2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 * DOC: Wireless regulatory infrastructure
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #define REG_DBG_PRINT(args...)
69 static struct regulatory_request core_request_world
= {
70 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
75 .country_ie_env
= ENVIRON_ANY
,
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request
*last_request
= &core_request_world
;
81 /* To trigger userspace events */
82 static struct platform_device
*reg_pdev
;
84 static struct device_type reg_device_type
= {
85 .uevent
= reg_device_uevent
,
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
93 const struct ieee80211_regdomain
*cfg80211_regdomain
;
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
101 static DEFINE_MUTEX(reg_mutex
);
103 static inline void assert_reg_lock(void)
105 lockdep_assert_held(®_mutex
);
108 /* Used to queue up regulatory hints */
109 static LIST_HEAD(reg_requests_list
);
110 static spinlock_t reg_requests_lock
;
112 /* Used to queue up beacon hints for review */
113 static LIST_HEAD(reg_pending_beacons
);
114 static spinlock_t reg_pending_beacons_lock
;
116 /* Used to keep track of processed beacon hints */
117 static LIST_HEAD(reg_beacon_list
);
120 struct list_head list
;
121 struct ieee80211_channel chan
;
124 static void reg_todo(struct work_struct
*work
);
125 static DECLARE_WORK(reg_work
, reg_todo
);
127 static void reg_timeout_work(struct work_struct
*work
);
128 static DECLARE_DELAYED_WORK(reg_timeout
, reg_timeout_work
);
130 /* We keep a static world regulatory domain in case of the absence of CRDA */
131 static const struct ieee80211_regdomain world_regdom
= {
135 /* IEEE 802.11b/g, channels 1..11 */
136 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 /* IEEE 802.11b/g, channels 12..13. No HT40
138 * channel fits here. */
139 REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 NL80211_RRF_PASSIVE_SCAN
|
141 NL80211_RRF_NO_IBSS
),
142 /* IEEE 802.11 channel 14 - Only JP enables
143 * this and for 802.11b only */
144 REG_RULE(2484-10, 2484+10, 20, 6, 20,
145 NL80211_RRF_PASSIVE_SCAN
|
146 NL80211_RRF_NO_IBSS
|
147 NL80211_RRF_NO_OFDM
),
148 /* IEEE 802.11a, channel 36..48 */
149 REG_RULE(5180-10, 5240+10, 40, 6, 20,
150 NL80211_RRF_PASSIVE_SCAN
|
151 NL80211_RRF_NO_IBSS
),
153 /* NB: 5260 MHz - 5700 MHz requies DFS */
155 /* IEEE 802.11a, channel 149..165 */
156 REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN
|
158 NL80211_RRF_NO_IBSS
),
162 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
165 static char *ieee80211_regdom
= "00";
166 static char user_alpha2
[2];
168 module_param(ieee80211_regdom
, charp
, 0444);
169 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
171 static void reset_regdomains(bool full_reset
)
173 /* avoid freeing static information or freeing something twice */
174 if (cfg80211_regdomain
== cfg80211_world_regdom
)
175 cfg80211_regdomain
= NULL
;
176 if (cfg80211_world_regdom
== &world_regdom
)
177 cfg80211_world_regdom
= NULL
;
178 if (cfg80211_regdomain
== &world_regdom
)
179 cfg80211_regdomain
= NULL
;
181 kfree(cfg80211_regdomain
);
182 kfree(cfg80211_world_regdom
);
184 cfg80211_world_regdom
= &world_regdom
;
185 cfg80211_regdomain
= NULL
;
190 if (last_request
!= &core_request_world
)
192 last_request
= &core_request_world
;
196 * Dynamic world regulatory domain requested by the wireless
197 * core upon initialization
199 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
201 BUG_ON(!last_request
);
203 reset_regdomains(false);
205 cfg80211_world_regdom
= rd
;
206 cfg80211_regdomain
= rd
;
209 bool is_world_regdom(const char *alpha2
)
213 if (alpha2
[0] == '0' && alpha2
[1] == '0')
218 static bool is_alpha2_set(const char *alpha2
)
222 if (alpha2
[0] != 0 && alpha2
[1] != 0)
227 static bool is_unknown_alpha2(const char *alpha2
)
232 * Special case where regulatory domain was built by driver
233 * but a specific alpha2 cannot be determined
235 if (alpha2
[0] == '9' && alpha2
[1] == '9')
240 static bool is_intersected_alpha2(const char *alpha2
)
245 * Special case where regulatory domain is the
246 * result of an intersection between two regulatory domain
249 if (alpha2
[0] == '9' && alpha2
[1] == '8')
254 static bool is_an_alpha2(const char *alpha2
)
258 if (isalpha(alpha2
[0]) && isalpha(alpha2
[1]))
263 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
265 if (!alpha2_x
|| !alpha2_y
)
267 if (alpha2_x
[0] == alpha2_y
[0] &&
268 alpha2_x
[1] == alpha2_y
[1])
273 static bool regdom_changes(const char *alpha2
)
275 assert_cfg80211_lock();
277 if (!cfg80211_regdomain
)
279 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
285 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287 * has ever been issued.
289 static bool is_user_regdom_saved(void)
291 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
294 /* This would indicate a mistake on the design */
295 if (WARN((!is_world_regdom(user_alpha2
) &&
296 !is_an_alpha2(user_alpha2
)),
297 "Unexpected user alpha2: %c%c\n",
305 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
306 const struct ieee80211_regdomain
*src_regd
)
308 struct ieee80211_regdomain
*regd
;
309 int size_of_regd
= 0;
312 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
313 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
315 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
319 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
321 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
322 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
323 sizeof(struct ieee80211_reg_rule
));
329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
330 struct reg_regdb_search_request
{
332 struct list_head list
;
335 static LIST_HEAD(reg_regdb_search_list
);
336 static DEFINE_MUTEX(reg_regdb_search_mutex
);
338 static void reg_regdb_search(struct work_struct
*work
)
340 struct reg_regdb_search_request
*request
;
341 const struct ieee80211_regdomain
*curdom
, *regdom
;
344 mutex_lock(®_regdb_search_mutex
);
345 while (!list_empty(®_regdb_search_list
)) {
346 request
= list_first_entry(®_regdb_search_list
,
347 struct reg_regdb_search_request
,
349 list_del(&request
->list
);
351 for (i
=0; i
<reg_regdb_size
; i
++) {
352 curdom
= reg_regdb
[i
];
354 if (!memcmp(request
->alpha2
, curdom
->alpha2
, 2)) {
355 r
= reg_copy_regd(®dom
, curdom
);
358 mutex_lock(&cfg80211_mutex
);
360 mutex_unlock(&cfg80211_mutex
);
367 mutex_unlock(®_regdb_search_mutex
);
370 static DECLARE_WORK(reg_regdb_work
, reg_regdb_search
);
372 static void reg_regdb_query(const char *alpha2
)
374 struct reg_regdb_search_request
*request
;
379 request
= kzalloc(sizeof(struct reg_regdb_search_request
), GFP_KERNEL
);
383 memcpy(request
->alpha2
, alpha2
, 2);
385 mutex_lock(®_regdb_search_mutex
);
386 list_add_tail(&request
->list
, ®_regdb_search_list
);
387 mutex_unlock(®_regdb_search_mutex
);
389 schedule_work(®_regdb_work
);
392 static inline void reg_regdb_query(const char *alpha2
) {}
393 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
396 * This lets us keep regulatory code which is updated on a regulatory
397 * basis in userspace. Country information is filled in by
400 static int call_crda(const char *alpha2
)
402 if (!is_world_regdom((char *) alpha2
))
403 pr_info("Calling CRDA for country: %c%c\n",
404 alpha2
[0], alpha2
[1]);
406 pr_info("Calling CRDA to update world regulatory domain\n");
408 /* query internal regulatory database (if it exists) */
409 reg_regdb_query(alpha2
);
411 return kobject_uevent(®_pdev
->dev
.kobj
, KOBJ_CHANGE
);
414 /* Used by nl80211 before kmalloc'ing our regulatory domain */
415 bool reg_is_valid_request(const char *alpha2
)
417 assert_cfg80211_lock();
422 return alpha2_equal(last_request
->alpha2
, alpha2
);
425 /* Sanity check on a regulatory rule */
426 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
428 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
431 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
434 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
437 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
439 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
440 freq_range
->max_bandwidth_khz
> freq_diff
)
446 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
448 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
451 if (!rd
->n_reg_rules
)
454 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
457 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
458 reg_rule
= &rd
->reg_rules
[i
];
459 if (!is_valid_reg_rule(reg_rule
))
466 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
470 u32 start_freq_khz
, end_freq_khz
;
472 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
473 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
475 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
476 end_freq_khz
<= freq_range
->end_freq_khz
)
483 * freq_in_rule_band - tells us if a frequency is in a frequency band
484 * @freq_range: frequency rule we want to query
485 * @freq_khz: frequency we are inquiring about
487 * This lets us know if a specific frequency rule is or is not relevant to
488 * a specific frequency's band. Bands are device specific and artificial
489 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
490 * safe for now to assume that a frequency rule should not be part of a
491 * frequency's band if the start freq or end freq are off by more than 2 GHz.
