PCI: pci-sysfs: remove casts from void*
[zen-stable.git] / fs / aio.c
blob1ccf25cef1f027a61449ed2cf12b56fb077686ea
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
21 #define DEBUG 0
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/mempool.h>
38 #include <linux/hash.h>
39 #include <linux/compat.h>
41 #include <asm/kmap_types.h>
42 #include <asm/uaccess.h>
44 #if DEBUG > 1
45 #define dprintk printk
46 #else
47 #define dprintk(x...) do { ; } while (0)
48 #endif
50 /*------ sysctl variables----*/
51 static DEFINE_SPINLOCK(aio_nr_lock);
52 unsigned long aio_nr; /* current system wide number of aio requests */
53 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
54 /*----end sysctl variables---*/
56 static struct kmem_cache *kiocb_cachep;
57 static struct kmem_cache *kioctx_cachep;
59 static struct workqueue_struct *aio_wq;
61 /* Used for rare fput completion. */
62 static void aio_fput_routine(struct work_struct *);
63 static DECLARE_WORK(fput_work, aio_fput_routine);
65 static DEFINE_SPINLOCK(fput_lock);
66 static LIST_HEAD(fput_head);
68 #define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */
69 #define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS)
70 struct aio_batch_entry {
71 struct hlist_node list;
72 struct address_space *mapping;
74 mempool_t *abe_pool;
76 static void aio_kick_handler(struct work_struct *);
77 static void aio_queue_work(struct kioctx *);
79 /* aio_setup
80 * Creates the slab caches used by the aio routines, panic on
81 * failure as this is done early during the boot sequence.
83 static int __init aio_setup(void)
85 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
88 aio_wq = create_workqueue("aio");
89 abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry));
90 BUG_ON(!abe_pool);
92 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
94 return 0;
96 __initcall(aio_setup);
98 static void aio_free_ring(struct kioctx *ctx)
100 struct aio_ring_info *info = &ctx->ring_info;
101 long i;
103 for (i=0; i<info->nr_pages; i++)
104 put_page(info->ring_pages[i]);
106 if (info->mmap_size) {
107 down_write(&ctx->mm->mmap_sem);
108 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
109 up_write(&ctx->mm->mmap_sem);
112 if (info->ring_pages && info->ring_pages != info->internal_pages)
113 kfree(info->ring_pages);
114 info->ring_pages = NULL;
115 info->nr = 0;
118 static int aio_setup_ring(struct kioctx *ctx)
120 struct aio_ring *ring;
121 struct aio_ring_info *info = &ctx->ring_info;
122 unsigned nr_events = ctx->max_reqs;
123 unsigned long size;
124 int nr_pages;
126 /* Compensate for the ring buffer's head/tail overlap entry */
127 nr_events += 2; /* 1 is required, 2 for good luck */
129 size = sizeof(struct aio_ring);
130 size += sizeof(struct io_event) * nr_events;
131 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
133 if (nr_pages < 0)
134 return -EINVAL;
136 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
138 info->nr = 0;
139 info->ring_pages = info->internal_pages;
140 if (nr_pages > AIO_RING_PAGES) {
141 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
142 if (!info->ring_pages)
143 return -ENOMEM;
146 info->mmap_size = nr_pages * PAGE_SIZE;
147 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
148 down_write(&ctx->mm->mmap_sem);
149 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
150 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
152 if (IS_ERR((void *)info->mmap_base)) {
153 up_write(&ctx->mm->mmap_sem);
154 info->mmap_size = 0;
155 aio_free_ring(ctx);
156 return -EAGAIN;
159 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
160 info->nr_pages = get_user_pages(current, ctx->mm,
161 info->mmap_base, nr_pages,
162 1, 0, info->ring_pages, NULL);
163 up_write(&ctx->mm->mmap_sem);
165 if (unlikely(info->nr_pages != nr_pages)) {
166 aio_free_ring(ctx);
167 return -EAGAIN;
170 ctx->user_id = info->mmap_base;
172 info->nr = nr_events; /* trusted copy */
174 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
175 ring->nr = nr_events; /* user copy */
176 ring->id = ctx->user_id;
177 ring->head = ring->tail = 0;
178 ring->magic = AIO_RING_MAGIC;
179 ring->compat_features = AIO_RING_COMPAT_FEATURES;
180 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
181 ring->header_length = sizeof(struct aio_ring);
182 kunmap_atomic(ring, KM_USER0);
184 return 0;
188 /* aio_ring_event: returns a pointer to the event at the given index from
189 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
191 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
192 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
193 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
195 #define aio_ring_event(info, nr, km) ({ \
196 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
197 struct io_event *__event; \
198 __event = kmap_atomic( \
199 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
200 __event += pos % AIO_EVENTS_PER_PAGE; \
201 __event; \
204 #define put_aio_ring_event(event, km) do { \
205 struct io_event *__event = (event); \
206 (void)__event; \
207 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
208 } while(0)
210 static void ctx_rcu_free(struct rcu_head *head)
212 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
213 unsigned nr_events = ctx->max_reqs;
215 kmem_cache_free(kioctx_cachep, ctx);
217 if (nr_events) {
218 spin_lock(&aio_nr_lock);
219 BUG_ON(aio_nr - nr_events > aio_nr);
220 aio_nr -= nr_events;
221 spin_unlock(&aio_nr_lock);
225 /* __put_ioctx
226 * Called when the last user of an aio context has gone away,
227 * and the struct needs to be freed.
