2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_rtalloc.h"
39 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
48 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
50 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
52 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
61 short type
; /* 0 = integer
62 * 1 = binary / string (no translation)
65 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
66 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
67 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
68 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
69 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
70 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
71 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
72 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
73 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
74 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
75 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
76 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
77 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
78 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
79 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
80 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
81 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
82 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
83 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
84 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
85 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
86 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
87 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
88 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
89 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
90 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
91 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
92 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
93 { offsetof(xfs_sb_t
, sb_icount
), 0 },
94 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
95 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
96 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
97 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
98 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
99 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
100 { offsetof(xfs_sb_t
, sb_flags
), 0 },
101 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
102 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
103 { offsetof(xfs_sb_t
, sb_unit
), 0 },
104 { offsetof(xfs_sb_t
, sb_width
), 0 },
105 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
106 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
107 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
108 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
109 { offsetof(xfs_sb_t
, sb_features2
), 0 },
110 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
111 { sizeof(xfs_sb_t
), 0 }
114 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
115 static int xfs_uuid_table_size
;
116 static uuid_t
*xfs_uuid_table
;
119 * See if the UUID is unique among mounted XFS filesystems.
120 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
124 struct xfs_mount
*mp
)
126 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
129 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
132 if (uuid_is_nil(uuid
)) {
133 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
134 return XFS_ERROR(EINVAL
);
137 mutex_lock(&xfs_uuid_table_mutex
);
138 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
139 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
143 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
148 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
149 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
150 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
152 hole
= xfs_uuid_table_size
++;
154 xfs_uuid_table
[hole
] = *uuid
;
155 mutex_unlock(&xfs_uuid_table_mutex
);
160 mutex_unlock(&xfs_uuid_table_mutex
);
161 xfs_warn(mp
, "Filesystem has duplicate UUID - can't mount");
162 return XFS_ERROR(EINVAL
);
167 struct xfs_mount
*mp
)
169 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
172 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
175 mutex_lock(&xfs_uuid_table_mutex
);
176 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
177 if (uuid_is_nil(&xfs_uuid_table
[i
]))
179 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
181 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
184 ASSERT(i
< xfs_uuid_table_size
);
185 mutex_unlock(&xfs_uuid_table_mutex
);
190 * Reference counting access wrappers to the perag structures.
191 * Because we never free per-ag structures, the only thing we
192 * have to protect against changes is the tree structure itself.
195 xfs_perag_get(struct xfs_mount
*mp
, xfs_agnumber_t agno
)
197 struct xfs_perag
*pag
;
201 pag
= radix_tree_lookup(&mp
->m_perag_tree
, agno
);
203 ASSERT(atomic_read(&pag
->pag_ref
) >= 0);
204 ref
= atomic_inc_return(&pag
->pag_ref
);
207 trace_xfs_perag_get(mp
, agno
, ref
, _RET_IP_
);
212 * search from @first to find the next perag with the given tag set.
216 struct xfs_mount
*mp
,
217 xfs_agnumber_t first
,
220 struct xfs_perag
*pag
;
225 found
= radix_tree_gang_lookup_tag(&mp
->m_perag_tree
,
226 (void **)&pag
, first
, 1, tag
);
231 ref
= atomic_inc_return(&pag
->pag_ref
);
233 trace_xfs_perag_get_tag(mp
, pag
->pag_agno
, ref
, _RET_IP_
);
238 xfs_perag_put(struct xfs_perag
*pag
)
242 ASSERT(atomic_read(&pag
->pag_ref
) > 0);
243 ref
= atomic_dec_return(&pag
->pag_ref
);
244 trace_xfs_perag_put(pag
->pag_mount
, pag
->pag_agno
, ref
, _RET_IP_
);
249 struct rcu_head
*head
)
251 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
253 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
258 * Free up the per-ag resources associated with the mount structure.
265 struct xfs_perag
*pag
;
267 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
268 spin_lock(&mp
->m_perag_lock
);
269 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
270 spin_unlock(&mp
->m_perag_lock
);
272 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
273 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
278 * Check size of device based on the (data/realtime) block count.
279 * Note: this check is used by the growfs code as well as mount.
282 xfs_sb_validate_fsb_count(
286 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
287 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
289 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
290 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
292 #else /* Limited by UINT_MAX of sectors */
293 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
300 * Check the validity of the SB found.
303 xfs_mount_validate_sb(
308 int loud
= !(flags
& XFS_MFSI_QUIET
);
311 * If the log device and data device have the
312 * same device number, the log is internal.
313 * Consequently, the sb_logstart should be non-zero. If
314 * we have a zero sb_logstart in this case, we may be trying to mount
315 * a volume filesystem in a non-volume manner.
317 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
319 xfs_warn(mp
, "bad magic number");
320 return XFS_ERROR(EWRONGFS
);
323 if (!xfs_sb_good_version(sbp
)) {
325 xfs_warn(mp
, "bad version");
326 return XFS_ERROR(EWRONGFS
);
330 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
333 "filesystem is marked as having an external log; "
334 "specify logdev on the mount command line.");
335 return XFS_ERROR(EINVAL
);
339 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
342 "filesystem is marked as having an internal log; "
343 "do not specify logdev on the mount command line.");
344 return XFS_ERROR(EINVAL
);
348 * More sanity checking. Most of these were stolen directly from
352 sbp
->sb_agcount
<= 0 ||
353 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
354 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
355 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
356 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
357 sbp
->sb_sectsize
!= (1 << sbp
->sb_sectlog
) ||
358 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
359 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
360 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
361 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
362 sbp
->sb_blocksize
!= (1 << sbp
->sb_blocklog
) ||
363 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
364 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
365 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
366 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
367 sbp
->sb_inodesize
!= (1 << sbp
->sb_inodelog
) ||
368 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
369 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
370 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
371 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */) ||
372 sbp
->sb_dblocks
== 0 ||
373 sbp
->sb_dblocks
> XFS_MAX_DBLOCKS(sbp
) ||
374 sbp
->sb_dblocks
< XFS_MIN_DBLOCKS(sbp
))) {
376 XFS_CORRUPTION_ERROR("SB sanity check failed",
377 XFS_ERRLEVEL_LOW
, mp
, sbp
);
378 return XFS_ERROR(EFSCORRUPTED
);
382 * Until this is fixed only page-sized or smaller data blocks work.
384 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
387 "File system with blocksize %d bytes. "
388 "Only pagesize (%ld) or less will currently work.",
389 sbp
->sb_blocksize
, PAGE_SIZE
);
391 return XFS_ERROR(ENOSYS
);
395 * Currently only very few inode sizes are supported.