492 * This resolution can be lowered and should be considered as we add
493 * regulatory rule support for other "bands".
495 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
498 #define ONE_GHZ_IN_KHZ 1000000
499 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
501 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
504 #undef ONE_GHZ_IN_KHZ
508 * Helper for regdom_intersect(), this does the real
509 * mathematical intersection fun
511 static int reg_rules_intersect(
512 const struct ieee80211_reg_rule
*rule1
,
513 const struct ieee80211_reg_rule
*rule2
,
514 struct ieee80211_reg_rule
*intersected_rule
)
516 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
517 struct ieee80211_freq_range
*freq_range
;
518 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
519 struct ieee80211_power_rule
*power_rule
;
522 freq_range1
= &rule1
->freq_range
;
523 freq_range2
= &rule2
->freq_range
;
524 freq_range
= &intersected_rule
->freq_range
;
526 power_rule1
= &rule1
->power_rule
;
527 power_rule2
= &rule2
->power_rule
;
528 power_rule
= &intersected_rule
->power_rule
;
530 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
531 freq_range2
->start_freq_khz
);
532 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
533 freq_range2
->end_freq_khz
);
534 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
535 freq_range2
->max_bandwidth_khz
);
537 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
538 if (freq_range
->max_bandwidth_khz
> freq_diff
)
539 freq_range
->max_bandwidth_khz
= freq_diff
;
541 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
542 power_rule2
->max_eirp
);
543 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
544 power_rule2
->max_antenna_gain
);
546 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
548 if (!is_valid_reg_rule(intersected_rule
))
555 * regdom_intersect - do the intersection between two regulatory domains
556 * @rd1: first regulatory domain
557 * @rd2: second regulatory domain
559 * Use this function to get the intersection between two regulatory domains.
560 * Once completed we will mark the alpha2 for the rd as intersected, "98",
561 * as no one single alpha2 can represent this regulatory domain.
563 * Returns a pointer to the regulatory domain structure which will hold the
564 * resulting intersection of rules between rd1 and rd2. We will
565 * kzalloc() this structure for you.
567 static struct ieee80211_regdomain
*regdom_intersect(
568 const struct ieee80211_regdomain
*rd1
,
569 const struct ieee80211_regdomain
*rd2
)
573 unsigned int num_rules
= 0, rule_idx
= 0;
574 const struct ieee80211_reg_rule
*rule1
, *rule2
;
575 struct ieee80211_reg_rule
*intersected_rule
;
576 struct ieee80211_regdomain
*rd
;
577 /* This is just a dummy holder to help us count */
578 struct ieee80211_reg_rule irule
;
580 /* Uses the stack temporarily for counter arithmetic */
581 intersected_rule
= &irule
;
583 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
589 * First we get a count of the rules we'll need, then we actually
590 * build them. This is to so we can malloc() and free() a
591 * regdomain once. The reason we use reg_rules_intersect() here
592 * is it will return -EINVAL if the rule computed makes no sense.
593 * All rules that do check out OK are valid.
596 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
597 rule1
= &rd1
->reg_rules
[x
];
598 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
599 rule2
= &rd2
->reg_rules
[y
];
600 if (!reg_rules_intersect(rule1
, rule2
,
603 memset(intersected_rule
, 0,
604 sizeof(struct ieee80211_reg_rule
));
611 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
612 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
614 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
618 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
619 rule1
= &rd1
->reg_rules
[x
];
620 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
621 rule2
= &rd2
->reg_rules
[y
];
623 * This time around instead of using the stack lets
624 * write to the target rule directly saving ourselves
627 intersected_rule
= &rd
->reg_rules
[rule_idx
];
628 r
= reg_rules_intersect(rule1
, rule2
,
631 * No need to memset here the intersected rule here as
632 * we're not using the stack anymore
640 if (rule_idx
!= num_rules
) {
645 rd
->n_reg_rules
= num_rules
;
653 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
654 * want to just have the channel structure use these
656 static u32
map_regdom_flags(u32 rd_flags
)
658 u32 channel_flags
= 0;
659 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
660 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
661 if (rd_flags
& NL80211_RRF_NO_IBSS
)
662 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
663 if (rd_flags
& NL80211_RRF_DFS
)
664 channel_flags
|= IEEE80211_CHAN_RADAR
;
665 return channel_flags
;
668 static int freq_reg_info_regd(struct wiphy
*wiphy
,
671 const struct ieee80211_reg_rule
**reg_rule
,
672 const struct ieee80211_regdomain
*custom_regd
)
675 bool band_rule_found
= false;
676 const struct ieee80211_regdomain
*regd
;
677 bool bw_fits
= false;
680 desired_bw_khz
= MHZ_TO_KHZ(20);
682 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
685 * Follow the driver's regulatory domain, if present, unless a country
686 * IE has been processed or a user wants to help complaince further
689 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
690 last_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
697 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
698 const struct ieee80211_reg_rule
*rr
;
699 const struct ieee80211_freq_range
*fr
= NULL
;
701 rr
= ®d
->reg_rules
[i
];
702 fr
= &rr
->freq_range
;
705 * We only need to know if one frequency rule was
706 * was in center_freq's band, that's enough, so lets
707 * not overwrite it once found
709 if (!band_rule_found
)
710 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
712 bw_fits
= reg_does_bw_fit(fr
,
716 if (band_rule_found
&& bw_fits
) {
722 if (!band_rule_found
)
728 int freq_reg_info(struct wiphy
*wiphy
,
731 const struct ieee80211_reg_rule
**reg_rule
)
733 assert_cfg80211_lock();
734 return freq_reg_info_regd(wiphy
,
740 EXPORT_SYMBOL(freq_reg_info
);
742 #ifdef CONFIG_CFG80211_REG_DEBUG
743 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
746 case NL80211_REGDOM_SET_BY_CORE
:
747 return "Set by core";
748 case NL80211_REGDOM_SET_BY_USER
:
749 return "Set by user";
750 case NL80211_REGDOM_SET_BY_DRIVER
:
751 return "Set by driver";
752 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
753 return "Set by country IE";
760 static void chan_reg_rule_print_dbg(struct ieee80211_channel
*chan
,
762 const struct ieee80211_reg_rule
*reg_rule
)
764 const struct ieee80211_power_rule
*power_rule
;
765 const struct ieee80211_freq_range
*freq_range
;
766 char max_antenna_gain
[32];
768 power_rule
= ®_rule
->power_rule
;
769 freq_range
= ®_rule
->freq_range
;
771 if (!power_rule
->max_antenna_gain
)
772 snprintf(max_antenna_gain
, 32, "N/A");
774 snprintf(max_antenna_gain
, 32, "%d", power_rule
->max_antenna_gain
);
776 REG_DBG_PRINT("Updating information on frequency %d MHz "
777 "for a %d MHz width channel with regulatory rule:\n",
779 KHZ_TO_MHZ(desired_bw_khz
));
781 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
782 freq_range
->start_freq_khz
,
783 freq_range
->end_freq_khz
,
784 freq_range
->max_bandwidth_khz
,
786 power_rule
->max_eirp
);