229 static void __put_ioctx(struct kioctx *ctx)
231 BUG_ON(ctx->reqs_active);
233 cancel_delayed_work(&ctx->wq);
234 cancel_work_sync(&ctx->wq.work);
235 aio_free_ring(ctx);
236 mmdrop(ctx->mm);
237 ctx->mm = NULL;
238 pr_debug("__put_ioctx: freeing %p\n", ctx);
239 call_rcu(&ctx->rcu_head, ctx_rcu_free);
242 #define get_ioctx(kioctx) do { \
243 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
244 atomic_inc(&(kioctx)->users); \
245 } while (0)
246 #define put_ioctx(kioctx) do { \
247 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
248 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
249 __put_ioctx(kioctx); \
250 } while (0)
252 /* ioctx_alloc
253 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
255 static struct kioctx *ioctx_alloc(unsigned nr_events)
257 struct mm_struct *mm;
258 struct kioctx *ctx;
259 int did_sync = 0;
261 /* Prevent overflows */
262 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
263 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
264 pr_debug("ENOMEM: nr_events too high\n");
265 return ERR_PTR(-EINVAL);
268 if ((unsigned long)nr_events > aio_max_nr)
269 return ERR_PTR(-EAGAIN);
271 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
272 if (!ctx)
273 return ERR_PTR(-ENOMEM);
275 ctx->max_reqs = nr_events;
276 mm = ctx->mm = current->mm;
277 atomic_inc(&mm->mm_count);
279 atomic_set(&ctx->users, 1);
280 spin_lock_init(&ctx->ctx_lock);
281 spin_lock_init(&ctx->ring_info.ring_lock);
282 init_waitqueue_head(&ctx->wait);
284 INIT_LIST_HEAD(&ctx->active_reqs);
285 INIT_LIST_HEAD(&ctx->run_list);
286 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
288 if (aio_setup_ring(ctx) < 0)
289 goto out_freectx;
291 /* limit the number of system wide aios */
292 do {
293 spin_lock_bh(&aio_nr_lock);
294 if (aio_nr + nr_events > aio_max_nr ||
295 aio_nr + nr_events < aio_nr)
296 ctx->max_reqs = 0;
297 else
298 aio_nr += ctx->max_reqs;
299 spin_unlock_bh(&aio_nr_lock);
300 if (ctx->max_reqs || did_sync)
301 break;
303 /* wait for rcu callbacks to have completed before giving up */
304 synchronize_rcu();
305 did_sync = 1;
306 ctx->max_reqs = nr_events;
307 } while (1);
309 if (ctx->max_reqs == 0)
310 goto out_cleanup;
312 /* now link into global list. */
313 spin_lock(&mm->ioctx_lock);
314 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
315 spin_unlock(&mm->ioctx_lock);
317 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
318 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
319 return ctx;
321 out_cleanup:
322 __put_ioctx(ctx);
323 return ERR_PTR(-EAGAIN);
325 out_freectx:
326 mmdrop(mm);
327 kmem_cache_free(kioctx_cachep, ctx);
328 ctx = ERR_PTR(-ENOMEM);
330 dprintk("aio: error allocating ioctx %p\n", ctx);
331 return ctx;
334 /* aio_cancel_all
335 * Cancels all outstanding aio requests on an aio context. Used
336 * when the processes owning a context have all exited to encourage
337 * the rapid destruction of the kioctx.
339 static void aio_cancel_all(struct kioctx *ctx)
341 int (*cancel)(struct kiocb *, struct io_event *);
342 struct io_event res;
343 spin_lock_irq(&ctx->ctx_lock);
344 ctx->dead = 1;
345 while (!list_empty(&ctx->active_reqs)) {
346 struct list_head *pos = ctx->active_reqs.next;
347 struct kiocb *iocb = list_kiocb(pos);
348 list_del_init(&iocb->ki_list);
349 cancel = iocb->ki_cancel;
350 kiocbSetCancelled(iocb);
351 if (cancel) {
352 iocb->ki_users++;
353 spin_unlock_irq(&ctx->ctx_lock);
354 cancel(iocb, &res);
355 spin_lock_irq(&ctx->ctx_lock);
358 spin_unlock_irq(&ctx->ctx_lock);
361 static void wait_for_all_aios(struct kioctx *ctx)
363 struct task_struct *tsk = current;
364 DECLARE_WAITQUEUE(wait, tsk);
366 spin_lock_irq(&ctx->ctx_lock);
367 if (!ctx->reqs_active)
368 goto out;
370 add_wait_queue(&ctx->wait, &wait);
371 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
372 while (ctx->reqs_active) {
373 spin_unlock_irq(&ctx->ctx_lock);
374 io_schedule();
375 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
376 spin_lock_irq(&ctx->ctx_lock);
378 __set_task_state(tsk, TASK_RUNNING);
379 remove_wait_queue(&ctx->wait, &wait);
381 out:
382 spin_unlock_irq(&ctx->ctx_lock);
385 /* wait_on_sync_kiocb:
386 * Waits on the given sync kiocb to complete.
388 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
390 while (iocb->ki_users) {
391 set_current_state(TASK_UNINTERRUPTIBLE);
392 if (!iocb->ki_users)
393 break;
394 io_schedule();
396 __set_current_state(TASK_RUNNING);
397 return iocb->ki_user_data;
399 EXPORT_SYMBOL(wait_on_sync_kiocb);
401 /* exit_aio: called when the last user of mm goes away. At this point,
402 * there is no way for any new requests to be submited or any of the
403 * io_* syscalls to be called on the context. However, there may be
404 * outstanding requests which hold references to the context; as they
405 * go away, they will call put_ioctx and release any pinned memory
406 * associated with the request (held via struct page * references).
408 void exit_aio(struct mm_struct *mm)
410 struct kioctx *ctx;
412 while (!hlist_empty(&mm->ioctx_list)) {
413 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
414 hlist_del_rcu(&ctx->list);
416 aio_cancel_all(ctx);
418 wait_for_all_aios(ctx);
420 * Ensure we don't leave the ctx on the aio_wq
422 cancel_work_sync(&ctx->wq.work);
424 if (1 != atomic_read(&ctx->users))
425 printk(KERN_DEBUG
426 "exit_aio:ioctx still alive: %d %d %d\n",
427 atomic_read(&ctx->users), ctx->dead,
428 ctx->reqs_active);
429 put_ioctx(ctx);
433 /* aio_get_req
434 * Allocate a slot for an aio request. Increments the users count
435 * of the kioctx so that the kioctx stays around until all requests are
436 * complete. Returns NULL if no requests are free.
438 * Returns with kiocb->users set to 2. The io submit code path holds
439 * an extra reference while submitting the i/o.
440 * This prevents races between the aio code path referencing the
441 * req (after submitting it) and aio_complete() freeing the req.
443 static struct kiocb *__aio_get_req(struct kioctx *ctx)
445 struct kiocb *req = NULL;
446 struct aio_ring *ring;
447 int okay = 0;
449 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
450 if (unlikely(!req))
451 return NULL;
453 req->ki_flags = 0;
454 req->ki_users = 2;
455 req->ki_key = 0;
456 req->ki_ctx = ctx;
457 req->ki_cancel = NULL;
458 req->ki_retry = NULL;
459 req->ki_dtor = NULL;
460 req->private = NULL;
461 req->ki_iovec = NULL;
462 INIT_LIST_HEAD(&req->ki_run_list);
463 req->ki_eventfd = NULL;
465 /* Check if the completion queue has enough free space to
466 * accept an event from this io.