397 switch (sbp
->sb_inodesize
) {
405 xfs_warn(mp
, "inode size of %d bytes not supported",
407 return XFS_ERROR(ENOSYS
);
410 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
411 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
414 "file system too large to be mounted on this system.");
415 return XFS_ERROR(EFBIG
);
418 if (unlikely(sbp
->sb_inprogress
)) {
420 xfs_warn(mp
, "file system busy");
421 return XFS_ERROR(EFSCORRUPTED
);
425 * Version 1 directory format has never worked on Linux.
427 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
430 "file system using version 1 directory format");
431 return XFS_ERROR(ENOSYS
);
438 xfs_initialize_perag(
440 xfs_agnumber_t agcount
,
441 xfs_agnumber_t
*maxagi
)
443 xfs_agnumber_t index
, max_metadata
;
444 xfs_agnumber_t first_initialised
= 0;
448 xfs_sb_t
*sbp
= &mp
->m_sb
;
452 * Walk the current per-ag tree so we don't try to initialise AGs
453 * that already exist (growfs case). Allocate and insert all the
454 * AGs we don't find ready for initialisation.
456 for (index
= 0; index
< agcount
; index
++) {
457 pag
= xfs_perag_get(mp
, index
);
462 if (!first_initialised
)
463 first_initialised
= index
;
465 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
468 pag
->pag_agno
= index
;
470 spin_lock_init(&pag
->pag_ici_lock
);
471 mutex_init(&pag
->pag_ici_reclaim_lock
);
472 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
473 spin_lock_init(&pag
->pag_buf_lock
);
474 pag
->pag_buf_tree
= RB_ROOT
;
476 if (radix_tree_preload(GFP_NOFS
))
479 spin_lock(&mp
->m_perag_lock
);
480 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
482 spin_unlock(&mp
->m_perag_lock
);
483 radix_tree_preload_end();
487 spin_unlock(&mp
->m_perag_lock
);
488 radix_tree_preload_end();
492 * If we mount with the inode64 option, or no inode overflows
493 * the legacy 32-bit address space clear the inode32 option.
495 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
496 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
498 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
499 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
501 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
503 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
) {
505 * Calculate how much should be reserved for inodes to meet
506 * the max inode percentage.
508 if (mp
->m_maxicount
) {
511 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
513 icount
+= sbp
->sb_agblocks
- 1;
514 do_div(icount
, sbp
->sb_agblocks
);
515 max_metadata
= icount
;
517 max_metadata
= agcount
;
520 for (index
= 0; index
< agcount
; index
++) {
521 ino
= XFS_AGINO_TO_INO(mp
, index
, agino
);
522 if (ino
> XFS_MAXINUMBER_32
) {
527 pag
= xfs_perag_get(mp
, index
);
528 pag
->pagi_inodeok
= 1;
529 if (index
< max_metadata
)
530 pag
->pagf_metadata
= 1;
534 for (index
= 0; index
< agcount
; index
++) {
535 pag
= xfs_perag_get(mp
, index
);
536 pag
->pagi_inodeok
= 1;
547 for (; index
> first_initialised
; index
--) {
548 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
559 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
560 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
561 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
562 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
563 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
564 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
565 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
566 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
567 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
568 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
569 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
570 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
571 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
572 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
573 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
574 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
575 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
576 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
577 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
578 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
579 to
->sb_blocklog
= from
->sb_blocklog
;
580 to
->sb_sectlog
= from
->sb_sectlog
;
581 to
->sb_inodelog
= from
->sb_inodelog
;
582 to
->sb_inopblog
= from
->sb_inopblog
;
583 to
->sb_agblklog
= from
->sb_agblklog
;
584 to
->sb_rextslog
= from
->sb_rextslog
;
585 to
->sb_inprogress
= from
->sb_inprogress
;
586 to
->sb_imax_pct
= from
->sb_imax_pct
;
587 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
588 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
589 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
590 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
591 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
592 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
593 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
594 to
->sb_flags
= from
->sb_flags
;
595 to
->sb_shared_vn
= from
->sb_shared_vn
;
596 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
597 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
598 to
->sb_width
= be32_to_cpu(from
->sb_width
);
599 to
->sb_dirblklog
= from
->sb_dirblklog
;
600 to
->sb_logsectlog
= from
->sb_logsectlog
;
601 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
602 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
603 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
604 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
608 * Copy in core superblock to ondisk one.
610 * The fields argument is mask of superblock fields to copy.
618 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
619 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
629 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
630 first
= xfs_sb_info
[f
].offset
;
631 size
= xfs_sb_info
[f
+ 1].offset
- first
;
633 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
635 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
636 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
640 *(__be16
*)(to_ptr
+ first
) =
641 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
644 *(__be32
*)(to_ptr
+ first
) =
645 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
648 *(__be64
*)(to_ptr
+ first
) =
649 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
656 fields
&= ~(1LL << f
);
663 * Does the initial read of the superblock.
666 xfs_readsb(xfs_mount_t
*mp
, int flags
)
668 unsigned int sector_size
;
671 int loud
= !(flags
& XFS_MFSI_QUIET
);
673 ASSERT(mp
->m_sb_bp
== NULL
);
674 ASSERT(mp
->m_ddev_targp
!= NULL
);
677 * Allocate a (locked) buffer to hold the superblock.
678 * This will be kept around at all times to optimize
679 * access to the superblock.
681 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
684 bp
= xfs_buf_read_uncached(mp
, mp
->m_ddev_targp
,
685 XFS_SB_DADDR
, sector_size
, 0);
688 xfs_warn(mp
, "SB buffer read failed");
693 * Initialize the mount structure from the superblock.
694 * But first do some basic consistency checking.
696 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
697 error
= xfs_mount_validate_sb(mp
, &(mp
->m_sb
), flags
);
700 xfs_warn(mp
, "SB validate failed");
705 * We must be able to do sector-sized and sector-aligned IO.
707 if (sector_size
> mp
->m_sb
.sb_sectsize
) {
709 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
710 sector_size
, mp
->m_sb
.sb_sectsize
);
716 * If device sector size is smaller than the superblock size,
717 * re-read the superblock so the buffer is correctly sized.
719 if (sector_size
< mp
->m_sb
.sb_sectsize
) {
721 sector_size
= mp
->m_sb
.sb_sectsize
;
725 /* Initialize per-cpu counters */
726 xfs_icsb_reinit_counters(mp
);
741 * Mount initialization code establishing various mount
742 * fields from the superblock associated with the given
746 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
748 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
749 spin_lock_init(&mp
->m_agirotor_lock
);
750 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
751 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
752 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
753 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
754 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
755 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
756 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
757 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
758 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
760 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
761 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
762 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
763 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
765 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
766 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
767 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
768 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
770 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
771 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
772 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
773 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
775 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
776 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
778 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
782 * xfs_initialize_perag_data
784 * Read in each per-ag structure so we can count up the number of
785 * allocated inodes, free inodes and used filesystem blocks as this
786 * information is no longer persistent in the superblock. Once we have
787 * this information, write it into the in-core superblock structure.