789 static void chan_reg_rule_print_dbg(struct ieee80211_channel
*chan
,
791 const struct ieee80211_reg_rule
*reg_rule
)
798 * Note that right now we assume the desired channel bandwidth
799 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
800 * per channel, the primary and the extension channel). To support
801 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
802 * new ieee80211_channel.target_bw and re run the regulatory check
803 * on the wiphy with the target_bw specified. Then we can simply use
804 * that below for the desired_bw_khz below.
806 static void handle_channel(struct wiphy
*wiphy
,
807 enum nl80211_reg_initiator initiator
,
808 enum ieee80211_band band
,
809 unsigned int chan_idx
)
812 u32 flags
, bw_flags
= 0;
813 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
814 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
815 const struct ieee80211_power_rule
*power_rule
= NULL
;
816 const struct ieee80211_freq_range
*freq_range
= NULL
;
817 struct ieee80211_supported_band
*sband
;
818 struct ieee80211_channel
*chan
;
819 struct wiphy
*request_wiphy
= NULL
;
821 assert_cfg80211_lock();
823 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
825 sband
= wiphy
->bands
[band
];
826 BUG_ON(chan_idx
>= sband
->n_channels
);
827 chan
= &sband
->channels
[chan_idx
];
829 flags
= chan
->orig_flags
;
831 r
= freq_reg_info(wiphy
,
832 MHZ_TO_KHZ(chan
->center_freq
),
838 * We will disable all channels that do not match our
839 * received regulatory rule unless the hint is coming
840 * from a Country IE and the Country IE had no information
841 * about a band. The IEEE 802.11 spec allows for an AP
842 * to send only a subset of the regulatory rules allowed,
843 * so an AP in the US that only supports 2.4 GHz may only send
844 * a country IE with information for the 2.4 GHz band
845 * while 5 GHz is still supported.
847 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
851 REG_DBG_PRINT("Disabling freq %d MHz\n", chan
->center_freq
);
852 chan
->flags
= IEEE80211_CHAN_DISABLED
;
856 chan_reg_rule_print_dbg(chan
, desired_bw_khz
, reg_rule
);
858 power_rule
= ®_rule
->power_rule
;
859 freq_range
= ®_rule
->freq_range
;
861 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
862 bw_flags
= IEEE80211_CHAN_NO_HT40
;
864 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
865 request_wiphy
&& request_wiphy
== wiphy
&&
866 request_wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
868 * This guarantees the driver's requested regulatory domain
869 * will always be used as a base for further regulatory
872 chan
->flags
= chan
->orig_flags
=
873 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
874 chan
->max_antenna_gain
= chan
->orig_mag
=
875 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
876 chan
->max_power
= chan
->orig_mpwr
=
877 (int) MBM_TO_DBM(power_rule
->max_eirp
);
881 chan
->beacon_found
= false;
882 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
883 chan
->max_antenna_gain
= min(chan
->orig_mag
,
884 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
885 if (chan
->orig_mpwr
) {
887 * Devices that have their own custom regulatory domain
888 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
889 * passed country IE power settings.
891 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
892 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
&&
893 wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
895 MBM_TO_DBM(power_rule
->max_eirp
);
897 chan
->max_power
= min(chan
->orig_mpwr
,
898 (int) MBM_TO_DBM(power_rule
->max_eirp
));
901 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
904 static void handle_band(struct wiphy
*wiphy
,
905 enum ieee80211_band band
,
906 enum nl80211_reg_initiator initiator
)
909 struct ieee80211_supported_band
*sband
;
911 BUG_ON(!wiphy
->bands
[band
]);
912 sband
= wiphy
->bands
[band
];
914 for (i
= 0; i
< sband
->n_channels
; i
++)
915 handle_channel(wiphy
, initiator
, band
, i
);
918 static bool ignore_reg_update(struct wiphy
*wiphy
,
919 enum nl80211_reg_initiator initiator
)
922 REG_DBG_PRINT("Ignoring regulatory request %s since "
923 "last_request is not set\n",
924 reg_initiator_name(initiator
));
928 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
929 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
) {
930 REG_DBG_PRINT("Ignoring regulatory request %s "
931 "since the driver uses its own custom "
932 "regulatory domain\n",
933 reg_initiator_name(initiator
));
938 * wiphy->regd will be set once the device has its own
939 * desired regulatory domain set
941 if (wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
&& !wiphy
->regd
&&
942 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
943 !is_world_regdom(last_request
->alpha2
)) {
944 REG_DBG_PRINT("Ignoring regulatory request %s "
945 "since the driver requires its own regulatory "
946 "domain to be set first\n",
947 reg_initiator_name(initiator
));
954 static void handle_reg_beacon(struct wiphy
*wiphy
,
955 unsigned int chan_idx
,
956 struct reg_beacon
*reg_beacon
)
958 struct ieee80211_supported_band
*sband
;
959 struct ieee80211_channel
*chan
;
960 bool channel_changed
= false;
961 struct ieee80211_channel chan_before
;
963 assert_cfg80211_lock();
965 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
966 chan
= &sband
->channels
[chan_idx
];
968 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
971 if (chan
->beacon_found
)
974 chan
->beacon_found
= true;
976 if (wiphy
->flags
& WIPHY_FLAG_DISABLE_BEACON_HINTS
)
979 chan_before
.center_freq
= chan
->center_freq
;
980 chan_before
.flags
= chan
->flags
;
982 if (chan
->flags
& IEEE80211_CHAN_PASSIVE_SCAN
) {
983 chan
->flags
&= ~IEEE80211_CHAN_PASSIVE_SCAN
;
984 channel_changed
= true;
987 if (chan
->flags
& IEEE80211_CHAN_NO_IBSS
) {
988 chan
->flags
&= ~IEEE80211_CHAN_NO_IBSS
;
989 channel_changed
= true;
993 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
997 * Called when a scan on a wiphy finds a beacon on
1000 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1001 struct reg_beacon
*reg_beacon
)
1004 struct ieee80211_supported_band
*sband
;
1006 assert_cfg80211_lock();
1008 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1011 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1013 for (i
= 0; i
< sband
->n_channels
; i
++)
1014 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1018 * Called upon reg changes or a new wiphy is added
1020 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1023 struct ieee80211_supported_band
*sband
;
1024 struct reg_beacon
*reg_beacon
;
1026 assert_cfg80211_lock();
1028 if (list_empty(®_beacon_list
))
1031 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1032 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1034 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1035 for (i
= 0; i
< sband
->n_channels
; i
++)
1036 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1040 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1042 if (is_world_regdom(cfg80211_regdomain
->alpha2
) ||
1043 (wiphy
->regd
&& is_world_regdom(wiphy
->regd
->alpha2
)))
1046 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1047 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
1052 /* Reap the advantages of previously found beacons */
1053 static void reg_process_beacons(struct wiphy
*wiphy
)
1056 * Means we are just firing up cfg80211, so no beacons would
1057 * have been processed yet.