468 spin_lock_irq(&ctx->ctx_lock);
469 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
470 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
471 list_add(&req->ki_list, &ctx->active_reqs);
472 ctx->reqs_active++;
473 okay = 1;
475 kunmap_atomic(ring, KM_USER0);
476 spin_unlock_irq(&ctx->ctx_lock);
478 if (!okay) {
479 kmem_cache_free(kiocb_cachep, req);
480 req = NULL;
483 return req;
486 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
488 struct kiocb *req;
489 /* Handle a potential starvation case -- should be exceedingly rare as
490 * requests will be stuck on fput_head only if the aio_fput_routine is
491 * delayed and the requests were the last user of the struct file.
493 req = __aio_get_req(ctx);
494 if (unlikely(NULL == req)) {
495 aio_fput_routine(NULL);
496 req = __aio_get_req(ctx);
498 return req;
501 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
503 assert_spin_locked(&ctx->ctx_lock);
505 if (req->ki_eventfd != NULL)
506 eventfd_ctx_put(req->ki_eventfd);
507 if (req->ki_dtor)
508 req->ki_dtor(req);
509 if (req->ki_iovec != &req->ki_inline_vec)
510 kfree(req->ki_iovec);
511 kmem_cache_free(kiocb_cachep, req);
512 ctx->reqs_active--;
514 if (unlikely(!ctx->reqs_active && ctx->dead))
515 wake_up(&ctx->wait);
518 static void aio_fput_routine(struct work_struct *data)
520 spin_lock_irq(&fput_lock);
521 while (likely(!list_empty(&fput_head))) {
522 struct kiocb *req = list_kiocb(fput_head.next);
523 struct kioctx *ctx = req->ki_ctx;
525 list_del(&req->ki_list);
526 spin_unlock_irq(&fput_lock);
528 /* Complete the fput(s) */
529 if (req->ki_filp != NULL)
530 fput(req->ki_filp);
532 /* Link the iocb into the context's free list */
533 spin_lock_irq(&ctx->ctx_lock);
534 really_put_req(ctx, req);
535 spin_unlock_irq(&ctx->ctx_lock);
537 put_ioctx(ctx);
538 spin_lock_irq(&fput_lock);
540 spin_unlock_irq(&fput_lock);
543 /* __aio_put_req
544 * Returns true if this put was the last user of the request.
546 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
548 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
549 req, atomic_long_read(&req->ki_filp->f_count));
551 assert_spin_locked(&ctx->ctx_lock);
553 req->ki_users--;
554 BUG_ON(req->ki_users < 0);
555 if (likely(req->ki_users))
556 return 0;
557 list_del(&req->ki_list); /* remove from active_reqs */
558 req->ki_cancel = NULL;
559 req->ki_retry = NULL;
562 * Try to optimize the aio and eventfd file* puts, by avoiding to
563 * schedule work in case it is not final fput() time. In normal cases,
564 * we would not be holding the last reference to the file*, so
565 * this function will be executed w/out any aio kthread wakeup.
567 if (unlikely(!fput_atomic(req->ki_filp))) {
568 get_ioctx(ctx);
569 spin_lock(&fput_lock);
570 list_add(&req->ki_list, &fput_head);
571 spin_unlock(&fput_lock);
572 queue_work(aio_wq, &fput_work);
573 } else {
574 req->ki_filp = NULL;
575 really_put_req(ctx, req);
577 return 1;
580 /* aio_put_req
581 * Returns true if this put was the last user of the kiocb,
582 * false if the request is still in use.
584 int aio_put_req(struct kiocb *req)
586 struct kioctx *ctx = req->ki_ctx;
587 int ret;
588 spin_lock_irq(&ctx->ctx_lock);
589 ret = __aio_put_req(ctx, req);
590 spin_unlock_irq(&ctx->ctx_lock);
591 return ret;
593 EXPORT_SYMBOL(aio_put_req);
595 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
597 struct mm_struct *mm = current->mm;
598 struct kioctx *ctx, *ret = NULL;
599 struct hlist_node *n;
601 rcu_read_lock();
603 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
604 if (ctx->user_id == ctx_id && !ctx->dead) {
605 get_ioctx(ctx);
606 ret = ctx;
607 break;
611 rcu_read_unlock();
612 return ret;
616 * Queue up a kiocb to be retried. Assumes that the kiocb
617 * has already been marked as kicked, and places it on
618 * the retry run list for the corresponding ioctx, if it
619 * isn't already queued. Returns 1 if it actually queued
620 * the kiocb (to tell the caller to activate the work
621 * queue to process it), or 0, if it found that it was
622 * already queued.
624 static inline int __queue_kicked_iocb(struct kiocb *iocb)
626 struct kioctx *ctx = iocb->ki_ctx;
628 assert_spin_locked(&ctx->ctx_lock);
630 if (list_empty(&iocb->ki_run_list)) {
631 list_add_tail(&iocb->ki_run_list,
632 &ctx->run_list);
633 return 1;
635 return 0;
638 /* aio_run_iocb
639 * This is the core aio execution routine. It is
640 * invoked both for initial i/o submission and
641 * subsequent retries via the aio_kick_handler.
642 * Expects to be invoked with iocb->ki_ctx->lock
643 * already held. The lock is released and reacquired
644 * as needed during processing.
646 * Calls the iocb retry method (already setup for the
647 * iocb on initial submission) for operation specific
648 * handling, but takes care of most of common retry
649 * execution details for a given iocb. The retry method
650 * needs to be non-blocking as far as possible, to avoid
651 * holding up other iocbs waiting to be serviced by the
652 * retry kernel thread.
654 * The trickier parts in this code have to do with
655 * ensuring that only one retry instance is in progress
656 * for a given iocb at any time. Providing that guarantee
657 * simplifies the coding of individual aio operations as
658 * it avoids various potential races.
660 static ssize_t aio_run_iocb(struct kiocb *iocb)
662 struct kioctx *ctx = iocb->ki_ctx;
663 ssize_t (*retry)(struct kiocb *);
664 ssize_t ret;
666 if (!(retry = iocb->ki_retry)) {
667 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
668 return 0;
672 * We don't want the next retry iteration for this
673 * operation to start until this one has returned and
674 * updated the iocb state. However, wait_queue functions
675 * can trigger a kick_iocb from interrupt context in the
676 * meantime, indicating that data is available for the next
677 * iteration. We want to remember that and enable the
678 * next retry iteration _after_ we are through with
679 * this one.
681 * So, in order to be able to register a "kick", but
682 * prevent it from being queued now, we clear the kick
683 * flag, but make the kick code *think* that the iocb is
684 * still on the run list until we are actually done.
