4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 * Released under terms in GPL version 2. See COPYING.
13 #include <linux/types.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
38 #define RPCDBG_FACILITY RPCDBG_CACHE
40 static bool cache_defer_req(struct cache_req
*req
, struct cache_head
*item
);
41 static void cache_revisit_request(struct cache_head
*item
);
43 static void cache_init(struct cache_head
*h
)
45 time_t now
= seconds_since_boot();
49 h
->expiry_time
= now
+ CACHE_NEW_EXPIRY
;
50 h
->last_refresh
= now
;
53 static inline int cache_is_expired(struct cache_detail
*detail
, struct cache_head
*h
)
55 return (h
->expiry_time
< seconds_since_boot()) ||
56 (detail
->flush_time
> h
->last_refresh
);
59 struct cache_head
*sunrpc_cache_lookup(struct cache_detail
*detail
,
60 struct cache_head
*key
, int hash
)
62 struct cache_head
**head
, **hp
;
63 struct cache_head
*new = NULL
, *freeme
= NULL
;
65 head
= &detail
->hash_table
[hash
];
67 read_lock(&detail
->hash_lock
);
69 for (hp
=head
; *hp
!= NULL
; hp
= &(*hp
)->next
) {
70 struct cache_head
*tmp
= *hp
;
71 if (detail
->match(tmp
, key
)) {
72 if (cache_is_expired(detail
, tmp
))
73 /* This entry is expired, we will discard it. */
76 read_unlock(&detail
->hash_lock
);
80 read_unlock(&detail
->hash_lock
);
81 /* Didn't find anything, insert an empty entry */
83 new = detail
->alloc();
86 /* must fully initialise 'new', else
87 * we might get lose if we need to
91 detail
->init(new, key
);
93 write_lock(&detail
->hash_lock
);
95 /* check if entry appeared while we slept */
96 for (hp
=head
; *hp
!= NULL
; hp
= &(*hp
)->next
) {
97 struct cache_head
*tmp
= *hp
;
98 if (detail
->match(tmp
, key
)) {
99 if (cache_is_expired(detail
, tmp
)) {
107 write_unlock(&detail
->hash_lock
);
108 cache_put(new, detail
);
116 write_unlock(&detail
->hash_lock
);
119 cache_put(freeme
, detail
);
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup
);
125 static void cache_dequeue(struct cache_detail
*detail
, struct cache_head
*ch
);
127 static void cache_fresh_locked(struct cache_head
*head
, time_t expiry
)
129 head
->expiry_time
= expiry
;
130 head
->last_refresh
= seconds_since_boot();
131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132 set_bit(CACHE_VALID
, &head
->flags
);
135 static void cache_fresh_unlocked(struct cache_head
*head
,
136 struct cache_detail
*detail
)
138 if (test_and_clear_bit(CACHE_PENDING
, &head
->flags
)) {
139 cache_revisit_request(head
);
140 cache_dequeue(detail
, head
);
144 struct cache_head
*sunrpc_cache_update(struct cache_detail
*detail
,
145 struct cache_head
*new, struct cache_head
*old
, int hash
)
147 /* The 'old' entry is to be replaced by 'new'.
148 * If 'old' is not VALID, we update it directly,
149 * otherwise we need to replace it
151 struct cache_head
**head
;
152 struct cache_head
*tmp
;
154 if (!test_bit(CACHE_VALID
, &old
->flags
)) {
155 write_lock(&detail
->hash_lock
);
156 if (!test_bit(CACHE_VALID
, &old
->flags
)) {
157 if (test_bit(CACHE_NEGATIVE
, &new->flags
))
158 set_bit(CACHE_NEGATIVE
, &old
->flags
);
160 detail
->update(old
, new);
161 cache_fresh_locked(old
, new->expiry_time
);
162 write_unlock(&detail
->hash_lock
);
163 cache_fresh_unlocked(old
, detail
);
166 write_unlock(&detail
->hash_lock
);
168 /* We need to insert a new entry */
169 tmp
= detail
->alloc();
171 cache_put(old
, detail
);
175 detail
->init(tmp
, old
);
176 head
= &detail
->hash_table
[hash
];
178 write_lock(&detail
->hash_lock
);
179 if (test_bit(CACHE_NEGATIVE
, &new->flags
))
180 set_bit(CACHE_NEGATIVE
, &tmp
->flags
);
182 detail
->update(tmp
, new);
187 cache_fresh_locked(tmp
, new->expiry_time
);
188 cache_fresh_locked(old
, 0);
189 write_unlock(&detail
->hash_lock
);
190 cache_fresh_unlocked(tmp
, detail
);
191 cache_fresh_unlocked(old
, detail
);
192 cache_put(old
, detail
);
195 EXPORT_SYMBOL_GPL(sunrpc_cache_update
);
197 static int cache_make_upcall(struct cache_detail
*cd
, struct cache_head
*h
)
199 if (!cd
->cache_upcall
)
201 return cd
->cache_upcall(cd
, h
);
204 static inline int cache_is_valid(struct cache_detail
*detail
, struct cache_head
*h
)
206 if (!test_bit(CACHE_VALID
, &h
->flags
))
210 if (test_bit(CACHE_NEGATIVE
, &h
->flags
))
214 * In combination with write barrier in
215 * sunrpc_cache_update, ensures that anyone
216 * using the cache entry after this sees the
225 static int try_to_negate_entry(struct cache_detail
*detail
, struct cache_head
*h
)
229 write_lock(&detail
->hash_lock
);
230 rv
= cache_is_valid(detail
, h
);
232 write_unlock(&detail
->hash_lock
);
235 set_bit(CACHE_NEGATIVE
, &h
->flags
);
236 cache_fresh_locked(h
, seconds_since_boot()+CACHE_NEW_EXPIRY
);
237 write_unlock(&detail
->hash_lock
);
238 cache_fresh_unlocked(h
, detail
);
243 * This is the generic cache management routine for all
244 * the authentication caches.
245 * It checks the currency of a cache item and will (later)
246 * initiate an upcall to fill it if needed.