1061 if (!reg_is_world_roaming(wiphy
))
1063 wiphy_update_beacon_reg(wiphy
);
1066 static bool is_ht40_not_allowed(struct ieee80211_channel
*chan
)
1070 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1072 /* This would happen when regulatory rules disallow HT40 completely */
1073 if (IEEE80211_CHAN_NO_HT40
== (chan
->flags
& (IEEE80211_CHAN_NO_HT40
)))
1078 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1079 enum ieee80211_band band
,
1080 unsigned int chan_idx
)
1082 struct ieee80211_supported_band
*sband
;
1083 struct ieee80211_channel
*channel
;
1084 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1087 assert_cfg80211_lock();
1089 sband
= wiphy
->bands
[band
];
1090 BUG_ON(chan_idx
>= sband
->n_channels
);
1091 channel
= &sband
->channels
[chan_idx
];
1093 if (is_ht40_not_allowed(channel
)) {
1094 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1099 * We need to ensure the extension channels exist to
1100 * be able to use HT40- or HT40+, this finds them (or not)
1102 for (i
= 0; i
< sband
->n_channels
; i
++) {
1103 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1104 if (c
->center_freq
== (channel
->center_freq
- 20))
1106 if (c
->center_freq
== (channel
->center_freq
+ 20))
1111 * Please note that this assumes target bandwidth is 20 MHz,
1112 * if that ever changes we also need to change the below logic
1113 * to include that as well.
1115 if (is_ht40_not_allowed(channel_before
))
1116 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1118 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1120 if (is_ht40_not_allowed(channel_after
))
1121 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1123 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1126 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1127 enum ieee80211_band band
)
1130 struct ieee80211_supported_band
*sband
;
1132 BUG_ON(!wiphy
->bands
[band
]);
1133 sband
= wiphy
->bands
[band
];
1135 for (i
= 0; i
< sband
->n_channels
; i
++)
1136 reg_process_ht_flags_channel(wiphy
, band
, i
);
1139 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1141 enum ieee80211_band band
;
1146 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1147 if (wiphy
->bands
[band
])
1148 reg_process_ht_flags_band(wiphy
, band
);
1153 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
1154 enum nl80211_reg_initiator initiator
)
1156 enum ieee80211_band band
;
1160 if (ignore_reg_update(wiphy
, initiator
))
1163 last_request
->dfs_region
= cfg80211_regdomain
->dfs_region
;
1165 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1166 if (wiphy
->bands
[band
])
1167 handle_band(wiphy
, band
, initiator
);
1170 reg_process_beacons(wiphy
);
1171 reg_process_ht_flags(wiphy
);
1172 if (wiphy
->reg_notifier
)
1173 wiphy
->reg_notifier(wiphy
, last_request
);
1176 void regulatory_update(struct wiphy
*wiphy
,
1177 enum nl80211_reg_initiator setby
)
1179 mutex_lock(®_mutex
);
1180 wiphy_update_regulatory(wiphy
, setby
);
1181 mutex_unlock(®_mutex
);
1184 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
1186 struct cfg80211_registered_device
*rdev
;
1187 struct wiphy
*wiphy
;
1189 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
1190 wiphy
= &rdev
->wiphy
;
1191 wiphy_update_regulatory(wiphy
, initiator
);
1193 * Regulatory updates set by CORE are ignored for custom
1194 * regulatory cards. Let us notify the changes to the driver,
1195 * as some drivers used this to restore its orig_* reg domain.
1197 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1198 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
&&
1199 wiphy
->reg_notifier
)
1200 wiphy
->reg_notifier(wiphy
, last_request
);
1204 static void handle_channel_custom(struct wiphy
*wiphy
,
1205 enum ieee80211_band band
,
1206 unsigned int chan_idx
,
1207 const struct ieee80211_regdomain
*regd
)
1210 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
1212 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1213 const struct ieee80211_power_rule
*power_rule
= NULL
;
1214 const struct ieee80211_freq_range
*freq_range
= NULL
;
1215 struct ieee80211_supported_band
*sband
;
1216 struct ieee80211_channel
*chan
;
1220 sband
= wiphy
->bands
[band
];
1221 BUG_ON(chan_idx
>= sband
->n_channels
);
1222 chan
= &sband
->channels
[chan_idx
];
1224 r
= freq_reg_info_regd(wiphy
,
1225 MHZ_TO_KHZ(chan
->center_freq
),
1231 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1232 "regd has no rule that fits a %d MHz "
1235 KHZ_TO_MHZ(desired_bw_khz
));
1236 chan
->flags
= IEEE80211_CHAN_DISABLED
;
1240 chan_reg_rule_print_dbg(chan
, desired_bw_khz
, reg_rule
);
1242 power_rule
= ®_rule
->power_rule
;
1243 freq_range
= ®_rule
->freq_range
;
1245 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1246 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1248 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1249 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1250 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1253 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1254 const struct ieee80211_regdomain
*regd
)
1257 struct ieee80211_supported_band
*sband
;
1259 BUG_ON(!wiphy
->bands
[band
]);
1260 sband
= wiphy
->bands
[band
];
1262 for (i
= 0; i
< sband
->n_channels
; i
++)
1263 handle_channel_custom(wiphy
, band
, i
, regd
);
1266 /* Used by drivers prior to wiphy registration */
1267 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1268 const struct ieee80211_regdomain
*regd
)
1270 enum ieee80211_band band
;
1271 unsigned int bands_set
= 0;
1273 mutex_lock(®_mutex
);
1274 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1275 if (!wiphy
->bands
[band
])
1277 handle_band_custom(wiphy
, band
, regd
);
1280 mutex_unlock(®_mutex
);
1283 * no point in calling this if it won't have any effect
1284 * on your device's supportd bands.
