2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
65 #include <net/net_namespace.h>
67 #include <net/inet_hashtables.h>
69 #include <net/transp_v6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
74 #include <net/netdma.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
78 #include <linux/inet.h>
79 #include <linux/ipv6.h>
80 #include <linux/stddef.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
84 #include <linux/crypto.h>
85 #include <linux/scatterlist.h>
87 int sysctl_tcp_tw_reuse __read_mostly
;
88 int sysctl_tcp_low_latency __read_mostly
;
89 EXPORT_SYMBOL(sysctl_tcp_low_latency
);
92 #ifdef CONFIG_TCP_MD5SIG
93 static struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
,
95 static int tcp_v4_md5_hash_hdr(char *md5_hash
, struct tcp_md5sig_key
*key
,
96 __be32 daddr
, __be32 saddr
, const struct tcphdr
*th
);
99 struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
105 struct inet_hashinfo tcp_hashinfo
;
106 EXPORT_SYMBOL(tcp_hashinfo
);
108 static inline __u32
tcp_v4_init_sequence(const struct sk_buff
*skb
)
110 return secure_tcp_sequence_number(ip_hdr(skb
)->daddr
,
113 tcp_hdr(skb
)->source
);
116 int tcp_twsk_unique(struct sock
*sk
, struct sock
*sktw
, void *twp
)
118 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sktw
);
119 struct tcp_sock
*tp
= tcp_sk(sk
);
121 /* With PAWS, it is safe from the viewpoint
122 of data integrity. Even without PAWS it is safe provided sequence
123 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
125 Actually, the idea is close to VJ's one, only timestamp cache is
126 held not per host, but per port pair and TW bucket is used as state
129 If TW bucket has been already destroyed we fall back to VJ's scheme
130 and use initial timestamp retrieved from peer table.
132 if (tcptw
->tw_ts_recent_stamp
&&
133 (twp
== NULL
|| (sysctl_tcp_tw_reuse
&&
134 get_seconds() - tcptw
->tw_ts_recent_stamp
> 1))) {
135 tp
->write_seq
= tcptw
->tw_snd_nxt
+ 65535 + 2;
136 if (tp
->write_seq
== 0)
138 tp
->rx_opt
.ts_recent
= tcptw
->tw_ts_recent
;
139 tp
->rx_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
146 EXPORT_SYMBOL_GPL(tcp_twsk_unique
);
148 /* This will initiate an outgoing connection. */
149 int tcp_v4_connect(struct sock
*sk
, struct sockaddr
*uaddr
, int addr_len
)
151 struct sockaddr_in
*usin
= (struct sockaddr_in
*)uaddr
;
152 struct inet_sock
*inet
= inet_sk(sk
);
153 struct tcp_sock
*tp
= tcp_sk(sk
);
154 __be16 orig_sport
, orig_dport
;
155 __be32 daddr
, nexthop
;
159 struct ip_options_rcu
*inet_opt
;
161 if (addr_len
< sizeof(struct sockaddr_in
))
164 if (usin
->sin_family
!= AF_INET
)
165 return -EAFNOSUPPORT
;
167 nexthop
= daddr
= usin
->sin_addr
.s_addr
;
168 inet_opt
= rcu_dereference_protected(inet
->inet_opt
,
169 sock_owned_by_user(sk
));
170 if (inet_opt
&& inet_opt
->opt
.srr
) {
173 nexthop
= inet_opt
->opt
.faddr
;
176 orig_sport
= inet
->inet_sport
;
177 orig_dport
= usin
->sin_port
;
178 fl4
= &inet
->cork
.fl
.u
.ip4
;
179 rt
= ip_route_connect(fl4
, nexthop
, inet
->inet_saddr
,
180 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
,
182 orig_sport
, orig_dport
, sk
, true);
185 if (err
== -ENETUNREACH
)
186 IP_INC_STATS_BH(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
190 if (rt
->rt_flags
& (RTCF_MULTICAST
| RTCF_BROADCAST
)) {
195 if (!inet_opt
|| !inet_opt
->opt
.srr
)
198 if (!inet
->inet_saddr
)
199 inet
->inet_saddr
= fl4
->saddr
;
200 inet
->inet_rcv_saddr
= inet
->inet_saddr
;
202 if (tp
->rx_opt
.ts_recent_stamp
&& inet
->inet_daddr
!= daddr
) {
203 /* Reset inherited state */
204 tp
->rx_opt
.ts_recent
= 0;
205 tp
->rx_opt
.ts_recent_stamp
= 0;
209 if (tcp_death_row
.sysctl_tw_recycle
&&
210 !tp
->rx_opt
.ts_recent_stamp
&& fl4
->daddr
== daddr
) {
211 struct inet_peer
*peer
= rt_get_peer(rt
, fl4
->daddr
);
213 * VJ's idea. We save last timestamp seen from
214 * the destination in peer table, when entering state
215 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
216 * when trying new connection.
219 inet_peer_refcheck(peer
);
220 if ((u32
)get_seconds() - peer
->tcp_ts_stamp
<= TCP_PAWS_MSL
) {
221 tp
->rx_opt
.ts_recent_stamp
= peer
->tcp_ts_stamp
;
222 tp
->rx_opt
.ts_recent
= peer
->tcp_ts
;
227 inet
->inet_dport
= usin
->sin_port
;
228 inet
->inet_daddr
= daddr
;
230 inet_csk(sk
)->icsk_ext_hdr_len
= 0;
232 inet_csk(sk
)->icsk_ext_hdr_len
= inet_opt
->opt
.optlen
;
234 tp
->rx_opt
.mss_clamp
= TCP_MSS_DEFAULT
;
236 /* Socket identity is still unknown (sport may be zero).
237 * However we set state to SYN-SENT and not releasing socket
238 * lock select source port, enter ourselves into the hash tables and
239 * complete initialization after this.
241 tcp_set_state(sk
, TCP_SYN_SENT
);
242 err
= inet_hash_connect(&tcp_death_row
, sk
);
246 rt
= ip_route_newports(fl4
, rt
, orig_sport
, orig_dport
,
247 inet
->inet_sport
, inet
->inet_dport
, sk
);
253 /* OK, now commit destination to socket. */
254 sk
->sk_gso_type
= SKB_GSO_TCPV4
;
255 sk_setup_caps(sk
, &rt
->dst
);
258 tp
->write_seq
= secure_tcp_sequence_number(inet
->inet_saddr
,
263 inet
->inet_id
= tp
->write_seq
^ jiffies
;
265 err
= tcp_connect(sk
);
274 * This unhashes the socket and releases the local port,
277 tcp_set_state(sk
, TCP_CLOSE
);
279 sk
->sk_route_caps
= 0;
280 inet
->inet_dport
= 0;
283 EXPORT_SYMBOL(tcp_v4_connect
);
286 * This routine does path mtu discovery as defined in RFC1191.
288 static void do_pmtu_discovery(struct sock
*sk
, const struct iphdr
*iph
, u32 mtu
)
290 struct dst_entry
*dst
;
291 struct inet_sock
*inet
= inet_sk(sk
);
293 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
294 * send out by Linux are always <576bytes so they should go through
297 if (sk
->sk_state
== TCP_LISTEN
)
300 /* We don't check in the destentry if pmtu discovery is forbidden
301 * on this route. We just assume that no packet_to_big packets
302 * are send back when pmtu discovery is not active.
303 * There is a small race when the user changes this flag in the
304 * route, but I think that's acceptable.
306 if ((dst
= __sk_dst_check(sk
, 0)) == NULL
)
309 dst
->ops
->update_pmtu(dst
, mtu
);
311 /* Something is about to be wrong... Remember soft error
312 * for the case, if this connection will not able to recover.
314 if (mtu
< dst_mtu(dst
) && ip_dont_fragment(sk
, dst
))
315 sk
->sk_err_soft
= EMSGSIZE
;
319 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
&&
320 inet_csk(sk
)->icsk_pmtu_cookie
> mtu
) {
321 tcp_sync_mss(sk
, mtu
);
323 /* Resend the TCP packet because it's
324 * clear that the old packet has been
325 * dropped. This is the new "fast" path mtu
328 tcp_simple_retransmit(sk
);
329 } /* else let the usual retransmit timer handle it */
333 * This routine is called by the ICMP module when it gets some
334 * sort of error condition. If err < 0 then the socket should
335 * be closed and the error returned to the user. If err > 0
336 * it's just the icmp type << 8 | icmp code. After adjustment
337 * header points to the first 8 bytes of the tcp header. We need
338 * to find the appropriate port.
340 * The locking strategy used here is very "optimistic". When
341 * someone else accesses the socket the ICMP is just dropped
342 * and for some paths there is no check at all.
343 * A more general error queue to queue errors for later handling
344 * is probably better.
348 void tcp_v4_err(struct sk_buff
*icmp_skb
, u32 info
)
350 const struct iphdr
*iph
= (const struct iphdr
*)icmp_skb
->data
;
351 struct tcphdr
*th
= (struct tcphdr
*)(icmp_skb
->data
+ (iph
->ihl
<< 2));
352 struct inet_connection_sock
*icsk
;
354 struct inet_sock
*inet
;
355 const int type
= icmp_hdr(icmp_skb
)->type
;
356 const int code
= icmp_hdr(icmp_skb
)->code
;
362 struct net
*net
= dev_net(icmp_skb
->dev
);
364 if (icmp_skb
->len
< (iph
->ihl
<< 2) + 8) {
365 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
369 sk
= inet_lookup(net
, &tcp_hashinfo
, iph
->daddr
, th
->dest
,
370 iph
->saddr
, th
->source
, inet_iif(icmp_skb
));
372 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
375 if (sk
->sk_state
== TCP_TIME_WAIT
) {
376 inet_twsk_put(inet_twsk(sk
));
381 /* If too many ICMPs get dropped on busy
382 * servers this needs to be solved differently.