249 * Returns 0 if the cache_head can be used, or cache_puts it and returns
250 * -EAGAIN if upcall is pending and request has been queued
251 * -ETIMEDOUT if upcall failed or request could not be queue or
252 * upcall completed but item is still invalid (implying that
253 * the cache item has been replaced with a newer one).
254 * -ENOENT if cache entry was negative
256 int cache_check(struct cache_detail
*detail
,
257 struct cache_head
*h
, struct cache_req
*rqstp
)
260 long refresh_age
, age
;
262 /* First decide return status as best we can */
263 rv
= cache_is_valid(detail
, h
);
265 /* now see if we want to start an upcall */
266 refresh_age
= (h
->expiry_time
- h
->last_refresh
);
267 age
= seconds_since_boot() - h
->last_refresh
;
272 } else if (rv
== -EAGAIN
|| age
> refresh_age
/2) {
273 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
275 if (!test_and_set_bit(CACHE_PENDING
, &h
->flags
)) {
276 switch (cache_make_upcall(detail
, h
)) {
278 clear_bit(CACHE_PENDING
, &h
->flags
);
279 cache_revisit_request(h
);
280 rv
= try_to_negate_entry(detail
, h
);
283 clear_bit(CACHE_PENDING
, &h
->flags
);
284 cache_revisit_request(h
);
291 if (!cache_defer_req(rqstp
, h
)) {
293 * Request was not deferred; handle it as best
296 rv
= cache_is_valid(detail
, h
);
302 cache_put(h
, detail
);
305 EXPORT_SYMBOL_GPL(cache_check
);
308 * caches need to be periodically cleaned.
309 * For this we maintain a list of cache_detail and
310 * a current pointer into that list and into the table
313 * Each time clean_cache is called it finds the next non-empty entry
314 * in the current table and walks the list in that entry
315 * looking for entries that can be removed.
317 * An entry gets removed if:
318 * - The expiry is before current time
319 * - The last_refresh time is before the flush_time for that cache
321 * later we might drop old entries with non-NEVER expiry if that table
322 * is getting 'full' for some definition of 'full'
324 * The question of "how often to scan a table" is an interesting one
325 * and is answered in part by the use of the "nextcheck" field in the
327 * When a scan of a table begins, the nextcheck field is set to a time
328 * that is well into the future.
329 * While scanning, if an expiry time is found that is earlier than the
330 * current nextcheck time, nextcheck is set to that expiry time.
331 * If the flush_time is ever set to a time earlier than the nextcheck
332 * time, the nextcheck time is then set to that flush_time.
334 * A table is then only scanned if the current time is at least
335 * the nextcheck time.
339 static LIST_HEAD(cache_list
);
340 static DEFINE_SPINLOCK(cache_list_lock
);
341 static struct cache_detail
*current_detail
;
342 static int current_index
;
344 static void do_cache_clean(struct work_struct
*work
);
345 static struct delayed_work cache_cleaner
;
347 static void sunrpc_init_cache_detail(struct cache_detail
*cd
)
349 rwlock_init(&cd
->hash_lock
);
350 INIT_LIST_HEAD(&cd
->queue
);
351 spin_lock(&cache_list_lock
);
354 atomic_set(&cd
->readers
, 0);
357 list_add(&cd
->others
, &cache_list
);
358 spin_unlock(&cache_list_lock
);
360 /* start the cleaning process */
361 schedule_delayed_work(&cache_cleaner
, 0);
364 static void sunrpc_destroy_cache_detail(struct cache_detail
*cd
)
367 spin_lock(&cache_list_lock
);
368 write_lock(&cd
->hash_lock
);
369 if (cd
->entries
|| atomic_read(&cd
->inuse
)) {
370 write_unlock(&cd
->hash_lock
);
371 spin_unlock(&cache_list_lock
);
374 if (current_detail
== cd
)
375 current_detail
= NULL
;
376 list_del_init(&cd
->others
);
377 write_unlock(&cd
->hash_lock
);
378 spin_unlock(&cache_list_lock
);
379 if (list_empty(&cache_list
)) {
380 /* module must be being unloaded so its safe to kill the worker */
381 cancel_delayed_work_sync(&cache_cleaner
);
385 printk(KERN_ERR
"nfsd: failed to unregister %s cache\n", cd
->name
);
388 /* clean cache tries to find something to clean
390 * It returns 1 if it cleaned something,
391 * 0 if it didn't find anything this time
392 * -1 if it fell off the end of the list.
394 static int cache_clean(void)
397 struct list_head
*next
;
399 spin_lock(&cache_list_lock
);
401 /* find a suitable table if we don't already have one */
402 while (current_detail
== NULL
||
403 current_index
>= current_detail
->hash_size
) {
405 next
= current_detail
->others
.next
;
407 next
= cache_list
.next
;
408 if (next
== &cache_list
) {
409 current_detail
= NULL
;
410 spin_unlock(&cache_list_lock
);
413 current_detail
= list_entry(next
, struct cache_detail
, others
);
414 if (current_detail
->nextcheck
> seconds_since_boot())
415 current_index
= current_detail
->hash_size
;
418 current_detail
->nextcheck
= seconds_since_boot()+30*60;
422 /* find a non-empty bucket in the table */
423 while (current_detail
&&
424 current_index
< current_detail
->hash_size
&&
425 current_detail
->hash_table
[current_index
] == NULL
)
428 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
430 if (current_detail
&& current_index
< current_detail
->hash_size
) {
431 struct cache_head
*ch
, **cp
;
432 struct cache_detail
*d
;
434 write_lock(¤t_detail
->hash_lock
);
436 /* Ok, now to clean this strand */
438 cp
= & current_detail
->hash_table
[current_index
];
439 for (ch
= *cp
; ch
; cp
= & ch
->next
, ch
= *cp
) {
440 if (current_detail
->nextcheck
> ch
->expiry_time
)
441 current_detail
->nextcheck
= ch
->expiry_time
+1;
442 if (!cache_is_expired(current_detail
, ch
))
447 current_detail
->entries
--;
452 write_unlock(¤t_detail
->hash_lock
);
456 spin_unlock(&cache_list_lock
);
458 if (test_and_clear_bit(CACHE_PENDING
, &ch
->flags
))
459 cache_dequeue(current_detail
, ch
);
460 cache_revisit_request(ch
);
464 spin_unlock(&cache_list_lock
);
470 * We want to regularly clean the cache, so we need to schedule some work ...
