Merge tag 'v3.3.7' into 3.3/master
[zen-stable.git] / sound / soc / fsl / fsl_ssi.c
blob3e066966d8783f8c7e558c9c8677b64406c6b17b
1 /*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
4 * Author: Timur Tabi <timur@freescale.com>
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/device.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <linux/of_platform.h>
21 #include <sound/core.h>
22 #include <sound/pcm.h>
23 #include <sound/pcm_params.h>
24 #include <sound/initval.h>
25 #include <sound/soc.h>
27 #include "fsl_ssi.h"
29 /**
30 * FSLSSI_I2S_RATES: sample rates supported by the I2S
32 * This driver currently only supports the SSI running in I2S slave mode,
33 * which means the codec determines the sample rate. Therefore, we tell
34 * ALSA that we support all rates and let the codec driver decide what rates
35 * are really supported.
37 #define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
38 SNDRV_PCM_RATE_CONTINUOUS)
40 /**
41 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
43 * This driver currently only supports the SSI running in I2S slave mode.
45 * The SSI has a limitation in that the samples must be in the same byte
46 * order as the host CPU. This is because when multiple bytes are written
47 * to the STX register, the bytes and bits must be written in the same
48 * order. The STX is a shift register, so all the bits need to be aligned
49 * (bit-endianness must match byte-endianness). Processors typically write
50 * the bits within a byte in the same order that the bytes of a word are
51 * written in. So if the host CPU is big-endian, then only big-endian
52 * samples will be written to STX properly.
54 #ifdef __BIG_ENDIAN
55 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
56 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
57 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
58 #else
59 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
60 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
61 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
62 #endif
64 /* SIER bitflag of interrupts to enable */
65 #define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
66 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
67 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
68 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
69 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
71 /**
72 * fsl_ssi_private: per-SSI private data
74 * @ssi: pointer to the SSI's registers
75 * @ssi_phys: physical address of the SSI registers
76 * @irq: IRQ of this SSI
77 * @first_stream: pointer to the stream that was opened first
78 * @second_stream: pointer to second stream
79 * @playback: the number of playback streams opened
80 * @capture: the number of capture streams opened
81 * @cpu_dai: the CPU DAI for this device
82 * @dev_attr: the sysfs device attribute structure
83 * @stats: SSI statistics
84 * @name: name for this device
86 struct fsl_ssi_private {
87 struct ccsr_ssi __iomem *ssi;
88 dma_addr_t ssi_phys;
89 unsigned int irq;
90 struct snd_pcm_substream *first_stream;
91 struct snd_pcm_substream *second_stream;
92 unsigned int fifo_depth;
93 struct snd_soc_dai_driver cpu_dai_drv;
94 struct device_attribute dev_attr;
95 struct platform_device *pdev;
97 struct {
98 unsigned int rfrc;
99 unsigned int tfrc;
100 unsigned int cmdau;
101 unsigned int cmddu;
102 unsigned int rxt;
103 unsigned int rdr1;
104 unsigned int rdr0;
105 unsigned int tde1;
106 unsigned int tde0;
107 unsigned int roe1;
108 unsigned int roe0;
109 unsigned int tue1;
110 unsigned int tue0;
111 unsigned int tfs;
112 unsigned int rfs;
113 unsigned int tls;
114 unsigned int rls;
115 unsigned int rff1;
116 unsigned int rff0;
117 unsigned int tfe1;
118 unsigned int tfe0;
119 } stats;
121 char name[1];
125 * fsl_ssi_isr: SSI interrupt handler
127 * Although it's possible to use the interrupt handler to send and receive
128 * data to/from the SSI, we use the DMA instead. Programming is more
129 * complicated, but the performance is much better.
131 * This interrupt handler is used only to gather statistics.
