode_item_unlock(
625 struct xfs_log_item
*lip
)
627 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
628 struct xfs_inode
*ip
= iip
->ili_inode
;
629 unsigned short lock_flags
;
631 ASSERT(ip
->i_itemp
!= NULL
);
632 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
635 * If the inode needed a separate buffer with which to log
636 * its extents, then free it now.
638 if (iip
->ili_extents_buf
!= NULL
) {
639 ASSERT(ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
);
640 ASSERT(ip
->i_d
.di_nextents
> 0);
641 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_DEXT
);
642 ASSERT(ip
->i_df
.if_bytes
> 0);
643 kmem_free(iip
->ili_extents_buf
);
644 iip
->ili_extents_buf
= NULL
;
646 if (iip
->ili_aextents_buf
!= NULL
) {
647 ASSERT(ip
->i_d
.di_aformat
== XFS_DINODE_FMT_EXTENTS
);
648 ASSERT(ip
->i_d
.di_anextents
> 0);
649 ASSERT(iip
->ili_format
.ilf_fields
& XFS_ILOG_AEXT
);
650 ASSERT(ip
->i_afp
->if_bytes
> 0);
651 kmem_free(iip
->ili_aextents_buf
);
652 iip
->ili_aextents_buf
= NULL
;
655 lock_flags
= iip
->ili_lock_flags
;
656 iip
->ili_lock_flags
= 0;
658 xfs_iunlock(ip
, lock_flags
);
662 * This is called to find out where the oldest active copy of the inode log
663 * item in the on disk log resides now that the last log write of it completed
664 * at the given lsn. Since we always re-log all dirty data in an inode, the
665 * latest copy in the on disk log is the only one that matters. Therefore,
666 * simply return the given lsn.
668 * If the inode has been marked stale because the cluster is being freed, we
669 * don't want to (re-)insert this inode into the AIL. There is a race condition
670 * where the cluster buffer may be unpinned before the inode is inserted into
671 * the AIL during transaction committed processing. If the buffer is unpinned
672 * before the inode item has been committed and inserted, then it is possible
673 * for the buffer to be written and IO completes before the inode is inserted
674 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
675 * AIL which will never get removed. It will, however, get reclaimed which
676 * triggers an assert in xfs_inode_free() complaining about freein an inode
679 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
680 * transaction committed code knows that it does not need to do any further
681 * processing on the item.
684 xfs_inode_item_committed(
685 struct xfs_log_item
*lip
,
688 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
689 struct xfs_inode
*ip
= iip
->ili_inode
;
691 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
692 xfs_inode_item_unpin(lip
, 0);
699 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
700 * failed to get the inode flush lock but did get the inode locked SHARED.
701 * Here we're trying to see if the inode buffer is incore, and if so whether it's
702 * marked delayed write. If that's the case, we'll promote it and that will
703 * allow the caller to write the buffer by triggering the xfsbufd to run.
706 xfs_inode_item_pushbuf(
707 struct xfs_log_item
*lip
)
709 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
710 struct xfs_inode
*ip
= iip
->ili_inode
;
714 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
717 * If a flush is not in progress anymore, chances are that the
718 * inode was taken off the AIL. So, just get out.
720 if (!xfs_isiflocked(ip
) ||
721 !(lip
->li_flags
& XFS_LI_IN_AIL
)) {
722 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
726 bp
= xfs_incore(ip
->i_mount
->m_ddev_targp
, iip
->ili_format
.ilf_blkno
,
727 iip
->ili_format
.ilf_len
, XBF_TRYLOCK
);
729 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
732 if (XFS_BUF_ISDELAYWRITE(bp
))
733 xfs_buf_delwri_promote(bp
);
734 if (xfs_buf_ispinned(bp
))
741 * This is called to asynchronously write the inode associated with this
742 * inode log item out to disk. The inode will already have been locked by
743 * a successful call to xfs_inode_item_trylock().