472 static void do_cache_clean(struct work_struct
*work
)
475 if (cache_clean() == -1)
476 delay
= round_jiffies_relative(30*HZ
);
478 if (list_empty(&cache_list
))
482 schedule_delayed_work(&cache_cleaner
, delay
);
487 * Clean all caches promptly. This just calls cache_clean
488 * repeatedly until we are sure that every cache has had a chance to
491 void cache_flush(void)
493 while (cache_clean() != -1)
495 while (cache_clean() != -1)
498 EXPORT_SYMBOL_GPL(cache_flush
);
500 void cache_purge(struct cache_detail
*detail
)
502 detail
->flush_time
= LONG_MAX
;
503 detail
->nextcheck
= seconds_since_boot();
505 detail
->flush_time
= 1;
507 EXPORT_SYMBOL_GPL(cache_purge
);
511 * Deferral and Revisiting of Requests.
513 * If a cache lookup finds a pending entry, we
514 * need to defer the request and revisit it later.
515 * All deferred requests are stored in a hash table,
516 * indexed by "struct cache_head *".
517 * As it may be wasteful to store a whole request
518 * structure, we allow the request to provide a
519 * deferred form, which must contain a
520 * 'struct cache_deferred_req'
521 * This cache_deferred_req contains a method to allow
522 * it to be revisited when cache info is available
525 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
526 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
528 #define DFR_MAX 300 /* ??? */
530 static DEFINE_SPINLOCK(cache_defer_lock
);
531 static LIST_HEAD(cache_defer_list
);
532 static struct hlist_head cache_defer_hash
[DFR_HASHSIZE
];
533 static int cache_defer_cnt
;
535 static void __unhash_deferred_req(struct cache_deferred_req
*dreq
)
537 hlist_del_init(&dreq
->hash
);
538 if (!list_empty(&dreq
->recent
)) {
539 list_del_init(&dreq
->recent
);
544 static void __hash_deferred_req(struct cache_deferred_req
*dreq
, struct cache_head
*item
)
546 int hash
= DFR_HASH(item
);
548 INIT_LIST_HEAD(&dreq
->recent
);
549 hlist_add_head(&dreq
->hash
, &cache_defer_hash
[hash
]);
552 static void setup_deferral(struct cache_deferred_req
*dreq
,
553 struct cache_head
*item
,
559 spin_lock(&cache_defer_lock
);
561 __hash_deferred_req(dreq
, item
);
565 list_add(&dreq
->recent
, &cache_defer_list
);
568 spin_unlock(&cache_defer_lock
);
572 struct thread_deferred_req
{
573 struct cache_deferred_req handle
;
574 struct completion completion
;
577 static void cache_restart_thread(struct cache_deferred_req
*dreq
, int too_many
)
579 struct thread_deferred_req
*dr
=
580 container_of(dreq
, struct thread_deferred_req
, handle
);
581 complete(&dr
->completion
);
584 static void cache_wait_req(struct cache_req
*req
, struct cache_head
*item
)
586 struct thread_deferred_req sleeper
;
587 struct cache_deferred_req
*dreq
= &sleeper
.handle
;
589 sleeper
.completion
= COMPLETION_INITIALIZER_ONSTACK(sleeper
.completion
);
590 dreq
->revisit
= cache_restart_thread
;
592 setup_deferral(dreq
, item
, 0);
594 if (!test_bit(CACHE_PENDING
, &item
->flags
) ||
595 wait_for_completion_interruptible_timeout(
596 &sleeper
.completion
, req
->thread_wait
) <= 0) {
597 /* The completion wasn't completed, so we need
600 spin_lock(&cache_defer_lock
);
601 if (!hlist_unhashed(&sleeper
.handle
.hash
)) {
602 __unhash_deferred_req(&sleeper
.handle
);
603 spin_unlock(&cache_defer_lock
);
605 /* cache_revisit_request already removed
606 * this from the hash table, but hasn't
607 * called ->revisit yet. It will very soon
608 * and we need to wait for it.
610 spin_unlock(&cache_defer_lock
);
611 wait_for_completion(&sleeper
.completion
);
616 static void cache_limit_defers(void)
618 /* Make sure we haven't exceed the limit of allowed deferred
621 struct cache_deferred_req
*discard
= NULL
;
623 if (cache_defer_cnt
<= DFR_MAX
)
626 spin_lock(&cache_defer_lock
);
628 /* Consider removing either the first or the last */
629 if (cache_defer_cnt
> DFR_MAX
) {
630 if (net_random() & 1)
631 discard
= list_entry(cache_defer_list
.next
,
632 struct cache_deferred_req
, recent
);
634 discard
= list_entry(cache_defer_list
.prev
,
635 struct cache_deferred_req
, recent
);
636 __unhash_deferred_req(discard
);
638 spin_unlock(&cache_defer_lock
);
640 discard
->revisit(discard
, 1);
643 /* Return true if and only if a deferred request is queued. */
644 static bool cache_defer_req(struct cache_req
*req
, struct cache_head
*item
)
646 struct cache_deferred_req
*dreq
;
648 if (req
->thread_wait
) {
649 cache_wait_req(req
, item
);
650 if (!test_bit(CACHE_PENDING
, &item
->flags
))
653 dreq
= req
->defer(req
);
656 setup_deferral(dreq
, item
, 1);
657 if (!test_bit(CACHE_PENDING
, &item
->flags
))
658 /* Bit could have been cleared before we managed to
659 * set up the deferral, so need to revisit just in case
661 cache_revisit_request(item
);
663 cache_limit_defers();
667 static void cache_revisit_request(struct cache_head
*item
)
669 struct cache_deferred_req
*dreq
;
670 struct list_head pending
;
671 struct hlist_node
*lp
, *tmp
;
672 int hash
= DFR_HASH(item
);
674 INIT_LIST_HEAD(&pending
);
675 spin_lock(&cache_defer_lock
);
677 hlist_for_each_entry_safe(dreq
, lp
, tmp
, &cache_defer_hash
[hash
], hash
)
678 if (dreq
->item
== item
) {
679 __unhash_deferred_req(dreq
);
680 list_add(&dreq
->recent
, &pending
);
683 spin_unlock(&cache_defer_lock
);
685 while (!list_empty(&pending
)) {
686 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
687 list_del_init(&dreq
->recent
);
688 dreq
->revisit(dreq
, 0);
692 void cache_clean_deferred(void *owner
)
694 struct cache_deferred_req
*dreq
, *tmp
;
695 struct list_head pending
;
698 INIT_LIST_HEAD(&pending
);
699 spin_lock(&cache_defer_lock
);
701 list_for_each_entry_safe(dreq
, tmp
, &cache_defer_list
, recent
) {
702 if (dreq
->owner
== owner
) {
703 __unhash_deferred_req(dreq
);
704 list_add(&dreq
->recent
, &pending
);
707 spin_unlock(&cache_defer_lock
);
709 while (!list_empty(&pending
)) {
710 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
711 list_del_init(&dreq
->recent
);
712 dreq
->revisit(dreq
, 1);
717 * communicate with user-space
719 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
720 * On read, you get a full request, or block.