685 * When we are done with this iteration, we check if
686 * the iocb was kicked in the meantime and if so, queue
687 * it up afresh.
690 kiocbClearKicked(iocb);
693 * This is so that aio_complete knows it doesn't need to
694 * pull the iocb off the run list (We can't just call
695 * INIT_LIST_HEAD because we don't want a kick_iocb to
696 * queue this on the run list yet)
698 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
699 spin_unlock_irq(&ctx->ctx_lock);
701 /* Quit retrying if the i/o has been cancelled */
702 if (kiocbIsCancelled(iocb)) {
703 ret = -EINTR;
704 aio_complete(iocb, ret, 0);
705 /* must not access the iocb after this */
706 goto out;
710 * Now we are all set to call the retry method in async
711 * context.
713 ret = retry(iocb);
715 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED)
716 aio_complete(iocb, ret, 0);
717 out:
718 spin_lock_irq(&ctx->ctx_lock);
720 if (-EIOCBRETRY == ret) {
722 * OK, now that we are done with this iteration
723 * and know that there is more left to go,
724 * this is where we let go so that a subsequent
725 * "kick" can start the next iteration
728 /* will make __queue_kicked_iocb succeed from here on */
729 INIT_LIST_HEAD(&iocb->ki_run_list);
730 /* we must queue the next iteration ourselves, if it
731 * has already been kicked */
732 if (kiocbIsKicked(iocb)) {
733 __queue_kicked_iocb(iocb);
736 * __queue_kicked_iocb will always return 1 here, because
737 * iocb->ki_run_list is empty at this point so it should
738 * be safe to unconditionally queue the context into the
739 * work queue.
741 aio_queue_work(ctx);
744 return ret;
748 * __aio_run_iocbs:
749 * Process all pending retries queued on the ioctx
750 * run list.
751 * Assumes it is operating within the aio issuer's mm
752 * context.
754 static int __aio_run_iocbs(struct kioctx *ctx)
756 struct kiocb *iocb;
757 struct list_head run_list;
759 assert_spin_locked(&ctx->ctx_lock);
761 list_replace_init(&ctx->run_list, &run_list);
762 while (!list_empty(&run_list)) {
763 iocb = list_entry(run_list.next, struct kiocb,
764 ki_run_list);
765 list_del(&iocb->ki_run_list);
767 * Hold an extra reference while retrying i/o.
769 iocb->ki_users++; /* grab extra reference */
770 aio_run_iocb(iocb);
771 __aio_put_req(ctx, iocb);
773 if (!list_empty(&ctx->run_list))
774 return 1;
775 return 0;
778 static void aio_queue_work(struct kioctx * ctx)
780 unsigned long timeout;
782 * if someone is waiting, get the work started right
783 * away, otherwise, use a longer delay
785 smp_mb();
786 if (waitqueue_active(&ctx->wait))
787 timeout = 1;
788 else
789 timeout = HZ/10;
790 queue_delayed_work(aio_wq, &ctx->wq, timeout);
795 * aio_run_iocbs:
796 * Process all pending retries queued on the ioctx
797 * run list.
798 * Assumes it is operating within the aio issuer's mm
799 * context.
801 static inline void aio_run_iocbs(struct kioctx *ctx)
803 int requeue;
805 spin_lock_irq(&ctx->ctx_lock);
807 requeue = __aio_run_iocbs(ctx);
808 spin_unlock_irq(&ctx->ctx_lock);
809 if (requeue)
810 aio_queue_work(ctx);
814 * just like aio_run_iocbs, but keeps running them until
815 * the list stays empty
817 static inline void aio_run_all_iocbs(struct kioctx *ctx)
819 spin_lock_irq(&ctx->ctx_lock);
820 while (__aio_run_iocbs(ctx))
822 spin_unlock_irq(&ctx->ctx_lock);
826 * aio_kick_handler:
827 * Work queue handler triggered to process pending
828 * retries on an ioctx. Takes on the aio issuer's
829 * mm context before running the iocbs, so that
830 * copy_xxx_user operates on the issuer's address
831 * space.
832 * Run on aiod's context.
834 static void aio_kick_handler(struct work_struct *work)
836 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
837 mm_segment_t oldfs = get_fs();
838 struct mm_struct *mm;
839 int requeue;
841 set_fs(USER_DS);
842 use_mm(ctx->mm);
843 spin_lock_irq(&ctx->ctx_lock);
844 requeue =__aio_run_iocbs(ctx);
845 mm = ctx->mm;
846 spin_unlock_irq(&ctx->ctx_lock);
847 unuse_mm(mm);
848 set_fs(oldfs);
850 * we're in a worker thread already, don't use queue_delayed_work,
852 if (requeue)
853 queue_delayed_work(aio_wq, &ctx->wq, 0);
858 * Called by kick_iocb to queue the kiocb for retry
859 * and if required activate the aio work queue to process
860 * it
862 static void try_queue_kicked_iocb(struct kiocb *iocb)
864 struct kioctx *ctx = iocb->ki_ctx;
865 unsigned long flags;
866 int run = 0;
868 spin_lock_irqsave(&ctx->ctx_lock, flags);
869 /* set this inside the lock so that we can't race with aio_run_iocb()
870 * testing it and putting the iocb on the run list under the lock */
871 if (!kiocbTryKick(iocb))
872 run = __queue_kicked_iocb(iocb);
873 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
874 if (run)
875 aio_queue_work(ctx);
879 * kick_iocb:
880 * Called typically from a wait queue callback context
881 * to trigger a retry of the iocb.
882 * The retry is usually executed by aio workqueue
883 * threads (See aio_kick_handler).
885 void kick_iocb(struct kiocb *iocb)
887 /* sync iocbs are easy: they can only ever be executing from a
888 * single context. */
889 if (is_sync_kiocb(iocb)) {
890 kiocbSetKicked(iocb);
891 wake_up_process(iocb->ki_obj.tsk);
892 return;
895 try_queue_kicked_iocb(iocb);
897 EXPORT_SYMBOL(kick_iocb);
899 /* aio_complete
900 * Called when the io request on the given iocb is complete.
901 * Returns true if this is the last user of the request. The
902 * only other user of the request can be the cancellation code.
