2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
24 #include <asm/irq_regs.h>
26 #include "tick-internal.h"
29 * Per cpu nohz control structure
31 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 static ktime_t last_jiffies_update
;
38 struct tick_sched
*tick_get_tick_sched(int cpu
)
40 return &per_cpu(tick_cpu_sched
, cpu
);
44 * Must be called with interrupts disabled !
46 static void tick_do_update_jiffies64(ktime_t now
)
48 unsigned long ticks
= 0;
52 * Do a quick check without holding xtime_lock:
54 delta
= ktime_sub(now
, last_jiffies_update
);
55 if (delta
.tv64
< tick_period
.tv64
)
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock
);
61 delta
= ktime_sub(now
, last_jiffies_update
);
62 if (delta
.tv64
>= tick_period
.tv64
) {
64 delta
= ktime_sub(delta
, tick_period
);
65 last_jiffies_update
= ktime_add(last_jiffies_update
,
68 /* Slow path for long timeouts */
69 if (unlikely(delta
.tv64
>= tick_period
.tv64
)) {
70 s64 incr
= ktime_to_ns(tick_period
);
72 ticks
= ktime_divns(delta
, incr
);
74 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
82 write_sequnlock(&xtime_lock
);
86 * Initialize and return retrieve the jiffies update.
88 static ktime_t
tick_init_jiffy_update(void)
92 write_seqlock(&xtime_lock
);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update
.tv64
== 0)
95 last_jiffies_update
= tick_next_period
;
96 period
= last_jiffies_update
;
97 write_sequnlock(&xtime_lock
);
102 * NOHZ - aka dynamic tick functionality
108 static int tick_nohz_enabled __read_mostly
= 1;
111 * Enable / Disable tickless mode
113 static int __init
setup_tick_nohz(char *str
)
115 if (!strcmp(str
, "off"))
116 tick_nohz_enabled
= 0;
117 else if (!strcmp(str
, "on"))
118 tick_nohz_enabled
= 1;
124 __setup("nohz=", setup_tick_nohz
);
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 * Called from interrupt entry when the CPU was idle
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
136 static void tick_nohz_update_jiffies(ktime_t now
)
138 int cpu
= smp_processor_id();
139 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
142 ts
->idle_waketime
= now
;
144 local_irq_save(flags
);
145 tick_do_update_jiffies64(now
);
146 local_irq_restore(flags
);
148 touch_softlockup_watchdog();
152 * Updates the per cpu time idle statistics counters
155 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
159 if (ts
->idle_active
) {
160 delta
= ktime_sub(now
, ts
->idle_entrytime
);
161 if (nr_iowait_cpu(cpu
) > 0)
162 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
164 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
165 ts
->idle_entrytime
= now
;
168 if (last_update_time
)
169 *last_update_time
= ktime_to_us(now
);
173 static void tick_nohz_stop_idle(int cpu
, ktime_t now
)
175 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
177 update_ts_time_stats(cpu
, ts
, now
, NULL
);
180 sched_clock_idle_wakeup_event(0);
183 static ktime_t
tick_nohz_start_idle(int cpu
, struct tick_sched
*ts
)
189 update_ts_time_stats(cpu
, ts
, now
, NULL
);
191 ts
->idle_entrytime
= now
;
193 sched_clock_idle_sleep_event();
198 * get_cpu_idle_time_us - get the total idle time of a cpu
199 * @cpu: CPU number to query
200 * @last_update_time: variable to store update time in. Do not update
203 * Return the cummulative idle time (since boot) for a given
204 * CPU, in microseconds.
206 * This time is measured via accounting rather than sampling,
207 * and is as accurate as ktime_get() is.
209 * This function returns -1 if NOHZ is not enabled.
211 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
213 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
216 if (!tick_nohz_enabled
)
220 if (last_update_time
) {
221 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
222 idle
= ts
->idle_sleeptime
;
224 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
225 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
227 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
229 idle
= ts
->idle_sleeptime
;
233 return ktime_to_us(idle
);
236 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
239 * get_cpu_iowait_time_us - get the total iowait time of a cpu
240 * @cpu: CPU number to query
241 * @last_update_time: variable to store update time in. Do not update
244 * Return the cummulative iowait time (since boot) for a given
245 * CPU, in microseconds.