721 * On write, an update request is processed.
722 * Poll works if anything to read, and always allows write.
724 * Implemented by linked list of requests. Each open file has
725 * a ->private that also exists in this list. New requests are added
726 * to the end and may wakeup and preceding readers.
727 * New readers are added to the head. If, on read, an item is found with
728 * CACHE_UPCALLING clear, we free it from the list.
732 static DEFINE_SPINLOCK(queue_lock
);
733 static DEFINE_MUTEX(queue_io_mutex
);
736 struct list_head list
;
737 int reader
; /* if 0, then request */
739 struct cache_request
{
740 struct cache_queue q
;
741 struct cache_head
*item
;
746 struct cache_reader
{
747 struct cache_queue q
;
748 int offset
; /* if non-0, we have a refcnt on next request */
751 static ssize_t
cache_read(struct file
*filp
, char __user
*buf
, size_t count
,
752 loff_t
*ppos
, struct cache_detail
*cd
)
754 struct cache_reader
*rp
= filp
->private_data
;
755 struct cache_request
*rq
;
756 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
762 mutex_lock(&inode
->i_mutex
); /* protect against multiple concurrent
763 * readers on this file */
765 spin_lock(&queue_lock
);
766 /* need to find next request */
767 while (rp
->q
.list
.next
!= &cd
->queue
&&
768 list_entry(rp
->q
.list
.next
, struct cache_queue
, list
)
770 struct list_head
*next
= rp
->q
.list
.next
;
771 list_move(&rp
->q
.list
, next
);
773 if (rp
->q
.list
.next
== &cd
->queue
) {
774 spin_unlock(&queue_lock
);
775 mutex_unlock(&inode
->i_mutex
);
779 rq
= container_of(rp
->q
.list
.next
, struct cache_request
, q
.list
);
780 BUG_ON(rq
->q
.reader
);
783 spin_unlock(&queue_lock
);
785 if (rp
->offset
== 0 && !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
787 spin_lock(&queue_lock
);
788 list_move(&rp
->q
.list
, &rq
->q
.list
);
789 spin_unlock(&queue_lock
);
791 if (rp
->offset
+ count
> rq
->len
)
792 count
= rq
->len
- rp
->offset
;
794 if (copy_to_user(buf
, rq
->buf
+ rp
->offset
, count
))
797 if (rp
->offset
>= rq
->len
) {
799 spin_lock(&queue_lock
);
800 list_move(&rp
->q
.list
, &rq
->q
.list
);
801 spin_unlock(&queue_lock
);
806 if (rp
->offset
== 0) {
807 /* need to release rq */
808 spin_lock(&queue_lock
);
810 if (rq
->readers
== 0 &&
811 !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
812 list_del(&rq
->q
.list
);
813 spin_unlock(&queue_lock
);
814 cache_put(rq
->item
, cd
);
818 spin_unlock(&queue_lock
);
822 mutex_unlock(&inode
->i_mutex
);
823 return err
? err
: count
;
826 static ssize_t
cache_do_downcall(char *kaddr
, const char __user
*buf
,
827 size_t count
, struct cache_detail
*cd
)
833 if (copy_from_user(kaddr
, buf
, count
))
836 ret
= cd
->cache_parse(cd
, kaddr
, count
);
842 static ssize_t
cache_slow_downcall(const char __user
*buf
,
843 size_t count
, struct cache_detail
*cd
)
845 static char write_buf
[8192]; /* protected by queue_io_mutex */
846 ssize_t ret
= -EINVAL
;
848 if (count
>= sizeof(write_buf
))
850 mutex_lock(&queue_io_mutex
);
851 ret
= cache_do_downcall(write_buf
, buf
, count
, cd
);
852 mutex_unlock(&queue_io_mutex
);
857 static ssize_t
cache_downcall(struct address_space
*mapping
,
858 const char __user
*buf
,
859 size_t count
, struct cache_detail
*cd
)
863 ssize_t ret
= -ENOMEM
;
865 if (count
>= PAGE_CACHE_SIZE
)
868 page
= find_or_create_page(mapping
, 0, GFP_KERNEL
);
873 ret
= cache_do_downcall(kaddr
, buf
, count
, cd
);
876 page_cache_release(page
);
879 return cache_slow_downcall(buf
, count
, cd
);
882 static ssize_t
cache_write(struct file
*filp
, const char __user
*buf
,
883 size_t count
, loff_t
*ppos
,
884 struct cache_detail
*cd
)
886 struct address_space
*mapping
= filp
->f_mapping
;
887 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
888 ssize_t ret
= -EINVAL
;
890 if (!cd
->cache_parse
)
893 mutex_lock(&inode
->i_mutex
);
894 ret
= cache_downcall(mapping
, buf
, count
, cd
);
895 mutex_unlock(&inode
->i_mutex
);
900 static DECLARE_WAIT_QUEUE_HEAD(queue_wait
);
902 static unsigned int cache_poll(struct file
*filp
, poll_table
*wait
,
903 struct cache_detail
*cd
)
906 struct cache_reader
*rp
= filp
->private_data
;
907 struct cache_queue
*cq
;
909 poll_wait(filp
, &queue_wait
, wait
);
911 /* alway allow write */
912 mask
= POLL_OUT
| POLLWRNORM
;
917 spin_lock(&queue_lock
);
919 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
920 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
922 mask
|= POLLIN
| POLLRDNORM
;
925 spin_unlock(&queue_lock
);
929 static int cache_ioctl(struct inode
*ino
, struct file
*filp
,
930 unsigned int cmd
, unsigned long arg
,
931 struct cache_detail
*cd
)
934 struct cache_reader
*rp
= filp
->private_data
