Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / fs / xfs / xfs_inode_item.c
blob91d71dcd4852eed6339bd1ceb54a8dbdf04cd27a
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
37 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
39 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
41 return container_of(lip, struct xfs_inode_log_item, ili_item);
46 * This returns the number of iovecs needed to log the given inode item.
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
52 STATIC uint
53 xfs_inode_item_size(
54 struct xfs_log_item *lip)
56 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 struct xfs_inode *ip = iip->ili_inode;
58 uint nvecs = 2;
61 * Only log the data/extents/b-tree root if there is something
62 * left to log.
64 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
66 switch (ip->i_d.di_format) {
67 case XFS_DINODE_FMT_EXTENTS:
68 iip->ili_format.ilf_fields &=
69 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70 XFS_ILOG_DEV | XFS_ILOG_UUID);
71 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72 (ip->i_d.di_nextents > 0) &&
73 (ip->i_df.if_bytes > 0)) {
74 ASSERT(ip->i_df.if_u1.if_extents != NULL);
75 nvecs++;
76 } else {
77 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
79 break;
81 case XFS_DINODE_FMT_BTREE:
82 iip->ili_format.ilf_fields &=
83 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
84 XFS_ILOG_DEV | XFS_ILOG_UUID);
85 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
86 (ip->i_df.if_broot_bytes > 0)) {
87 ASSERT(ip->i_df.if_broot != NULL);
88 nvecs++;
89 } else {
90 ASSERT(!(iip->ili_format.ilf_fields &
91 XFS_ILOG_DBROOT));
92 #ifdef XFS_TRANS_DEBUG
93 if (iip->ili_root_size > 0) {
94 ASSERT(iip->ili_root_size ==
95 ip->i_df.if_broot_bytes);
96 ASSERT(memcmp(iip->ili_orig_root,
97 ip->i_df.if_broot,
98 iip->ili_root_size) == 0);
99 } else {
100 ASSERT(ip->i_df.if_broot_bytes == 0);
102 #endif
103 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
105 break;
107 case XFS_DINODE_FMT_LOCAL:
108 iip->ili_format.ilf_fields &=
109 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
110 XFS_ILOG_DEV | XFS_ILOG_UUID);
111 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
112 (ip->i_df.if_bytes > 0)) {
113 ASSERT(ip->i_df.if_u1.if_data != NULL);
114 ASSERT(ip->i_d.di_size > 0);
115 nvecs++;
116 } else {
117 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
119 break;
121 case XFS_DINODE_FMT_DEV:
122 iip->ili_format.ilf_fields &=
123 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
124 XFS_ILOG_DEXT | XFS_ILOG_UUID);
125 break;
127 case XFS_DINODE_FMT_UUID:
128 iip->ili_format.ilf_fields &=
129 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
130 XFS_ILOG_DEXT | XFS_ILOG_DEV);
131 break;
133 default:
134 ASSERT(0);
135 break;
139 * If there are no attributes associated with this file,
140 * then there cannot be anything more to log.
141 * Clear all attribute-related log flags.
143 if (!XFS_IFORK_Q(ip)) {
144 iip->ili_format.ilf_fields &=
145 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
146 return nvecs;
150 * Log any necessary attribute data.