133 * @irq: IRQ of the SSI device
134 * @dev_id: pointer to the ssi_private structure for this SSI device
136 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
138 struct fsl_ssi_private *ssi_private = dev_id;
139 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
140 irqreturn_t ret = IRQ_NONE;
141 __be32 sisr;
142 __be32 sisr2 = 0;
144 /* We got an interrupt, so read the status register to see what we
145 were interrupted for. We mask it with the Interrupt Enable register
146 so that we only check for events that we're interested in.
148 sisr = in_be32(&ssi->sisr) & SIER_FLAGS;
150 if (sisr & CCSR_SSI_SISR_RFRC) {
151 ssi_private->stats.rfrc++;
152 sisr2 |= CCSR_SSI_SISR_RFRC;
153 ret = IRQ_HANDLED;
156 if (sisr & CCSR_SSI_SISR_TFRC) {
157 ssi_private->stats.tfrc++;
158 sisr2 |= CCSR_SSI_SISR_TFRC;
159 ret = IRQ_HANDLED;
162 if (sisr & CCSR_SSI_SISR_CMDAU) {
163 ssi_private->stats.cmdau++;
164 ret = IRQ_HANDLED;
167 if (sisr & CCSR_SSI_SISR_CMDDU) {
168 ssi_private->stats.cmddu++;
169 ret = IRQ_HANDLED;
172 if (sisr & CCSR_SSI_SISR_RXT) {
173 ssi_private->stats.rxt++;
174 ret = IRQ_HANDLED;
177 if (sisr & CCSR_SSI_SISR_RDR1) {
178 ssi_private->stats.rdr1++;
179 ret = IRQ_HANDLED;
182 if (sisr & CCSR_SSI_SISR_RDR0) {
183 ssi_private->stats.rdr0++;
184 ret = IRQ_HANDLED;
187 if (sisr & CCSR_SSI_SISR_TDE1) {
188 ssi_private->stats.tde1++;
189 ret = IRQ_HANDLED;
192 if (sisr & CCSR_SSI_SISR_TDE0) {
193 ssi_private->stats.tde0++;
194 ret = IRQ_HANDLED;
197 if (sisr & CCSR_SSI_SISR_ROE1) {
198 ssi_private->stats.roe1++;
199 sisr2 |= CCSR_SSI_SISR_ROE1;
200 ret = IRQ_HANDLED;
203 if (sisr & CCSR_SSI_SISR_ROE0) {
204 ssi_private->stats.roe0++;
205 sisr2 |= CCSR_SSI_SISR_ROE0;
206 ret = IRQ_HANDLED;
209 if (sisr & CCSR_SSI_SISR_TUE1) {
210 ssi_private->stats.tue1++;
211 sisr2 |= CCSR_SSI_SISR_TUE1;
212 ret = IRQ_HANDLED;
215 if (sisr & CCSR_SSI_SISR_TUE0) {
216 ssi_private->stats.tue0++;
217 sisr2 |= CCSR_SSI_SISR_TUE0;
218 ret = IRQ_HANDLED;
221 if (sisr & CCSR_SSI_SISR_TFS) {
222 ssi_private->stats.tfs++;
223 ret = IRQ_HANDLED;
226 if (sisr & CCSR_SSI_SISR_RFS) {
227 ssi_private->stats.rfs++;
228 ret = IRQ_HANDLED;
231 if (sisr & CCSR_SSI_SISR_TLS) {
232 ssi_private->stats.tls++;
233 ret = IRQ_HANDLED;
236 if (sisr & CCSR_SSI_SISR_RLS) {
237 ssi_private->stats.rls++;
238 ret = IRQ_HANDLED;
241 if (sisr & CCSR_SSI_SISR_RFF1) {
242 ssi_private->stats.rff1++;
243 ret = IRQ_HANDLED;
246 if (sisr & CCSR_SSI_SISR_RFF0) {
247 ssi_private->stats.rff0++;
248 ret = IRQ_HANDLED;
251 if (sisr & CCSR_SSI_SISR_TFE1) {
252 ssi_private->stats.tfe1++;
253 ret = IRQ_HANDLED;
256 if (sisr & CCSR_SSI_SISR_TFE0) {
257 ssi_private->stats.tfe0++;
258 ret = IRQ_HANDLED;
261 /* Clear the bits that we set */
262 if (sisr2)
263 out_be32(&ssi->sisr, sisr2);
265 return ret;
269 * fsl_ssi_startup: create a new substream
271 * This is the first function called when a stream is opened.