1286 WARN_ON(!bands_set
);
1288 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1291 * Return value which can be used by ignore_request() to indicate
1292 * it has been determined we should intersect two regulatory domains
1294 #define REG_INTERSECT 1
1296 /* This has the logic which determines when a new request
1297 * should be ignored. */
1298 static int ignore_request(struct wiphy
*wiphy
,
1299 struct regulatory_request
*pending_request
)
1301 struct wiphy
*last_wiphy
= NULL
;
1303 assert_cfg80211_lock();
1305 /* All initial requests are respected */
1309 switch (pending_request
->initiator
) {
1310 case NL80211_REGDOM_SET_BY_CORE
:
1312 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1314 last_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1316 if (unlikely(!is_an_alpha2(pending_request
->alpha2
)))
1318 if (last_request
->initiator
==
1319 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1320 if (last_wiphy
!= wiphy
) {
1322 * Two cards with two APs claiming different
1323 * Country IE alpha2s. We could
1324 * intersect them, but that seems unlikely
1325 * to be correct. Reject second one for now.
1327 if (regdom_changes(pending_request
->alpha2
))
1332 * Two consecutive Country IE hints on the same wiphy.
1333 * This should be picked up early by the driver/stack
1335 if (WARN_ON(regdom_changes(pending_request
->alpha2
)))
1340 case NL80211_REGDOM_SET_BY_DRIVER
:
1341 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1342 if (regdom_changes(pending_request
->alpha2
))
1348 * This would happen if you unplug and plug your card
1349 * back in or if you add a new device for which the previously
1350 * loaded card also agrees on the regulatory domain.
1352 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1353 !regdom_changes(pending_request
->alpha2
))
1356 return REG_INTERSECT
;
1357 case NL80211_REGDOM_SET_BY_USER
:
1358 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1359 return REG_INTERSECT
;
1361 * If the user knows better the user should set the regdom
1362 * to their country before the IE is picked up
1364 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1365 last_request
->intersect
)
1368 * Process user requests only after previous user/driver/core
1369 * requests have been processed
1371 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1372 last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1373 last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1374 if (regdom_changes(last_request
->alpha2
))
1378 if (!regdom_changes(pending_request
->alpha2
))
1387 static void reg_set_request_processed(void)
1389 bool need_more_processing
= false;
1391 last_request
->processed
= true;
1393 spin_lock(®_requests_lock
);
1394 if (!list_empty(®_requests_list
))
1395 need_more_processing
= true;
1396 spin_unlock(®_requests_lock
);
1398 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
1399 cancel_delayed_work_sync(®_timeout
);
1401 if (need_more_processing
)
1402 schedule_work(®_work
);
1406 * __regulatory_hint - hint to the wireless core a regulatory domain
1407 * @wiphy: if the hint comes from country information from an AP, this
1408 * is required to be set to the wiphy that received the information
1409 * @pending_request: the regulatory request currently being processed
1411 * The Wireless subsystem can use this function to hint to the wireless core
1412 * what it believes should be the current regulatory domain.
1414 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1415 * already been set or other standard error codes.
1417 * Caller must hold &cfg80211_mutex and ®_mutex
1419 static int __regulatory_hint(struct wiphy
*wiphy
,
1420 struct regulatory_request
*pending_request
)
1422 bool intersect
= false;
1425 assert_cfg80211_lock();
1427 r
= ignore_request(wiphy
, pending_request
);
1429 if (r
== REG_INTERSECT
) {
1430 if (pending_request
->initiator
==
1431 NL80211_REGDOM_SET_BY_DRIVER
) {
1432 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1434 kfree(pending_request
);
1441 * If the regulatory domain being requested by the
1442 * driver has already been set just copy it to the
1445 if (r
== -EALREADY
&&
1446 pending_request
->initiator
==
1447 NL80211_REGDOM_SET_BY_DRIVER
) {
1448 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1450 kfree(pending_request
);
1456 kfree(pending_request
);
1461 if (last_request
!= &core_request_world
)
1462 kfree(last_request
);
1464 last_request
= pending_request
;
1465 last_request
->intersect
= intersect
;
1467 pending_request
= NULL
;
1469 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1470 user_alpha2
[0] = last_request
->alpha2
[0];
1471 user_alpha2
[1] = last_request
->alpha2
[1];
1474 /* When r == REG_INTERSECT we do need to call CRDA */
1477 * Since CRDA will not be called in this case as we already
1478 * have applied the requested regulatory domain before we just
1479 * inform userspace we have processed the request
1481 if (r
== -EALREADY
) {
1482 nl80211_send_reg_change_event(last_request
);
1483 reg_set_request_processed();
1488 return call_crda(last_request
->alpha2
);
1491 /* This processes *all* regulatory hints */
1492 static void reg_process_hint(struct regulatory_request
*reg_request
,
1493 enum nl80211_reg_initiator reg_initiator
)
1496 struct wiphy
*wiphy
= NULL
;
1498 BUG_ON(!reg_request
->alpha2
);
1500 if (wiphy_idx_valid(reg_request
->wiphy_idx
))
1501 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1503 if (reg_initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1509 r
= __regulatory_hint(wiphy
, reg_request
);
1510 /* This is required so that the orig_* parameters are saved */
1511 if (r
== -EALREADY
&& wiphy
&&
1512 wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
1513 wiphy_update_regulatory(wiphy
, reg_initiator
);
1518 * We only time out user hints, given that they should be the only
1519 * source of bogus requests.
1521 if (r
!= -EALREADY
&&
1522 reg_initiator
== NL80211_REGDOM_SET_BY_USER
)
1523 schedule_delayed_work(®_timeout
, msecs_to_jiffies(3142));
1527 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1528 * Regulatory hints come on a first come first serve basis and we
1529 * must process each one atomically.
1531 static void reg_process_pending_hints(void)
1533 struct regulatory_request
*reg_request
;
1535 mutex_lock(&cfg80211_mutex
);
1536 mutex_lock(®_mutex
);
1538 /* When last_request->processed becomes true this will be rescheduled */
1539 if (last_request
&& !last_request
->processed
) {
1540 REG_DBG_PRINT("Pending regulatory request, waiting "
1541 "for it to be processed...\n");
1545 spin_lock(®_requests_lock
);
1547 if (list_empty(®_requests_list
)) {
1548 spin_unlock(®_requests_lock
);
1552 reg_request
= list_first_entry(®_requests_list
,
1553 struct regulatory_request
,
1555 list_del_init(®_request
->list
);
1557 spin_unlock(®_requests_lock
);
1559 reg_process_hint(reg_request
, reg_request
->initiator
);
1562 mutex_unlock(®_mutex
);
1563 mutex_unlock(&cfg80211_mutex
);
1566 /* Processes beacon hints -- this has nothing to do with country IEs */
1567 static void reg_process_pending_beacon_hints(void)
1569 struct cfg80211_registered_device
*rdev
;
1570 struct reg_beacon
*pending_beacon
, *tmp
;
1573 * No need to hold the reg_mutex here as we just touch wiphys
1574 * and do not read or access regulatory variables.