152 switch (ip->i_d.di_aformat) {
153 case XFS_DINODE_FMT_EXTENTS:
154 iip->ili_format.ilf_fields &=
155 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
156 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
157 (ip->i_d.di_anextents > 0) &&
158 (ip->i_afp->if_bytes > 0)) {
159 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
160 nvecs++;
161 } else {
162 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
164 break;
166 case XFS_DINODE_FMT_BTREE:
167 iip->ili_format.ilf_fields &=
168 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
169 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
170 (ip->i_afp->if_broot_bytes > 0)) {
171 ASSERT(ip->i_afp->if_broot != NULL);
172 nvecs++;
173 } else {
174 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
176 break;
178 case XFS_DINODE_FMT_LOCAL:
179 iip->ili_format.ilf_fields &=
180 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
181 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
182 (ip->i_afp->if_bytes > 0)) {
183 ASSERT(ip->i_afp->if_u1.if_data != NULL);
184 nvecs++;
185 } else {
186 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
188 break;
190 default:
191 ASSERT(0);
192 break;
195 return nvecs;
199 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
201 * For either the data or attr fork in extent format, we need to endian convert
202 * the in-core extent as we place them into the on-disk inode. In this case, we
203 * need to do this conversion before we write the extents into the log. Because
204 * we don't have the disk inode to write into here, we allocate a buffer and
205 * format the extents into it via xfs_iextents_copy(). We free the buffer in
206 * the unlock routine after the copy for the log has been made.
208 * In the case of the data fork, the in-core and on-disk fork sizes can be
209 * different due to delayed allocation extents. We only log on-disk extents
210 * here, so always use the physical fork size to determine the size of the
211 * buffer we need to allocate.
213 STATIC void
214 xfs_inode_item_format_extents(
215 struct xfs_inode *ip,
216 struct xfs_log_iovec *vecp,
217 int whichfork,
218 int type)
220 xfs_bmbt_rec_t *ext_buffer;
222 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
223 if (whichfork == XFS_DATA_FORK)
224 ip->i_itemp->ili_extents_buf = ext_buffer;
225 else
226 ip->i_itemp->ili_aextents_buf = ext_buffer;
228 vecp->i_addr = ext_buffer;
229 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
230 vecp->i_type = type;
234 * This is called to fill in the vector of log iovecs for the
235 * given inode log item. It fills the first item with an inode
236 * log format structure, the second with the on-disk inode structure,
237 * and a possible third and/or fourth with the inode data/extents/b-tree
238 * root and inode attributes data/extents/b-tree root.
240 STATIC void
241 xfs_inode_item_format(
242 struct xfs_log_item *lip,
243 struct xfs_log_iovec *vecp)
245 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
246 struct xfs_inode *ip = iip->ili_inode;
247 uint nvecs;
248 size_t data_bytes;
249 xfs_mount_t *mp;
251 vecp->i_addr = &iip->ili_format;
252 vecp->i_len = sizeof(xfs_inode_log_format_t);
253 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
254 vecp++;
255 nvecs = 1;
258 * Clear i_update_core if the timestamps (or any other
259 * non-transactional modification) need flushing/logging
260 * and we're about to log them with the rest of the core.
262 * This is the same logic as xfs_iflush() but this code can't
263 * run at the same time as xfs_iflush because we're in commit
264 * processing here and so we have the inode lock held in
265 * exclusive mode. Although it doesn't really matter
266 * for the timestamps if both routines were to grab the
267 * timestamps or not. That would be ok.
269 * We clear i_update_core before copying out the data.
270 * This is for coordination with our timestamp updates
271 * that don't hold the inode lock. They will always
272 * update the timestamps BEFORE setting i_update_core,
273 * so if we clear i_update_core after they set it we
274 * are guaranteed to see their updates to the timestamps
275 * either here. Likewise, if they set it after we clear it
276 * here, we'll see it either on the next commit of this
277 * inode or the next time the inode gets flushed via
278 * xfs_iflush(). This depends on strongly ordered memory
279 * semantics, but we have that. We use the SYNCHRONIZE
280 * macro to make sure that the compiler does not reorder
281 * the i_update_core access below the data copy below.
283 if (ip->i_update_core) {
284 ip->i_update_core = 0;
285 SYNCHRONIZE();
289 * Make sure to get the latest timestamps from the Linux inode.