273 * If this is the first stream open, then grab the IRQ and program most of
274 * the SSI registers.
276 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
277 struct snd_soc_dai *dai)
279 struct snd_soc_pcm_runtime *rtd = substream->private_data;
280 struct fsl_ssi_private *ssi_private =
281 snd_soc_dai_get_drvdata(rtd->cpu_dai);
282 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
285 * If this is the first stream opened, then request the IRQ
286 * and initialize the SSI registers.
288 if (!ssi_private->first_stream) {
289 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
291 ssi_private->first_stream = substream;
294 * Section 16.5 of the MPC8610 reference manual says that the
295 * SSI needs to be disabled before updating the registers we set
296 * here.
298 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
301 * Program the SSI into I2S Slave Non-Network Synchronous mode.
302 * Also enable the transmit and receive FIFO.
304 * FIXME: Little-endian samples require a different shift dir
306 clrsetbits_be32(&ssi->scr,
307 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
308 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
309 | (synchronous ? CCSR_SSI_SCR_SYN : 0));
311 out_be32(&ssi->stcr,
312 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
313 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
314 CCSR_SSI_STCR_TSCKP);
316 out_be32(&ssi->srcr,
317 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
318 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
319 CCSR_SSI_SRCR_RSCKP);
322 * The DC and PM bits are only used if the SSI is the clock
323 * master.
326 /* Enable the interrupts and DMA requests */
327 out_be32(&ssi->sier, SIER_FLAGS);
330 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
331 * don't use FIFO 1. We program the transmit water to signal a
332 * DMA transfer if there are only two (or fewer) elements left
333 * in the FIFO. Two elements equals one frame (left channel,
334 * right channel). This value, however, depends on the depth of
335 * the transmit buffer.
337 * We program the receive FIFO to notify us if at least two
338 * elements (one frame) have been written to the FIFO. We could
339 * make this value larger (and maybe we should), but this way
340 * data will be written to memory as soon as it's available.
342 out_be32(&ssi->sfcsr,
343 CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
344 CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2));
347 * We keep the SSI disabled because if we enable it, then the
348 * DMA controller will start. It's not supposed to start until
349 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
350 * DMA controller will transfer one "BWC" of data (i.e. the
351 * amount of data that the MR.BWC bits are set to). The reason
352 * this is bad is because at this point, the PCM driver has not
353 * finished initializing the DMA controller.
355 } else {
356 if (synchronous) {
357 struct snd_pcm_runtime *first_runtime =
358 ssi_private->first_stream->runtime;
360 * This is the second stream open, and we're in
361 * synchronous mode, so we need to impose sample
362 * sample size constraints. This is because STCCR is
363 * used for playback and capture in synchronous mode,
364 * so there's no way to specify different word
365 * lengths.
367 * Note that this can cause a race condition if the
368 * second stream is opened before the first stream is
369 * fully initialized. We provide some protection by
370 * checking to make sure the first stream is
371 * initialized, but it's not perfect. ALSA sometimes
372 * re-initializes the driver with a different sample
373 * rate or size. If the second stream is opened
374 * before the first stream has received its final
375 * parameters, then the second stream may be
376 * constrained to the wrong sample rate or size.