247 * This time is measured via accounting rather than sampling,
248 * and is as accurate as ktime_get() is.
250 * This function returns -1 if NOHZ is not enabled.
252 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
254 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
257 if (!tick_nohz_enabled
)
261 if (last_update_time
) {
262 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
263 iowait
= ts
->iowait_sleeptime
;
265 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
266 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
268 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
270 iowait
= ts
->iowait_sleeptime
;
274 return ktime_to_us(iowait
);
276 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
278 static void tick_nohz_stop_sched_tick(struct tick_sched
*ts
)
280 unsigned long seq
, last_jiffies
, next_jiffies
, delta_jiffies
;
281 ktime_t last_update
, expires
, now
;
282 struct clock_event_device
*dev
= __get_cpu_var(tick_cpu_device
).evtdev
;
286 cpu
= smp_processor_id();
287 ts
= &per_cpu(tick_cpu_sched
, cpu
);
289 now
= tick_nohz_start_idle(cpu
, ts
);
292 * If this cpu is offline and it is the one which updates
293 * jiffies, then give up the assignment and let it be taken by
294 * the cpu which runs the tick timer next. If we don't drop
295 * this here the jiffies might be stale and do_timer() never
298 if (unlikely(!cpu_online(cpu
))) {
299 if (cpu
== tick_do_timer_cpu
)
300 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
303 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
))
309 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
310 static int ratelimit
;
312 if (ratelimit
< 10) {
313 printk(KERN_ERR
"NOHZ: local_softirq_pending %02x\n",
314 (unsigned int) local_softirq_pending());
321 /* Read jiffies and the time when jiffies were updated last */
323 seq
= read_seqbegin(&xtime_lock
);
324 last_update
= last_jiffies_update
;
325 last_jiffies
= jiffies
;
326 time_delta
= timekeeping_max_deferment();
327 } while (read_seqretry(&xtime_lock
, seq
));
329 if (rcu_needs_cpu(cpu
) || printk_needs_cpu(cpu
) ||
330 arch_needs_cpu(cpu
)) {
331 next_jiffies
= last_jiffies
+ 1;
334 /* Get the next timer wheel timer */
335 next_jiffies
= get_next_timer_interrupt(last_jiffies
);
336 delta_jiffies
= next_jiffies
- last_jiffies
;
339 * Do not stop the tick, if we are only one off
340 * or if the cpu is required for rcu
342 if (!ts
->tick_stopped
&& delta_jiffies
== 1)
345 /* Schedule the tick, if we are at least one jiffie off */
346 if ((long)delta_jiffies
>= 1) {
349 * If this cpu is the one which updates jiffies, then
350 * give up the assignment and let it be taken by the
351 * cpu which runs the tick timer next, which might be
352 * this cpu as well. If we don't drop this here the
353 * jiffies might be stale and do_timer() never
354 * invoked. Keep track of the fact that it was the one
355 * which had the do_timer() duty last. If this cpu is
356 * the one which had the do_timer() duty last, we
357 * limit the sleep time to the timekeeping
358 * max_deferement value which we retrieved
359 * above. Otherwise we can sleep as long as we want.
361 if (cpu
== tick_do_timer_cpu
) {
362 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
363 ts
->do_timer_last
= 1;
364 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
365 time_delta
= KTIME_MAX
;
366 ts
->do_timer_last
= 0;
367 } else if (!ts
->do_timer_last
) {
368 time_delta
= KTIME_MAX
;
372 * calculate the expiry time for the next timer wheel
373 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
374 * that there is no timer pending or at least extremely
375 * far into the future (12 days for HZ=1000). In this
376 * case we set the expiry to the end of time.
378 if (likely(delta_jiffies
< NEXT_TIMER_MAX_DELTA
)) {
380 * Calculate the time delta for the next timer event.
381 * If the time delta exceeds the maximum time delta
382 * permitted by the current clocksource then adjust
383 * the time delta accordingly to ensure the
384 * clocksource does not wrap.