291 xfs_synchronize_times(ip);
293 vecp->i_addr = &ip->i_d;
294 vecp->i_len = sizeof(struct xfs_icdinode);
295 vecp->i_type = XLOG_REG_TYPE_ICORE;
296 vecp++;
297 nvecs++;
298 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
301 * If this is really an old format inode, then we need to
302 * log it as such. This means that we have to copy the link
303 * count from the new field to the old. We don't have to worry
304 * about the new fields, because nothing trusts them as long as
305 * the old inode version number is there. If the superblock already
306 * has a new version number, then we don't bother converting back.
308 mp = ip->i_mount;
309 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
310 if (ip->i_d.di_version == 1) {
311 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
313 * Convert it back.
315 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
316 ip->i_d.di_onlink = ip->i_d.di_nlink;
317 } else {
319 * The superblock version has already been bumped,
320 * so just make the conversion to the new inode
321 * format permanent.
323 ip->i_d.di_version = 2;
324 ip->i_d.di_onlink = 0;
325 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
329 switch (ip->i_d.di_format) {
330 case XFS_DINODE_FMT_EXTENTS:
331 ASSERT(!(iip->ili_format.ilf_fields &
332 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
333 XFS_ILOG_DEV | XFS_ILOG_UUID)));
334 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
335 ASSERT(ip->i_df.if_bytes > 0);
336 ASSERT(ip->i_df.if_u1.if_extents != NULL);
337 ASSERT(ip->i_d.di_nextents > 0);
338 ASSERT(iip->ili_extents_buf == NULL);
339 ASSERT((ip->i_df.if_bytes /
340 (uint)sizeof(xfs_bmbt_rec_t)) > 0);
341 #ifdef XFS_NATIVE_HOST
342 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
343 (uint)sizeof(xfs_bmbt_rec_t)) {
345 * There are no delayed allocation
346 * extents, so just point to the
347 * real extents array.
349 vecp->i_addr = ip->i_df.if_u1.if_extents;
350 vecp->i_len = ip->i_df.if_bytes;
351 vecp->i_type = XLOG_REG_TYPE_IEXT;
352 } else
353 #endif
355 xfs_inode_item_format_extents(ip, vecp,
356 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
358 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
359 iip->ili_format.ilf_dsize = vecp->i_len;
360 vecp++;
361 nvecs++;
363 break;
365 case XFS_DINODE_FMT_BTREE:
366 ASSERT(!(iip->ili_format.ilf_fields &
367 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
368 XFS_ILOG_DEV | XFS_ILOG_UUID)));
369 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
370 ASSERT(ip->i_df.if_broot_bytes > 0);
371 ASSERT(ip->i_df.if_broot != NULL);
372 vecp->i_addr = ip->i_df.if_broot;
373 vecp->i_len = ip->i_df.if_broot_bytes;
374 vecp->i_type = XLOG_REG_TYPE_IBROOT;
375 vecp++;
376 nvecs++;
377 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
379 break;
381 case XFS_DINODE_FMT_LOCAL:
382 ASSERT(!(iip->ili_format.ilf_fields &
383 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
384 XFS_ILOG_DEV | XFS_ILOG_UUID)));
385 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
386 ASSERT(ip->i_df.if_bytes > 0);
387 ASSERT(ip->i_df.if_u1.if_data != NULL);
388 ASSERT(ip->i_d.di_size > 0);
390 vecp->i_addr = ip->i_df.if_u1.if_data;
392 * Round i_bytes up to a word boundary.
393 * The underlying memory is guaranteed to
394 * to be there by xfs_idata_realloc().
396 data_bytes = roundup(ip->i_df.if_bytes, 4);
397 ASSERT((ip->i_df.if_real_bytes == 0) ||
398 (ip->i_df.if_real_bytes == data_bytes));
399 vecp->i_len = (int)data_bytes;
400 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
401 vecp++;
402 nvecs++;
403 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
405 break;
407 case XFS_DINODE_FMT_DEV:
408 ASSERT(!(iip->ili_format.ilf_fields &
409 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
410 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
411 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
412 iip->ili_format.ilf_u.ilfu_rdev =
413 ip->i_df.if_u2.if_rdev;
415 break;
417 case XFS_DINODE_FMT_UUID:
418 ASSERT(!(iip->ili_format.ilf_fields &
419 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
420 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
421 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
422 iip->ili_format.ilf_u.ilfu_uuid =
423 ip->i_df.if_u2.if_uuid;
425 break;
427 default:
428 ASSERT(0);
429 break;
433 * If there are no attributes associated with the file,
434 * then we're done.