790 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
792 xfs_agnumber_t index
;
794 xfs_sb_t
*sbp
= &mp
->m_sb
;
798 uint64_t bfreelst
= 0;
802 for (index
= 0; index
< agcount
; index
++) {
804 * read the agf, then the agi. This gets us
805 * all the information we need and populates the
806 * per-ag structures for us.
808 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
812 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
815 pag
= xfs_perag_get(mp
, index
);
816 ifree
+= pag
->pagi_freecount
;
817 ialloc
+= pag
->pagi_count
;
818 bfree
+= pag
->pagf_freeblks
;
819 bfreelst
+= pag
->pagf_flcount
;
820 btree
+= pag
->pagf_btreeblks
;
824 * Overwrite incore superblock counters with just-read data
826 spin_lock(&mp
->m_sb_lock
);
827 sbp
->sb_ifree
= ifree
;
828 sbp
->sb_icount
= ialloc
;
829 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
830 spin_unlock(&mp
->m_sb_lock
);
832 /* Fixup the per-cpu counters as well. */
833 xfs_icsb_reinit_counters(mp
);
839 * Update alignment values based on mount options and sb values
842 xfs_update_alignment(xfs_mount_t
*mp
)
844 xfs_sb_t
*sbp
= &(mp
->m_sb
);
848 * If stripe unit and stripe width are not multiples
849 * of the fs blocksize turn off alignment.
851 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
852 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
853 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
854 xfs_warn(mp
, "alignment check failed: "
855 "(sunit/swidth vs. blocksize)");
856 return XFS_ERROR(EINVAL
);
858 mp
->m_dalign
= mp
->m_swidth
= 0;
861 * Convert the stripe unit and width to FSBs.
863 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
864 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
865 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
866 xfs_warn(mp
, "alignment check failed: "
867 "(sunit/swidth vs. ag size)");
868 return XFS_ERROR(EINVAL
);
871 "stripe alignment turned off: sunit(%d)/swidth(%d) "
872 "incompatible with agsize(%d)",
873 mp
->m_dalign
, mp
->m_swidth
,
878 } else if (mp
->m_dalign
) {
879 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
881 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
882 xfs_warn(mp
, "alignment check failed: "
883 "sunit(%d) less than bsize(%d)",
886 return XFS_ERROR(EINVAL
);
893 * Update superblock with new values
896 if (xfs_sb_version_hasdalign(sbp
)) {
897 if (sbp
->sb_unit
!= mp
->m_dalign
) {
898 sbp
->sb_unit
= mp
->m_dalign
;
899 mp
->m_update_flags
|= XFS_SB_UNIT
;
901 if (sbp
->sb_width
!= mp
->m_swidth
) {
902 sbp
->sb_width
= mp
->m_swidth
;
903 mp
->m_update_flags
|= XFS_SB_WIDTH
;
906 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
907 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
908 mp
->m_dalign
= sbp
->sb_unit
;
909 mp
->m_swidth
= sbp
->sb_width
;
916 * Set the maximum inode count for this filesystem
919 xfs_set_maxicount(xfs_mount_t
*mp
)
921 xfs_sb_t
*sbp
= &(mp
->m_sb
);
924 if (sbp
->sb_imax_pct
) {
926 * Make sure the maximum inode count is a multiple
927 * of the units we allocate inodes in.
929 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
931 do_div(icount
, mp
->m_ialloc_blks
);
932 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
940 * Set the default minimum read and write sizes unless
941 * already specified in a mount option.
942 * We use smaller I/O sizes when the file system
943 * is being used for NFS service (wsync mount option).
946 xfs_set_rw_sizes(xfs_mount_t
*mp
)
948 xfs_sb_t
*sbp
= &(mp
->m_sb
);
949 int readio_log
, writeio_log
;
951 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
952 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
953 readio_log
= XFS_WSYNC_READIO_LOG
;
954 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
956 readio_log
= XFS_READIO_LOG_LARGE
;
957 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
960 readio_log
= mp
->m_readio_log
;
961 writeio_log
= mp
->m_writeio_log
;
964 if (sbp
->sb_blocklog
> readio_log
) {
965 mp
->m_readio_log
= sbp
->sb_blocklog
;
967 mp
->m_readio_log
= readio_log
;
969 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
970 if (sbp
->sb_blocklog
> writeio_log
) {
971 mp
->m_writeio_log
= sbp
->sb_blocklog
;
973 mp
->m_writeio_log
= writeio_log
;
975 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
979 * precalculate the low space thresholds for dynamic speculative preallocation.
982 xfs_set_low_space_thresholds(
983 struct xfs_mount
*mp
)
987 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
988 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
991 mp
->m_low_space
[i
] = space
* (i
+ 1);
997 * Set whether we're using inode alignment.
1000 xfs_set_inoalignment(xfs_mount_t
*mp
)
1002 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
1003 mp
->m_sb
.sb_inoalignmt
>=
1004 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
1005 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
1007 mp
->m_inoalign_mask
= 0;
1009 * If we are using stripe alignment, check whether
1010 * the stripe unit is a multiple of the inode alignment
1012 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
1013 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
1014 mp
->m_sinoalign
= mp
->m_dalign
;
1016 mp
->m_sinoalign
= 0;
1020 * Check that the data (and log if separate) are an ok size.
1023 xfs_check_sizes(xfs_mount_t
*mp
)
1028 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
1029 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
1030 xfs_warn(mp
, "filesystem size mismatch detected");
1031 return XFS_ERROR(EFBIG
);
1033 bp
= xfs_buf_read_uncached(mp
, mp
->m_ddev_targp
,
1034 d
- XFS_FSS_TO_BB(mp
, 1),
1035 BBTOB(XFS_FSS_TO_BB(mp
, 1)), 0);
1037 xfs_warn(mp
, "last sector read failed");
1042 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
1043 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
1044 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
1045 xfs_warn(mp
, "log size mismatch detected");
1046 return XFS_ERROR(EFBIG
);
1048 bp
= xfs_buf_read_uncached(mp
, mp
->m_logdev_targp
,
1049 d
- XFS_FSB_TO_BB(mp
, 1),
1050 XFS_FSB_TO_B(mp
, 1), 0);
1052 xfs_warn(mp
, "log device read failed");
1061 * Clear the quotaflags in memory and in the superblock.
1064 xfs_mount_reset_sbqflags(
1065 struct xfs_mount
*mp
)
1068 struct xfs_trans
*tp
;
1073 * It is OK to look at sb_qflags here in mount path,
1074 * without m_sb_lock.