378 if (!first_runtime->sample_bits) {
379 dev_err(substream->pcm->card->dev,
380 "set sample size in %s stream first\n",
381 substream->stream ==
382 SNDRV_PCM_STREAM_PLAYBACK
383 ? "capture" : "playback");
384 return -EAGAIN;
387 snd_pcm_hw_constraint_minmax(substream->runtime,
388 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
389 first_runtime->sample_bits,
390 first_runtime->sample_bits);
393 ssi_private->second_stream = substream;
396 return 0;
400 * fsl_ssi_hw_params - program the sample size
402 * Most of the SSI registers have been programmed in the startup function,
403 * but the word length must be programmed here. Unfortunately, programming
404 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
405 * cause a problem with supporting simultaneous playback and capture. If
406 * the SSI is already playing a stream, then that stream may be temporarily
407 * stopped when you start capture.
409 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
410 * clock master.
412 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
413 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
415 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
416 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
417 unsigned int sample_size =
418 snd_pcm_format_width(params_format(hw_params));
419 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
420 int enabled = in_be32(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
423 * If we're in synchronous mode, and the SSI is already enabled,
424 * then STCCR is already set properly.
426 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
427 return 0;
430 * FIXME: The documentation says that SxCCR[WL] should not be
431 * modified while the SSI is enabled. The only time this can
432 * happen is if we're trying to do simultaneous playback and
433 * capture in asynchronous mode. Unfortunately, I have been enable
434 * to get that to work at all on the P1022DS. Therefore, we don't
435 * bother to disable/enable the SSI when setting SxCCR[WL], because
436 * the SSI will stop anyway. Maybe one day, this will get fixed.
439 /* In synchronous mode, the SSI uses STCCR for capture */
440 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
441 ssi_private->cpu_dai_drv.symmetric_rates)
442 clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
443 else
444 clrsetbits_be32(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
446 return 0;
450 * fsl_ssi_trigger: start and stop the DMA transfer.
452 * This function is called by ALSA to start, stop, pause, and resume the DMA
453 * transfer of data.
455 * The DMA channel is in external master start and pause mode, which
456 * means the SSI completely controls the flow of data.
458 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
459 struct snd_soc_dai *dai)
461 struct snd_soc_pcm_runtime *rtd = substream->private_data;
462 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
463 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
465 switch (cmd) {
466 case SNDRV_PCM_TRIGGER_START:
467 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
468 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
469 setbits32(&ssi->scr,
470 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
471 else
472 setbits32(&ssi->scr,
473 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
474 break;
476 case SNDRV_PCM_TRIGGER_STOP:
477 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
478 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
479 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
480 else
481 clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
482 break;
484 default:
485 return -EINVAL;
488 return 0;
492 * fsl_ssi_shutdown: shutdown the SSI
494 * Shutdown the SSI if there are no other substreams open.
496 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
497 struct snd_soc_dai *dai)
499 struct snd_soc_pcm_runtime *rtd = substream->private_data;
500 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
502 if (ssi_private->first_stream == substream)
503 ssi_private->first_stream = ssi_private->second_stream;
505 ssi_private->second_stream = NULL;
508 * If this is the last active substream, disable the SSI.
510 if (!ssi_private->first_stream) {
511 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
513 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
517 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
518 .startup = fsl_ssi_startup,
519 .hw_params = fsl_ssi_hw_params,
520 .shutdown = fsl_ssi_shutdown,
521 .trigger = fsl_ssi_trigger,
524 /* Template for the CPU dai driver structure */
525 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
526 .playback = {
527 /* The SSI does not support monaural audio. */
528 .channels_min = 2,
529 .channels_max = 2,
530 .rates = FSLSSI_I2S_RATES,
531 .formats = FSLSSI_I2S_FORMATS,
533 .capture = {
534 .channels_min = 2,
535 .channels_max = 2,
536 .rates = FSLSSI_I2S_RATES,
537 .formats = FSLSSI_I2S_FORMATS,
539 .ops = &fsl_ssi_dai_ops,
542 /* Show the statistics of a flag only if its interrupt is enabled. The
543 * compiler will optimze this code to a no-op if the interrupt is not
544 * enabled.
546 #define SIER_SHOW(flag, name) \
547 do { \
548 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
549 length += sprintf(buf + length, #name "=%u\n", \
550 ssi_private->stats.name); \
551 } while (0)
555 * fsl_sysfs_ssi_show: display SSI statistics
557 * Display the statistics for the current SSI device. To avoid confusion,
558 * we only show those counts that are enabled.