386 time_delta
= min_t(u64
, time_delta
,
387 tick_period
.tv64
* delta_jiffies
);
390 if (time_delta
< KTIME_MAX
)
391 expires
= ktime_add_ns(last_update
, time_delta
);
393 expires
.tv64
= KTIME_MAX
;
395 /* Skip reprogram of event if its not changed */
396 if (ts
->tick_stopped
&& ktime_equal(expires
, dev
->next_event
))
400 * nohz_stop_sched_tick can be called several times before
401 * the nohz_restart_sched_tick is called. This happens when
402 * interrupts arrive which do not cause a reschedule. In the
403 * first call we save the current tick time, so we can restart
404 * the scheduler tick in nohz_restart_sched_tick.
406 if (!ts
->tick_stopped
) {
407 select_nohz_load_balancer(1);
409 ts
->idle_tick
= hrtimer_get_expires(&ts
->sched_timer
);
410 ts
->tick_stopped
= 1;
411 ts
->idle_jiffies
= last_jiffies
;
417 ts
->idle_expires
= expires
;
420 * If the expiration time == KTIME_MAX, then
421 * in this case we simply stop the tick timer.
423 if (unlikely(expires
.tv64
== KTIME_MAX
)) {
424 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
425 hrtimer_cancel(&ts
->sched_timer
);
429 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
430 hrtimer_start(&ts
->sched_timer
, expires
,
431 HRTIMER_MODE_ABS_PINNED
);
432 /* Check, if the timer was already in the past */
433 if (hrtimer_active(&ts
->sched_timer
))
435 } else if (!tick_program_event(expires
, 0))
438 * We are past the event already. So we crossed a
439 * jiffie boundary. Update jiffies and raise the
442 tick_do_update_jiffies64(ktime_get());
444 raise_softirq_irqoff(TIMER_SOFTIRQ
);
446 ts
->next_jiffies
= next_jiffies
;
447 ts
->last_jiffies
= last_jiffies
;
448 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
452 * tick_nohz_idle_enter - stop the idle tick from the idle task
454 * When the next event is more than a tick into the future, stop the idle tick
455 * Called when we start the idle loop.
457 * The arch is responsible of calling:
459 * - rcu_idle_enter() after its last use of RCU before the CPU is put
461 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
463 void tick_nohz_idle_enter(void)
465 struct tick_sched
*ts
;
467 WARN_ON_ONCE(irqs_disabled());
470 * Update the idle state in the scheduler domain hierarchy
471 * when tick_nohz_stop_sched_tick() is called from the idle loop.
472 * State will be updated to busy during the first busy tick after
475 set_cpu_sd_state_idle();
479 ts
= &__get_cpu_var(tick_cpu_sched
);
481 * set ts->inidle unconditionally. even if the system did not
482 * switch to nohz mode the cpu frequency governers rely on the
483 * update of the idle time accounting in tick_nohz_start_idle().
486 tick_nohz_stop_sched_tick(ts
);
492 * tick_nohz_irq_exit - update next tick event from interrupt exit
494 * When an interrupt fires while we are idle and it doesn't cause
495 * a reschedule, it may still add, modify or delete a timer, enqueue
496 * an RCU callback, etc...
497 * So we need to re-calculate and reprogram the next tick event.
499 void tick_nohz_irq_exit(void)
501 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
506 tick_nohz_stop_sched_tick(ts
);
510 * tick_nohz_get_sleep_length - return the length of the current sleep
512 * Called from power state control code with interrupts disabled
514 ktime_t
tick_nohz_get_sleep_length(void)
516 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
518 return ts
->sleep_length
;
521 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
523 hrtimer_cancel(&ts
->sched_timer
);
524 hrtimer_set_expires(&ts
->sched_timer
, ts
->idle_tick
);
527 /* Forward the time to expire in the future */
528 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
530 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
531 hrtimer_start_expires(&ts
->sched_timer
,
532 HRTIMER_MODE_ABS_PINNED
);
533 /* Check, if the timer was already in the past */
534 if (hrtimer_active(&ts
->sched_timer
))
537 if (!tick_program_event(
538 hrtimer_get_expires(&ts
->sched_timer
), 0))
541 /* Reread time and update jiffies */
543 tick_do_update_jiffies64(now
);
548 * tick_nohz_idle_exit - restart the idle tick from the idle task
550 * Restart the idle tick when the CPU is woken up from idle
551 * This also exit the RCU extended quiescent state. The CPU
552 * can use RCU again after this function is called.