904 int aio_complete(struct kiocb *iocb, long res, long res2)
906 struct kioctx *ctx = iocb->ki_ctx;
907 struct aio_ring_info *info;
908 struct aio_ring *ring;
909 struct io_event *event;
910 unsigned long flags;
911 unsigned long tail;
912 int ret;
915 * Special case handling for sync iocbs:
916 * - events go directly into the iocb for fast handling
917 * - the sync task with the iocb in its stack holds the single iocb
918 * ref, no other paths have a way to get another ref
919 * - the sync task helpfully left a reference to itself in the iocb
921 if (is_sync_kiocb(iocb)) {
922 BUG_ON(iocb->ki_users != 1);
923 iocb->ki_user_data = res;
924 iocb->ki_users = 0;
925 wake_up_process(iocb->ki_obj.tsk);
926 return 1;
929 info = &ctx->ring_info;
931 /* add a completion event to the ring buffer.
932 * must be done holding ctx->ctx_lock to prevent
933 * other code from messing with the tail
934 * pointer since we might be called from irq
935 * context.
937 spin_lock_irqsave(&ctx->ctx_lock, flags);
939 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
940 list_del_init(&iocb->ki_run_list);
943 * cancelled requests don't get events, userland was given one
944 * when the event got cancelled.
946 if (kiocbIsCancelled(iocb))
947 goto put_rq;
949 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
951 tail = info->tail;
952 event = aio_ring_event(info, tail, KM_IRQ0);
953 if (++tail >= info->nr)
954 tail = 0;
956 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
957 event->data = iocb->ki_user_data;
958 event->res = res;
959 event->res2 = res2;
961 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
962 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
963 res, res2);
965 /* after flagging the request as done, we
966 * must never even look at it again
968 smp_wmb(); /* make event visible before updating tail */
970 info->tail = tail;
971 ring->tail = tail;
973 put_aio_ring_event(event, KM_IRQ0);
974 kunmap_atomic(ring, KM_IRQ1);
976 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
979 * Check if the user asked us to deliver the result through an
980 * eventfd. The eventfd_signal() function is safe to be called
981 * from IRQ context.
983 if (iocb->ki_eventfd != NULL)
984 eventfd_signal(iocb->ki_eventfd, 1);
986 put_rq:
987 /* everything turned out well, dispose of the aiocb. */
988 ret = __aio_put_req(ctx, iocb);
991 * We have to order our ring_info tail store above and test
992 * of the wait list below outside the wait lock. This is
993 * like in wake_up_bit() where clearing a bit has to be
994 * ordered with the unlocked test.
996 smp_mb();
998 if (waitqueue_active(&ctx->wait))
999 wake_up(&ctx->wait);
1001 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1002 return ret;
1004 EXPORT_SYMBOL(aio_complete);
1006 /* aio_read_evt
1007 * Pull an event off of the ioctx's event ring. Returns the number of
1008 * events fetched (0 or 1 ;-)
1009 * FIXME: make this use cmpxchg.
1010 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1012 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1014 struct aio_ring_info *info = &ioctx->ring_info;
1015 struct aio_ring *ring;
1016 unsigned long head;
1017 int ret = 0;
1019 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1020 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1021 (unsigned long)ring->head, (unsigned long)ring->tail,
1022 (unsigned long)ring->nr);
1024 if (ring->head == ring->tail)
1025 goto out;
1027 spin_lock(&info->ring_lock);
1029 head = ring->head % info->nr;
1030 if (head != ring->tail) {
1031 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1032 *ent = *evp;
1033 head = (head + 1) % info->nr;
1034 smp_mb(); /* finish reading the event before updatng the head */
1035 ring->head = head;
1036 ret = 1;
1037 put_aio_ring_event(evp, KM_USER1);
1039 spin_unlock(&info->ring_lock);
1041 out:
1042 kunmap_atomic(ring, KM_USER0);
1043 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1044 (unsigned long)ring->head, (unsigned long)ring->tail);
1045 return ret;
1048 struct aio_timeout {
1049 struct timer_list timer;
1050 int timed_out;
1051 struct task_struct *p;
1054 static void timeout_func(unsigned long data)
1056 struct aio_timeout *to = (struct aio_timeout *)data;
1058 to->timed_out = 1;
1059 wake_up_process(to->p);
1062 static inline void init_timeout(struct aio_timeout *to)
1064 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1065 to->timed_out = 0;
1066 to->p = current;
1069 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1070 const struct timespec *ts)
1072 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1073 if (time_after(to->timer.expires, jiffies))
1074 add_timer(&to->timer);
1075 else
1076 to->timed_out = 1;
1079 static inline void clear_timeout(struct aio_timeout *to)
1081 del_singleshot_timer_sync(&to->timer);
1084 static int read_events(struct kioctx *ctx,
1085 long min_nr, long nr,
1086 struct io_event __user *event,
1087 struct timespec __user *timeout)
1089 long start_jiffies = jiffies;
1090 struct task_struct *tsk = current;
1091 DECLARE_WAITQUEUE(wait, tsk);
1092 int ret;
1093 int i = 0;
1094 struct io_event ent;
1095 struct aio_timeout to;
1096 int retry = 0;
1098 /* needed to zero any padding within an entry (there shouldn't be
1099 * any, but C is fun!
1101 memset(&ent, 0, sizeof(ent));
1102 retry:
1103 ret = 0;
1104 while (likely(i < nr)) {
1105 ret = aio_read_evt(ctx, &ent);
1106 if (unlikely(ret <= 0))
1107 break;
1109 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1110 ent.data, ent.obj, ent.res, ent.res2);
1112 /* Could we split the check in two? */
1113 ret = -EFAULT;
1114 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1115 dprintk("aio: lost an event due to EFAULT.\n");
1116 break;
1118 ret = 0;
1120 /* Good, event copied to userland, update counts. */
1121 event ++;
1122 i ++;
1125 if (min_nr <= i)
1126 return i;
1127 if (ret)
1128 return ret;
1130 /* End fast path */
1132 /* racey check, but it gets redone */
1133 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1134 retry = 1;
1135 aio_run_all_iocbs(ctx);
1136 goto retry;
1139 init_timeout(&to);
1140 if (timeout) {
1141 struct timespec ts;
1142 ret = -EFAULT;
1143 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1144 goto out;
1146 set_timeout(start_jiffies, &to, &ts);
1149 while (likely(i < nr)) {
1150 add_wait_queue_exclusive(&ctx->wait, &wait);
1151 do {
1152 set_task_state(tsk, TASK_INTERRUPTIBLE);
1153 ret = aio_read_evt(ctx, &ent);
1154 if (ret)
1155 break;
1156 if (min_nr <= i)
1157 break;
1158 if (unlikely(ctx->dead)) {
1159 ret = -EINVAL;
1160 break;
1162 if (to.timed_out) /* Only check after read evt */
1163 break;
1164 /* Try to only show up in io wait if there are ops
1165 * in flight */
1166 if (ctx->reqs_active)
1167 io_schedule();
1168 else
1169 schedule();
1170 if (signal_pending(tsk)) {
1171 ret = -EINTR;
1172 break;
1174 /*ret = aio_read_evt(ctx, &ent);*/
1175 } while (1) ;
1177 set_task_state(tsk, TASK_RUNNING);
1178 remove_wait_queue(&ctx->wait, &wait);
1180 if (unlikely(ret <= 0))
1181 break;
1183 ret = -EFAULT;
1184 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1185 dprintk("aio: lost an event due to EFAULT.\n");
1186 break;
1189 /* Good, event copied to userland, update counts. */
1190 event ++;
1191 i ++;
1194 if (timeout)
1195 clear_timeout(&to);
1196 out:
1197 destroy_timer_on_stack(&to.timer);
1198 return i ? i : ret;
1201 /* Take an ioctx and remove it from the list of ioctx's. Protects
1202 * against races with itself via ->dead.