560 static ssize_t fsl_sysfs_ssi_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
563 struct fsl_ssi_private *ssi_private =
564 container_of(attr, struct fsl_ssi_private, dev_attr);
565 ssize_t length = 0;
567 SIER_SHOW(RFRC_EN, rfrc);
568 SIER_SHOW(TFRC_EN, tfrc);
569 SIER_SHOW(CMDAU_EN, cmdau);
570 SIER_SHOW(CMDDU_EN, cmddu);
571 SIER_SHOW(RXT_EN, rxt);
572 SIER_SHOW(RDR1_EN, rdr1);
573 SIER_SHOW(RDR0_EN, rdr0);
574 SIER_SHOW(TDE1_EN, tde1);
575 SIER_SHOW(TDE0_EN, tde0);
576 SIER_SHOW(ROE1_EN, roe1);
577 SIER_SHOW(ROE0_EN, roe0);
578 SIER_SHOW(TUE1_EN, tue1);
579 SIER_SHOW(TUE0_EN, tue0);
580 SIER_SHOW(TFS_EN, tfs);
581 SIER_SHOW(RFS_EN, rfs);
582 SIER_SHOW(TLS_EN, tls);
583 SIER_SHOW(RLS_EN, rls);
584 SIER_SHOW(RFF1_EN, rff1);
585 SIER_SHOW(RFF0_EN, rff0);
586 SIER_SHOW(TFE1_EN, tfe1);
587 SIER_SHOW(TFE0_EN, tfe0);
589 return length;
593 * Make every character in a string lower-case
595 static void make_lowercase(char *s)
597 char *p = s;
598 char c;
600 while ((c = *p)) {
601 if ((c >= 'A') && (c <= 'Z'))
602 *p = c + ('a' - 'A');
603 p++;
607 static int __devinit fsl_ssi_probe(struct platform_device *pdev)
609 struct fsl_ssi_private *ssi_private;
610 int ret = 0;
611 struct device_attribute *dev_attr = NULL;
612 struct device_node *np = pdev->dev.of_node;
613 const char *p, *sprop;
614 const uint32_t *iprop;
615 struct resource res;
616 char name[64];
618 /* SSIs that are not connected on the board should have a
619 * status = "disabled"
620 * property in their device tree nodes.
622 if (!of_device_is_available(np))
623 return -ENODEV;
625 /* Check for a codec-handle property. */
626 if (!of_get_property(np, "codec-handle", NULL)) {
627 dev_err(&pdev->dev, "missing codec-handle property\n");
628 return -ENODEV;
631 /* We only support the SSI in "I2S Slave" mode */
632 sprop = of_get_property(np, "fsl,mode", NULL);
633 if (!sprop || strcmp(sprop, "i2s-slave")) {
634 dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
635 return -ENODEV;
638 /* The DAI name is the last part of the full name of the node. */
639 p = strrchr(np->full_name, '/') + 1;
640 ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
641 GFP_KERNEL);
642 if (!ssi_private) {
643 dev_err(&pdev->dev, "could not allocate DAI object\n");
644 return -ENOMEM;
647 strcpy(ssi_private->name, p);
649 /* Initialize this copy of the CPU DAI driver structure */
650 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
651 sizeof(fsl_ssi_dai_template));
652 ssi_private->cpu_dai_drv.name = ssi_private->name;
654 /* Get the addresses and IRQ */
655 ret = of_address_to_resource(np, 0, &res);
656 if (ret) {
657 dev_err(&pdev->dev, "could not determine device resources\n");
658 goto error_kmalloc;
660 ssi_private->ssi = of_iomap(np, 0);
661 if (!ssi_private->ssi) {
662 dev_err(&pdev->dev, "could not map device resources\n");
663 ret = -ENOMEM;
664 goto error_kmalloc;
666 ssi_private->ssi_phys = res.start;
668 ssi_private->irq = irq_of_parse_and_map(np, 0);
669 if (ssi_private->irq == NO_IRQ) {
670 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
671 ret = -ENXIO;
672 goto error_iomap;
675 /* The 'name' should not have any slashes in it. */
676 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
677 ssi_private);
678 if (ret < 0) {