1076 if (mp
->m_sb
.sb_qflags
== 0)
1078 spin_lock(&mp
->m_sb_lock
);
1079 mp
->m_sb
.sb_qflags
= 0;
1080 spin_unlock(&mp
->m_sb_lock
);
1083 * If the fs is readonly, let the incore superblock run
1084 * with quotas off but don't flush the update out to disk
1086 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1089 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
1090 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1091 XFS_DEFAULT_LOG_COUNT
);
1093 xfs_trans_cancel(tp
, 0);
1094 xfs_alert(mp
, "%s: Superblock update failed!", __func__
);
1098 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
1099 return xfs_trans_commit(tp
, 0);
1103 xfs_default_resblks(xfs_mount_t
*mp
)
1108 * We default to 5% or 8192 fsbs of space reserved, whichever is
1109 * smaller. This is intended to cover concurrent allocation
1110 * transactions when we initially hit enospc. These each require a 4
1111 * block reservation. Hence by default we cover roughly 2000 concurrent
1112 * allocation reservations.
1114 resblks
= mp
->m_sb
.sb_dblocks
;
1115 do_div(resblks
, 20);
1116 resblks
= min_t(__uint64_t
, resblks
, 8192);
1121 * This function does the following on an initial mount of a file system:
1122 * - reads the superblock from disk and init the mount struct
1123 * - if we're a 32-bit kernel, do a size check on the superblock
1124 * so we don't mount terabyte filesystems
1125 * - init mount struct realtime fields
1126 * - allocate inode hash table for fs
1127 * - init directory manager
1128 * - perform recovery and init the log manager
1134 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1137 uint quotamount
= 0;
1138 uint quotaflags
= 0;
1141 xfs_mount_common(mp
, sbp
);
1144 * Check for a mismatched features2 values. Older kernels
1145 * read & wrote into the wrong sb offset for sb_features2
1146 * on some platforms due to xfs_sb_t not being 64bit size aligned
1147 * when sb_features2 was added, which made older superblock
1148 * reading/writing routines swap it as a 64-bit value.
1150 * For backwards compatibility, we make both slots equal.
1152 * If we detect a mismatched field, we OR the set bits into the
1153 * existing features2 field in case it has already been modified; we
1154 * don't want to lose any features. We then update the bad location
1155 * with the ORed value so that older kernels will see any features2
1156 * flags, and mark the two fields as needing updates once the
1157 * transaction subsystem is online.
1159 if (xfs_sb_has_mismatched_features2(sbp
)) {
1160 xfs_warn(mp
, "correcting sb_features alignment problem");
1161 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
1162 sbp
->sb_bad_features2
= sbp
->sb_features2
;
1163 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
1166 * Re-check for ATTR2 in case it was found in bad_features2
1169 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1170 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
1171 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
1174 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1175 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
1176 xfs_sb_version_removeattr2(&mp
->m_sb
);
1177 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
1179 /* update sb_versionnum for the clearing of the morebits */
1180 if (!sbp
->sb_features2
)
1181 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
1185 * Check if sb_agblocks is aligned at stripe boundary
1186 * If sb_agblocks is NOT aligned turn off m_dalign since
1187 * allocator alignment is within an ag, therefore ag has
1188 * to be aligned at stripe boundary.
1190 error
= xfs_update_alignment(mp
);
1194 xfs_alloc_compute_maxlevels(mp
);
1195 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
1196 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
1197 xfs_ialloc_compute_maxlevels(mp
);
1199 xfs_set_maxicount(mp
);
1201 mp
->m_maxioffset
= xfs_max_file_offset(sbp
->sb_blocklog
);
1203 error
= xfs_uuid_mount(mp
);
1208 * Set the minimum read and write sizes
1210 xfs_set_rw_sizes(mp
);
1212 /* set the low space thresholds for dynamic preallocation */
1213 xfs_set_low_space_thresholds(mp
);
1216 * Set the inode cluster size.
1217 * This may still be overridden by the file system
1218 * block size if it is larger than the chosen cluster size.
1220 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1223 * Set inode alignment fields
1225 xfs_set_inoalignment(mp
);
1228 * Check that the data (and log if separate) are an ok size.
1230 error
= xfs_check_sizes(mp
);
1232 goto out_remove_uuid
;
1235 * Initialize realtime fields in the mount structure
1237 error
= xfs_rtmount_init(mp
);
1239 xfs_warn(mp
, "RT mount failed");
1240 goto out_remove_uuid
;
1244 * Copies the low order bits of the timestamp and the randomly
1245 * set "sequence" number out of a UUID.
1247 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1249 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1254 * Initialize the attribute manager's entries.
1256 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1259 * Initialize the precomputed transaction reservations values.
1264 * Allocate and initialize the per-ag data.
1266 spin_lock_init(&mp
->m_perag_lock
);
1267 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
1268 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
1270 xfs_warn(mp
, "Failed per-ag init: %d", error
);
1271 goto out_remove_uuid
;
1274 if (!sbp
->sb_logblocks
) {
1275 xfs_warn(mp
, "no log defined");
1276 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
1277 error
= XFS_ERROR(EFSCORRUPTED
);
1278 goto out_free_perag
;
1282 * log's mount-time initialization. Perform 1st part recovery if needed
1284 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1285 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1286 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1288 xfs_warn(mp
, "log mount failed");
1289 goto out_free_perag
;
1293 * Now the log is mounted, we know if it was an unclean shutdown or
1294 * not. If it was, with the first phase of recovery has completed, we
1295 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1296 * but they are recovered transactionally in the second recovery phase
1299 * Hence we can safely re-initialise incore superblock counters from
1300 * the per-ag data. These may not be correct if the filesystem was not
1301 * cleanly unmounted, so we need to wait for recovery to finish before
1304 * If the filesystem was cleanly unmounted, then we can trust the
1305 * values in the superblock to be correct and we don't need to do
1308 * If we are currently making the filesystem, the initialisation will
1309 * fail as the perag data is in an undefined state.
1311 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1312 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1313 !mp
->m_sb
.sb_inprogress
) {
1314 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1316 goto out_free_perag
;
1320 * Get and sanity-check the root inode.
1321 * Save the pointer to it in the mount structure.
1323 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
1325 xfs_warn(mp
, "failed to read root inode");
1326 goto out_log_dealloc
;
1329 ASSERT(rip
!= NULL
);
1331 if (unlikely(!S_ISDIR(rip
->i_d
.di_mode
))) {
1332 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
1333 (unsigned long long)rip
->i_ino
);
1334 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1335 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1337 error
= XFS_ERROR(EFSCORRUPTED
);
1340 mp
->m_rootip
= rip
; /* save it */
1342 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1345 * Initialize realtime inode pointers in the mount structure
1347 error
= xfs_rtmount_inodes(mp
);
1350 * Free up the root inode.
1352 xfs_warn(mp
, "failed to read RT inodes");
1357 * If this is a read-only mount defer the superblock updates until
1358 * the next remount into writeable mode. Otherwise we would never
1359 * perform the update e.g. for the root filesystem.
1361 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1362 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1364 xfs_warn(mp
, "failed to write sb changes");
1370 * Initialise the XFS quota management subsystem for this mount
1372 if (XFS_IS_QUOTA_RUNNING(mp
)) {
1373 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
1377 ASSERT(!XFS_IS_QUOTA_ON(mp
));
1380 * If a file system had quotas running earlier, but decided to
1381 * mount without -o uquota/pquota/gquota options, revoke the
1382 * quotachecked license.