1576 mutex_lock(&cfg80211_mutex
);
1578 /* This goes through the _pending_ beacon list */
1579 spin_lock_bh(®_pending_beacons_lock
);
1581 if (list_empty(®_pending_beacons
)) {
1582 spin_unlock_bh(®_pending_beacons_lock
);
1586 list_for_each_entry_safe(pending_beacon
, tmp
,
1587 ®_pending_beacons
, list
) {
1589 list_del_init(&pending_beacon
->list
);
1591 /* Applies the beacon hint to current wiphys */
1592 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1593 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
1595 /* Remembers the beacon hint for new wiphys or reg changes */
1596 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1599 spin_unlock_bh(®_pending_beacons_lock
);
1601 mutex_unlock(&cfg80211_mutex
);
1604 static void reg_todo(struct work_struct
*work
)
1606 reg_process_pending_hints();
1607 reg_process_pending_beacon_hints();
1610 static void queue_regulatory_request(struct regulatory_request
*request
)
1612 if (isalpha(request
->alpha2
[0]))
1613 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
1614 if (isalpha(request
->alpha2
[1]))
1615 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
1617 spin_lock(®_requests_lock
);
1618 list_add_tail(&request
->list
, ®_requests_list
);
1619 spin_unlock(®_requests_lock
);
1621 schedule_work(®_work
);
1625 * Core regulatory hint -- happens during cfg80211_init()
1626 * and when we restore regulatory settings.
1628 static int regulatory_hint_core(const char *alpha2
)
1630 struct regulatory_request
*request
;
1632 request
= kzalloc(sizeof(struct regulatory_request
),
1637 request
->alpha2
[0] = alpha2
[0];
1638 request
->alpha2
[1] = alpha2
[1];
1639 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1641 queue_regulatory_request(request
);
1647 int regulatory_hint_user(const char *alpha2
)
1649 struct regulatory_request
*request
;
1653 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1657 request
->wiphy_idx
= WIPHY_IDX_STALE
;
1658 request
->alpha2
[0] = alpha2
[0];
1659 request
->alpha2
[1] = alpha2
[1];
1660 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
1662 queue_regulatory_request(request
);
1668 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1670 struct regulatory_request
*request
;
1675 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1679 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1681 /* Must have registered wiphy first */
1682 BUG_ON(!wiphy_idx_valid(request
->wiphy_idx
));
1684 request
->alpha2
[0] = alpha2
[0];
1685 request
->alpha2
[1] = alpha2
[1];
1686 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
1688 queue_regulatory_request(request
);
1692 EXPORT_SYMBOL(regulatory_hint
);
1695 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1696 * therefore cannot iterate over the rdev list here.
1698 void regulatory_hint_11d(struct wiphy
*wiphy
,
1699 enum ieee80211_band band
,
1704 enum environment_cap env
= ENVIRON_ANY
;
1705 struct regulatory_request
*request
;
1707 mutex_lock(®_mutex
);
1709 if (unlikely(!last_request
))
1712 /* IE len must be evenly divisible by 2 */
1713 if (country_ie_len
& 0x01)
1716 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
1719 alpha2
[0] = country_ie
[0];
1720 alpha2
[1] = country_ie
[1];
1722 if (country_ie
[2] == 'I')
1723 env
= ENVIRON_INDOOR
;
1724 else if (country_ie
[2] == 'O')
1725 env
= ENVIRON_OUTDOOR
;
1728 * We will run this only upon a successful connection on cfg80211.
1729 * We leave conflict resolution to the workqueue, where can hold
1732 if (likely(last_request
->initiator
==
1733 NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1734 wiphy_idx_valid(last_request
->wiphy_idx
)))
1737 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1741 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1742 request
->alpha2
[0] = alpha2
[0];
1743 request
->alpha2
[1] = alpha2
[1];
1744 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
1745 request
->country_ie_env
= env
;
1747 mutex_unlock(®_mutex
);
1749 queue_regulatory_request(request
);
1754 mutex_unlock(®_mutex
);
1757 static void restore_alpha2(char *alpha2
, bool reset_user
)
1759 /* indicates there is no alpha2 to consider for restoration */
1763 /* The user setting has precedence over the module parameter */
1764 if (is_user_regdom_saved()) {
1765 /* Unless we're asked to ignore it and reset it */
1767 REG_DBG_PRINT("Restoring regulatory settings "
1768 "including user preference\n");
1769 user_alpha2
[0] = '9';
1770 user_alpha2
[1] = '7';
1773 * If we're ignoring user settings, we still need to
1774 * check the module parameter to ensure we put things
1775 * back as they were for a full restore.
1777 if (!is_world_regdom(ieee80211_regdom
)) {
1778 REG_DBG_PRINT("Keeping preference on "
1779 "module parameter ieee80211_regdom: %c%c\n",
1780 ieee80211_regdom
[0],
1781 ieee80211_regdom
[1]);
1782 alpha2
[0] = ieee80211_regdom
[0];
1783 alpha2
[1] = ieee80211_regdom
[1];
1786 REG_DBG_PRINT("Restoring regulatory settings "
1787 "while preserving user preference for: %c%c\n",
1790 alpha2
[0] = user_alpha2
[0];
1791 alpha2
[1] = user_alpha2
[1];
1793 } else if (!is_world_regdom(ieee80211_regdom
)) {
1794 REG_DBG_PRINT("Keeping preference on "
1795 "module parameter ieee80211_regdom: %c%c\n",
1796 ieee80211_regdom
[0],
1797 ieee80211_regdom
[1]);
1798 alpha2
[0] = ieee80211_regdom
[0];
1799 alpha2
[1] = ieee80211_regdom
[1];
1801 REG_DBG_PRINT("Restoring regulatory settings\n");
1804 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
1806 struct ieee80211_supported_band
*sband
;
1807 enum ieee80211_band band
;
1808 struct ieee80211_channel
*chan
;
1811 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1812 sband
= wiphy
->bands
[band
];
1815 for (i
= 0; i
< sband
->n_channels
; i
++) {
1816 chan
= &sband
->channels
[i
];
1817 chan
->flags
= chan
->orig_flags
;
1818 chan
->max_antenna_gain
= chan
->orig_mag
;
1819 chan
->max_power
= chan
->orig_mpwr
;
1825 * Restoring regulatory settings involves ingoring any
1826 * possibly stale country IE information and user regulatory
1827 * settings if so desired, this includes any beacon hints
1828 * learned as we could have traveled outside to another country
1829 * after disconnection. To restore regulatory settings we do
1830 * exactly what we did at bootup:
1832 * - send a core regulatory hint
1833 * - send a user regulatory hint if applicable
1835 * Device drivers that send a regulatory hint for a specific country
1836 * keep their own regulatory domain on wiphy->regd so that does does
1837 * not need to be remembered.