384 if (sock_owned_by_user(sk
))
385 NET_INC_STATS_BH(net
, LINUX_MIB_LOCKDROPPEDICMPS
);
387 if (sk
->sk_state
== TCP_CLOSE
)
390 if (unlikely(iph
->ttl
< inet_sk(sk
)->min_ttl
)) {
391 NET_INC_STATS_BH(net
, LINUX_MIB_TCPMINTTLDROP
);
397 seq
= ntohl(th
->seq
);
398 if (sk
->sk_state
!= TCP_LISTEN
&&
399 !between(seq
, tp
->snd_una
, tp
->snd_nxt
)) {
400 NET_INC_STATS_BH(net
, LINUX_MIB_OUTOFWINDOWICMPS
);
405 case ICMP_SOURCE_QUENCH
:
406 /* Just silently ignore these. */
408 case ICMP_PARAMETERPROB
:
411 case ICMP_DEST_UNREACH
:
412 if (code
> NR_ICMP_UNREACH
)
415 if (code
== ICMP_FRAG_NEEDED
) { /* PMTU discovery (RFC1191) */
416 if (!sock_owned_by_user(sk
))
417 do_pmtu_discovery(sk
, iph
, info
);
421 err
= icmp_err_convert
[code
].errno
;
422 /* check if icmp_skb allows revert of backoff
423 * (see draft-zimmermann-tcp-lcd) */
424 if (code
!= ICMP_NET_UNREACH
&& code
!= ICMP_HOST_UNREACH
)
426 if (seq
!= tp
->snd_una
|| !icsk
->icsk_retransmits
||
430 if (sock_owned_by_user(sk
))
433 icsk
->icsk_backoff
--;
434 inet_csk(sk
)->icsk_rto
= (tp
->srtt
? __tcp_set_rto(tp
) :
435 TCP_TIMEOUT_INIT
) << icsk
->icsk_backoff
;
438 skb
= tcp_write_queue_head(sk
);
441 remaining
= icsk
->icsk_rto
- min(icsk
->icsk_rto
,
442 tcp_time_stamp
- TCP_SKB_CB(skb
)->when
);
445 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
446 remaining
, TCP_RTO_MAX
);
448 /* RTO revert clocked out retransmission.
449 * Will retransmit now */
450 tcp_retransmit_timer(sk
);
454 case ICMP_TIME_EXCEEDED
:
461 switch (sk
->sk_state
) {
462 struct request_sock
*req
, **prev
;
464 if (sock_owned_by_user(sk
))
467 req
= inet_csk_search_req(sk
, &prev
, th
->dest
,
468 iph
->daddr
, iph
->saddr
);
472 /* ICMPs are not backlogged, hence we cannot get
473 an established socket here.
477 if (seq
!= tcp_rsk(req
)->snt_isn
) {
478 NET_INC_STATS_BH(net
, LINUX_MIB_OUTOFWINDOWICMPS
);
483 * Still in SYN_RECV, just remove it silently.
484 * There is no good way to pass the error to the newly
485 * created socket, and POSIX does not want network
486 * errors returned from accept().
488 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
492 case TCP_SYN_RECV
: /* Cannot happen.
493 It can f.e. if SYNs crossed.
495 if (!sock_owned_by_user(sk
)) {
498 sk
->sk_error_report(sk
);
502 sk
->sk_err_soft
= err
;
507 /* If we've already connected we will keep trying
508 * until we time out, or the user gives up.
510 * rfc1122 4.2.3.9 allows to consider as hard errors
511 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
512 * but it is obsoleted by pmtu discovery).
514 * Note, that in modern internet, where routing is unreliable
515 * and in each dark corner broken firewalls sit, sending random
516 * errors ordered by their masters even this two messages finally lose
517 * their original sense (even Linux sends invalid PORT_UNREACHs)
519 * Now we are in compliance with RFCs.
524 if (!sock_owned_by_user(sk
) && inet
->recverr
) {
526 sk
->sk_error_report(sk
);
527 } else { /* Only an error on timeout */
528 sk
->sk_err_soft
= err
;
536 static void __tcp_v4_send_check(struct sk_buff
*skb
,
537 __be32 saddr
, __be32 daddr
)
539 struct tcphdr
*th
= tcp_hdr(skb
);
541 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
542 th
->check
= ~tcp_v4_check(skb
->len
, saddr
, daddr
, 0);
543 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
544 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
546 th
->check
= tcp_v4_check(skb
->len
, saddr
, daddr
,
553 /* This routine computes an IPv4 TCP checksum. */
554 void tcp_v4_send_check(struct sock
*sk
, struct sk_buff
*skb
)
556 const struct inet_sock
*inet
= inet_sk(sk
);
558 __tcp_v4_send_check(skb
, inet
->inet_saddr
, inet
->inet_daddr
);
560 EXPORT_SYMBOL(tcp_v4_send_check
);
562 int tcp_v4_gso_send_check(struct sk_buff
*skb
)
564 const struct iphdr
*iph
;
567 if (!pskb_may_pull(skb
, sizeof(*th
)))
574 skb
->ip_summed
= CHECKSUM_PARTIAL
;
575 __tcp_v4_send_check(skb
, iph
->saddr
, iph
->daddr
);
580 * This routine will send an RST to the other tcp.
582 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
584 * Answer: if a packet caused RST, it is not for a socket
585 * existing in our system, if it is matched to a socket,
586 * it is just duplicate segment or bug in other side's TCP.
587 * So that we build reply only basing on parameters
588 * arrived with segment.
589 * Exception: precedence violation. We do not implement it in any case.
592 static void tcp_v4_send_reset(struct sock
*sk
, struct sk_buff
*skb
)
594 const struct tcphdr
*th
= tcp_hdr(skb
);
597 #ifdef CONFIG_TCP_MD5SIG
598 __be32 opt
[(TCPOLEN_MD5SIG_ALIGNED
>> 2)];
601 struct ip_reply_arg arg
;
602 #ifdef CONFIG_TCP_MD5SIG
603 struct tcp_md5sig_key
*key
;
607 /* Never send a reset in response to a reset. */
611 if (skb_rtable(skb
)->rt_type
!= RTN_LOCAL
)
614 /* Swap the send and the receive. */
615 memset(&rep
, 0, sizeof(rep
));
616 rep
.th
.dest
= th
->source
;
617 rep
.th
.source
= th
->dest
;
618 rep
.th
.doff
= sizeof(struct tcphdr
) / 4;
622 rep
.th
.seq
= th
->ack_seq
;
625 rep
.th
.ack_seq
= htonl(ntohl(th
->seq
) + th
->syn
+ th
->fin
+
626 skb
->len
- (th
->doff
<< 2));
629 memset(&arg
, 0, sizeof(arg
));
630 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
631 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
633 #ifdef CONFIG_TCP_MD5SIG
634 key
= sk
? tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->saddr
) : NULL
;
636 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) |
638 (TCPOPT_MD5SIG
<< 8) |
640 /* Update length and the length the header thinks exists */
641 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
642 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
644 tcp_v4_md5_hash_hdr((__u8
*) &rep
.opt
[1],
645 key
, ip_hdr(skb
)->saddr
,
646 ip_hdr(skb
)->daddr
, &rep
.th
);
649 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
650 ip_hdr(skb
)->saddr
, /* XXX */
651 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
652 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
653 arg
.flags
= (sk
&& inet_sk(sk
)->transparent
) ? IP_REPLY_ARG_NOSRCCHECK
: 0;
654 /* When socket is gone, all binding information is lost.
655 * routing might fail in this case. using iif for oif to
656 * make sure we can deliver it
658 arg
.bound_dev_if
= sk
? sk
->sk_bound_dev_if
: inet_iif(skb
);
660 net
= dev_net(skb_dst(skb
)->dev
);
661 arg
.tos
= ip_hdr(skb
)->tos
;
662 ip_send_reply(net
->ipv4
.tcp_sock
, skb
, ip_hdr(skb
)->saddr
,
663 &arg
, arg
.iov
[0].iov_len
);
665 TCP_INC_STATS_BH(net
, TCP_MIB_OUTSEGS
);
666 TCP_INC_STATS_BH(net
, TCP_MIB_OUTRSTS
);
669 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
670 outside socket context is ugly, certainly. What can I do?
673 static void tcp_v4_send_ack(struct sk_buff
*skb
, u32 seq
, u32 ack
,
674 u32 win
, u32 ts
, int oif
,
675 struct tcp_md5sig_key
*key
,
676 int reply_flags
, u8 tos
)
678 const struct tcphdr
*th
= tcp_hdr(skb
);
681 __be32 opt
[(TCPOLEN_TSTAMP_ALIGNED
>> 2)
682 #ifdef CONFIG_TCP_MD5SIG
683 + (TCPOLEN_MD5SIG_ALIGNED
>> 2)
687 struct ip_reply_arg arg
;
688 struct net
*net
= dev_net(skb_dst(skb
)->dev
);
690 memset(&rep
.th
, 0, sizeof(struct tcphdr
));
691 memset(&arg
, 0, sizeof(arg
));
693 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
694 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
696 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
697 (TCPOPT_TIMESTAMP
<< 8) |
699 rep
.opt
[1] = htonl(tcp_time_stamp
);
700 rep
.opt
[2] = htonl(ts
);
701 arg
.iov
[0].iov_len
+= TCPOLEN_TSTAMP_ALIGNED
;
704 /* Swap the send and the receive. */
705 rep
.th
.dest
= th
->source
;
706 rep
.th
.source
= th
->dest
;
707 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
708 rep
.th
.seq
= htonl(seq
);
709 rep
.th
.ack_seq
= htonl(ack
);
711 rep
.th
.window
= htons(win
);
713 #ifdef CONFIG_TCP_MD5SIG
715 int offset
= (ts
) ? 3 : 0;
717 rep
.opt
[offset
++] = htonl((TCPOPT_NOP
<< 24) |
719 (TCPOPT_MD5SIG
<< 8) |
721 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
722 rep
.th
.doff
= arg
.iov
[0].iov_len
/4;
724 tcp_v4_md5_hash_hdr((__u8
*) &rep
.opt
[offset
],
725 key
, ip_hdr(skb
)->saddr
,
726 ip_hdr(skb
)->daddr
, &rep
.th
);
729 arg
.flags
= reply_flags
;
730 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
731 ip_hdr(skb
)->saddr
, /* XXX */
732 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
733 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
735 arg
.bound_dev_if
= oif
;
737 ip_send_reply(net
->ipv4
.tcp_sock
, skb
, ip_hdr(skb
)->saddr
,
738 &arg
, arg
.iov
[0].iov_len
);
740 TCP_INC_STATS_BH(net
, TCP_MIB_OUTSEGS
);
743 static void tcp_v4_timewait_ack(struct sock
*sk
, struct sk_buff
*skb
)
745 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
746 struct tcp_timewait_sock
*tcptw
= tcp_twsk(sk
);
748 tcp_v4_send_ack(skb
, tcptw
->tw_snd_nxt
, tcptw
->tw_rcv_nxt
,
749 tcptw
->tw_rcv_wnd
>> tw
->tw_rcv_wscale
,
752 tcp_twsk_md5_key(tcptw
),
753 tw
->tw_transparent
? IP_REPLY_ARG_NOSRCCHECK
: 0,
760 static void tcp_v4_reqsk_send_ack(struct sock
*sk
, struct sk_buff
*skb
,
761 struct request_sock
*req
)
763 tcp_v4_send_ack(skb
, tcp_rsk(req
)->snt_isn
+ 1,
764 tcp_rsk(req
)->rcv_isn
+ 1, req
->rcv_wnd
,
767 tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->daddr
),
768 inet_rsk(req
)->no_srccheck
? IP_REPLY_ARG_NOSRCCHECK
: 0,
773 * Send a SYN-ACK after having received a SYN.