1384 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
1385 xfs_notice(mp
, "resetting quota flags");
1386 error
= xfs_mount_reset_sbqflags(mp
);
1393 * Finish recovering the file system. This part needed to be
1394 * delayed until after the root and real-time bitmap inodes
1395 * were consistently read in.
1397 error
= xfs_log_mount_finish(mp
);
1399 xfs_warn(mp
, "log mount finish failed");
1404 * Complete the quota initialisation, post-log-replay component.
1407 ASSERT(mp
->m_qflags
== 0);
1408 mp
->m_qflags
= quotaflags
;
1410 xfs_qm_mount_quotas(mp
);
1414 * Now we are mounted, reserve a small amount of unused space for
1415 * privileged transactions. This is needed so that transaction
1416 * space required for critical operations can dip into this pool
1417 * when at ENOSPC. This is needed for operations like create with
1418 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1419 * are not allowed to use this reserved space.
1421 * This may drive us straight to ENOSPC on mount, but that implies
1422 * we were already there on the last unmount. Warn if this occurs.
1424 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1425 resblks
= xfs_default_resblks(mp
);
1426 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1429 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1435 xfs_rtunmount_inodes(mp
);
1439 xfs_log_unmount(mp
);
1443 xfs_uuid_unmount(mp
);
1449 * This flushes out the inodes,dquots and the superblock, unmounts the
1450 * log and makes sure that incore structures are freed.
1454 struct xfs_mount
*mp
)
1459 xfs_qm_unmount_quotas(mp
);
1460 xfs_rtunmount_inodes(mp
);
1461 IRELE(mp
->m_rootip
);
1464 * We can potentially deadlock here if we have an inode cluster
1465 * that has been freed has its buffer still pinned in memory because
1466 * the transaction is still sitting in a iclog. The stale inodes
1467 * on that buffer will have their flush locks held until the
1468 * transaction hits the disk and the callbacks run. the inode
1469 * flush takes the flush lock unconditionally and with nothing to
1470 * push out the iclog we will never get that unlocked. hence we
1471 * need to force the log first.
1473 xfs_log_force(mp
, XFS_LOG_SYNC
);
1476 * Do a delwri reclaim pass first so that as many dirty inodes are
1477 * queued up for IO as possible. Then flush the buffers before making
1478 * a synchronous path to catch all the remaining inodes are reclaimed.
1479 * This makes the reclaim process as quick as possible by avoiding
1480 * synchronous writeout and blocking on inodes already in the delwri
1481 * state as much as possible.
1483 xfs_reclaim_inodes(mp
, 0);
1484 xfs_flush_buftarg(mp
->m_ddev_targp
, 1);
1485 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1490 * Flush out the log synchronously so that we know for sure
1491 * that nothing is pinned. This is important because bflush()
1492 * will skip pinned buffers.
1494 xfs_log_force(mp
, XFS_LOG_SYNC
);
1497 * Unreserve any blocks we have so that when we unmount we don't account
1498 * the reserved free space as used. This is really only necessary for
1499 * lazy superblock counting because it trusts the incore superblock
1500 * counters to be absolutely correct on clean unmount.
1502 * We don't bother correcting this elsewhere for lazy superblock
1503 * counting because on mount of an unclean filesystem we reconstruct the
1504 * correct counter value and this is irrelevant.
1506 * For non-lazy counter filesystems, this doesn't matter at all because
1507 * we only every apply deltas to the superblock and hence the incore
1508 * value does not matter....
1511 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1513 xfs_warn(mp
, "Unable to free reserved block pool. "
1514 "Freespace may not be correct on next mount.");
1516 error
= xfs_log_sbcount(mp
);
1518 xfs_warn(mp
, "Unable to update superblock counters. "
1519 "Freespace may not be correct on next mount.");
1520 xfs_unmountfs_writesb(mp
);
1523 * Make sure all buffers have been flushed and completed before
1524 * unmounting the log.
1526 error
= xfs_flush_buftarg(mp
->m_ddev_targp
, 1);
1528 xfs_warn(mp
, "%d busy buffers during unmount.", error
);
1529 xfs_wait_buftarg(mp
->m_ddev_targp
);
1531 xfs_log_unmount_write(mp
);
1532 xfs_log_unmount(mp
);
1533 xfs_uuid_unmount(mp
);
1536 xfs_errortag_clearall(mp
, 0);
1542 xfs_fs_writable(xfs_mount_t
*mp
)
1544 return !(xfs_test_for_freeze(mp
) || XFS_FORCED_SHUTDOWN(mp
) ||
1545 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1551 * Sync the superblock counters to disk.
1553 * Note this code can be called during the process of freezing, so
1554 * we may need to use the transaction allocator which does not
1555 * block when the transaction subsystem is in its frozen state.
1558 xfs_log_sbcount(xfs_mount_t
*mp
)
1563 if (!xfs_fs_writable(mp
))
1566 xfs_icsb_sync_counters(mp
, 0);
1569 * we don't need to do this if we are updating the superblock
1570 * counters on every modification.
1572 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1575 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1576 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1577 XFS_DEFAULT_LOG_COUNT
);
1579 xfs_trans_cancel(tp
, 0);
1583 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1584 xfs_trans_set_sync(tp
);
1585 error
= xfs_trans_commit(tp
, 0);
1590 xfs_unmountfs_writesb(xfs_mount_t
*mp
)
1596 * skip superblock write if fs is read-only, or
1597 * if we are doing a forced umount.
1599 if (!((mp
->m_flags
& XFS_MOUNT_RDONLY
) ||
1600 XFS_FORCED_SHUTDOWN(mp
))) {
1602 sbp
= xfs_getsb(mp
, 0);
1604 XFS_BUF_UNDONE(sbp
);
1605 XFS_BUF_UNREAD(sbp
);
1606 xfs_buf_delwri_dequeue(sbp
);
1608 XFS_BUF_UNASYNC(sbp
);
1609 ASSERT(sbp
->b_target
== mp
->m_ddev_targp
);
1610 xfsbdstrat(mp
, sbp
);
1611 error
= xfs_buf_iowait(sbp
);
1613 xfs_buf_ioerror_alert(sbp
, __func__
);
1620 * xfs_mod_sb() can be used to copy arbitrary changes to the
1621 * in-core superblock into the superblock buffer to be logged.
1622 * It does not provide the higher level of locking that is
1623 * needed to protect the in-core superblock from concurrent
1627 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1639 bp
= xfs_trans_getsb(tp
, mp
, 0);
1640 first
= sizeof(xfs_sb_t
);
1643 /* translate/copy */
1645 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1647 /* find modified range */
1648 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1649 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1650 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1652 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1653 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1654 first
= xfs_sb_info
[f
].offset
;
1656 xfs_trans_log_buf(tp
, bp
, first
, last
);
1661 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1662 * a delta to a specified field in the in-core superblock. Simply
1663 * switch on the field indicated and apply the delta to that field.