747 struct xfs_log_item
*lip
)
749 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
750 struct xfs_inode
*ip
= iip
->ili_inode
;
752 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_SHARED
));
753 ASSERT(xfs_isiflocked(ip
));
756 * Since we were able to lock the inode's flush lock and
757 * we found it on the AIL, the inode must be dirty. This
758 * is because the inode is removed from the AIL while still
759 * holding the flush lock in xfs_iflush_done(). Thus, if
760 * we found it in the AIL and were able to obtain the flush
761 * lock without sleeping, then there must not have been
762 * anyone in the process of flushing the inode.
764 ASSERT(XFS_FORCED_SHUTDOWN(ip
->i_mount
) ||
765 iip
->ili_format
.ilf_fields
!= 0);
768 * Push the inode to it's backing buffer. This will not remove the
769 * inode from the AIL - a further push will be required to trigger a
770 * buffer push. However, this allows all the dirty inodes to be pushed
771 * to the buffer before it is pushed to disk. The buffer IO completion
772 * will pull the inode from the AIL, mark it clean and unlock the flush
775 (void) xfs_iflush(ip
, SYNC_TRYLOCK
);
776 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
780 * XXX rcc - this one really has to do something. Probably needs
781 * to stamp in a new field in the incore inode.
784 xfs_inode_item_committing(
785 struct xfs_log_item
*lip
,
788 INODE_ITEM(lip
)->ili_last_lsn
= lsn
;
792 * This is the ops vector shared by all buf log items.
794 static const struct xfs_item_ops xfs_inode_item_ops
= {
795 .iop_size
= xfs_inode_item_size
,
796 .iop_format
= xfs_inode_item_format
,
797 .iop_pin
= xfs_inode_item_pin
,
798 .iop_unpin
= xfs_inode_item_unpin
,
799 .iop_trylock
= xfs_inode_item_trylock
,
800 .iop_unlock
= xfs_inode_item_unlock
,
801 .iop_committed
= xfs_inode_item_committed
,
802 .iop_push
= xfs_inode_item_push
,
803 .iop_pushbuf
= xfs_inode_item_pushbuf
,
804 .iop_committing
= xfs_inode_item_committing
809 * Initialize the inode log item for a newly allocated (in-core) inode.
813 struct xfs_inode
*ip
,
814 struct xfs_mount
*mp
)
816 struct xfs_inode_log_item
*iip
;
818 ASSERT(ip
->i_itemp
== NULL
);
819 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
822 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
823 &xfs_inode_item_ops
);
824 iip
->ili_format
.ilf_type
= XFS_LI_INODE
;
825 iip
->ili_format
.ilf_ino
= ip
->i_ino
;
826 iip
->ili_format
.ilf_blkno
= ip
->i_imap
.im_blkno
;
827 iip
->ili_format
.ilf_len
= ip
->i_imap
.im_len
;
828 iip
->ili_format
.ilf_boffset
= ip
->i_imap
.im_boffset
;
832 * Free the inode log item and any memory hanging off of it.
835 xfs_inode_item_destroy(
838 #ifdef XFS_TRANS_DEBUG
839 if (ip
->i_itemp
->ili_root_size
!= 0) {
840 kmem_free(ip
->i_itemp
->ili_orig_root
);
843 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
848 * This is the inode flushing I/O completion routine. It is called
849 * from interrupt level when the buffer containing the inode is
850 * flushed to disk. It is responsible for removing the inode item
851 * from the AIL if it has not been re-logged, and unlocking the inode's
854 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
855 * list for other inodes that will run this function. We remove them from the
856 * buffer list so we can process all the inode IO completions in one AIL lock
862 struct xfs_log_item
*lip
)
864 struct xfs_inode_log_item
*iip
;
865 struct xfs_log_item
*blip
;
866 struct xfs_log_item
*next
;
867 struct xfs_log_item
*prev
;
868 struct xfs_ail
*ailp
= lip
->li_ailp
;
872 * Scan the buffer IO completions for other inodes being completed and
873 * attach them to the current inode log item.