1204 static void io_destroy(struct kioctx *ioctx)
1206 struct mm_struct *mm = current->mm;
1207 int was_dead;
1209 /* delete the entry from the list is someone else hasn't already */
1210 spin_lock(&mm->ioctx_lock);
1211 was_dead = ioctx->dead;
1212 ioctx->dead = 1;
1213 hlist_del_rcu(&ioctx->list);
1214 spin_unlock(&mm->ioctx_lock);
1216 dprintk("aio_release(%p)\n", ioctx);
1217 if (likely(!was_dead))
1218 put_ioctx(ioctx); /* twice for the list */
1220 aio_cancel_all(ioctx);
1221 wait_for_all_aios(ioctx);
1224 * Wake up any waiters. The setting of ctx->dead must be seen
1225 * by other CPUs at this point. Right now, we rely on the
1226 * locking done by the above calls to ensure this consistency.
1228 wake_up(&ioctx->wait);
1229 put_ioctx(ioctx); /* once for the lookup */
1232 /* sys_io_setup:
1233 * Create an aio_context capable of receiving at least nr_events.
1234 * ctxp must not point to an aio_context that already exists, and
1235 * must be initialized to 0 prior to the call. On successful
1236 * creation of the aio_context, *ctxp is filled in with the resulting
1237 * handle. May fail with -EINVAL if *ctxp is not initialized,
1238 * if the specified nr_events exceeds internal limits. May fail
1239 * with -EAGAIN if the specified nr_events exceeds the user's limit
1240 * of available events. May fail with -ENOMEM if insufficient kernel
1241 * resources are available. May fail with -EFAULT if an invalid
1242 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1243 * implemented.
1245 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1247 struct kioctx *ioctx = NULL;
1248 unsigned long ctx;
1249 long ret;
1251 ret = get_user(ctx, ctxp);
1252 if (unlikely(ret))
1253 goto out;
1255 ret = -EINVAL;
1256 if (unlikely(ctx || nr_events == 0)) {
1257 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1258 ctx, nr_events);
1259 goto out;
1262 ioctx = ioctx_alloc(nr_events);
1263 ret = PTR_ERR(ioctx);
1264 if (!IS_ERR(ioctx)) {
1265 ret = put_user(ioctx->user_id, ctxp);
1266 if (!ret)
1267 return 0;
1269 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1270 io_destroy(ioctx);
1273 out:
1274 return ret;
1277 /* sys_io_destroy:
1278 * Destroy the aio_context specified. May cancel any outstanding
1279 * AIOs and block on completion. Will fail with -ENOSYS if not
1280 * implemented. May fail with -EFAULT if the context pointed to
1281 * is invalid.
1283 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1285 struct kioctx *ioctx = lookup_ioctx(ctx);
1286 if (likely(NULL != ioctx)) {
1287 io_destroy(ioctx);
1288 return 0;
1290 pr_debug("EINVAL: io_destroy: invalid context id\n");
1291 return -EINVAL;
1294 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1296 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1298 BUG_ON(ret <= 0);
1300 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1301 ssize_t this = min((ssize_t)iov->iov_len, ret);
1302 iov->iov_base += this;
1303 iov->iov_len -= this;
1304 iocb->ki_left -= this;
1305 ret -= this;
1306 if (iov->iov_len == 0) {
1307 iocb->ki_cur_seg++;
1308 iov++;
1312 /* the caller should not have done more io than what fit in
1313 * the remaining iovecs */
1314 BUG_ON(ret > 0 && iocb->ki_left == 0);
1317 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1319 struct file *file = iocb->ki_filp;
1320 struct address_space *mapping = file->f_mapping;
1321 struct inode *inode = mapping->host;
1322 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1323 unsigned long, loff_t);
1324 ssize_t ret = 0;
1325 unsigned short opcode;
1327 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1328 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1329 rw_op = file->f_op->aio_read;
1330 opcode = IOCB_CMD_PREADV;
1331 } else {
1332 rw_op = file->f_op->aio_write;
1333 opcode = IOCB_CMD_PWRITEV;
1336 /* This matches the pread()/pwrite() logic */
1337 if (iocb->ki_pos < 0)
1338 return -EINVAL;
1340 do {
1341 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1342 iocb->ki_nr_segs - iocb->ki_cur_seg,
1343 iocb->ki_pos);
1344 if (ret > 0)
1345 aio_advance_iovec(iocb, ret);
1347 /* retry all partial writes. retry partial reads as long as its a
1348 * regular file. */
1349 } while (ret > 0 && iocb->ki_left > 0 &&
1350 (opcode == IOCB_CMD_PWRITEV ||
1351 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1353 /* This means we must have transferred all that we could */
1354 /* No need to retry anymore */
1355 if ((ret == 0) || (iocb->ki_left == 0))
1356 ret = iocb->ki_nbytes - iocb->ki_left;
1358 /* If we managed to write some out we return that, rather than
1359 * the eventual error. */
1360 if (opcode == IOCB_CMD_PWRITEV
1361 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1362 && iocb->ki_nbytes - iocb->ki_left)
1363 ret = iocb->ki_nbytes - iocb->ki_left;
1365 return ret;
1368 static ssize_t aio_fdsync(struct kiocb *iocb)
1370 struct file *file = iocb->ki_filp;
1371 ssize_t ret = -EINVAL;
1373 if (file->f_op->aio_fsync)
1374 ret = file->f_op->aio_fsync(iocb, 1);
1375 return ret;
1378 static ssize_t aio_fsync(struct kiocb *iocb)
1380 struct file *file = iocb->ki_filp;
1381 ssize_t ret = -EINVAL;
1383 if (file->f_op->aio_fsync)
1384 ret = file->f_op->aio_fsync(iocb, 0);
1385 return ret;
1388 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1390 ssize_t ret;
1392 #ifdef CONFIG_COMPAT
1393 if (compat)
1394 ret = compat_rw_copy_check_uvector(type,
1395 (struct compat_iovec __user *)kiocb->ki_buf,
1396 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1397 &kiocb->ki_iovec);
1398 else
1399 #endif
1400 ret = rw_copy_check_uvector(type,
1401 (struct iovec __user *)kiocb->ki_buf,
1402 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1403 &kiocb->ki_iovec);
1404 if (ret < 0)
1405 goto out;
1407 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1408 kiocb->ki_cur_seg = 0;
1409 /* ki_nbytes/left now reflect bytes instead of segs */
1410 kiocb->ki_nbytes = ret;
1411 kiocb->ki_left = ret;
1413 ret = 0;
1414 out:
1415 return ret;
1418 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1420 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1421 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1422 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1423 kiocb->ki_nr_segs = 1;
1424 kiocb->ki_cur_seg = 0;
1425 return 0;
1429 * aio_setup_iocb:
1430 * Performs the initial checks and aio retry method
1431 * setup for the kiocb at the time of io submission.