1664 * Fields are not allowed to dip below zero, so if the delta would
1665 * do this do not apply it and return EINVAL.
1667 * The m_sb_lock must be held when this routine is called.
1670 xfs_mod_incore_sb_unlocked(
1672 xfs_sb_field_t field
,
1676 int scounter
; /* short counter for 32 bit fields */
1677 long long lcounter
; /* long counter for 64 bit fields */
1678 long long res_used
, rem
;
1681 * With the in-core superblock spin lock held, switch
1682 * on the indicated field. Apply the delta to the
1683 * proper field. If the fields value would dip below
1684 * 0, then do not apply the delta and return EINVAL.
1687 case XFS_SBS_ICOUNT
:
1688 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1692 return XFS_ERROR(EINVAL
);
1694 mp
->m_sb
.sb_icount
= lcounter
;
1697 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1701 return XFS_ERROR(EINVAL
);
1703 mp
->m_sb
.sb_ifree
= lcounter
;
1705 case XFS_SBS_FDBLOCKS
:
1706 lcounter
= (long long)
1707 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1708 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1710 if (delta
> 0) { /* Putting blocks back */
1711 if (res_used
> delta
) {
1712 mp
->m_resblks_avail
+= delta
;
1714 rem
= delta
- res_used
;
1715 mp
->m_resblks_avail
= mp
->m_resblks
;
1718 } else { /* Taking blocks away */
1720 if (lcounter
>= 0) {
1721 mp
->m_sb
.sb_fdblocks
= lcounter
+
1722 XFS_ALLOC_SET_ASIDE(mp
);
1727 * We are out of blocks, use any available reserved
1728 * blocks if were allowed to.
1731 return XFS_ERROR(ENOSPC
);
1733 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1734 if (lcounter
>= 0) {
1735 mp
->m_resblks_avail
= lcounter
;
1738 printk_once(KERN_WARNING
1739 "Filesystem \"%s\": reserve blocks depleted! "
1740 "Consider increasing reserve pool size.",
1742 return XFS_ERROR(ENOSPC
);
1745 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1747 case XFS_SBS_FREXTENTS
:
1748 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1751 return XFS_ERROR(ENOSPC
);
1753 mp
->m_sb
.sb_frextents
= lcounter
;
1755 case XFS_SBS_DBLOCKS
:
1756 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1760 return XFS_ERROR(EINVAL
);
1762 mp
->m_sb
.sb_dblocks
= lcounter
;
1764 case XFS_SBS_AGCOUNT
:
1765 scounter
= mp
->m_sb
.sb_agcount
;
1769 return XFS_ERROR(EINVAL
);
1771 mp
->m_sb
.sb_agcount
= scounter
;
1773 case XFS_SBS_IMAX_PCT
:
1774 scounter
= mp
->m_sb
.sb_imax_pct
;
1778 return XFS_ERROR(EINVAL
);
1780 mp
->m_sb
.sb_imax_pct
= scounter
;
1782 case XFS_SBS_REXTSIZE
:
1783 scounter
= mp
->m_sb
.sb_rextsize
;
1787 return XFS_ERROR(EINVAL
);
1789 mp
->m_sb
.sb_rextsize
= scounter
;
1791 case XFS_SBS_RBMBLOCKS
:
1792 scounter
= mp
->m_sb
.sb_rbmblocks
;
1796 return XFS_ERROR(EINVAL
);
1798 mp
->m_sb
.sb_rbmblocks
= scounter
;
1800 case XFS_SBS_RBLOCKS
:
1801 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1805 return XFS_ERROR(EINVAL
);
1807 mp
->m_sb
.sb_rblocks
= lcounter
;
1809 case XFS_SBS_REXTENTS
:
1810 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1814 return XFS_ERROR(EINVAL
);
1816 mp
->m_sb
.sb_rextents
= lcounter
;
1818 case XFS_SBS_REXTSLOG
:
1819 scounter
= mp
->m_sb
.sb_rextslog
;
1823 return XFS_ERROR(EINVAL
);
1825 mp
->m_sb
.sb_rextslog
= scounter
;
1829 return XFS_ERROR(EINVAL
);
1834 * xfs_mod_incore_sb() is used to change a field in the in-core
1835 * superblock structure by the specified delta. This modification
1836 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1837 * routine to do the work.
1841 struct xfs_mount
*mp
,
1842 xfs_sb_field_t field
,
1848 #ifdef HAVE_PERCPU_SB
1849 ASSERT(field
< XFS_SBS_ICOUNT
|| field
> XFS_SBS_FDBLOCKS
);
1851 spin_lock(&mp
->m_sb_lock
);
1852 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1853 spin_unlock(&mp
->m_sb_lock
);
1859 * Change more than one field in the in-core superblock structure at a time.
1861 * The fields and changes to those fields are specified in the array of
1862 * xfs_mod_sb structures passed in. Either all of the specified deltas
1863 * will be applied or none of them will. If any modified field dips below 0,
1864 * then all modifications will be backed out and EINVAL will be returned.
1866 * Note that this function may not be used for the superblock values that
1867 * are tracked with the in-memory per-cpu counters - a direct call to
1868 * xfs_icsb_modify_counters is required for these.
1871 xfs_mod_incore_sb_batch(
1872 struct xfs_mount
*mp
,
1881 * Loop through the array of mod structures and apply each individually.
1882 * If any fail, then back out all those which have already been applied.
1883 * Do all of this within the scope of the m_sb_lock so that all of the
1884 * changes will be atomic.
1886 spin_lock(&mp
->m_sb_lock
);
1887 for (msbp
= msb
; msbp
< (msb
+ nmsb
); msbp
++) {
1888 ASSERT(msbp
->msb_field
< XFS_SBS_ICOUNT
||
1889 msbp
->msb_field
> XFS_SBS_FDBLOCKS
);
1891 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1892 msbp
->msb_delta
, rsvd
);
1896 spin_unlock(&mp
->m_sb_lock
);
1900 while (--msbp
>= msb
) {
1901 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1902 -msbp
->msb_delta
, rsvd
);
1905 spin_unlock(&mp
->m_sb_lock
);
1910 * xfs_getsb() is called to obtain the buffer for the superblock.
1911 * The buffer is returned locked and read in from disk.
1912 * The buffer should be released with a call to xfs_brelse().
1914 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1915 * the superblock buffer if it can be locked without sleeping.
1916 * If it can't then we'll return NULL.
1920 struct xfs_mount
*mp
,
1923 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1925 if (!xfs_buf_trylock(bp
)) {
1926 if (flags
& XBF_TRYLOCK
)
1932 ASSERT(XFS_BUF_ISDONE(bp
));
1937 * Used to free the superblock along various error paths.