;
935 struct cache_queue
*cq
;
937 if (cmd
!= FIONREAD
|| !rp
)
940 spin_lock(&queue_lock
);
942 /* only find the length remaining in current request,
943 * or the length of the next request
945 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
946 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
948 struct cache_request
*cr
=
949 container_of(cq
, struct cache_request
, q
);
950 len
= cr
->len
- rp
->offset
;
953 spin_unlock(&queue_lock
);
955 return put_user(len
, (int __user
*)arg
);
958 static int cache_open(struct inode
*inode
, struct file
*filp
,
959 struct cache_detail
*cd
)
961 struct cache_reader
*rp
= NULL
;
963 if (!cd
|| !try_module_get(cd
->owner
))
965 nonseekable_open(inode
, filp
);
966 if (filp
->f_mode
& FMODE_READ
) {
967 rp
= kmalloc(sizeof(*rp
), GFP_KERNEL
);
972 atomic_inc(&cd
->readers
);
973 spin_lock(&queue_lock
);
974 list_add(&rp
->q
.list
, &cd
->queue
);
975 spin_unlock(&queue_lock
);
977 filp
->private_data
= rp
;
981 static int cache_release(struct inode
*inode
, struct file
*filp
,
982 struct cache_detail
*cd
)
984 struct cache_reader
*rp
= filp
->private_data
;
987 spin_lock(&queue_lock
);
989 struct cache_queue
*cq
;
990 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
991 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
993 container_of(cq
, struct cache_request
, q
)
999 list_del(&rp
->q
.list
);
1000 spin_unlock(&queue_lock
);
1002 filp
->private_data
= NULL
;
1005 cd
->last_close
= seconds_since_boot();
1006 atomic_dec(&cd
->readers
);
1008 module_put(cd
->owner
);
1014 static void cache_dequeue(struct cache_detail
*detail
, struct cache_head
*ch
)
1016 struct cache_queue
*cq
;
1017 spin_lock(&queue_lock
);
1018 list_for_each_entry(cq
, &detail
->queue
, list
)
1020 struct cache_request
*cr
= container_of(cq
, struct cache_request
, q
);
1023 if (cr
->readers
!= 0)
1025 list_del(&cr
->q
.list
);
1026 spin_unlock(&queue_lock
);
1027 cache_put(cr
->item
, detail
);
1032 spin_unlock(&queue_lock
);
1036 * Support routines for text-based upcalls.
1037 * Fields are separated by spaces.
1038 * Fields are either mangled to quote space tab newline slosh with slosh
1039 * or a hexified with a leading \x
1040 * Record is terminated with newline.
1044 void qword_add(char **bpp
, int *lp
, char *str
)
1050 if (len
< 0) return;
1052 while ((c
=*str
++) && len
)
1060 *bp
++ = '0' + ((c
& 0300)>>6);
1061 *bp
++ = '0' + ((c
& 0070)>>3);
1062 *bp
++ = '0' + ((c
& 0007)>>0);
1070 if (c
|| len
<1) len
= -1;
1078 EXPORT_SYMBOL_GPL(qword_add
);
1080 void qword_addhex(char **bpp
, int *lp
, char *buf
, int blen
)
1085 if (len
< 0) return;
1091 while (blen
&& len
>= 2) {
1092 unsigned char c
= *buf
++;
1093 *bp
++ = '0' + ((c
&0xf0)>>4) + (c
>=0xa0)*('a'-'9'-1);
1094 *bp
++ = '0' + (c
&0x0f) + ((c
&0x0f)>=0x0a)*('a'-'9'-1);
1099 if (blen
|| len
<1) len
= -1;
1107 EXPORT_SYMBOL_GPL(qword_addhex
);
1109 static void warn_no_listener(struct cache_detail
*detail
)
1111 if (detail
->last_warn
!= detail
->last_close
) {
1112 detail
->last_warn
= detail
->last_close
;
1113 if (detail
->warn_no_listener
)
1114 detail
->warn_no_listener(detail
, detail
->last_close
!= 0);
1118 static bool cache_listeners_exist(struct cache_detail
*detail
)
1120 if (atomic_read(&detail
->readers
))
1122 if (detail
->last_close
== 0)
1123 /* This cache was never opened */
1125 if (detail
->last_close
< seconds_since_boot() - 30)
1127 * We allow for the possibility that someone might
1128 * restart a userspace daemon without restarting the
1129 * server; but after 30 seconds, we give up.
1136 * register an upcall request to user-space and queue it up for read() by the
1139 * Each request is at most one page long.
1141 int sunrpc_cache_pipe_upcall(struct cache_detail
*detail
, struct cache_head
*h
,
1142 void (*cache_request
)(struct cache_detail
*,
1143 struct cache_head
*,
1149 struct cache_request
*crq
;
1153 if (!cache_listeners_exist(detail
)) {
1154 warn_no_listener(detail
);
1158 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1162 crq
= kmalloc(sizeof (*crq
), GFP_KERNEL
);
1168 bp
= buf
; len
= PAGE_SIZE
;
1170 cache_request(detail
, h
, &bp
, &len
);
1178 crq
->item
= cache_get(h
);
1180 crq
->len
= PAGE_SIZE
- len
;
1182 spin_lock(&queue_lock
);
1183 list_add_tail(&crq
->q
.list
, &detail
->queue
);
1184 spin_unlock(&queue_lock
);
1185 wake_up(&queue_wait
);
1188 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall
);
1191 * parse a message from user-space and pass it
1192 * to an appropriate cache
1193 * Messages are, like requests, separated into fields by
1194 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1197 * reply cachename expiry key ... content....