435 * Assert that no attribute-related log flags are set.
437 if (!XFS_IFORK_Q(ip)) {
438 iip->ili_format.ilf_size = nvecs;
439 ASSERT(!(iip->ili_format.ilf_fields &
440 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
441 return;
444 switch (ip->i_d.di_aformat) {
445 case XFS_DINODE_FMT_EXTENTS:
446 ASSERT(!(iip->ili_format.ilf_fields &
447 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
448 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
449 #ifdef DEBUG
450 int nrecs = ip->i_afp->if_bytes /
451 (uint)sizeof(xfs_bmbt_rec_t);
452 ASSERT(nrecs > 0);
453 ASSERT(nrecs == ip->i_d.di_anextents);
454 ASSERT(ip->i_afp->if_bytes > 0);
455 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
456 ASSERT(ip->i_d.di_anextents > 0);
457 #endif
458 #ifdef XFS_NATIVE_HOST
460 * There are not delayed allocation extents
461 * for attributes, so just point at the array.
463 vecp->i_addr = ip->i_afp->if_u1.if_extents;
464 vecp->i_len = ip->i_afp->if_bytes;
465 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
466 #else
467 ASSERT(iip->ili_aextents_buf == NULL);
468 xfs_inode_item_format_extents(ip, vecp,
469 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
470 #endif
471 iip->ili_format.ilf_asize = vecp->i_len;
472 vecp++;
473 nvecs++;
475 break;
477 case XFS_DINODE_FMT_BTREE:
478 ASSERT(!(iip->ili_format.ilf_fields &
479 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
480 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
481 ASSERT(ip->i_afp->if_broot_bytes > 0);
482 ASSERT(ip->i_afp->if_broot != NULL);
483 vecp->i_addr = ip->i_afp->if_broot;
484 vecp->i_len = ip->i_afp->if_broot_bytes;
485 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
486 vecp++;
487 nvecs++;
488 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
490 break;
492 case XFS_DINODE_FMT_LOCAL:
493 ASSERT(!(iip->ili_format.ilf_fields &
494 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
495 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
496 ASSERT(ip->i_afp->if_bytes > 0);
497 ASSERT(ip->i_afp->if_u1.if_data != NULL);
499 vecp->i_addr = ip->i_afp->if_u1.if_data;
501 * Round i_bytes up to a word boundary.
502 * The underlying memory is guaranteed to
503 * to be there by xfs_idata_realloc().
505 data_bytes = roundup(ip->i_afp->if_bytes, 4);
506 ASSERT((ip->i_afp->if_real_bytes == 0) ||
507 (ip->i_afp->if_real_bytes == data_bytes));
508 vecp->i_len = (int)data_bytes;
509 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
510 vecp++;
511 nvecs++;
512 iip->ili_format.ilf_asize = (unsigned)data_bytes;
514 break;
516 default:
517 ASSERT(0);
518 break;
521 iip->ili_format.ilf_size = nvecs;
526 * This is called to pin the inode associated with the inode log
527 * item in memory so it cannot be written out.
529 STATIC void
530 xfs_inode_item_pin(
531 struct xfs_log_item *lip)
533 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
535 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
537 trace_xfs_inode_pin(ip, _RET_IP_);
538 atomic_inc(&ip->i_pincount);
543 * This is called to unpin the inode associated with the inode log
544 * item which was previously pinned with a call to xfs_inode_item_pin().