1839 static void restore_regulatory_settings(bool reset_user
)
1842 char world_alpha2
[2];
1843 struct reg_beacon
*reg_beacon
, *btmp
;
1844 struct regulatory_request
*reg_request
, *tmp
;
1845 LIST_HEAD(tmp_reg_req_list
);
1846 struct cfg80211_registered_device
*rdev
;
1848 mutex_lock(&cfg80211_mutex
);
1849 mutex_lock(®_mutex
);
1851 reset_regdomains(true);
1852 restore_alpha2(alpha2
, reset_user
);
1855 * If there's any pending requests we simply
1856 * stash them to a temporary pending queue and
1857 * add then after we've restored regulatory
1860 spin_lock(®_requests_lock
);
1861 if (!list_empty(®_requests_list
)) {
1862 list_for_each_entry_safe(reg_request
, tmp
,
1863 ®_requests_list
, list
) {
1864 if (reg_request
->initiator
!=
1865 NL80211_REGDOM_SET_BY_USER
)
1867 list_del(®_request
->list
);
1868 list_add_tail(®_request
->list
, &tmp_reg_req_list
);
1871 spin_unlock(®_requests_lock
);
1873 /* Clear beacon hints */
1874 spin_lock_bh(®_pending_beacons_lock
);
1875 if (!list_empty(®_pending_beacons
)) {
1876 list_for_each_entry_safe(reg_beacon
, btmp
,
1877 ®_pending_beacons
, list
) {
1878 list_del(®_beacon
->list
);
1882 spin_unlock_bh(®_pending_beacons_lock
);
1884 if (!list_empty(®_beacon_list
)) {
1885 list_for_each_entry_safe(reg_beacon
, btmp
,
1886 ®_beacon_list
, list
) {
1887 list_del(®_beacon
->list
);
1892 /* First restore to the basic regulatory settings */
1893 cfg80211_regdomain
= cfg80211_world_regdom
;
1894 world_alpha2
[0] = cfg80211_regdomain
->alpha2
[0];
1895 world_alpha2
[1] = cfg80211_regdomain
->alpha2
[1];
1897 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
1898 if (rdev
->wiphy
.flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
1899 restore_custom_reg_settings(&rdev
->wiphy
);
1902 mutex_unlock(®_mutex
);
1903 mutex_unlock(&cfg80211_mutex
);
1905 regulatory_hint_core(world_alpha2
);
1908 * This restores the ieee80211_regdom module parameter
1909 * preference or the last user requested regulatory
1910 * settings, user regulatory settings takes precedence.
1912 if (is_an_alpha2(alpha2
))
1913 regulatory_hint_user(user_alpha2
);
1915 if (list_empty(&tmp_reg_req_list
))
1918 mutex_lock(&cfg80211_mutex
);
1919 mutex_lock(®_mutex
);
1921 spin_lock(®_requests_lock
);
1922 list_for_each_entry_safe(reg_request
, tmp
, &tmp_reg_req_list
, list
) {
1923 REG_DBG_PRINT("Adding request for country %c%c back "
1925 reg_request
->alpha2
[0],
1926 reg_request
->alpha2
[1]);
1927 list_del(®_request
->list
);
1928 list_add_tail(®_request
->list
, ®_requests_list
);
1930 spin_unlock(®_requests_lock
);
1932 mutex_unlock(®_mutex
);
1933 mutex_unlock(&cfg80211_mutex
);
1935 REG_DBG_PRINT("Kicking the queue\n");
1937 schedule_work(®_work
);
1940 void regulatory_hint_disconnect(void)
1942 REG_DBG_PRINT("All devices are disconnected, going to "
1943 "restore regulatory settings\n");
1944 restore_regulatory_settings(false);
1947 static bool freq_is_chan_12_13_14(u16 freq
)
1949 if (freq
== ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ
) ||
1950 freq
== ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ
) ||
1951 freq
== ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ
))
1956 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
1957 struct ieee80211_channel
*beacon_chan
,
1960 struct reg_beacon
*reg_beacon
;
1962 if (likely((beacon_chan
->beacon_found
||
1963 (beacon_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
1964 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
1965 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))))
1968 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
1972 REG_DBG_PRINT("Found new beacon on "
1973 "frequency: %d MHz (Ch %d) on %s\n",
1974 beacon_chan
->center_freq
,
1975 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
1978 memcpy(®_beacon
->chan
, beacon_chan
,
1979 sizeof(struct ieee80211_channel
));
1983 * Since we can be called from BH or and non-BH context
1984 * we must use spin_lock_bh()
1986 spin_lock_bh(®_pending_beacons_lock
);
1987 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
1988 spin_unlock_bh(®_pending_beacons_lock
);
1990 schedule_work(®_work
);
1995 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
1998 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1999 const struct ieee80211_freq_range
*freq_range
= NULL
;
2000 const struct ieee80211_power_rule
*power_rule
= NULL
;
2002 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2004 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
2005 reg_rule
= &rd
->reg_rules
[i
];
2006 freq_range
= ®_rule
->freq_range
;
2007 power_rule
= ®_rule
->power_rule
;
2010 * There may not be documentation for max antenna gain
2011 * in certain regions
2013 if (power_rule
->max_antenna_gain
)
2014 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2015 freq_range
->start_freq_khz
,
2016 freq_range
->end_freq_khz
,
2017 freq_range
->max_bandwidth_khz
,
2018 power_rule
->max_antenna_gain
,
2019 power_rule
->max_eirp
);
2021 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2022 freq_range
->start_freq_khz
,
2023 freq_range
->end_freq_khz
,
2024 freq_range
->max_bandwidth_khz
,
2025 power_rule
->max_eirp
);
2029 bool reg_supported_dfs_region(u8 dfs_region
)
2031 switch (dfs_region
) {
2032 case NL80211_DFS_UNSET
:
2033 case NL80211_DFS_FCC
:
2034 case NL80211_DFS_ETSI
:
2035 case NL80211_DFS_JP
:
2038 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2044 static void print_dfs_region(u8 dfs_region
)
2049 switch (dfs_region
) {
2050 case NL80211_DFS_FCC
:
2051 pr_info(" DFS Master region FCC");
2053 case NL80211_DFS_ETSI
:
2054 pr_info(" DFS Master region ETSI");
2056 case NL80211_DFS_JP
:
2057 pr_info(" DFS Master region JP");
2060 pr_info(" DFS Master region Uknown");
2065 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
2068 if (is_intersected_alpha2(rd
->alpha2
)) {
2070 if (last_request
->initiator
==
2071 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2072 struct cfg80211_registered_device
*rdev
;
2073 rdev
= cfg80211_rdev_by_wiphy_idx(
2074 last_request
->wiphy_idx
);
2076 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2077 rdev
->country_ie_alpha2
[0],
2078 rdev
->country_ie_alpha2
[1]);
2080 pr_info("Current regulatory domain intersected:\n");
2082 pr_info("Current regulatory domain intersected:\n");
2083 } else if (is_world_regdom(rd
->alpha2
))
2084 pr_info("World regulatory domain updated:\n");
2086 if (is_unknown_alpha2(rd
->alpha2
))
2087 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2089 pr_info("Regulatory domain changed to country: %c%c\n",
2090 rd
->alpha2
[0], rd
->alpha2
[1]);
2092 print_dfs_region(rd
->dfs_region
);
2096 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
2098 pr_info("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
2102 /* Takes ownership of rd only if it doesn't fail */
2103 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
2105 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2106 struct cfg80211_registered_device
*rdev
= NULL
;
2107 struct wiphy
*request_wiphy
;
2108 /* Some basic sanity checks first */
2110 if (is_world_regdom(rd
->alpha2
)) {
2111 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2113 update_world_regdomain(rd
);
2117 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
2118 !is_unknown_alpha2(rd
->alpha2
))
2125 * Lets only bother proceeding on the same alpha2 if the current
2126 * rd is non static (it means CRDA was present and was used last)
2127 * and the pending request came in from a country IE
2129 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2131 * If someone else asked us to change the rd lets only bother
2132 * checking if the alpha2 changes if CRDA was already called
2134 if (!regdom_changes(rd
->alpha2
))
2139 * Now lets set the regulatory domain, update all driver channels
2140 * and finally inform them of what we have done, in case they want
2141 * to review or adjust their own settings based on their own
2142 * internal EEPROM data
2145 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2148 if (!is_valid_rd(rd
)) {
2149 pr_err("Invalid regulatory domain detected:\n");
2150 print_regdomain_info(rd
);
2154 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2155 if (!request_wiphy
&&
2156 (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
2157 last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)) {
2158 schedule_delayed_work(®_timeout
, 0);
2162 if (!last_request
->intersect
) {
2165 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_DRIVER
) {
2166 reset_regdomains(false);
2167 cfg80211_regdomain
= rd
;
2172 * For a driver hint, lets copy the regulatory domain the
2173 * driver wanted to the wiphy to deal with conflicts
2177 * Userspace could have sent two replies with only
2178 * one kernel request.