554 void tick_nohz_idle_exit(void)
556 int cpu
= smp_processor_id();
557 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
565 if (ts
->idle_active
|| (ts
->inidle
&& ts
->tick_stopped
))
569 tick_nohz_stop_idle(cpu
, now
);
571 if (!ts
->inidle
|| !ts
->tick_stopped
) {
579 /* Update jiffies first */
580 select_nohz_load_balancer(0);
581 tick_do_update_jiffies64(now
);
583 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
585 * We stopped the tick in idle. Update process times would miss the
586 * time we slept as update_process_times does only a 1 tick
587 * accounting. Enforce that this is accounted to idle !
589 ticks
= jiffies
- ts
->idle_jiffies
;
591 * We might be one off. Do not randomly account a huge number of ticks!
593 if (ticks
&& ticks
< LONG_MAX
)
594 account_idle_ticks(ticks
);
597 touch_softlockup_watchdog();
599 * Cancel the scheduled timer and restore the tick
601 ts
->tick_stopped
= 0;
602 ts
->idle_exittime
= now
;
604 tick_nohz_restart(ts
, now
);
609 static int tick_nohz_reprogram(struct tick_sched
*ts
, ktime_t now
)
611 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
612 return tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 0);
616 * The nohz low res interrupt handler
618 static void tick_nohz_handler(struct clock_event_device
*dev
)
620 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
621 struct pt_regs
*regs
= get_irq_regs();
622 int cpu
= smp_processor_id();
623 ktime_t now
= ktime_get();
625 dev
->next_event
.tv64
= KTIME_MAX
;
628 * Check if the do_timer duty was dropped. We don't care about
629 * concurrency: This happens only when the cpu in charge went
630 * into a long sleep. If two cpus happen to assign themself to
631 * this duty, then the jiffies update is still serialized by
634 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
))
635 tick_do_timer_cpu
= cpu
;
637 /* Check, if the jiffies need an update */
638 if (tick_do_timer_cpu
== cpu
)
639 tick_do_update_jiffies64(now
);
642 * When we are idle and the tick is stopped, we have to touch
643 * the watchdog as we might not schedule for a really long
644 * time. This happens on complete idle SMP systems while
645 * waiting on the login prompt. We also increment the "start
646 * of idle" jiffy stamp so the idle accounting adjustment we
647 * do when we go busy again does not account too much ticks.
649 if (ts
->tick_stopped
) {
650 touch_softlockup_watchdog();
654 update_process_times(user_mode(regs
));
655 profile_tick(CPU_PROFILING
);
657 while (tick_nohz_reprogram(ts
, now
)) {
659 tick_do_update_jiffies64(now
);
664 * tick_nohz_switch_to_nohz - switch to nohz mode
666 static void tick_nohz_switch_to_nohz(void)
668 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
671 if (!tick_nohz_enabled
)
675 if (tick_switch_to_oneshot(tick_nohz_handler
)) {
680 ts
->nohz_mode
= NOHZ_MODE_LOWRES
;
683 * Recycle the hrtimer in ts, so we can share the
684 * hrtimer_forward with the highres code.
686 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
687 /* Get the next period */
688 next
= tick_init_jiffy_update();
691 hrtimer_set_expires(&ts
->sched_timer
, next
);
692 if (!tick_program_event(next
, 0))
694 next
= ktime_add(next
, tick_period
);
700 * When NOHZ is enabled and the tick is stopped, we need to kick the
701 * tick timer from irq_enter() so that the jiffies update is kept
702 * alive during long running softirqs. That's ugly as hell, but
703 * correctness is key even if we need to fix the offending softirq in
706 * Note, this is different to tick_nohz_restart. We just kick the
707 * timer and do not touch the other magic bits which need to be done
710 static void tick_nohz_kick_tick(int cpu
, ktime_t now
)
713 /* Switch back to 2.6.27 behaviour */
715 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
719 * Do not touch the tick device, when the next expiry is either
720 * already reached or less/equal than the tick period.