546 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
548 STATIC void
549 xfs_inode_item_unpin(
550 struct xfs_log_item *lip,
551 int remove)
553 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
555 trace_xfs_inode_unpin(ip, _RET_IP_);
556 ASSERT(atomic_read(&ip->i_pincount) > 0);
557 if (atomic_dec_and_test(&ip->i_pincount))
558 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
562 * This is called to attempt to lock the inode associated with this
563 * inode log item, in preparation for the push routine which does the actual
564 * iflush. Don't sleep on the inode lock or the flush lock.
566 * If the flush lock is already held, indicating that the inode has
567 * been or is in the process of being flushed, then (ideally) we'd like to
568 * see if the inode's buffer is still incore, and if so give it a nudge.
569 * We delay doing so until the pushbuf routine, though, to avoid holding
570 * the AIL lock across a call to the blackhole which is the buffer cache.
571 * Also we don't want to sleep in any device strategy routines, which can happen
572 * if we do the subsequent bawrite in here.
574 STATIC uint
575 xfs_inode_item_trylock(
576 struct xfs_log_item *lip)
578 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
579 struct xfs_inode *ip = iip->ili_inode;
581 if (xfs_ipincount(ip) > 0)
582 return XFS_ITEM_PINNED;
584 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
585 return XFS_ITEM_LOCKED;
587 if (!xfs_iflock_nowait(ip)) {
589 * inode has already been flushed to the backing buffer,
590 * leave it locked in shared mode, pushbuf routine will
591 * unlock it.
593 return XFS_ITEM_PUSHBUF;
596 /* Stale items should force out the iclog */
597 if (ip->i_flags & XFS_ISTALE) {
598 xfs_ifunlock(ip);
600 * we hold the AIL lock - notify the unlock routine of this
601 * so it doesn't try to get the lock again.
603 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
604 return XFS_ITEM_PINNED;
607 #ifdef DEBUG
608 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
609 ASSERT(iip->ili_format.ilf_fields != 0);
610 ASSERT(iip->ili_logged == 0);
611 ASSERT(lip->li_flags & XFS_LI_IN_AIL);
613 #endif
614 return XFS_ITEM_SUCCESS;
618 * Unlock the inode associated with the inode log item.
619 * Clear the fields of the inode and inode log item that
620 * are specific to the current transaction. If the
621 * hold flags is set, do not unlock the inode.
623 STATIC void
624 xfs_inode_item_unlock(
625 struct xfs_log_item *lip)
627 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
628 struct xfs_inode *ip = iip->ili_inode;
629 unsigned short lock_flags;
631 ASSERT(ip->i_itemp != NULL);
632 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
635 * If the inode needed a separate buffer with which to log
636 * its extents, then free it now.
638 if (iip->ili_extents_buf != NULL) {
639 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
640 ASSERT(ip->i_d.di_nextents > 0);
641 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
642 ASSERT(ip->i_df.if_bytes > 0);
643 kmem_free(iip->ili_extents_buf);
644 iip->ili_extents_buf = NULL;
646 if (iip->ili_aextents_buf != NULL) {
647 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
648 ASSERT(ip->i_d.di_anextents > 0);
649 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
650 ASSERT(ip->i_afp->if_bytes > 0);
651 kmem_free(iip->ili_aextents_buf);
652 iip->ili_aextents_buf = NULL;
655 lock_flags = iip->ili_lock_flags;
656 iip->ili_lock_flags = 0;
657 if (lock_flags)
658 xfs_iunlock(ip, lock_flags);
662 * This is called to find out where the oldest active copy of the inode log
663 * item in the on disk log resides now that the last log write of it completed
664 * at the given lsn. Since we always re-log all dirty data in an inode, the
665 * latest copy in the on disk log is the only one that matters. Therefore,
666 * simply return the given lsn.