877 while (blip
!= NULL
) {
878 if (lip
->li_cb
!= xfs_iflush_done
) {
880 blip
= blip
->li_bio_list
;
884 /* remove from list */
885 next
= blip
->li_bio_list
;
889 prev
->li_bio_list
= next
;
892 /* add to current list */
893 blip
->li_bio_list
= lip
->li_bio_list
;
894 lip
->li_bio_list
= blip
;
897 * while we have the item, do the unlocked check for needing
900 iip
= INODE_ITEM(blip
);
901 if (iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
)
907 /* make sure we capture the state of the initial inode. */
908 iip
= INODE_ITEM(lip
);
909 if (iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
)
913 * We only want to pull the item from the AIL if it is
914 * actually there and its location in the log has not
915 * changed since we started the flush. Thus, we only bother
916 * if the ili_logged flag is set and the inode's lsn has not
917 * changed. First we check the lsn outside
918 * the lock since it's cheaper, and then we recheck while
919 * holding the lock before removing the inode from the AIL.
922 struct xfs_log_item
*log_items
[need_ail
];
924 spin_lock(&ailp
->xa_lock
);
925 for (blip
= lip
; blip
; blip
= blip
->li_bio_list
) {
926 iip
= INODE_ITEM(blip
);
927 if (iip
->ili_logged
&&
928 blip
->li_lsn
== iip
->ili_flush_lsn
) {
929 log_items
[i
++] = blip
;
931 ASSERT(i
<= need_ail
);
933 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
934 xfs_trans_ail_delete_bulk(ailp
, log_items
, i
);
939 * clean up and unlock the flush lock now we are done. We can clear the
940 * ili_last_fields bits now that we know that the data corresponding to
941 * them is safely on disk.
943 for (blip
= lip
; blip
; blip
= next
) {
944 next
= blip
->li_bio_list
;
945 blip
->li_bio_list
= NULL
;
947 iip
= INODE_ITEM(blip
);
949 iip
->ili_last_fields
= 0;
950 xfs_ifunlock(iip
->ili_inode
);
955 * This is the inode flushing abort routine. It is called
956 * from xfs_iflush when the filesystem is shutting down to clean
957 * up the inode state.
958 * It is responsible for removing the inode item
959 * from the AIL if it has not been re-logged, and unlocking the inode's
966 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
969 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
970 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
971 spin_lock(&ailp
->xa_lock
);
972 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
973 /* xfs_trans_ail_delete() drops the AIL lock. */
974 xfs_trans_ail_delete(ailp
, (xfs_log_item_t
*)iip
);
976 spin_unlock(&ailp
->xa_lock
);
980 * Clear the ili_last_fields bits now that we know that the
981 * data corresponding to them is safely on disk.
983 iip
->ili_last_fields
= 0;
985 * Clear the inode logging fields so no more flushes are
988 iip
->ili_format
.ilf_fields
= 0;
991 * Release the inode's flush lock since we're done with it.
999 struct xfs_log_item
*lip
)
1001 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
);
1005 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1006 * (which can have different field alignments) to the native version
1009 xfs_inode_item_format_convert(
1010 xfs_log_iovec_t
*buf
,
1011 xfs_inode_log_format_t
*in_f
)
1013 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
1014 xfs_inode_log_format_32_t
*in_f32
= buf
->i_addr
;
1016 in_f
->ilf_type
= in_f32
->ilf_type
;
1017 in_f
->ilf_size
= in_f32
->ilf_size
;
1018 in_f
->ilf_fields
= in_f32
->ilf_fields
;
1019 in_f
->ilf_asize
= in_f32
->ilf_asize
;
1020 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
1021 in_f
->ilf_ino
= in_f32
->ilf_ino
;
1022 /* copy biggest field of ilf_u */
1023 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1024 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
1026 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
1027 in_f
->ilf_len
= in_f32
->ilf_len
;
1028 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
1030 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
1031 xfs_inode_log_format_64_t
*in_f64
= buf
->i_addr
;
1033 in_f
->ilf_type
= in_f64
->ilf_type
;
1034 in_f
->ilf_size
= in_f64
->ilf_size
;
1035 in_f
->ilf_fields
= in_f64
->ilf_fields
;
1036 in_f
->ilf_asize
= in_f64
->ilf_asize
;
1037 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
1038 in_f
->ilf_ino
= in_f64
->ilf_ino
;
1039 /* copy biggest field of ilf_u */
1040 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
1041 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
1043 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
1044 in_f
->ilf_len
= in_f64
->ilf_len
;
1045 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;
1048 return EFSCORRUPTED
;