2180 if (request_wiphy
->regd
)
2183 r
= reg_copy_regd(&request_wiphy
->regd
, rd
);
2187 reset_regdomains(false);
2188 cfg80211_regdomain
= rd
;
2192 /* Intersection requires a bit more work */
2194 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2196 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
2197 if (!intersected_rd
)
2201 * We can trash what CRDA provided now.
2202 * However if a driver requested this specific regulatory
2203 * domain we keep it for its private use
2205 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
)
2206 request_wiphy
->regd
= rd
;
2212 reset_regdomains(false);
2213 cfg80211_regdomain
= intersected_rd
;
2218 if (!intersected_rd
)
2221 rdev
= wiphy_to_dev(request_wiphy
);
2223 rdev
->country_ie_alpha2
[0] = rd
->alpha2
[0];
2224 rdev
->country_ie_alpha2
[1] = rd
->alpha2
[1];
2225 rdev
->env
= last_request
->country_ie_env
;
2227 BUG_ON(intersected_rd
== rd
);
2232 reset_regdomains(false);
2233 cfg80211_regdomain
= intersected_rd
;
2240 * Use this call to set the current regulatory domain. Conflicts with
2241 * multiple drivers can be ironed out later. Caller must've already
2242 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2244 int set_regdom(const struct ieee80211_regdomain
*rd
)
2248 assert_cfg80211_lock();
2250 mutex_lock(®_mutex
);
2252 /* Note that this doesn't update the wiphys, this is done below */
2253 r
= __set_regdom(rd
);
2256 mutex_unlock(®_mutex
);
2260 /* This would make this whole thing pointless */
2261 if (!last_request
->intersect
)
2262 BUG_ON(rd
!= cfg80211_regdomain
);
2264 /* update all wiphys now with the new established regulatory domain */
2265 update_all_wiphy_regulatory(last_request
->initiator
);
2267 print_regdomain(cfg80211_regdomain
);
2269 nl80211_send_reg_change_event(last_request
);
2271 reg_set_request_processed();
2273 mutex_unlock(®_mutex
);
2278 #ifdef CONFIG_HOTPLUG
2279 int reg_device_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
2281 if (last_request
&& !last_request
->processed
) {
2282 if (add_uevent_var(env
, "COUNTRY=%c%c",
2283 last_request
->alpha2
[0],
2284 last_request
->alpha2
[1]))
2291 int reg_device_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
2295 #endif /* CONFIG_HOTPLUG */
2297 /* Caller must hold cfg80211_mutex */
2298 void reg_device_remove(struct wiphy
*wiphy
)
2300 struct wiphy
*request_wiphy
= NULL
;
2302 assert_cfg80211_lock();
2304 mutex_lock(®_mutex
);
2309 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2311 if (!request_wiphy
|| request_wiphy
!= wiphy
)
2314 last_request
->wiphy_idx
= WIPHY_IDX_STALE
;
2315 last_request
->country_ie_env
= ENVIRON_ANY
;
2317 mutex_unlock(®_mutex
);
2320 static void reg_timeout_work(struct work_struct
*work
)
2322 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2323 "restoring regulatory settings\n");
2324 restore_regulatory_settings(true);
2327 int __init
regulatory_init(void)
2331 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
2332 if (IS_ERR(reg_pdev
))
2333 return PTR_ERR(reg_pdev
);
2335 reg_pdev
->dev
.type
= ®_device_type
;
2337 spin_lock_init(®_requests_lock
);
2338 spin_lock_init(®_pending_beacons_lock
);
2340 cfg80211_regdomain
= cfg80211_world_regdom
;
2342 user_alpha2
[0] = '9';
2343 user_alpha2
[1] = '7';
2345 /* We always try to get an update for the static regdomain */
2346 err
= regulatory_hint_core(cfg80211_regdomain
->alpha2
);
2351 * N.B. kobject_uevent_env() can fail mainly for when we're out
2352 * memory which is handled and propagated appropriately above
2353 * but it can also fail during a netlink_broadcast() or during
2354 * early boot for call_usermodehelper(). For now treat these
2355 * errors as non-fatal.
2357 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2358 #ifdef CONFIG_CFG80211_REG_DEBUG
2359 /* We want to find out exactly why when debugging */
2365 * Finally, if the user set the module parameter treat it
2368 if (!is_world_regdom(ieee80211_regdom
))
2369 regulatory_hint_user(ieee80211_regdom
);
2374 void /* __init_or_exit */ regulatory_exit(void)
2376 struct regulatory_request
*reg_request
, *tmp
;
2377 struct reg_beacon
*reg_beacon
, *btmp
;
2379 cancel_work_sync(®_work
);
2380 cancel_delayed_work_sync(®_timeout
);
2382 mutex_lock(&cfg80211_mutex
);
2383 mutex_lock(®_mutex
);
2385 reset_regdomains(true);
2387 dev_set_uevent_suppress(®_pdev
->dev
, true);
2389 platform_device_unregister(reg_pdev
);
2391 spin_lock_bh(®_pending_beacons_lock
);
2392 if (!list_empty(®_pending_beacons
)) {
2393 list_for_each_entry_safe(reg_beacon
, btmp
,
2394 ®_pending_beacons
, list
) {
2395 list_del(®_beacon
->list
);
2399 spin_unlock_bh(®_pending_beacons_lock
);
2401 if (!list_empty(®_beacon_list
)) {
2402 list_for_each_entry_safe(reg_beacon
, btmp
,
2403 ®_beacon_list
, list
) {
2404 list_del(®_beacon
->list
);
2409 spin_lock(®_requests_lock
);
2410 if (!list_empty(®_requests_list
)) {
2411 list_for_each_entry_safe(reg_request
, tmp
,
2412 ®_requests_list
, list
) {
2413 list_del(®_request
->list
);
2417 spin_unlock(®_requests_lock
);
2419 mutex_unlock(®_mutex
);
2420 mutex_unlock(&cfg80211_mutex
);