1433 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1435 struct file *file = kiocb->ki_filp;
1436 ssize_t ret = 0;
1438 switch (kiocb->ki_opcode) {
1439 case IOCB_CMD_PREAD:
1440 ret = -EBADF;
1441 if (unlikely(!(file->f_mode & FMODE_READ)))
1442 break;
1443 ret = -EFAULT;
1444 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1445 kiocb->ki_left)))
1446 break;
1447 ret = security_file_permission(file, MAY_READ);
1448 if (unlikely(ret))
1449 break;
1450 ret = aio_setup_single_vector(kiocb);
1451 if (ret)
1452 break;
1453 ret = -EINVAL;
1454 if (file->f_op->aio_read)
1455 kiocb->ki_retry = aio_rw_vect_retry;
1456 break;
1457 case IOCB_CMD_PWRITE:
1458 ret = -EBADF;
1459 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1460 break;
1461 ret = -EFAULT;
1462 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1463 kiocb->ki_left)))
1464 break;
1465 ret = security_file_permission(file, MAY_WRITE);
1466 if (unlikely(ret))
1467 break;
1468 ret = aio_setup_single_vector(kiocb);
1469 if (ret)
1470 break;
1471 ret = -EINVAL;
1472 if (file->f_op->aio_write)
1473 kiocb->ki_retry = aio_rw_vect_retry;
1474 break;
1475 case IOCB_CMD_PREADV:
1476 ret = -EBADF;
1477 if (unlikely(!(file->f_mode & FMODE_READ)))
1478 break;
1479 ret = security_file_permission(file, MAY_READ);
1480 if (unlikely(ret))
1481 break;
1482 ret = aio_setup_vectored_rw(READ, kiocb, compat);
1483 if (ret)
1484 break;
1485 ret = -EINVAL;
1486 if (file->f_op->aio_read)
1487 kiocb->ki_retry = aio_rw_vect_retry;
1488 break;
1489 case IOCB_CMD_PWRITEV:
1490 ret = -EBADF;
1491 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1492 break;
1493 ret = security_file_permission(file, MAY_WRITE);
1494 if (unlikely(ret))
1495 break;
1496 ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1497 if (ret)
1498 break;
1499 ret = -EINVAL;
1500 if (file->f_op->aio_write)
1501 kiocb->ki_retry = aio_rw_vect_retry;
1502 break;
1503 case IOCB_CMD_FDSYNC:
1504 ret = -EINVAL;
1505 if (file->f_op->aio_fsync)
1506 kiocb->ki_retry = aio_fdsync;
1507 break;
1508 case IOCB_CMD_FSYNC:
1509 ret = -EINVAL;
1510 if (file->f_op->aio_fsync)
1511 kiocb->ki_retry = aio_fsync;
1512 break;
1513 default:
1514 dprintk("EINVAL: io_submit: no operation provided\n");
1515 ret = -EINVAL;
1518 if (!kiocb->ki_retry)
1519 return ret;
1521 return 0;
1524 static void aio_batch_add(struct address_space *mapping,
1525 struct hlist_head *batch_hash)
1527 struct aio_batch_entry *abe;
1528 struct hlist_node *pos;
1529 unsigned bucket;
1531 bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS);
1532 hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) {
1533 if (abe->mapping == mapping)
1534 return;
1537 abe = mempool_alloc(abe_pool, GFP_KERNEL);
1538 BUG_ON(!igrab(mapping->host));
1539 abe->mapping = mapping;
1540 hlist_add_head(&abe->list, &batch_hash[bucket]);
1541 return;
1544 static void aio_batch_free(struct hlist_head *batch_hash)
1546 struct aio_batch_entry *abe;
1547 struct hlist_node *pos, *n;
1548 int i;
1550 for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) {
1551 hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) {
1552 blk_run_address_space(abe->mapping);
1553 iput(abe->mapping->host);
1554 hlist_del(&abe->list);
1555 mempool_free(abe, abe_pool);
1560 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1561 struct iocb *iocb, struct hlist_head *batch_hash,
1562 bool compat)
1564 struct kiocb *req;
1565 struct file *file;
1566 ssize_t ret;
1568 /* enforce forwards compatibility on users */
1569 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1570 pr_debug("EINVAL: io_submit: reserve field set\n");
1571 return -EINVAL;
1574 /* prevent overflows */
1575 if (unlikely(
1576 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1577 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1578 ((ssize_t)iocb->aio_nbytes < 0)
1579 )) {
1580 pr_debug("EINVAL: io_submit: overflow check\n");
1581 return -EINVAL;
1584 file = fget(iocb->aio_fildes);
1585 if (unlikely(!file))
1586 return -EBADF;
1588 req = aio_get_req(ctx); /* returns with 2 references to req */
1589 if (unlikely(!req)) {
1590 fput(file);
1591 return -EAGAIN;
1593 req->ki_filp = file;
1594 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1596 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1597 * instance of the file* now. The file descriptor must be
1598 * an eventfd() fd, and will be signaled for each completed
1599 * event using the eventfd_signal() function.