679 dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
680 goto error_irqmap;
683 /* Are the RX and the TX clocks locked? */
684 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
685 ssi_private->cpu_dai_drv.symmetric_rates = 1;
687 /* Determine the FIFO depth. */
688 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
689 if (iprop)
690 ssi_private->fifo_depth = be32_to_cpup(iprop);
691 else
692 /* Older 8610 DTs didn't have the fifo-depth property */
693 ssi_private->fifo_depth = 8;
695 /* Initialize the the device_attribute structure */
696 dev_attr = &ssi_private->dev_attr;
697 sysfs_attr_init(&dev_attr->attr);
698 dev_attr->attr.name = "statistics";
699 dev_attr->attr.mode = S_IRUGO;
700 dev_attr->show = fsl_sysfs_ssi_show;
702 ret = device_create_file(&pdev->dev, dev_attr);
703 if (ret) {
704 dev_err(&pdev->dev, "could not create sysfs %s file\n",
705 ssi_private->dev_attr.attr.name);
706 goto error_irq;
709 /* Register with ASoC */
710 dev_set_drvdata(&pdev->dev, ssi_private);
712 ret = snd_soc_register_dai(&pdev->dev, &ssi_private->cpu_dai_drv);
713 if (ret) {
714 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
715 goto error_dev;
718 /* Trigger the machine driver's probe function. The platform driver
719 * name of the machine driver is taken from the /model property of the
720 * device tree. We also pass the address of the CPU DAI driver
721 * structure.
723 sprop = of_get_property(of_find_node_by_path("/"), "model", NULL);
724 /* Sometimes the model name has a "fsl," prefix, so we strip that. */
725 p = strrchr(sprop, ',');
726 if (p)
727 sprop = p + 1;
728 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
729 make_lowercase(name);
731 ssi_private->pdev =
732 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
733 if (IS_ERR(ssi_private->pdev)) {
734 ret = PTR_ERR(ssi_private->pdev);
735 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
736 goto error_dai;
739 return 0;
741 error_dai:
742 snd_soc_unregister_dai(&pdev->dev);
744 error_dev:
745 dev_set_drvdata(&pdev->dev, NULL);
746 device_remove_file(&pdev->dev, dev_attr);
748 error_irq:
749 free_irq(ssi_private->irq, ssi_private);
751 error_irqmap:
752 irq_dispose_mapping(ssi_private->irq);
754 error_iomap:
755 iounmap(ssi_private->ssi);
757 error_kmalloc:
758 kfree(ssi_private);
760 return ret;
763 static int fsl_ssi_remove(struct platform_device *pdev)
765 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
767 platform_device_unregister(ssi_private->pdev);
768 snd_soc_unregister_dai(&pdev->dev);
769 device_remove_file(&pdev->dev, &ssi_private->dev_attr);
771 free_irq(ssi_private->irq, ssi_private);
772 irq_dispose_mapping(ssi_private->irq);
774 kfree(ssi_private);
775 dev_set_drvdata(&pdev->dev, NULL);
777 return 0;
780 static const struct of_device_id fsl_ssi_ids[] = {
781 { .compatible = "fsl,mpc8610-ssi", },
784 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
786 static struct platform_driver fsl_ssi_driver = {
787 .driver = {
788 .name = "fsl-ssi-dai",
789 .owner = THIS_MODULE,
790 .of_match_table = fsl_ssi_ids,
792 .probe = fsl_ssi_probe,
793 .remove = fsl_ssi_remove,
796 module_platform_driver(fsl_ssi_driver);
798 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
799 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
800 MODULE_LICENSE("GPL v2");