722 delta
= ktime_sub(hrtimer_get_expires(&ts
->sched_timer
), now
);
723 if (delta
.tv64
<= tick_period
.tv64
)
726 tick_nohz_restart(ts
, now
);
730 static inline void tick_check_nohz(int cpu
)
732 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
735 if (!ts
->idle_active
&& !ts
->tick_stopped
)
739 tick_nohz_stop_idle(cpu
, now
);
740 if (ts
->tick_stopped
) {
741 tick_nohz_update_jiffies(now
);
742 tick_nohz_kick_tick(cpu
, now
);
748 static inline void tick_nohz_switch_to_nohz(void) { }
749 static inline void tick_check_nohz(int cpu
) { }
754 * Called from irq_enter to notify about the possible interruption of idle()
756 void tick_check_idle(int cpu
)
758 tick_check_oneshot_broadcast(cpu
);
759 tick_check_nohz(cpu
);
763 * High resolution timer specific code
765 #ifdef CONFIG_HIGH_RES_TIMERS
767 * We rearm the timer until we get disabled by the idle code.
768 * Called with interrupts disabled and timer->base->cpu_base->lock held.
770 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
772 struct tick_sched
*ts
=
773 container_of(timer
, struct tick_sched
, sched_timer
);
774 struct pt_regs
*regs
= get_irq_regs();
775 ktime_t now
= ktime_get();
776 int cpu
= smp_processor_id();
780 * Check if the do_timer duty was dropped. We don't care about
781 * concurrency: This happens only when the cpu in charge went
782 * into a long sleep. If two cpus happen to assign themself to
783 * this duty, then the jiffies update is still serialized by
786 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
))
787 tick_do_timer_cpu
= cpu
;
790 /* Check, if the jiffies need an update */
791 if (tick_do_timer_cpu
== cpu
)
792 tick_do_update_jiffies64(now
);
795 * Do not call, when we are not in irq context and have
796 * no valid regs pointer
800 * When we are idle and the tick is stopped, we have to touch
801 * the watchdog as we might not schedule for a really long
802 * time. This happens on complete idle SMP systems while
803 * waiting on the login prompt. We also increment the "start of
804 * idle" jiffy stamp so the idle accounting adjustment we do
805 * when we go busy again does not account too much ticks.
807 if (ts
->tick_stopped
) {
808 touch_softlockup_watchdog();
811 update_process_times(user_mode(regs
));
812 profile_tick(CPU_PROFILING
);
815 hrtimer_forward(timer
, now
, tick_period
);
817 return HRTIMER_RESTART
;
821 * tick_setup_sched_timer - setup the tick emulation timer
823 void tick_setup_sched_timer(void)
825 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
826 ktime_t now
= ktime_get();
829 * Emulate tick processing via per-CPU hrtimers:
831 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
832 ts
->sched_timer
.function
= tick_sched_timer
;
834 /* Get the next period (per cpu) */
835 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
838 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
839 hrtimer_start_expires(&ts
->sched_timer
,
840 HRTIMER_MODE_ABS_PINNED
);
841 /* Check, if the timer was already in the past */
842 if (hrtimer_active(&ts
->sched_timer
))
848 if (tick_nohz_enabled
)
849 ts
->nohz_mode
= NOHZ_MODE_HIGHRES
;
852 #endif /* HIGH_RES_TIMERS */
854 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
855 void tick_cancel_sched_timer(int cpu
)
857 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
859 # ifdef CONFIG_HIGH_RES_TIMERS
860 if (ts
->sched_timer
.base
)
861 hrtimer_cancel(&ts
->sched_timer
);
864 ts
->nohz_mode
= NOHZ_MODE_INACTIVE
;
869 * Async notification about clocksource changes
871 void tick_clock_notify(void)
875 for_each_possible_cpu(cpu
)
876 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
880 * Async notification about clock event changes
882 void tick_oneshot_notify(void)
884 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
886 set_bit(0, &ts
->check_clocks
);
890 * Check, if a change happened, which makes oneshot possible.
892 * Called cyclic from the hrtimer softirq (driven by the timer
893 * softirq) allow_nohz signals, that we can switch into low-res nohz
894 * mode, because high resolution timers are disabled (either compile
897 int tick_check_oneshot_change(int allow_nohz
)
899 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
901 if (!test_and_clear_bit(0, &ts
->check_clocks
))
904 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
907 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
913 tick_nohz_switch_to_nohz();