1601 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1602 if (IS_ERR(req->ki_eventfd)) {
1603 ret = PTR_ERR(req->ki_eventfd);
1604 req->ki_eventfd = NULL;
1605 goto out_put_req;
1609 ret = put_user(req->ki_key, &user_iocb->aio_key);
1610 if (unlikely(ret)) {
1611 dprintk("EFAULT: aio_key\n");
1612 goto out_put_req;
1615 req->ki_obj.user = user_iocb;
1616 req->ki_user_data = iocb->aio_data;
1617 req->ki_pos = iocb->aio_offset;
1619 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1620 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1621 req->ki_opcode = iocb->aio_lio_opcode;
1623 ret = aio_setup_iocb(req, compat);
1625 if (ret)
1626 goto out_put_req;
1628 spin_lock_irq(&ctx->ctx_lock);
1629 aio_run_iocb(req);
1630 if (!list_empty(&ctx->run_list)) {
1631 /* drain the run list */
1632 while (__aio_run_iocbs(ctx))
1635 spin_unlock_irq(&ctx->ctx_lock);
1636 if (req->ki_opcode == IOCB_CMD_PREAD ||
1637 req->ki_opcode == IOCB_CMD_PREADV ||
1638 req->ki_opcode == IOCB_CMD_PWRITE ||
1639 req->ki_opcode == IOCB_CMD_PWRITEV)
1640 aio_batch_add(file->f_mapping, batch_hash);
1642 aio_put_req(req); /* drop extra ref to req */
1643 return 0;
1645 out_put_req:
1646 aio_put_req(req); /* drop extra ref to req */
1647 aio_put_req(req); /* drop i/o ref to req */
1648 return ret;
1651 long do_io_submit(aio_context_t ctx_id, long nr,
1652 struct iocb __user *__user *iocbpp, bool compat)
1654 struct kioctx *ctx;
1655 long ret = 0;
1656 int i;
1657 struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, };
1659 if (unlikely(nr < 0))
1660 return -EINVAL;
1662 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1663 return -EFAULT;
1665 ctx = lookup_ioctx(ctx_id);
1666 if (unlikely(!ctx)) {
1667 pr_debug("EINVAL: io_submit: invalid context id\n");
1668 return -EINVAL;
1672 * AKPM: should this return a partial result if some of the IOs were
1673 * successfully submitted?
1675 for (i=0; i<nr; i++) {
1676 struct iocb __user *user_iocb;
1677 struct iocb tmp;
1679 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1680 ret = -EFAULT;
1681 break;
1684 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1685 ret = -EFAULT;
1686 break;
1689 ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash, compat);
1690 if (ret)
1691 break;
1693 aio_batch_free(batch_hash);
1695 put_ioctx(ctx);
1696 return i ? i : ret;
1699 /* sys_io_submit:
1700 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1701 * the number of iocbs queued. May return -EINVAL if the aio_context
1702 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1703 * *iocbpp[0] is not properly initialized, if the operation specified
1704 * is invalid for the file descriptor in the iocb. May fail with
1705 * -EFAULT if any of the data structures point to invalid data. May
1706 * fail with -EBADF if the file descriptor specified in the first
1707 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1708 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1709 * fail with -ENOSYS if not implemented.
1711 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1712 struct iocb __user * __user *, iocbpp)
1714 return do_io_submit(ctx_id, nr, iocbpp, 0);
1717 /* lookup_kiocb
1718 * Finds a given iocb for cancellation.
1720 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1721 u32 key)
1723 struct list_head *pos;
1725 assert_spin_locked(&ctx->ctx_lock);
1727 /* TODO: use a hash or array, this sucks. */
1728 list_for_each(pos, &ctx->active_reqs) {
1729 struct kiocb *kiocb = list_kiocb(pos);
1730 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1731 return kiocb;
1733 return NULL;
1736 /* sys_io_cancel:
1737 * Attempts to cancel an iocb previously passed to io_submit. If
1738 * the operation is successfully cancelled, the resulting event is
1739 * copied into the memory pointed to by result without being placed
1740 * into the completion queue and 0 is returned. May fail with
1741 * -EFAULT if any of the data structures pointed to are invalid.
1742 * May fail with -EINVAL if aio_context specified by ctx_id is
1743 * invalid. May fail with -EAGAIN if the iocb specified was not
1744 * cancelled. Will fail with -ENOSYS if not implemented.
1746 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1747 struct io_event __user *, result)
1749 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1750 struct kioctx *ctx;
1751 struct kiocb *kiocb;
1752 u32 key;
1753 int ret;
1755 ret = get_user(key, &iocb->aio_key);
1756 if (unlikely(ret))
1757 return -EFAULT;
1759 ctx = lookup_ioctx(ctx_id);
1760 if (unlikely(!ctx))
1761 return -EINVAL;
1763 spin_lock_irq(&ctx->ctx_lock);
1764 ret = -EAGAIN;
1765 kiocb = lookup_kiocb(ctx, iocb, key);
1766 if (kiocb && kiocb->ki_cancel) {
1767 cancel = kiocb->ki_cancel;
1768 kiocb->ki_users ++;
1769 kiocbSetCancelled(kiocb);
1770 } else
1771 cancel = NULL;
1772 spin_unlock_irq(&ctx->ctx_lock);
1774 if (NULL != cancel) {
1775 struct io_event tmp;
1776 pr_debug("calling cancel\n");
1777 memset(&tmp, 0, sizeof(tmp));
1778 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1779 tmp.data = kiocb->ki_user_data;
1780 ret = cancel(kiocb, &tmp);
1781 if (!ret) {
1782 /* Cancellation succeeded -- copy the result
1783 * into the user's buffer.
1785 if (copy_to_user(result, &tmp, sizeof(tmp)))
1786 ret = -EFAULT;
1788 } else
1789 ret = -EINVAL;
1791 put_ioctx(ctx);
1793 return ret;
1796 /* io_getevents:
1797 * Attempts to read at least min_nr events and up to nr events from
1798 * the completion queue for the aio_context specified by ctx_id. May
1799 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1800 * if nr is out of range, if when is out of range. May fail with
1801 * -EFAULT if any of the memory specified to is invalid. May return
1802 * 0 or < min_nr if no events are available and the timeout specified
1803 * by when has elapsed, where when == NULL specifies an infinite
1804 * timeout. Note that the timeout pointed to by when is relative and
1805 * will be updated if not NULL and the operation blocks. Will fail
1806 * with -ENOSYS if not implemented.
1808 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1809 long, min_nr,
1810 long, nr,
1811 struct io_event __user *, events,
1812 struct timespec __user *, timeout)
1814 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1815 long ret = -EINVAL;
1817 if (likely(ioctx)) {
1818 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1819 ret = read_events(ioctx, min_nr, nr, events, timeout);
1820 put_ioctx(ioctx);
1823 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1824 return ret;