774 * This still operates on a request_sock only, not on a big
777 static int tcp_v4_send_synack(struct sock
*sk
, struct dst_entry
*dst
,
778 struct request_sock
*req
,
779 struct request_values
*rvp
)
781 const struct inet_request_sock
*ireq
= inet_rsk(req
);
784 struct sk_buff
* skb
;
786 /* First, grab a route. */
787 if (!dst
&& (dst
= inet_csk_route_req(sk
, &fl4
, req
)) == NULL
)
790 skb
= tcp_make_synack(sk
, dst
, req
, rvp
);
793 __tcp_v4_send_check(skb
, ireq
->loc_addr
, ireq
->rmt_addr
);
795 err
= ip_build_and_send_pkt(skb
, sk
, ireq
->loc_addr
,
798 err
= net_xmit_eval(err
);
805 static int tcp_v4_rtx_synack(struct sock
*sk
, struct request_sock
*req
,
806 struct request_values
*rvp
)
808 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
809 return tcp_v4_send_synack(sk
, NULL
, req
, rvp
);
813 * IPv4 request_sock destructor.
815 static void tcp_v4_reqsk_destructor(struct request_sock
*req
)
817 kfree(inet_rsk(req
)->opt
);
821 * Return 1 if a syncookie should be sent
823 int tcp_syn_flood_action(struct sock
*sk
,
824 const struct sk_buff
*skb
,
827 const char *msg
= "Dropping request";
829 struct listen_sock
*lopt
;
833 #ifdef CONFIG_SYN_COOKIES
834 if (sysctl_tcp_syncookies
) {
835 msg
= "Sending cookies";
837 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
840 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
842 lopt
= inet_csk(sk
)->icsk_accept_queue
.listen_opt
;
843 if (!lopt
->synflood_warned
) {
844 lopt
->synflood_warned
= 1;
845 pr_info("%s: Possible SYN flooding on port %d. %s. "
846 " Check SNMP counters.\n",
847 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
851 EXPORT_SYMBOL(tcp_syn_flood_action
);
854 * Save and compile IPv4 options into the request_sock if needed.
856 static struct ip_options_rcu
*tcp_v4_save_options(struct sock
*sk
,
859 const struct ip_options
*opt
= &(IPCB(skb
)->opt
);
860 struct ip_options_rcu
*dopt
= NULL
;
862 if (opt
&& opt
->optlen
) {
863 int opt_size
= sizeof(*dopt
) + opt
->optlen
;
865 dopt
= kmalloc(opt_size
, GFP_ATOMIC
);
867 if (ip_options_echo(&dopt
->opt
, skb
)) {
876 #ifdef CONFIG_TCP_MD5SIG
878 * RFC2385 MD5 checksumming requires a mapping of
879 * IP address->MD5 Key.
880 * We need to maintain these in the sk structure.
883 /* Find the Key structure for an address. */
884 static struct tcp_md5sig_key
*
885 tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
887 struct tcp_sock
*tp
= tcp_sk(sk
);
890 if (!tp
->md5sig_info
|| !tp
->md5sig_info
->entries4
)
892 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
893 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
)
894 return &tp
->md5sig_info
->keys4
[i
].base
;
899 struct tcp_md5sig_key
*tcp_v4_md5_lookup(struct sock
*sk
,
900 struct sock
*addr_sk
)
902 return tcp_v4_md5_do_lookup(sk
, inet_sk(addr_sk
)->inet_daddr
);
904 EXPORT_SYMBOL(tcp_v4_md5_lookup
);
906 static struct tcp_md5sig_key
*tcp_v4_reqsk_md5_lookup(struct sock
*sk
,
907 struct request_sock
*req
)
909 return tcp_v4_md5_do_lookup(sk
, inet_rsk(req
)->rmt_addr
);
912 /* This can be called on a newly created socket, from other files */
913 int tcp_v4_md5_do_add(struct sock
*sk
, __be32 addr
,
914 u8
*newkey
, u8 newkeylen
)
916 /* Add Key to the list */
917 struct tcp_md5sig_key
*key
;
918 struct tcp_sock
*tp
= tcp_sk(sk
);
919 struct tcp4_md5sig_key
*keys
;
921 key
= tcp_v4_md5_do_lookup(sk
, addr
);
923 /* Pre-existing entry - just update that one. */
926 key
->keylen
= newkeylen
;
928 struct tcp_md5sig_info
*md5sig
;
930 if (!tp
->md5sig_info
) {
931 tp
->md5sig_info
= kzalloc(sizeof(*tp
->md5sig_info
),
933 if (!tp
->md5sig_info
) {
937 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
940 md5sig
= tp
->md5sig_info
;
941 if (md5sig
->entries4
== 0 &&
942 tcp_alloc_md5sig_pool(sk
) == NULL
) {
947 if (md5sig
->alloced4
== md5sig
->entries4
) {
948 keys
= kmalloc((sizeof(*keys
) *
949 (md5sig
->entries4
+ 1)), GFP_ATOMIC
);
952 if (md5sig
->entries4
== 0)
953 tcp_free_md5sig_pool();
957 if (md5sig
->entries4
)
958 memcpy(keys
, md5sig
->keys4
,
959 sizeof(*keys
) * md5sig
->entries4
);
961 /* Free old key list, and reference new one */
962 kfree(md5sig
->keys4
);
963 md5sig
->keys4
= keys
;
967 md5sig
->keys4
[md5sig
->entries4
- 1].addr
= addr
;
968 md5sig
->keys4
[md5sig
->entries4
- 1].base
.key
= newkey
;
969 md5sig
->keys4
[md5sig
->entries4
- 1].base
.keylen
= newkeylen
;
973 EXPORT_SYMBOL(tcp_v4_md5_do_add
);
975 static int tcp_v4_md5_add_func(struct sock
*sk
, struct sock
*addr_sk
,
976 u8
*newkey
, u8 newkeylen
)
978 return tcp_v4_md5_do_add(sk
, inet_sk(addr_sk
)->inet_daddr
,
982 int tcp_v4_md5_do_del(struct sock
*sk
, __be32 addr
)
984 struct tcp_sock
*tp
= tcp_sk(sk
);
987 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
988 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
) {
990 kfree(tp
->md5sig_info
->keys4
[i
].base
.key
);
991 tp
->md5sig_info
->entries4
--;
993 if (tp
->md5sig_info
->entries4
== 0) {
994 kfree(tp
->md5sig_info
->keys4
);
995 tp
->md5sig_info
->keys4
= NULL
;
996 tp
->md5sig_info
->alloced4
= 0;
997 tcp_free_md5sig_pool();
998 } else if (tp
->md5sig_info
->entries4
!= i
) {
999 /* Need to do some manipulation */
1000 memmove(&tp
->md5sig_info
->keys4
[i
],
1001 &tp
->md5sig_info
->keys4
[i
+1],
1002 (tp
->md5sig_info
->entries4
- i
) *
1003 sizeof(struct tcp4_md5sig_key
));
1010 EXPORT_SYMBOL(tcp_v4_md5_do_del
);
1012 static void tcp_v4_clear_md5_list(struct sock
*sk
)
1014 struct tcp_sock
*tp
= tcp_sk(sk
);
1016 /* Free each key, then the set of key keys,
1017 * the crypto element, and then decrement our
1018 * hold on the last resort crypto.