668 * If the inode has been marked stale because the cluster is being freed, we
669 * don't want to (re-)insert this inode into the AIL. There is a race condition
670 * where the cluster buffer may be unpinned before the inode is inserted into
671 * the AIL during transaction committed processing. If the buffer is unpinned
672 * before the inode item has been committed and inserted, then it is possible
673 * for the buffer to be written and IO completes before the inode is inserted
674 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
675 * AIL which will never get removed. It will, however, get reclaimed which
676 * triggers an assert in xfs_inode_free() complaining about freein an inode
677 * still in the AIL.
679 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
680 * transaction committed code knows that it does not need to do any further
681 * processing on the item.
683 STATIC xfs_lsn_t
684 xfs_inode_item_committed(
685 struct xfs_log_item *lip,
686 xfs_lsn_t lsn)
688 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
689 struct xfs_inode *ip = iip->ili_inode;
691 if (xfs_iflags_test(ip, XFS_ISTALE)) {
692 xfs_inode_item_unpin(lip, 0);
693 return -1;
695 return lsn;
699 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
700 * failed to get the inode flush lock but did get the inode locked SHARED.
701 * Here we're trying to see if the inode buffer is incore, and if so whether it's
702 * marked delayed write. If that's the case, we'll promote it and that will
703 * allow the caller to write the buffer by triggering the xfsbufd to run.
705 STATIC bool
706 xfs_inode_item_pushbuf(
707 struct xfs_log_item *lip)
709 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
710 struct xfs_inode *ip = iip->ili_inode;
711 struct xfs_buf *bp;
712 bool ret = true;
714 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
717 * If a flush is not in progress anymore, chances are that the
718 * inode was taken off the AIL. So, just get out.
720 if (!xfs_isiflocked(ip) ||
721 !(lip->li_flags & XFS_LI_IN_AIL)) {
722 xfs_iunlock(ip, XFS_ILOCK_SHARED);
723 return true;
726 bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
727 iip->ili_format.ilf_len, XBF_TRYLOCK);
729 xfs_iunlock(ip, XFS_ILOCK_SHARED);
730 if (!bp)
731 return true;
732 if (XFS_BUF_ISDELAYWRITE(bp))
733 xfs_buf_delwri_promote(bp);
734 if (xfs_buf_ispinned(bp))
735 ret = false;
736 xfs_buf_relse(bp);
737 return ret;
741 * This is called to asynchronously write the inode associated with this
742 * inode log item out to disk. The inode will already have been locked by
743 * a successful call to xfs_inode_item_trylock().
745 STATIC void
746 xfs_inode_item_push(
747 struct xfs_log_item *lip)
749 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
750 struct xfs_inode *ip = iip->ili_inode;
752 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
753 ASSERT(xfs_isiflocked(ip));
756 * Since we were able to lock the inode's flush lock and
757 * we found it on the AIL, the inode must be dirty. This
758 * is because the inode is removed from the AIL while still
759 * holding the flush lock in xfs_iflush_done(). Thus, if
760 * we found it in the AIL and were able to obtain the flush
761 * lock without sleeping, then there must not have been
762 * anyone in the process of flushing the inode.
764 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
765 iip->ili_format.ilf_fields != 0);
768 * Push the inode to it's backing buffer. This will not remove the
769 * inode from the AIL - a further push will be required to trigger a
770 * buffer push. However, this allows all the dirty inodes to be pushed
771 * to the buffer before it is pushed to disk. The buffer IO completion
772 * will pull the inode from the AIL, mark it clean and unlock the flush
773 * lock.
775 (void) xfs_iflush(ip, SYNC_TRYLOCK);
776 xfs_iunlock(ip, XFS_ILOCK_SHARED);
780 * XXX rcc - this one really has to do something. Probably needs
781 * to stamp in a new field in the incore inode.
783 STATIC void
784 xfs_inode_item_committing(
785 struct xfs_log_item *lip,
786 xfs_lsn_t lsn)
788 INODE_ITEM(lip)->ili_last_lsn = lsn;
792 * This is the ops vector shared by all buf log items.