1941 struct xfs_mount
*mp
)
1943 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1951 * Used to log changes to the superblock unit and width fields which could
1952 * be altered by the mount options, as well as any potential sb_features2
1953 * fixup. Only the first superblock is updated.
1963 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
1964 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
1965 XFS_SB_VERSIONNUM
));
1967 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
1968 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1969 XFS_DEFAULT_LOG_COUNT
);
1971 xfs_trans_cancel(tp
, 0);
1974 xfs_mod_sb(tp
, fields
);
1975 error
= xfs_trans_commit(tp
, 0);
1980 * If the underlying (data/log/rt) device is readonly, there are some
1981 * operations that cannot proceed.
1984 xfs_dev_is_read_only(
1985 struct xfs_mount
*mp
,
1988 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1989 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1990 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1991 xfs_notice(mp
, "%s required on read-only device.", message
);
1992 xfs_notice(mp
, "write access unavailable, cannot proceed.");
1998 #ifdef HAVE_PERCPU_SB
2000 * Per-cpu incore superblock counters
2002 * Simple concept, difficult implementation
2004 * Basically, replace the incore superblock counters with a distributed per cpu
2005 * counter for contended fields (e.g. free block count).
2007 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2008 * hence needs to be accurately read when we are running low on space. Hence
2009 * there is a method to enable and disable the per-cpu counters based on how
2010 * much "stuff" is available in them.
2012 * Basically, a counter is enabled if there is enough free resource to justify
2013 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2014 * ENOSPC), then we disable the counters to synchronise all callers and
2015 * re-distribute the available resources.
2017 * If, once we redistributed the available resources, we still get a failure,
2018 * we disable the per-cpu counter and go through the slow path.
2020 * The slow path is the current xfs_mod_incore_sb() function. This means that
2021 * when we disable a per-cpu counter, we need to drain its resources back to
2022 * the global superblock. We do this after disabling the counter to prevent
2023 * more threads from queueing up on the counter.
2025 * Essentially, this means that we still need a lock in the fast path to enable
2026 * synchronisation between the global counters and the per-cpu counters. This
2027 * is not a problem because the lock will be local to a CPU almost all the time
2028 * and have little contention except when we get to ENOSPC conditions.
2030 * Basically, this lock becomes a barrier that enables us to lock out the fast
2031 * path while we do things like enabling and disabling counters and
2032 * synchronising the counters.
2036 * 1. m_sb_lock before picking up per-cpu locks
2037 * 2. per-cpu locks always picked up via for_each_online_cpu() order
2038 * 3. accurate counter sync requires m_sb_lock + per cpu locks
2039 * 4. modifying per-cpu counters requires holding per-cpu lock
2040 * 5. modifying global counters requires holding m_sb_lock
2041 * 6. enabling or disabling a counter requires holding the m_sb_lock
2042 * and _none_ of the per-cpu locks.
2044 * Disabled counters are only ever re-enabled by a balance operation
2045 * that results in more free resources per CPU than a given threshold.
2046 * To ensure counters don't remain disabled, they are rebalanced when
2047 * the global resource goes above a higher threshold (i.e. some hysteresis
2048 * is present to prevent thrashing).
2051 #ifdef CONFIG_HOTPLUG_CPU
2053 * hot-plug CPU notifier support.
2055 * We need a notifier per filesystem as we need to be able to identify
2056 * the filesystem to balance the counters out. This is achieved by
2057 * having a notifier block embedded in the xfs_mount_t and doing pointer
2058 * magic to get the mount pointer from the notifier block address.
2061 xfs_icsb_cpu_notify(
2062 struct notifier_block
*nfb
,
2063 unsigned long action
,
2066 xfs_icsb_cnts_t
*cntp
;
2069 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
2070 cntp
= (xfs_icsb_cnts_t
*)
2071 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
2073 case CPU_UP_PREPARE
:
2074 case CPU_UP_PREPARE_FROZEN
:
2075 /* Easy Case - initialize the area and locks, and
2076 * then rebalance when online does everything else for us. */
2077 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2080 case CPU_ONLINE_FROZEN
:
2082 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2083 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2084 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2085 xfs_icsb_unlock(mp
);
2088 case CPU_DEAD_FROZEN
:
2089 /* Disable all the counters, then fold the dead cpu's
2090 * count into the total on the global superblock and
2091 * re-enable the counters. */
2093 spin_lock(&mp
->m_sb_lock
);
2094 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
2095 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
2096 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
2098 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
2099 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
2100 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
2102 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2104 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
2105 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
2106 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
2107 spin_unlock(&mp
->m_sb_lock
);
2108 xfs_icsb_unlock(mp
);
2114 #endif /* CONFIG_HOTPLUG_CPU */
2117 xfs_icsb_init_counters(
2120 xfs_icsb_cnts_t
*cntp
;
2123 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
2124 if (mp
->m_sb_cnts
== NULL
)
2127 #ifdef CONFIG_HOTPLUG_CPU
2128 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
2129 mp
->m_icsb_notifier
.priority
= 0;
2130 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
2131 #endif /* CONFIG_HOTPLUG_CPU */
2133 for_each_online_cpu(i
) {
2134 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2135 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2138 mutex_init(&mp
->m_icsb_mutex
);
2141 * start with all counters disabled so that the
2142 * initial balance kicks us off correctly
2144 mp
->m_icsb_counters
= -1;
2149 xfs_icsb_reinit_counters(
2154 * start with all counters disabled so that the
2155 * initial balance kicks us off correctly
2157 mp
->m_icsb_counters
= -1;
2158 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2159 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2160 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2161 xfs_icsb_unlock(mp
);
2165 xfs_icsb_destroy_counters(
2168 if (mp
->m_sb_cnts
) {
2169 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2170 free_percpu(mp
->m_sb_cnts
);
2172 mutex_destroy(&mp
->m_icsb_mutex
);
2177 xfs_icsb_cnts_t
*icsbp
)
2179 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2185 xfs_icsb_unlock_cntr(
2186 xfs_icsb_cnts_t
*icsbp
)
2188 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2193 xfs_icsb_lock_all_counters(
2196 xfs_icsb_cnts_t
*cntp
;
2199 for_each_online_cpu(i
) {
2200 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2201 xfs_icsb_lock_cntr(cntp
);
2206 xfs_icsb_unlock_all_counters(
2209 xfs_icsb_cnts_t
*cntp
;
2212 for_each_online_cpu(i
) {
2213 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2214 xfs_icsb_unlock_cntr(cntp
);
2221 xfs_icsb_cnts_t
*cnt
,
2224 xfs_icsb_cnts_t
*cntp
;
2227 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2229 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2230 xfs_icsb_lock_all_counters(mp