1020 if (tp
->md5sig_info
->entries4
) {
1022 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++)
1023 kfree(tp
->md5sig_info
->keys4
[i
].base
.key
);
1024 tp
->md5sig_info
->entries4
= 0;
1025 tcp_free_md5sig_pool();
1027 if (tp
->md5sig_info
->keys4
) {
1028 kfree(tp
->md5sig_info
->keys4
);
1029 tp
->md5sig_info
->keys4
= NULL
;
1030 tp
->md5sig_info
->alloced4
= 0;
1034 static int tcp_v4_parse_md5_keys(struct sock
*sk
, char __user
*optval
,
1037 struct tcp_md5sig cmd
;
1038 struct sockaddr_in
*sin
= (struct sockaddr_in
*)&cmd
.tcpm_addr
;
1041 if (optlen
< sizeof(cmd
))
1044 if (copy_from_user(&cmd
, optval
, sizeof(cmd
)))
1047 if (sin
->sin_family
!= AF_INET
)
1050 if (!cmd
.tcpm_key
|| !cmd
.tcpm_keylen
) {
1051 if (!tcp_sk(sk
)->md5sig_info
)
1053 return tcp_v4_md5_do_del(sk
, sin
->sin_addr
.s_addr
);
1056 if (cmd
.tcpm_keylen
> TCP_MD5SIG_MAXKEYLEN
)
1059 if (!tcp_sk(sk
)->md5sig_info
) {
1060 struct tcp_sock
*tp
= tcp_sk(sk
);
1061 struct tcp_md5sig_info
*p
;
1063 p
= kzalloc(sizeof(*p
), sk
->sk_allocation
);
1067 tp
->md5sig_info
= p
;
1068 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1071 newkey
= kmemdup(cmd
.tcpm_key
, cmd
.tcpm_keylen
, sk
->sk_allocation
);
1074 return tcp_v4_md5_do_add(sk
, sin
->sin_addr
.s_addr
,
1075 newkey
, cmd
.tcpm_keylen
);
1078 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool
*hp
,
1079 __be32 daddr
, __be32 saddr
, int nbytes
)
1081 struct tcp4_pseudohdr
*bp
;
1082 struct scatterlist sg
;
1084 bp
= &hp
->md5_blk
.ip4
;
1087 * 1. the TCP pseudo-header (in the order: source IP address,
1088 * destination IP address, zero-padded protocol number, and
1094 bp
->protocol
= IPPROTO_TCP
;
1095 bp
->len
= cpu_to_be16(nbytes
);
1097 sg_init_one(&sg
, bp
, sizeof(*bp
));
1098 return crypto_hash_update(&hp
->md5_desc
, &sg
, sizeof(*bp
));
1101 static int tcp_v4_md5_hash_hdr(char *md5_hash
, struct tcp_md5sig_key
*key
,
1102 __be32 daddr
, __be32 saddr
, const struct tcphdr
*th
)
1104 struct tcp_md5sig_pool
*hp
;
1105 struct hash_desc
*desc
;
1107 hp
= tcp_get_md5sig_pool();
1109 goto clear_hash_noput
;
1110 desc
= &hp
->md5_desc
;
1112 if (crypto_hash_init(desc
))
1114 if (tcp_v4_md5_hash_pseudoheader(hp
, daddr
, saddr
, th
->doff
<< 2))
1116 if (tcp_md5_hash_header(hp
, th
))
1118 if (tcp_md5_hash_key(hp
, key
))
1120 if (crypto_hash_final(desc
, md5_hash
))
1123 tcp_put_md5sig_pool();
1127 tcp_put_md5sig_pool();
1129 memset(md5_hash
, 0, 16);
1133 int tcp_v4_md5_hash_skb(char *md5_hash
, struct tcp_md5sig_key
*key
,
1134 const struct sock
*sk
, const struct request_sock
*req
,
1135 const struct sk_buff
*skb
)
1137 struct tcp_md5sig_pool
*hp
;
1138 struct hash_desc
*desc
;
1139 const struct tcphdr
*th
= tcp_hdr(skb
);
1140 __be32 saddr
, daddr
;
1143 saddr
= inet_sk(sk
)->inet_saddr
;
1144 daddr
= inet_sk(sk
)->inet_daddr
;
1146 saddr
= inet_rsk(req
)->loc_addr
;
1147 daddr
= inet_rsk(req
)->rmt_addr
;
1149 const struct iphdr
*iph
= ip_hdr(skb
);
1154 hp
= tcp_get_md5sig_pool();
1156 goto clear_hash_noput
;
1157 desc
= &hp
->md5_desc
;
1159 if (crypto_hash_init(desc
))
1162 if (tcp_v4_md5_hash_pseudoheader(hp
, daddr
, saddr
, skb
->len
))
1164 if (tcp_md5_hash_header(hp
, th
))
1166 if (tcp_md5_hash_skb_data(hp
, skb
, th
->doff
<< 2))
1168 if (tcp_md5_hash_key(hp
, key
))
1170 if (crypto_hash_final(desc
, md5_hash
))
1173 tcp_put_md5sig_pool();
1177 tcp_put_md5sig_pool();
1179 memset(md5_hash
, 0, 16);
1182 EXPORT_SYMBOL(tcp_v4_md5_hash_skb
);
1184 static int tcp_v4_inbound_md5_hash(struct sock
*sk
, const struct sk_buff
*skb
)
1187 * This gets called for each TCP segment that arrives
1188 * so we want to be efficient.
1189 * We have 3 drop cases:
1190 * o No MD5 hash and one expected.
1191 * o MD5 hash and we're not expecting one.
1192 * o MD5 hash and its wrong.
1194 const __u8
*hash_location
= NULL
;
1195 struct tcp_md5sig_key
*hash_expected
;
1196 const struct iphdr
*iph
= ip_hdr(skb
);
1197 const struct tcphdr
*th
= tcp_hdr(skb
);
1199 unsigned char newhash
[16];
1201 hash_expected
= tcp_v4_md5_do_lookup(sk
, iph
->saddr
);
1202 hash_location
= tcp_parse_md5sig_option(th
);
1204 /* We've parsed the options - do we have a hash? */
1205 if (!hash_expected
&& !hash_location
)
1208 if (hash_expected
&& !hash_location
) {
1209 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMD5NOTFOUND
);
1213 if (!hash_expected
&& hash_location
) {
1214 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMD5UNEXPECTED
);
1218 /* Okay, so this is hash_expected and hash_location -
1219 * so we need to calculate the checksum.
1221 genhash
= tcp_v4_md5_hash_skb(newhash
,
1225 if (genhash
|| memcmp(hash_location
, newhash
, 16) != 0) {
1226 if (net_ratelimit()) {
1227 printk(KERN_INFO
"MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1228 &iph
->saddr
, ntohs(th
->source
),
1229 &iph
->daddr
, ntohs(th
->dest
),
1230 genhash
? " tcp_v4_calc_md5_hash failed" : "");
1239 struct request_sock_ops tcp_request_sock_ops __read_mostly
= {
1241 .obj_size
= sizeof(struct tcp_request_sock
),
1242 .rtx_syn_ack
= tcp_v4_rtx_synack
,
1243 .send_ack
= tcp_v4_reqsk_send_ack
,
1244 .destructor
= tcp_v4_reqsk_destructor
,
1245 .send_reset
= tcp_v4_send_reset
,
1246 .syn_ack_timeout
= tcp_syn_ack_timeout
,
1249 #ifdef CONFIG_TCP_MD5SIG
1250 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops
= {
1251 .md5_lookup
= tcp_v4_reqsk_md5_lookup
,
1252 .calc_md5_hash
= tcp_v4_md5_hash_skb
,
1256 int tcp_v4_conn_request(struct sock
*sk
, struct sk_buff
*skb
)
1258 struct tcp_extend_values tmp_ext
;
1259 struct tcp_options_received tmp_opt
;
1260 const u8
*hash_location
;
1261 struct request_sock
*req
;
1262 struct inet_request_sock
*ireq
;
1263 struct tcp_sock
*tp
= tcp_sk(sk
);
1264 struct dst_entry
*dst
= NULL
;
1265 __be32 saddr
= ip_hdr(skb
)->saddr
;
1266 __be32 daddr
= ip_hdr(skb
)->daddr
;
1267 __u32 isn
= TCP_SKB_CB(skb
)->when
;
1268 int want_cookie
= 0;
1270 /* Never answer to SYNs send to broadcast or multicast */
1271 if (skb_rtable(skb
)->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
))
1274 /* TW buckets are converted to open requests without
1275 * limitations, they conserve resources and peer is
1276 * evidently real one.
1278 if (inet_csk_reqsk_queue_is_full(sk
) && !isn
) {
1279 want_cookie
= tcp_syn_flood_action(sk
, skb
, "TCP");
1284 /* Accept backlog is full. If we have already queued enough
1285 * of warm entries in syn queue, drop request. It is better than
1286 * clogging syn queue with openreqs with exponentially increasing
1289 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1)
1292 req
= inet_reqsk_alloc(&tcp_request_sock_ops
);
1296 #ifdef CONFIG_TCP_MD5SIG
1297 tcp_rsk(req
)->af_specific
= &tcp_request_sock_ipv4_ops
;
1300 tcp_clear_options(&tmp_opt
);
1301 tmp_opt
.mss_clamp
= TCP_MSS_DEFAULT
;
1302 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
1303 tcp_parse_options(skb
, &tmp_opt
, &hash_location
, 0);
1305 if (tmp_opt
.cookie_plus
> 0 &&
1306 tmp_opt
.saw_tstamp
&&
1307 !tp
->rx_opt
.cookie_out_never
&&
1308 (sysctl_tcp_cookie_size
> 0 ||
1309 (tp
->cookie_values
!= NULL
&&
1310 tp
->cookie_values
->cookie_desired
> 0))) {
1312 u32
*mess
= &tmp_ext
.cookie_bakery
[COOKIE_DIGEST_WORDS
];
1313 int l
= tmp_opt
.cookie_plus
- TCPOLEN_COOKIE_BASE
;
1315 if (tcp_cookie_generator(&tmp_ext
.cookie_bakery
[0]) != 0)
1316 goto drop_and_release
;
1318 /* Secret recipe starts with IP addresses */
1319 *mess
++ ^= (__force u32
)daddr
;
1320 *mess
++ ^= (__force u32
)saddr
;
1322 /* plus variable length Initiator Cookie */
1325 *c
++ ^= *hash_location
++;
1327 want_cookie
= 0; /* not our kind of cookie */
1328 tmp_ext
.cookie_out_never
= 0; /* false */
1329 tmp_ext
.cookie_plus
= tmp_opt
.cookie_plus
;
1330 } else if (!tp
->rx_opt
.cookie_in_always
) {
1331 /* redundant indications, but ensure initialization. */
1332 tmp_ext
.cookie_out_never
= 1; /* true */
1333 tmp_ext
.cookie_plus
= 0;
1335 goto drop_and_release
;
1337 tmp_ext
.cookie_in_always
= tp
->rx_opt
.cookie_in_always
;
1339 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
1340 tcp_clear_options(&tmp_opt
);
1342 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
1343 tcp_openreq_init(req
, &tmp_opt
, skb
);
1345 ireq
= inet_rsk(req
);
1346 ireq
->loc_addr
= daddr
;
1347 ireq
->rmt_addr
= saddr
;
1348 ireq
->no_srccheck
= inet_sk(sk
)->transparent
;
1349 ireq
->opt
= tcp_v4_save_options(sk
, skb
);
1351 if (security_inet_conn_request(sk
, skb
, req
))
1354 if (!want_cookie
|| tmp_opt
.tstamp_ok
)
1355 TCP_ECN_create_request(req
, tcp_hdr(skb
));
1358 isn
= cookie_v4_init_sequence(sk
, skb
, &req
->mss
);
1359 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
1361 struct inet_peer
*peer
= NULL
;
1364 /* VJ's idea. We save last timestamp seen
1365 * from the destination in peer table, when entering
1366 * state TIME-WAIT, and check against it before
1367 * accepting new connection request.