1199 * key and content are both parsed by cache
1202 #define isodigit(c) (isdigit(c) && c <= '7')
1203 int qword_get(char **bpp
, char *dest
, int bufsize
)
1205 /* return bytes copied, or -1 on error */
1209 while (*bp
== ' ') bp
++;
1211 if (bp
[0] == '\\' && bp
[1] == 'x') {
1214 while (len
< bufsize
) {
1217 h
= hex_to_bin(bp
[0]);
1221 l
= hex_to_bin(bp
[1]);
1225 *dest
++ = (h
<< 4) | l
;
1230 /* text with \nnn octal quoting */
1231 while (*bp
!= ' ' && *bp
!= '\n' && *bp
&& len
< bufsize
-1) {
1233 isodigit(bp
[1]) && (bp
[1] <= '3') &&
1236 int byte
= (*++bp
-'0');
1238 byte
= (byte
<< 3) | (*bp
++ - '0');
1239 byte
= (byte
<< 3) | (*bp
++ - '0');
1249 if (*bp
!= ' ' && *bp
!= '\n' && *bp
!= '\0')
1251 while (*bp
== ' ') bp
++;
1256 EXPORT_SYMBOL_GPL(qword_get
);
1260 * support /proc/sunrpc/cache/$CACHENAME/content
1262 * We call ->cache_show passing NULL for the item to
1263 * get a header, then pass each real item in the cache
1267 struct cache_detail
*cd
;
1270 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1271 __acquires(cd
->hash_lock
)
1274 unsigned hash
, entry
;
1275 struct cache_head
*ch
;
1276 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1279 read_lock(&cd
->hash_lock
);
1281 return SEQ_START_TOKEN
;
1283 entry
= n
& ((1LL<<32) - 1);
1285 for (ch
=cd
->hash_table
[hash
]; ch
; ch
=ch
->next
)
1288 n
&= ~((1LL<<32) - 1);
1292 } while(hash
< cd
->hash_size
&&
1293 cd
->hash_table
[hash
]==NULL
);
1294 if (hash
>= cd
->hash_size
)
1297 return cd
->hash_table
[hash
];
1300 static void *c_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1302 struct cache_head
*ch
= p
;
1303 int hash
= (*pos
>> 32);
1304 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1306 if (p
== SEQ_START_TOKEN
)
1308 else if (ch
->next
== NULL
) {
1315 *pos
&= ~((1LL<<32) - 1);
1316 while (hash
< cd
->hash_size
&&
1317 cd
->hash_table
[hash
] == NULL
) {
1321 if (hash
>= cd
->hash_size
)
1324 return cd
->hash_table
[hash
];
1327 static void c_stop(struct seq_file
*m
, void *p
)
1328 __releases(cd
->hash_lock
)
1330 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1331 read_unlock(&cd
->hash_lock
);
1334 static int c_show(struct seq_file
*m
, void *p
)
1336 struct cache_head
*cp
= p
;
1337 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1339 if (p
== SEQ_START_TOKEN
)
1340 return cd
->cache_show(m
, cd
, NULL
);
1343 seq_printf(m
, "# expiry=%ld refcnt=%d flags=%lx\n",
1344 convert_to_wallclock(cp
->expiry_time
),
1345 atomic_read(&cp
->ref
.refcount
), cp
->flags
);
1347 if (cache_check(cd
, cp
, NULL
))
1348 /* cache_check does a cache_put on failure */
1349 seq_printf(m
, "# ");
1353 return cd
->cache_show(m
, cd
, cp
);
1356 static const struct seq_operations cache_content_op
= {
1363 static int content_open(struct inode
*inode
, struct file
*file
,
1364 struct cache_detail
*cd
)
1368 if (!cd
|| !try_module_get(cd
->owner
))
1370 han
= __seq_open_private(file
, &cache_content_op
, sizeof(*han
));
1372 module_put(cd
->owner
);
1380 static int content_release(struct inode
*inode
, struct file
*file
,
1381 struct cache_detail
*cd
)
1383 int ret
= seq_release_private(inode
, file
);
1384 module_put(cd
->owner
);
1388 static int open_flush(struct inode
*inode
, struct file
*file
,
1389 struct cache_detail
*cd
)
1391 if (!cd
|| !try_module_get(cd
->owner
))
1393 return nonseekable_open(inode
, file
);
1396 static int release_flush(struct inode
*inode
, struct file
*file
,
1397 struct cache_detail
*cd
)
1399 module_put(cd
->owner
);
1403 static ssize_t
read_flush(struct file
*file
, char __user
*buf
,
1404 size_t count
, loff_t
*ppos
,
1405 struct cache_detail
*cd
)
1408 unsigned long p
= *ppos
;
1411 sprintf(tbuf
, "%lu\n", convert_to_wallclock(cd
->flush_time
));
1418 if (copy_to_user(buf
, (void*)(tbuf
+p
), len
))
1424 static ssize_t
write_flush(struct file
*file
, const char __user
*buf
,
1425 size_t count
, loff_t
*ppos
,
1426 struct cache_detail
*cd
)
1431 if (*ppos
|| count
> sizeof(tbuf
)-1)
1433 if (copy_from_user(tbuf
, buf
, count
))
1436 simple_strtoul(tbuf
, &ep
, 0);
1437 if (*ep
&& *ep
!= '\n')
1441 cd
->flush_time
= get_expiry(&bp
);
1442 cd
->nextcheck
= seconds_since_boot();
1449 static ssize_t
cache_read_procfs(struct file
*filp
, char __user
*buf
,
1450 size_t count
, loff_t
*ppos
)
1452 struct cache_detail
*cd
= PDE(filp
->f_path
.dentry
->d_inode
)->data
;
1454 return cache_read(filp
, buf
, count
, ppos
, cd
);
1457 static ssize_t
cache_write_procfs(struct file
*filp
, const char __user
*buf
,
1458 size_t count
, loff_t
*ppos
)
1460 struct cache_detail
*cd
= PDE(filp
->f_path
.dentry
->d_inode
)->data
;
1462 return cache_write(filp
, buf
, count
, ppos
, cd
);
1465 static unsigned int cache_poll_procfs(struct file