794 static const struct xfs_item_ops xfs_inode_item_ops = {
795 .iop_size = xfs_inode_item_size,
796 .iop_format = xfs_inode_item_format,
797 .iop_pin = xfs_inode_item_pin,
798 .iop_unpin = xfs_inode_item_unpin,
799 .iop_trylock = xfs_inode_item_trylock,
800 .iop_unlock = xfs_inode_item_unlock,
801 .iop_committed = xfs_inode_item_committed,
802 .iop_push = xfs_inode_item_push,
803 .iop_pushbuf = xfs_inode_item_pushbuf,
804 .iop_committing = xfs_inode_item_committing
809 * Initialize the inode log item for a newly allocated (in-core) inode.
811 void
812 xfs_inode_item_init(
813 struct xfs_inode *ip,
814 struct xfs_mount *mp)
816 struct xfs_inode_log_item *iip;
818 ASSERT(ip->i_itemp == NULL);
819 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
821 iip->ili_inode = ip;
822 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
823 &xfs_inode_item_ops);
824 iip->ili_format.ilf_type = XFS_LI_INODE;
825 iip->ili_format.ilf_ino = ip->i_ino;
826 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
827 iip->ili_format.ilf_len = ip->i_imap.im_len;
828 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
832 * Free the inode log item and any memory hanging off of it.
834 void
835 xfs_inode_item_destroy(
836 xfs_inode_t *ip)
838 #ifdef XFS_TRANS_DEBUG
839 if (ip->i_itemp->ili_root_size != 0) {
840 kmem_free(ip->i_itemp->ili_orig_root);
842 #endif
843 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
848 * This is the inode flushing I/O completion routine. It is called
849 * from interrupt level when the buffer containing the inode is
850 * flushed to disk. It is responsible for removing the inode item
851 * from the AIL if it has not been re-logged, and unlocking the inode's
852 * flush lock.
854 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
855 * list for other inodes that will run this function. We remove them from the
856 * buffer list so we can process all the inode IO completions in one AIL lock
857 * traversal.
859 void
860 xfs_iflush_done(
861 struct xfs_buf *bp,
862 struct xfs_log_item *lip)
864 struct xfs_inode_log_item *iip;
865 struct xfs_log_item *blip;
866 struct xfs_log_item *next;
867 struct xfs_log_item *prev;
868 struct xfs_ail *ailp = lip->li_ailp;
869 int need_ail = 0;
872 * Scan the buffer IO completions for other inodes being completed and
873 * attach them to the current inode log item.
875 blip = bp->b_fspriv;
876 prev = NULL;
877 while (blip != NULL) {
878 if (lip->li_cb != xfs_iflush_done) {
879 prev = blip;
880 blip = blip->li_bio_list;
881 continue;
884 /* remove from list */
885 next = blip->li_bio_list;
886 if (!prev) {
887 bp->b_fspriv = next;
888 } else {
889 prev->li_bio_list = next;
892 /* add to current list */
893 blip->li_bio_list = lip->li_bio_list;
894 lip->li_bio_list = blip;
897 * while we have the item, do the unlocked check for needing
898 * the AIL lock.
900 iip = INODE_ITEM(blip);
901 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
902 need_ail++;
904 blip = next;
907 /* make sure we capture the state of the initial inode. */
908 iip = INODE_ITEM(lip);
909 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
910 need_ail++;
913 * We only want to pull the item from the AIL if it is
914 * actually there and its location in the log has not
915 * changed since we started the flush. Thus, we only bother
916 * if the ili_logged flag is set and the inode's lsn has not
917 * changed. First we check the lsn outside
918 * the lock since it's cheaper, and then we recheck while
919 * holding the lock before removing the inode from the AIL.