1369 * If "isn" is not zero, this request hit alive
1370 * timewait bucket, so that all the necessary checks
1371 * are made in the function processing timewait state.
1373 if (tmp_opt
.saw_tstamp
&&
1374 tcp_death_row
.sysctl_tw_recycle
&&
1375 (dst
= inet_csk_route_req(sk
, &fl4
, req
)) != NULL
&&
1376 fl4
.daddr
== saddr
&&
1377 (peer
= rt_get_peer((struct rtable
*)dst
, fl4
.daddr
)) != NULL
) {
1378 inet_peer_refcheck(peer
);
1379 if ((u32
)get_seconds() - peer
->tcp_ts_stamp
< TCP_PAWS_MSL
&&
1380 (s32
)(peer
->tcp_ts
- req
->ts_recent
) >
1382 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
1383 goto drop_and_release
;
1386 /* Kill the following clause, if you dislike this way. */
1387 else if (!sysctl_tcp_syncookies
&&
1388 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
1389 (sysctl_max_syn_backlog
>> 2)) &&
1390 (!peer
|| !peer
->tcp_ts_stamp
) &&
1391 (!dst
|| !dst_metric(dst
, RTAX_RTT
))) {
1392 /* Without syncookies last quarter of
1393 * backlog is filled with destinations,
1394 * proven to be alive.
1395 * It means that we continue to communicate
1396 * to destinations, already remembered
1397 * to the moment of synflood.
1399 LIMIT_NETDEBUG(KERN_DEBUG
"TCP: drop open request from %pI4/%u\n",
1400 &saddr
, ntohs(tcp_hdr(skb
)->source
));
1401 goto drop_and_release
;
1404 isn
= tcp_v4_init_sequence(skb
);
1406 tcp_rsk(req
)->snt_isn
= isn
;
1407 tcp_rsk(req
)->snt_synack
= tcp_time_stamp
;
1409 if (tcp_v4_send_synack(sk
, dst
, req
,
1410 (struct request_values
*)&tmp_ext
) ||
1414 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
1424 EXPORT_SYMBOL(tcp_v4_conn_request
);
1428 * The three way handshake has completed - we got a valid synack -
1429 * now create the new socket.
1431 struct sock
*tcp_v4_syn_recv_sock(struct sock
*sk
, struct sk_buff
*skb
,
1432 struct request_sock
*req
,
1433 struct dst_entry
*dst
)
1435 struct inet_request_sock
*ireq
;
1436 struct inet_sock
*newinet
;
1437 struct tcp_sock
*newtp
;
1439 #ifdef CONFIG_TCP_MD5SIG
1440 struct tcp_md5sig_key
*key
;
1442 struct ip_options_rcu
*inet_opt
;
1444 if (sk_acceptq_is_full(sk
))
1447 newsk
= tcp_create_openreq_child(sk
, req
, skb
);
1451 newsk
->sk_gso_type
= SKB_GSO_TCPV4
;
1453 newtp
= tcp_sk(newsk
);
1454 newinet
= inet_sk(newsk
);
1455 ireq
= inet_rsk(req
);
1456 newinet
->inet_daddr
= ireq
->rmt_addr
;
1457 newinet
->inet_rcv_saddr
= ireq
->loc_addr
;
1458 newinet
->inet_saddr
= ireq
->loc_addr
;
1459 inet_opt
= ireq
->opt
;
1460 rcu_assign_pointer(newinet
->inet_opt
, inet_opt
);
1462 newinet
->mc_index
= inet_iif(skb
);
1463 newinet
->mc_ttl
= ip_hdr(skb
)->ttl
;
1464 inet_csk(newsk
)->icsk_ext_hdr_len
= 0;
1466 inet_csk(newsk
)->icsk_ext_hdr_len
= inet_opt
->opt
.optlen
;
1467 newinet
->inet_id
= newtp
->write_seq
^ jiffies
;
1470 dst
= inet_csk_route_child_sock(sk
, newsk
, req
);
1474 /* syncookie case : see end of cookie_v4_check() */
1476 sk_setup_caps(newsk
, dst
);
1478 tcp_mtup_init(newsk
);
1479 tcp_sync_mss(newsk
, dst_mtu(dst
));
1480 newtp
->advmss
= dst_metric_advmss(dst
);
1481 if (tcp_sk(sk
)->rx_opt
.user_mss
&&
1482 tcp_sk(sk
)->rx_opt
.user_mss
< newtp
->advmss
)
1483 newtp
->advmss
= tcp_sk(sk
)->rx_opt
.user_mss
;
1485 tcp_initialize_rcv_mss(newsk
);
1486 if (tcp_rsk(req
)->snt_synack
)
1487 tcp_valid_rtt_meas(newsk
,
1488 tcp_time_stamp
- tcp_rsk(req
)->snt_synack
);
1489 newtp
->total_retrans
= req
->retrans
;
1491 #ifdef CONFIG_TCP_MD5SIG
1492 /* Copy over the MD5 key from the original socket */
1493 key
= tcp_v4_md5_do_lookup(sk
, newinet
->inet_daddr
);
1496 * We're using one, so create a matching key
1497 * on the newsk structure. If we fail to get
1498 * memory, then we end up not copying the key
1501 char *newkey
= kmemdup(key
->key
, key
->keylen
, GFP_ATOMIC
);
1503 tcp_v4_md5_do_add(newsk
, newinet
->inet_daddr
,
1504 newkey
, key
->keylen
);
1505 sk_nocaps_add(newsk
, NETIF_F_GSO_MASK
);
1509 if (__inet_inherit_port(sk
, newsk
) < 0)
1511 __inet_hash_nolisten(newsk
, NULL
);
1516 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
1520 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENDROPS
);
1523 tcp_clear_xmit_timers(newsk
);
1524 tcp_cleanup_congestion_control(newsk
);
1525 bh_unlock_sock(newsk
);
1529 EXPORT_SYMBOL(tcp_v4_syn_recv_sock
);
1531 static struct sock
*tcp_v4_hnd_req(struct sock
*sk
, struct sk_buff
*skb
)
1533 struct tcphdr
*th
= tcp_hdr(skb
);
1534 const struct iphdr
*iph
= ip_hdr(skb
);
1536 struct request_sock
**prev
;
1537 /* Find possible connection requests. */
1538 struct request_sock
*req
= inet_csk_search_req(sk
, &prev
, th
->source
,
1539 iph
->saddr
, iph
->daddr
);
1541 return tcp_check_req(sk
, skb
, req
, prev
);
1543 nsk
= inet_lookup_established(sock_net(sk
), &tcp_hashinfo
, iph
->saddr
,
1544 th
->source
, iph
->daddr
, th
->dest
, inet_iif(skb
));
1547 if (nsk
->sk_state
!= TCP_TIME_WAIT
) {
1551 inet_twsk_put(inet_twsk(nsk
));
1555 #ifdef CONFIG_SYN_COOKIES
1557 sk
= cookie_v4_check(sk
, skb
, &(IPCB(skb
)->opt
));
1562 static __sum16
tcp_v4_checksum_init(struct sk_buff
*skb
)
1564 const struct iphdr
*iph
= ip_hdr(skb
);
1566 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
1567 if (!tcp_v4_check(skb
->len
, iph
->saddr
,
1568 iph
->daddr
, skb
->csum
)) {
1569 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1574 skb
->csum
= csum_tcpudp_nofold(iph
->saddr
, iph
->daddr
,
1575 skb
->len
, IPPROTO_TCP
, 0);
1577 if (skb
->len
<= 76) {
1578 return __skb_checksum_complete(skb
);
1584 /* The socket must have it's spinlock held when we get
1587 * We have a potential double-lock case here, so even when
1588 * doing backlog processing we use the BH locking scheme.
1589 * This is because we cannot sleep with the original spinlock
1592 int tcp_v4_do_rcv(struct sock
*sk
, struct sk_buff
*skb
)
1595 #ifdef CONFIG_TCP_MD5SIG
1597 * We really want to reject the packet as early as possible
1599 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1600 * o There is an MD5 option and we're not expecting one
1602 if (tcp_v4_inbound_md5_hash(sk
, skb
))
1606 if (sk
->sk_state
== TCP_ESTABLISHED
) { /* Fast path */
1607 sock_rps_save_rxhash(sk
, skb
);
1608 if (tcp_rcv_established(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1615 if (skb
->len
< tcp_hdrlen(skb
) || tcp_checksum_complete(skb
))
1618 if (sk
->sk_state
== TCP_LISTEN
) {
1619 struct sock
*nsk
= tcp_v4_hnd_req(sk
, skb
);
1624 sock_rps_save_rxhash(nsk
, skb
);
1625 if (tcp_child_process(sk
, nsk
, skb
)) {
1632 sock_rps_save_rxhash(sk
, skb
);
1634 if (tcp_rcv_state_process(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1641 tcp_v4_send_reset(rsk
, skb
);
1644 /* Be careful here. If this function gets more complicated and
1645 * gcc suffers from register pressure on the x86, sk (in %ebx)
1646 * might be destroyed here. This current version compiles correctly,
1647 * but you have been warned.
1652 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
1655 EXPORT_SYMBOL(tcp_v4_do_rcv
);
1661 int tcp_v4_rcv(struct sk_buff
*skb
)
1663 const struct iphdr
*iph
;
1664 const struct tcphdr
*th
;
1667 struct net
*net
= dev_net(skb
->dev
);
1669 if (skb
->pkt_type
!= PACKET_HOST
)
1672 /* Count it even if it's bad */
1673 TCP_INC_STATS_BH(net
, TCP_MIB_INSEGS
);
1675 if (!pskb_may_pull(skb
, sizeof(struct tcphdr
)))
1680 if (th
->doff
< sizeof(struct tcphdr
) / 4)
1682 if (!pskb_may_pull(skb
, th
->doff
* 4))
1685 /* An explanation is required here, I think.
1686 * Packet length and doff are validated by header prediction,
1687 * provided case of th->doff==0 is eliminated.