*filp
, poll_table
*wait
)
1467 struct cache_detail
*cd
= PDE(filp
->f_path
.dentry
->d_inode
)->data
;
1469 return cache_poll(filp
, wait
, cd
);
1472 static long cache_ioctl_procfs(struct file
*filp
,
1473 unsigned int cmd
, unsigned long arg
)
1475 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1476 struct cache_detail
*cd
= PDE(inode
)->data
;
1478 return cache_ioctl(inode
, filp
, cmd
, arg
, cd
);
1481 static int cache_open_procfs(struct inode
*inode
, struct file
*filp
)
1483 struct cache_detail
*cd
= PDE(inode
)->data
;
1485 return cache_open(inode
, filp
, cd
);
1488 static int cache_release_procfs(struct inode
*inode
, struct file
*filp
)
1490 struct cache_detail
*cd
= PDE(inode
)->data
;
1492 return cache_release(inode
, filp
, cd
);
1495 static const struct file_operations cache_file_operations_procfs
= {
1496 .owner
= THIS_MODULE
,
1497 .llseek
= no_llseek
,
1498 .read
= cache_read_procfs
,
1499 .write
= cache_write_procfs
,
1500 .poll
= cache_poll_procfs
,
1501 .unlocked_ioctl
= cache_ioctl_procfs
, /* for FIONREAD */
1502 .open
= cache_open_procfs
,
1503 .release
= cache_release_procfs
,
1506 static int content_open_procfs(struct inode
*inode
, struct file
*filp
)
1508 struct cache_detail
*cd
= PDE(inode
)->data
;
1510 return content_open(inode
, filp
, cd
);
1513 static int content_release_procfs(struct inode
*inode
, struct file
*filp
)
1515 struct cache_detail
*cd
= PDE(inode
)->data
;
1517 return content_release(inode
, filp
, cd
);
1520 static const struct file_operations content_file_operations_procfs
= {
1521 .open
= content_open_procfs
,
1523 .llseek
= seq_lseek
,
1524 .release
= content_release_procfs
,
1527 static int open_flush_procfs(struct inode
*inode
, struct file
*filp
)
1529 struct cache_detail
*cd
= PDE(inode
)->data
;
1531 return open_flush(inode
, filp
, cd
);
1534 static int release_flush_procfs(struct inode
*inode
, struct file
*filp
)
1536 struct cache_detail
*cd
= PDE(inode
)->data
;
1538 return release_flush(inode
, filp
, cd
);
1541 static ssize_t
read_flush_procfs(struct file
*filp
, char __user
*buf
,
1542 size_t count
, loff_t
*ppos
)
1544 struct cache_detail
*cd
= PDE(filp
->f_path
.dentry
->d_inode
)->data
;
1546 return read_flush(filp
, buf
, count
, ppos
, cd
);
1549 static ssize_t
write_flush_procfs(struct file
*filp
,
1550 const char __user
*buf
,
1551 size_t count
, loff_t
*ppos
)
1553 struct cache_detail
*cd
= PDE(filp
->f_path
.dentry
->d_inode
)->data
;
1555 return write_flush(filp
, buf
, count
, ppos
, cd
);
1558 static const struct file_operations cache_flush_operations_procfs
= {
1559 .open
= open_flush_procfs
,
1560 .read
= read_flush_procfs
,
1561 .write
= write_flush_procfs
,
1562 .release
= release_flush_procfs
,
1563 .llseek
= no_llseek
,
1566 static void remove_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1568 struct sunrpc_net
*sn
;
1570 if (cd
->u
.procfs
.proc_ent
== NULL
)
1572 if (cd
->u
.procfs
.flush_ent
)
1573 remove_proc_entry("flush", cd
->u
.procfs
.proc_ent
);
1574 if (cd
->u
.procfs
.channel_ent
)
1575 remove_proc_entry("channel", cd
->u
.procfs
.proc_ent
);
1576 if (cd
->u
.procfs
.content_ent
)
1577 remove_proc_entry("content", cd
->u
.procfs
.proc_ent
);
1578 cd
->u
.procfs
.proc_ent
= NULL
;
1579 sn
= net_generic(net
, sunrpc_net_id
);
1580 remove_proc_entry(cd
->name
, sn
->proc_net_rpc
);
1583 #ifdef CONFIG_PROC_FS
1584 static int create_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1586 struct proc_dir_entry
*p
;
1587 struct sunrpc_net
*sn
;
1589 sn
= net_generic(net
, sunrpc_net_id
);
1590 cd
->u
.procfs
.proc_ent
= proc_mkdir(cd
->name
, sn
->proc_net_rpc
);
1591 if (cd
->u
.procfs
.proc_ent
== NULL
)
1593 cd
->u
.procfs
.channel_ent
= NULL
;
1594 cd
->u
.procfs
.content_ent
= NULL
;
1596 p
= proc_create_data("flush", S_IFREG
|S_IRUSR
|S_IWUSR
,
1597 cd
->u
.procfs
.proc_ent
,
1598 &cache_flush_operations_procfs
, cd
);
1599 cd
->u
.procfs
.flush_ent
= p
;
1603 if (cd
->cache_upcall
|| cd
->cache_parse
) {
1604 p
= proc_create_data("channel", S_IFREG
|S_IRUSR
|S_IWUSR
,
1605 cd
->u
.procfs
.proc_ent
,
1606 &cache_file_operations_procfs
, cd
);
1607 cd
->u
.procfs
.channel_ent
= p
;
1611 if (cd
->cache_show
) {
1612 p
= proc_create_data("content", S_IFREG
|S_IRUSR
|S_IWUSR
,
1613 cd
->u
.procfs
.proc_ent
,
1614 &content_file_operations_procfs
, cd
);
1615 cd
->u
.procfs
.content_ent
= p
;
1621 remove_cache_proc_entries(cd
, net
);
1624 #else /* CONFIG_PROC_FS */
1625 static int create_cache_proc_entries(struct cache_detail
*cd
, struct net
*net
)
1631 void __init
cache_initialize(void)
1633 INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner
, do_cache_clean
);
1636 int cache_register_net(struct cache_detail