);
2232 for_each_online_cpu(i
) {
2233 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2234 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2235 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2236 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2239 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2240 xfs_icsb_unlock_all_counters(mp
);
2244 xfs_icsb_counter_disabled(
2246 xfs_sb_field_t field
)
2248 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2249 return test_bit(field
, &mp
->m_icsb_counters
);
2253 xfs_icsb_disable_counter(
2255 xfs_sb_field_t field
)
2257 xfs_icsb_cnts_t cnt
;
2259 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2262 * If we are already disabled, then there is nothing to do
2263 * here. We check before locking all the counters to avoid
2264 * the expensive lock operation when being called in the
2265 * slow path and the counter is already disabled. This is
2266 * safe because the only time we set or clear this state is under
2269 if (xfs_icsb_counter_disabled(mp
, field
))
2272 xfs_icsb_lock_all_counters(mp
);
2273 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2274 /* drain back to superblock */
2276 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2278 case XFS_SBS_ICOUNT
:
2279 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2282 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2284 case XFS_SBS_FDBLOCKS
:
2285 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2292 xfs_icsb_unlock_all_counters(mp
);
2296 xfs_icsb_enable_counter(
2298 xfs_sb_field_t field
,
2302 xfs_icsb_cnts_t
*cntp
;
2305 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2307 xfs_icsb_lock_all_counters(mp
);
2308 for_each_online_cpu(i
) {
2309 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2311 case XFS_SBS_ICOUNT
:
2312 cntp
->icsb_icount
= count
+ resid
;
2315 cntp
->icsb_ifree
= count
+ resid
;
2317 case XFS_SBS_FDBLOCKS
:
2318 cntp
->icsb_fdblocks
= count
+ resid
;
2326 clear_bit(field
, &mp
->m_icsb_counters
);
2327 xfs_icsb_unlock_all_counters(mp
);
2331 xfs_icsb_sync_counters_locked(
2335 xfs_icsb_cnts_t cnt
;
2337 xfs_icsb_count(mp
, &cnt
, flags
);
2339 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2340 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2341 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2342 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2343 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2344 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2348 * Accurate update of per-cpu counters to incore superblock
2351 xfs_icsb_sync_counters(
2355 spin_lock(&mp
->m_sb_lock
);
2356 xfs_icsb_sync_counters_locked(mp
, flags
);
2357 spin_unlock(&mp
->m_sb_lock
);
2361 * Balance and enable/disable counters as necessary.
2363 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2364 * chosen to be the same number as single on disk allocation chunk per CPU, and
2365 * free blocks is something far enough zero that we aren't going thrash when we
2366 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2367 * prevent looping endlessly when xfs_alloc_space asks for more than will
2368 * be distributed to a single CPU but each CPU has enough blocks to be
2371 * Note that we can be called when counters are already disabled.
2372 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2373 * prevent locking every per-cpu counter needlessly.
2376 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2377 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2378 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2380 xfs_icsb_balance_counter_locked(
2382 xfs_sb_field_t field
,
2385 uint64_t count
, resid
;
2386 int weight
= num_online_cpus();
2387 uint64_t min
= (uint64_t)min_per_cpu
;
2389 /* disable counter and sync counter */
2390 xfs_icsb_disable_counter(mp
, field
);
2392 /* update counters - first CPU gets residual*/
2394 case XFS_SBS_ICOUNT
:
2395 count
= mp
->m_sb
.sb_icount
;
2396 resid
= do_div(count
, weight
);
2397 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2401 count
= mp
->m_sb
.sb_ifree
;
2402 resid
= do_div(count
, weight
);
2403 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2406 case XFS_SBS_FDBLOCKS
:
2407 count
= mp
->m_sb
.sb_fdblocks
;
2408 resid
= do_div(count
, weight
);
2409 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2414 count
= resid
= 0; /* quiet, gcc */
2418 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2422 xfs_icsb_balance_counter(
2424 xfs_sb_field_t fields
,
2427 spin_lock(&mp
->m_sb_lock
);
2428 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2429 spin_unlock(&mp
->m_sb_lock
);
2433 xfs_icsb_modify_counters(
2435 xfs_sb_field_t field
,
2439 xfs_icsb_cnts_t
*icsbp
;
2440 long long lcounter
; /* long counter for 64 bit fields */
2446 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
2449 * if the counter is disabled, go to slow path
2451 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2453 xfs_icsb_lock_cntr(icsbp
);
2454 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2455 xfs_icsb_unlock_cntr(icsbp
);
2460 case XFS_SBS_ICOUNT
:
2461 lcounter
= icsbp
->icsb_icount
;
2463 if (unlikely(lcounter
< 0))
2464 goto balance_counter
;
2465 icsbp
->icsb_icount
= lcounter
;
2469 lcounter
= icsbp
->icsb_ifree
;
2471 if (unlikely(lcounter
< 0))
2472 goto balance_counter
;
2473 icsbp
->icsb_ifree
= lcounter
;
2476 case XFS_SBS_FDBLOCKS
:
2477 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2479 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2481 if (unlikely(lcounter
< 0))
2482 goto balance_counter
;
2483 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2489 xfs_icsb_unlock_cntr(icsbp
);
2497 * serialise with a mutex so we don't burn lots of cpu on
2498 * the superblock lock. We still need to hold the superblock
2499 * lock, however, when we modify the global structures.
2504 * Now running atomically.
2506 * If the counter is enabled, someone has beaten us to rebalancing.
2507 * Drop the lock and try again in the fast path....
2509 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2510 xfs_icsb_unlock(mp
);
2515 * The counter is currently disabled. Because we are
2516 * running atomically here, we know a rebalance cannot
2517 * be in progress. Hence we can go straight to operating
2518 * on the global superblock. We do not call xfs_mod_incore_sb()
2519 * here even though we need to get the m_sb_lock. Doing so
2520 * will cause us to re-enter this function and deadlock.
2521 * Hence we get the m_sb_lock ourselves and then call
2522 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2523 * directly on the global counters.
2525 spin_lock(&mp
->m_sb_lock
);
2526 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2527 spin_unlock(&mp
->m_sb_lock
);
2530 * Now that we've modified the global superblock, we
2531 * may be able to re-enable the distributed counters
2532 * (e.g. lots of space just got freed). After that
2536 xfs_icsb_balance_counter(mp
, field
, 0);
2537 xfs_icsb_unlock(mp
);
2541 xfs_icsb_unlock_cntr(icsbp
);
2545 * We may have multiple threads here if multiple per-cpu
2546 * counters run dry at the same time. This will mean we can
2547 * do more balances than strictly necessary but it is not
2548 * the common slowpath case.
2553 * running atomically.
2555 * This will leave the counter in the correct state for future
2556 * accesses. After the rebalance, we simply try again and our retry
2557 * will either succeed through the fast path or slow path without
2558 * another balance operation being required.
2560 xfs_icsb_balance_counter(mp
, field
, delta
);
2561 xfs_icsb_unlock(mp
);