1688 * So, we defer the checks. */
1689 if (!skb_csum_unnecessary(skb
) && tcp_v4_checksum_init(skb
))
1694 TCP_SKB_CB(skb
)->seq
= ntohl(th
->seq
);
1695 TCP_SKB_CB(skb
)->end_seq
= (TCP_SKB_CB(skb
)->seq
+ th
->syn
+ th
->fin
+
1696 skb
->len
- th
->doff
* 4);
1697 TCP_SKB_CB(skb
)->ack_seq
= ntohl(th
->ack_seq
);
1698 TCP_SKB_CB(skb
)->when
= 0;
1699 TCP_SKB_CB(skb
)->ip_dsfield
= ipv4_get_dsfield(iph
);
1700 TCP_SKB_CB(skb
)->sacked
= 0;
1702 sk
= __inet_lookup_skb(&tcp_hashinfo
, skb
, th
->source
, th
->dest
);
1707 if (sk
->sk_state
== TCP_TIME_WAIT
)
1710 if (unlikely(iph
->ttl
< inet_sk(sk
)->min_ttl
)) {
1711 NET_INC_STATS_BH(net
, LINUX_MIB_TCPMINTTLDROP
);
1712 goto discard_and_relse
;
1715 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1716 goto discard_and_relse
;
1719 if (sk_filter(sk
, skb
))
1720 goto discard_and_relse
;
1724 bh_lock_sock_nested(sk
);
1726 if (!sock_owned_by_user(sk
)) {
1727 #ifdef CONFIG_NET_DMA
1728 struct tcp_sock
*tp
= tcp_sk(sk
);
1729 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1730 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
1731 if (tp
->ucopy
.dma_chan
)
1732 ret
= tcp_v4_do_rcv(sk
, skb
);
1736 if (!tcp_prequeue(sk
, skb
))
1737 ret
= tcp_v4_do_rcv(sk
, skb
);
1739 } else if (unlikely(sk_add_backlog(sk
, skb
))) {
1741 NET_INC_STATS_BH(net
, LINUX_MIB_TCPBACKLOGDROP
);
1742 goto discard_and_relse
;
1751 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1754 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1756 TCP_INC_STATS_BH(net
, TCP_MIB_INERRS
);
1758 tcp_v4_send_reset(NULL
, skb
);
1762 /* Discard frame. */
1771 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
)) {
1772 inet_twsk_put(inet_twsk(sk
));
1776 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1777 TCP_INC_STATS_BH(net
, TCP_MIB_INERRS
);
1778 inet_twsk_put(inet_twsk(sk
));
1781 switch (tcp_timewait_state_process(inet_twsk(sk
), skb
, th
)) {
1783 struct sock
*sk2
= inet_lookup_listener(dev_net(skb
->dev
),
1785 iph
->daddr
, th
->dest
,
1788 inet_twsk_deschedule(inet_twsk(sk
), &tcp_death_row
);
1789 inet_twsk_put(inet_twsk(sk
));
1793 /* Fall through to ACK */
1796 tcp_v4_timewait_ack(sk
, skb
);
1800 case TCP_TW_SUCCESS
:;
1805 struct inet_peer
*tcp_v4_get_peer(struct sock
*sk
, bool *release_it
)
1807 struct rtable
*rt
= (struct rtable
*) __sk_dst_get(sk
);
1808 struct inet_sock
*inet
= inet_sk(sk
);
1809 struct inet_peer
*peer
;
1812 inet
->cork
.fl
.u
.ip4
.daddr
!= inet
->inet_daddr
) {
1813 peer
= inet_getpeer_v4(inet
->inet_daddr
, 1);
1817 rt_bind_peer(rt
, inet
->inet_daddr
, 1);
1819 *release_it
= false;
1824 EXPORT_SYMBOL(tcp_v4_get_peer
);
1826 void *tcp_v4_tw_get_peer(struct sock
*sk
)
1828 const struct inet_timewait_sock
*tw
= inet_twsk(sk
);
1830 return inet_getpeer_v4(tw
->tw_daddr
, 1);
1832 EXPORT_SYMBOL(tcp_v4_tw_get_peer
);
1834 static struct timewait_sock_ops tcp_timewait_sock_ops
= {
1835 .twsk_obj_size
= sizeof(struct tcp_timewait_sock
),
1836 .twsk_unique
= tcp_twsk_unique
,
1837 .twsk_destructor
= tcp_twsk_destructor
,
1838 .twsk_getpeer
= tcp_v4_tw_get_peer
,
1841 const struct inet_connection_sock_af_ops ipv4_specific
= {
1842 .queue_xmit
= ip_queue_xmit
,
1843 .send_check
= tcp_v4_send_check
,
1844 .rebuild_header
= inet_sk_rebuild_header
,
1845 .conn_request
= tcp_v4_conn_request
,
1846 .syn_recv_sock
= tcp_v4_syn_recv_sock
,
1847 .get_peer
= tcp_v4_get_peer
,
1848 .net_header_len
= sizeof(struct iphdr
),
1849 .setsockopt
= ip_setsockopt
,
1850 .getsockopt
= ip_getsockopt
,
1851 .addr2sockaddr
= inet_csk_addr2sockaddr
,
1852 .sockaddr_len
= sizeof(struct sockaddr_in
),
1853 .bind_conflict
= inet_csk_bind_conflict
,
1854 #ifdef CONFIG_COMPAT
1855 .compat_setsockopt
= compat_ip_setsockopt
,
1856 .compat_getsockopt
= compat_ip_getsockopt
,
1859 EXPORT_SYMBOL(ipv4_specific
);
1861 #ifdef CONFIG_TCP_MD5SIG
1862 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific
= {
1863 .md5_lookup
= tcp_v4_md5_lookup
,
1864 .calc_md5_hash
= tcp_v4_md5_hash_skb
,
1865 .md5_add
= tcp_v4_md5_add_func
,
1866 .md5_parse
= tcp_v4_parse_md5_keys
,
1870 /* NOTE: A lot of things set to zero explicitly by call to
1871 * sk_alloc() so need not be done here.
1873 static int tcp_v4_init_sock(struct sock
*sk
)
1875 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1876 struct tcp_sock
*tp
= tcp_sk(sk
);
1878 skb_queue_head_init(&tp
->out_of_order_queue
);
1879 tcp_init_xmit_timers(sk
);
1880 tcp_prequeue_init(tp
);
1882 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
1883 tp
->mdev
= TCP_TIMEOUT_INIT
;
1885 /* So many TCP implementations out there (incorrectly) count the
1886 * initial SYN frame in their delayed-ACK and congestion control
1887 * algorithms that we must have the following bandaid to talk
1888 * efficiently to them. -DaveM
1890 tp
->snd_cwnd
= TCP_INIT_CWND
;
1892 /* See draft-stevens-tcpca-spec-01 for discussion of the
1893 * initialization of these values.
1895 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
1896 tp
->snd_cwnd_clamp
= ~0;
1897 tp
->mss_cache
= TCP_MSS_DEFAULT
;
1899 tp
->reordering
= sysctl_tcp_reordering
;
1900 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
1902 sk
->sk_state
= TCP_CLOSE
;
1904 sk
->sk_write_space
= sk_stream_write_space
;
1905 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
1907 icsk
->icsk_af_ops
= &ipv4_specific
;
1908 icsk
->icsk_sync_mss
= tcp_sync_mss
;
1909 #ifdef CONFIG_TCP_MD5SIG
1910 tp
->af_specific
= &tcp_sock_ipv4_specific
;
1913 /* TCP Cookie Transactions */
1914 if (sysctl_tcp_cookie_size
> 0) {
1915 /* Default, cookies without s_data_payload. */
1917 kzalloc(sizeof(*tp
->cookie_values
),
1919 if (tp
->cookie_values
!= NULL
)
1920 kref_init(&tp
->cookie_values
->kref
);
1922 /* Presumed zeroed, in order of appearance:
1923 * cookie_in_always, cookie_out_never,
1924 * s_data_constant, s_data_in, s_data_out
1926 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
1927 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
1930 sock_update_memcg(sk
);
1931 sk_sockets_allocated_inc(sk
);
1937 void tcp_v4_destroy_sock(struct sock
*sk
)
1939 struct tcp_sock
*tp
= tcp_sk(sk
);
1941 tcp_clear_xmit_timers(sk
);
1943 tcp_cleanup_congestion_control(sk
);
1945 /* Cleanup up the write buffer. */
1946 tcp_write_queue_purge(sk
);
1948 /* Cleans up our, hopefully empty, out_of_order_queue. */
1949 __skb_queue_purge(&tp
->out_of_order_queue
);
1951 #ifdef CONFIG_TCP_MD5SIG
1952 /* Clean up the MD5 key list, if any */
1953 if (tp
->md5sig_info
) {
1954 tcp_v4_clear_md5_list(sk
);
1955 kfree(tp
->md5sig_info
);
1956 tp
->md5sig_info
= NULL
;
1960 #ifdef CONFIG_NET_DMA
1961 /* Cleans up our sk_async_wait_queue */
1962 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1965 /* Clean prequeue, it must be empty really */
1966 __skb_queue_purge(&tp
->ucopy
.prequeue
);
1968 /* Clean up a referenced TCP bind bucket. */
1969 if (inet_csk(sk
)->icsk_bind_hash
)
1973 * If sendmsg cached page exists, toss it.
1975 if (sk
->sk_sndmsg_page
) {
1976 __free_page(sk
->sk_sndmsg_page
);
1977 sk
->sk_sndmsg_page
= NULL
;
1980 /* TCP Cookie Transactions */
1981 if (tp
->cookie_values
!= NULL
) {
1982 kref_put(&tp
->cookie_values
->kref
,
1983 tcp_cookie_values_release
);
1984 tp
->cookie_values
= NULL
;
1987 sk_sockets_allocated_dec(sk
);
1988 sock_release_memcg(sk
);
1990 EXPORT_SYMBOL(tcp_v4_destroy_sock
);
1992 #ifdef CONFIG_PROC_FS
1993 /* Proc filesystem TCP sock list dumping. */
1995 static inline struct inet_timewait_sock
*tw_head(struct hlist_nulls_head
*head
)
1997 return hlist_nulls_empty(head
) ? NULL
:
1998 list_entry(head
->first
, struct inet_timewait_sock
, tw_node
);
2001 static inline struct inet_timewait_sock
*tw_next(struct inet_timewait_sock
*tw
)
2003 return !is_a_nulls(tw
->tw_node
.next
) ?