*cd
, struct net
*net
)
1640 sunrpc_init_cache_detail(cd
);
1641 ret
= create_cache_proc_entries(cd
, net
);
1643 sunrpc_destroy_cache_detail(cd
);
1646 EXPORT_SYMBOL_GPL(cache_register_net
);
1648 int cache_register(struct cache_detail
*cd
)
1650 return cache_register_net(cd
, &init_net
);
1652 EXPORT_SYMBOL_GPL(cache_register
);
1654 void cache_unregister_net(struct cache_detail
*cd
, struct net
*net
)
1656 remove_cache_proc_entries(cd
, net
);
1657 sunrpc_destroy_cache_detail(cd
);
1659 EXPORT_SYMBOL_GPL(cache_unregister_net
);
1661 void cache_unregister(struct cache_detail
*cd
)
1663 cache_unregister_net(cd
, &init_net
);
1665 EXPORT_SYMBOL_GPL(cache_unregister
);
1667 static ssize_t
cache_read_pipefs(struct file
*filp
, char __user
*buf
,
1668 size_t count
, loff_t
*ppos
)
1670 struct cache_detail
*cd
= RPC_I(filp
->f_path
.dentry
->d_inode
)->private;
1672 return cache_read(filp
, buf
, count
, ppos
, cd
);
1675 static ssize_t
cache_write_pipefs(struct file
*filp
, const char __user
*buf
,
1676 size_t count
, loff_t
*ppos
)
1678 struct cache_detail
*cd
= RPC_I(filp
->f_path
.dentry
->d_inode
)->private;
1680 return cache_write(filp
, buf
, count
, ppos
, cd
);
1683 static unsigned int cache_poll_pipefs(struct file
*filp
, poll_table
*wait
)
1685 struct cache_detail
*cd
= RPC_I(filp
->f_path
.dentry
->d_inode
)->private;
1687 return cache_poll(filp
, wait
, cd
);
1690 static long cache_ioctl_pipefs(struct file
*filp
,
1691 unsigned int cmd
, unsigned long arg
)
1693 struct inode
*inode
= filp
->f_dentry
->d_inode
;
1694 struct cache_detail
*cd
= RPC_I(inode
)->private;
1696 return cache_ioctl(inode
, filp
, cmd
, arg
, cd
);
1699 static int cache_open_pipefs(struct inode
*inode
, struct file
*filp
)
1701 struct cache_detail
*cd
= RPC_I(inode
)->private;
1703 return cache_open(inode
, filp
, cd
);
1706 static int cache_release_pipefs(struct inode
*inode
, struct file
*filp
)
1708 struct cache_detail
*cd
= RPC_I(inode
)->private;
1710 return cache_release(inode
, filp
, cd
);
1713 const struct file_operations cache_file_operations_pipefs
= {
1714 .owner
= THIS_MODULE
,
1715 .llseek
= no_llseek
,
1716 .read
= cache_read_pipefs
,
1717 .write
= cache_write_pipefs
,
1718 .poll
= cache_poll_pipefs
,
1719 .unlocked_ioctl
= cache_ioctl_pipefs
, /* for FIONREAD */
1720 .open
= cache_open_pipefs
,
1721 .release
= cache_release_pipefs
,
1724 static int content_open_pipefs(struct inode
*inode
, struct file
*filp
)
1726 struct cache_detail
*cd
= RPC_I(inode
)->private;
1728 return content_open(inode
, filp
, cd
);
1731 static int content_release_pipefs(struct inode
*inode
, struct file
*filp
)
1733 struct cache_detail
*cd
= RPC_I(inode
)->private;
1735 return content_release(inode
, filp
, cd
);
1738 const struct file_operations content_file_operations_pipefs
= {
1739 .open
= content_open_pipefs
,
1741 .llseek
= seq_lseek
,
1742 .release
= content_release_pipefs
,
1745 static int open_flush_pipefs(struct inode
*inode
, struct file
*filp
)
1747 struct cache_detail
*cd
= RPC_I(inode
)->private;
1749 return open_flush(inode
, filp
, cd
);
1752 static int release_flush_pipefs(struct inode
*inode
, struct file
*filp
)
1754 struct cache_detail
*cd
= RPC_I(inode
)->private;
1756 return release_flush(inode
, filp
, cd
);
1759 static ssize_t
read_flush_pipefs(struct file
*filp
, char __user
*buf
,
1760 size_t count
, loff_t
*ppos
)
1762 struct cache_detail
*cd
= RPC_I(filp
->f_path
.dentry
->d_inode
)->private;
1764 return read_flush(filp
, buf
, count
, ppos
, cd
);
1767 static ssize_t
write_flush_pipefs(struct file
*filp
,
1768 const char __user
*buf
,
1769 size_t count
, loff_t
*ppos
)
1771 struct cache_detail
*cd
= RPC_I(filp
->f_path
.dentry
->d_inode
)->private;
1773 return write_flush(filp
, buf
, count
, ppos
, cd
);
1776 const struct file_operations cache_flush_operations_pipefs
= {
1777 .open
= open_flush_pipefs
,
1778 .read
= read_flush_pipefs
,
1779 .write
= write_flush_pipefs
,
1780 .release
= release_flush_pipefs
,
1781 .llseek
= no_llseek
,
1784 int sunrpc_cache_register_pipefs(struct dentry
*parent
,
1785 const char *name
, umode_t umode
,
1786 struct cache_detail
*cd
)
1792 sunrpc_init_cache_detail(cd
);
1794 q
.len
= strlen(name
);
1795 q
.hash
= full_name_hash(q
.name
, q
.len
);
1796 dir
= rpc_create_cache_dir(parent
, &q
, umode
, cd
);
1798 cd
->u
.pipefs
.dir
= dir
;
1800 sunrpc_destroy_cache_detail(cd
);
1805 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs
);
1807 void sunrpc_cache_unregister_pipefs(struct cache_detail
*cd
)
1809 rpc_remove_cache_dir(cd
->u
.pipefs
.dir
);
1810 cd
->u
.pipefs
.dir
= NULL
;
1811 sunrpc_destroy_cache_detail(cd
);
1813 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs
);