921 if (need_ail) {
922 struct xfs_log_item *log_items[need_ail];
923 int i = 0;
924 spin_lock(&ailp->xa_lock);
925 for (blip = lip; blip; blip = blip->li_bio_list) {
926 iip = INODE_ITEM(blip);
927 if (iip->ili_logged &&
928 blip->li_lsn == iip->ili_flush_lsn) {
929 log_items[i++] = blip;
931 ASSERT(i <= need_ail);
933 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
934 xfs_trans_ail_delete_bulk(ailp, log_items, i);
939 * clean up and unlock the flush lock now we are done. We can clear the
940 * ili_last_fields bits now that we know that the data corresponding to
941 * them is safely on disk.
943 for (blip = lip; blip; blip = next) {
944 next = blip->li_bio_list;
945 blip->li_bio_list = NULL;
947 iip = INODE_ITEM(blip);
948 iip->ili_logged = 0;
949 iip->ili_last_fields = 0;
950 xfs_ifunlock(iip->ili_inode);
955 * This is the inode flushing abort routine. It is called
956 * from xfs_iflush when the filesystem is shutting down to clean
957 * up the inode state.
958 * It is responsible for removing the inode item
959 * from the AIL if it has not been re-logged, and unlocking the inode's
960 * flush lock.
962 void
963 xfs_iflush_abort(
964 xfs_inode_t *ip)
966 xfs_inode_log_item_t *iip = ip->i_itemp;
968 if (iip) {
969 struct xfs_ail *ailp = iip->ili_item.li_ailp;
970 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
971 spin_lock(&ailp->xa_lock);
972 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
973 /* xfs_trans_ail_delete() drops the AIL lock. */
974 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
975 } else
976 spin_unlock(&ailp->xa_lock);
978 iip->ili_logged = 0;
980 * Clear the ili_last_fields bits now that we know that the
981 * data corresponding to them is safely on disk.
983 iip->ili_last_fields = 0;
985 * Clear the inode logging fields so no more flushes are
986 * attempted.
988 iip->ili_format.ilf_fields = 0;
991 * Release the inode's flush lock since we're done with it.
993 xfs_ifunlock(ip);
996 void
997 xfs_istale_done(
998 struct xfs_buf *bp,
999 struct xfs_log_item *lip)
1001 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
1005 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1006 * (which can have different field alignments) to the native version
1009 xfs_inode_item_format_convert(
1010 xfs_log_iovec_t *buf,
1011 xfs_inode_log_format_t *in_f)
1013 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1014 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
1016 in_f->ilf_type = in_f32->ilf_type;
1017 in_f->ilf_size = in_f32->ilf_size;
1018 in_f->ilf_fields = in_f32->ilf_fields;
1019 in_f->ilf_asize = in_f32->ilf_asize;
1020 in_f->ilf_dsize = in_f32->ilf_dsize;
1021 in_f->ilf_ino = in_f32->ilf_ino;
1022 /* copy biggest field of ilf_u */
1023 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1024 in_f32->ilf_u.ilfu_uuid.__u_bits,
1025 sizeof(uuid_t));
1026 in_f->ilf_blkno = in_f32->ilf_blkno;
1027 in_f->ilf_len = in_f32->ilf_len;
1028 in_f->ilf_boffset = in_f32->ilf_boffset;
1029 return 0;
1030 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1031 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
1033 in_f->ilf_type = in_f64->ilf_type;
1034 in_f->ilf_size = in_f64->ilf_size;
1035 in_f->ilf_fields = in_f64->ilf_fields;
1036 in_f->ilf_asize = in_f64->ilf_asize;
1037 in_f->ilf_dsize = in_f64->ilf_dsize;
1038 in_f->ilf_ino = in_f64->ilf_ino;
1039 /* copy biggest field of ilf_u */
1040 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1041 in_f64->ilf_u.ilfu_uuid.__u_bits,
1042 sizeof(uuid_t));
1043 in_f->ilf_blkno = in_f64->ilf_blkno;
1044 in_f->ilf_len = in_f64->ilf_len;
1045 in_f->ilf_boffset = in_f64->ilf_boffset;
1046 return 0;
1048 return EFSCORRUPTED;