2004 hlist_nulls_entry(tw
->tw_node
.next
, typeof(*tw
), tw_node
) : NULL
;
2008 * Get next listener socket follow cur. If cur is NULL, get first socket
2009 * starting from bucket given in st->bucket; when st->bucket is zero the
2010 * very first socket in the hash table is returned.
2012 static void *listening_get_next(struct seq_file
*seq
, void *cur
)
2014 struct inet_connection_sock
*icsk
;
2015 struct hlist_nulls_node
*node
;
2016 struct sock
*sk
= cur
;
2017 struct inet_listen_hashbucket
*ilb
;
2018 struct tcp_iter_state
*st
= seq
->private;
2019 struct net
*net
= seq_file_net(seq
);
2022 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
2023 spin_lock_bh(&ilb
->lock
);
2024 sk
= sk_nulls_head(&ilb
->head
);
2028 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
2032 if (st
->state
== TCP_SEQ_STATE_OPENREQ
) {
2033 struct request_sock
*req
= cur
;
2035 icsk
= inet_csk(st
->syn_wait_sk
);
2039 if (req
->rsk_ops
->family
== st
->family
) {
2045 if (++st
->sbucket
>= icsk
->icsk_accept_queue
.listen_opt
->nr_table_entries
)
2048 req
= icsk
->icsk_accept_queue
.listen_opt
->syn_table
[st
->sbucket
];
2050 sk
= sk_nulls_next(st
->syn_wait_sk
);
2051 st
->state
= TCP_SEQ_STATE_LISTENING
;
2052 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2054 icsk
= inet_csk(sk
);
2055 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2056 if (reqsk_queue_len(&icsk
->icsk_accept_queue
))
2058 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2059 sk
= sk_nulls_next(sk
);
2062 sk_nulls_for_each_from(sk
, node
) {
2063 if (!net_eq(sock_net(sk
), net
))
2065 if (sk
->sk_family
== st
->family
) {
2069 icsk
= inet_csk(sk
);
2070 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2071 if (reqsk_queue_len(&icsk
->icsk_accept_queue
)) {
2073 st
->uid
= sock_i_uid(sk
);
2074 st
->syn_wait_sk
= sk
;
2075 st
->state
= TCP_SEQ_STATE_OPENREQ
;
2079 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2081 spin_unlock_bh(&ilb
->lock
);
2083 if (++st
->bucket
< INET_LHTABLE_SIZE
) {
2084 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
2085 spin_lock_bh(&ilb
->lock
);
2086 sk
= sk_nulls_head(&ilb
->head
);
2094 static void *listening_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2096 struct tcp_iter_state
*st
= seq
->private;
2101 rc
= listening_get_next(seq
, NULL
);
2103 while (rc
&& *pos
) {
2104 rc
= listening_get_next(seq
, rc
);
2110 static inline int empty_bucket(struct tcp_iter_state
*st
)
2112 return hlist_nulls_empty(&tcp_hashinfo
.ehash
[st
->bucket
].chain
) &&
2113 hlist_nulls_empty(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2117 * Get first established socket starting from bucket given in st->bucket.
2118 * If st->bucket is zero, the very first socket in the hash is returned.
2120 static void *established_get_first(struct seq_file
*seq
)
2122 struct tcp_iter_state
*st
= seq
->private;
2123 struct net
*net
= seq_file_net(seq
);
2127 for (; st
->bucket
<= tcp_hashinfo
.ehash_mask
; ++st
->bucket
) {
2129 struct hlist_nulls_node
*node
;
2130 struct inet_timewait_sock
*tw
;
2131 spinlock_t
*lock
= inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
);
2133 /* Lockless fast path for the common case of empty buckets */
2134 if (empty_bucket(st
))
2138 sk_nulls_for_each(sk
, node
, &tcp_hashinfo
.ehash
[st
->bucket
].chain
) {
2139 if (sk
->sk_family
!= st
->family
||
2140 !net_eq(sock_net(sk
), net
)) {
2146 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2147 inet_twsk_for_each(tw
, node
,
2148 &tcp_hashinfo
.ehash
[st
->bucket
].twchain
) {
2149 if (tw
->tw_family
!= st
->family
||
2150 !net_eq(twsk_net(tw
), net
)) {
2156 spin_unlock_bh(lock
);
2157 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2163 static void *established_get_next(struct seq_file
*seq
, void *cur
)
2165 struct sock
*sk
= cur
;
2166 struct inet_timewait_sock
*tw
;
2167 struct hlist_nulls_node
*node
;
2168 struct tcp_iter_state
*st
= seq
->private;
2169 struct net
*net
= seq_file_net(seq
);
2174 if (st
->state
== TCP_SEQ_STATE_TIME_WAIT
) {
2178 while (tw
&& (tw
->tw_family
!= st
->family
|| !net_eq(twsk_net(tw
), net
))) {
2185 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2186 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2188 /* Look for next non empty bucket */
2190 while (++st
->bucket
<= tcp_hashinfo
.ehash_mask
&&
2193 if (st
->bucket
> tcp_hashinfo
.ehash_mask
)
2196 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2197 sk
= sk_nulls_head(&tcp_hashinfo
.ehash
[st
->bucket
].chain
);
2199 sk
= sk_nulls_next(sk
);
2201 sk_nulls_for_each_from(sk
, node
) {
2202 if (sk
->sk_family
== st
->family
&& net_eq(sock_net(sk
), net
))
2206 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2207 tw
= tw_head(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2215 static void *established_get_idx(struct seq_file
*seq
, loff_t pos
)
2217 struct tcp_iter_state
*st
= seq
->private;
2221 rc
= established_get_first(seq
);
2224 rc
= established_get_next(seq
, rc
);
2230 static void *tcp_get_idx(struct seq_file
*seq
, loff_t pos
)
2233 struct tcp_iter_state
*st
= seq
->private;
2235 st
->state
= TCP_SEQ_STATE_LISTENING
;
2236 rc
= listening_get_idx(seq
, &pos
);
2239 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2240 rc
= established_get_idx(seq
, pos
);
2246 static void *tcp_seek_last_pos(struct seq_file
*seq
)
2248 struct tcp_iter_state
*st
= seq
->private;
2249 int offset
= st
->offset
;
2250 int orig_num
= st
->num
;
2253 switch (st
->state
) {
2254 case TCP_SEQ_STATE_OPENREQ
:
2255 case TCP_SEQ_STATE_LISTENING
:
2256 if (st
->bucket
>= INET_LHTABLE_SIZE
)
2258 st
->state
= TCP_SEQ_STATE_LISTENING
;
2259 rc
= listening_get_next(seq
, NULL
);
2260 while (offset
-- && rc
)
2261 rc
= listening_get_next(seq
, rc
);
2266 case TCP_SEQ_STATE_ESTABLISHED
:
2267 case TCP_SEQ_STATE_TIME_WAIT
:
2268 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2269 if (st
->bucket
> tcp_hashinfo
.ehash_mask
)
2271 rc
= established_get_first(seq
);
2272 while (offset
-- && rc
)
2273 rc
= established_get_next(seq
, rc
);
2281 static void *tcp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2283 struct tcp_iter_state
*st
= seq
->private;
2286 if (*pos
&& *pos
== st
->last_pos
) {
2287 rc
= tcp_seek_last_pos(seq
);
2292 st
->state
= TCP_SEQ_STATE_LISTENING
;
2296 rc
= *pos
? tcp_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
2299 st
->last_pos
= *pos
;
2303 static void *tcp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2305 struct tcp_iter_state
*st
= seq
->private;
2308 if (v
== SEQ_START_TOKEN
) {
2309 rc
= tcp_get_idx(seq
, 0);
2313 switch (st
->state
) {
2314 case TCP_SEQ_STATE_OPENREQ
:
2315 case TCP_SEQ_STATE_LISTENING
:
2316 rc
= listening_get_next(seq
, v
);
2318 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2321 rc
= established_get_first(seq
);
2324 case TCP_SEQ_STATE_ESTABLISHED
:
2325 case TCP_SEQ_STATE_TIME_WAIT
:
2326 rc
= established_get_next(seq
, v
);
2331 st
->last_pos
= *pos
;
2335 static void tcp_seq_stop(struct seq_file
*seq
, void *v
)
2337 struct tcp_iter_state
*st
= seq
->private;
2339 switch (st
->state
) {
2340 case TCP_SEQ_STATE_OPENREQ
:
2342 struct inet_connection_sock
*icsk
= inet_csk(st
->syn_wait_sk
);
2343 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2345 case TCP_SEQ_STATE_LISTENING
:
2346 if (v
!= SEQ_START_TOKEN
)
2347 spin_unlock_bh(&tcp_hashinfo
.listening_hash
[st
->bucket
].lock
);
2349 case TCP_SEQ_STATE_TIME_WAIT
:
2350 case TCP_SEQ_STATE_ESTABLISHED
:
2352 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2357 int tcp_seq_open(struct inode
*inode
, struct file
*file
)
2359 struct tcp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
2360 struct tcp_iter_state
*s
;
2363 err
= seq_open_net(inode
, file
, &afinfo
->seq_ops
,
2364 sizeof(struct tcp_iter_state
));
2368 s
= ((struct seq_file
*)file
->private_data
)->private;
2369 s
->family
= afinfo
->family
;
2373 EXPORT_SYMBOL(tcp_seq_open
);
2375 int tcp_proc_register(struct net
*net
, struct tcp_seq_afinfo
*afinfo
)
2378 struct proc_dir_entry
*p
;
2380 afinfo
->seq_ops
.start
= tcp_seq_start
;
2381 afinfo
->seq_ops
.next
= tcp_seq_next
;
2382 afinfo
->seq_ops
.stop
= tcp_seq_stop
;
2384 p
= proc_create_data(afinfo
->name
, S_IRUGO
, net
->proc_net
,
2385 afinfo
->seq_fops
, afinfo
);
2390 EXPORT_SYMBOL(tcp_proc_register
);
2392 void tcp_proc_unregister(struct net
*net
, struct tcp_seq_afinfo
*afinfo
)
2394 proc_net_remove(net
, afinfo
->name
);
2396 EXPORT_SYMBOL(tcp_proc_unregister
);
2398 static void get_openreq4(const struct sock
*sk
, const struct request_sock
*req
,
2399 struct seq_file
*f
, int i
, int uid
, int *len
)
2401 const struct inet_request_sock
*ireq
= inet_rsk(req
);
2402 int ttd
= req
->expires
- jiffies
;
2404 seq_printf(f
, "%4d: %08X:%04X %08X:%04X"
2405 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2408 ntohs(inet_sk(sk
)->inet_sport
),
2410 ntohs(ireq
->rmt_port
),
2412 0, 0, /* could print option size, but that is af dependent. */
2413 1, /* timers active (only the expire timer) */
2414 jiffies_to_clock_t(ttd
),
2417 0, /* non standard timer */
2418 0, /* open_requests have no inode */
2419 atomic_read(&sk
->sk_refcnt
),
2424 static void get_tcp4_sock(struct sock
*sk
, struct seq_file
*f
, int i
, int *len
)
2427 unsigned long timer_expires
;
2428 const struct tcp_sock
*tp
= tcp_sk(sk
);
2429 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2430 const struct inet_sock
*inet
= inet_sk(sk
);
2431 __be32 dest
= inet
->inet_daddr
;
2432 __be32 src
= inet
->inet_rcv_saddr
;
2433 __u16 destp
= ntohs(inet
->inet_dport
);
2434 __u16 srcp
= ntohs(inet
->inet_sport
);
2437 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
) {
2439 timer_expires
= icsk
->icsk_timeout
;
2440 } else if (icsk
->icsk_pending
== ICSK_TIME_PROBE0
) {
2442 timer_expires
= icsk
->icsk_timeout
;
2443 } else if (timer_pending(&sk
->sk_timer
)) {
2445 timer_expires
= sk
->sk_timer
.expires
;
2448 timer_expires
= jiffies
;
2451 if (sk
->sk_state
== TCP_LISTEN
)
2452 rx_queue
= sk
->sk_ack_backlog
;
2455 * because we dont lock socket, we might find a transient negative value
2457 rx_queue
= max_t(int, tp
->rcv_nxt
- tp
->copied_seq
, 0);
2459 seq_printf(f
, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2460 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2461 i
, src
, srcp
, dest
, destp
, sk
->sk_state
,
2462 tp
->write_seq
- tp
->snd_una
,
2465 jiffies_to_clock_t(timer_expires
- jiffies
),
2466 icsk
->icsk_retransmits
,
2468 icsk
->icsk_probes_out
,
2470 atomic_read(&sk
->sk_refcnt
), sk
,
2471 jiffies_to_clock_t(icsk
->icsk_rto
),
2472 jiffies_to_clock_t(icsk
->icsk_ack
.ato
),
2473 (icsk
->icsk_ack
.quick
<< 1) | icsk
->icsk_ack
.pingpong
,
2475 tcp_in_initial_slowstart(tp
) ? -1 : tp
->snd_ssthresh
,
2479 static void get_timewait4_sock(const struct inet_timewait_sock
*tw
,
2480 struct seq_file
*f
, int i
, int *len
)
2484 int ttd
= tw
->tw_ttd
- jiffies
;
2489 dest
= tw
->tw_daddr
;
2490 src
= tw
->tw_rcv_saddr
;
2491 destp
= ntohs(tw
->tw_dport
);
2492 srcp
= ntohs(tw
->tw_sport
);
2494 seq_printf(f
, "%4d: %08X:%04X %08X:%04X"
2495 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2496 i
, src
, srcp
, dest
, destp
, tw
->tw_substate
, 0, 0,
2497 3, jiffies_to_clock_t(ttd
), 0, 0, 0, 0,
2498 atomic_read(&tw
->tw_refcnt
), tw
, len
);
2503 static int tcp4_seq_show(struct seq_file
*seq
, void *v
)
2505 struct tcp_iter_state
*st
;
2508 if (v
== SEQ_START_TOKEN
) {
2509 seq_printf(seq
, "%-*s\n", TMPSZ
- 1,
2510 " sl local_address rem_address st tx_queue "
2511 "rx_queue tr tm->when retrnsmt uid timeout "
2517 switch (st
->state
) {
2518 case TCP_SEQ_STATE_LISTENING
:
2519 case TCP_SEQ_STATE_ESTABLISHED
:
2520 get_tcp4_sock(v
, seq
, st
->num
, &len
);
2522 case TCP_SEQ_STATE_OPENREQ
:
2523 get_openreq4(st
->syn_wait_sk
, v
, seq
, st
->num
, st
->uid
, &len
);
2525 case TCP_SEQ_STATE_TIME_WAIT
:
2526 get_timewait4_sock(v
, seq
, st
->num
, &len
);
2529 seq_printf(seq
, "%*s\n", TMPSZ
- 1 - len
, "");
2534 static const struct file_operations tcp_afinfo_seq_fops
= {
2535 .owner
= THIS_MODULE
,
2536 .open
= tcp_seq_open
,
2538 .llseek
= seq_lseek
,
2539 .release
= seq_release_net
2542 static struct tcp_seq_afinfo tcp4_seq_afinfo
= {
2545 .seq_fops
= &tcp_afinfo_seq_fops
,
2547 .show
= tcp4_seq_show
,
2551 static int __net_init
tcp4_proc_init_net(struct net
*net
)
2553 return tcp_proc_register(net
, &tcp4_seq_afinfo
);
2556 static void __net_exit
tcp4_proc_exit_net(struct net
*net
)
2558 tcp_proc_unregister(net
, &tcp4_seq_afinfo
);
2561 static struct pernet_operations tcp4_net_ops
= {
2562 .init
= tcp4_proc_init_net
,
2563 .exit
= tcp4_proc_exit_net
,
2566 int __init
tcp4_proc_init(void)
2568 return register_pernet_subsys(&tcp4_net_ops
);
2571 void tcp4_proc_exit(void)
2573 unregister_pernet_subsys(&tcp4_net_ops
);
2575 #endif /* CONFIG_PROC_FS */
2577 struct sk_buff
**tcp4_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2579 const struct iphdr
*iph
= skb_gro_network_header(skb
);
2581 switch (skb
->ip_summed
) {
2582 case CHECKSUM_COMPLETE
:
2583 if (!tcp_v4_check(skb_gro_len(skb
), iph
->saddr
, iph
->daddr
,
2585 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2591 NAPI_GRO_CB(skb
)->flush
= 1;
2595 return tcp_gro_receive(head
, skb
);
2598 int tcp4_gro_complete(struct sk_buff
*skb
)
2600 const struct iphdr
*iph
= ip_hdr(skb
);
2601 struct tcphdr
*th
= tcp_hdr(skb
);
2603 th
->check
= ~tcp_v4_check(skb
->len
- skb_transport_offset(skb
),
2604 iph
->saddr
, iph
->daddr
, 0);
2605 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV4
;
2607 return tcp_gro_complete(skb
);
2610 struct proto tcp_prot
= {
2612 .owner
= THIS_MODULE
,
2614 .connect
= tcp_v4_connect
,
2615 .disconnect
= tcp_disconnect
,
2616 .accept
= inet_csk_accept
,
2618 .init
= tcp_v4_init_sock
,
2619 .destroy
= tcp_v4_destroy_sock
,
2620 .shutdown
= tcp_shutdown
,
2621 .setsockopt
= tcp_setsockopt
,
2622 .getsockopt
= tcp_getsockopt
,
2623 .recvmsg
= tcp_recvmsg
,
2624 .sendmsg
= tcp_sendmsg
,
2625 .sendpage
= tcp_sendpage
,
2626 .backlog_rcv
= tcp_v4_do_rcv
,
2628 .unhash
= inet_unhash
,
2629 .get_port
= inet_csk_get_port
,
2630 .enter_memory_pressure
= tcp_enter_memory_pressure
,
2631 .sockets_allocated
= &tcp_sockets_allocated
,
2632 .orphan_count
= &tcp_orphan_count
,
2633 .memory_allocated
= &tcp_memory_allocated
,
2634 .memory_pressure
= &tcp_memory_pressure
,
2635 .sysctl_wmem
= sysctl_tcp_wmem
,
2636 .sysctl_rmem
= sysctl_tcp_rmem
,
2637 .max_header
= MAX_TCP_HEADER
,
2638 .obj_size
= sizeof(struct tcp_sock
),
2639 .slab_flags
= SLAB_DESTROY_BY_RCU
,
2640 .twsk_prot
= &tcp_timewait_sock_ops
,
2641 .rsk_prot
= &tcp_request_sock_ops
,
2642 .h
.hashinfo
= &tcp_hashinfo
,
2643 .no_autobind
= true,
2644 #ifdef CONFIG_COMPAT
2645 .compat_setsockopt
= compat_tcp_setsockopt
,
2646 .compat_getsockopt
= compat_tcp_getsockopt
,
2648 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2649 .init_cgroup
= tcp_init_cgroup
,
2650 .destroy_cgroup
= tcp_destroy_cgroup
,
2651 .proto_cgroup
= tcp_proto_cgroup
,
2654 EXPORT_SYMBOL(tcp_prot
);
2656 static int __net_init
tcp_sk_init(struct net
*net
)
2658 return inet_ctl_sock_create(&net
->ipv4
.tcp_sock
,
2659 PF_INET
, SOCK_RAW
, IPPROTO_TCP
, net
);
2662 static void __net_exit
tcp_sk_exit(struct net
*net
)
2664 inet_ctl_sock_destroy(net
->ipv4
.tcp_sock
);
2667 static void __net_exit
tcp_sk_exit_batch(struct list_head
*net_exit_list
)
2669 inet_twsk_purge(&tcp_hashinfo
, &tcp_death_row
, AF_INET
);
2672 static struct pernet_operations __net_initdata tcp_sk_ops
= {
2673 .init
= tcp_sk_init
,
2674 .exit
= tcp_sk_exit
,
2675 .exit_batch
= tcp_sk_exit_batch
,
2678 void __init
tcp_v4_init(void)
2680 inet_hashinfo_init(&tcp_hashinfo
);
2681 if (register_pernet_subsys(&tcp_sk_ops
))
2682 panic("Failed to create the TCP control socket.\n");