uwb: Use kcalloc instead of kzalloc to allocate array
[zen-stable.git] / drivers / infiniband / hw / cxgb3 / iwch_cm.c
blobc88b12beef25be72383f3423894121882d76d009
1 /*
2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/skbuff.h>
37 #include <linux/timer.h>
38 #include <linux/notifier.h>
39 #include <linux/inetdevice.h>
41 #include <net/neighbour.h>
42 #include <net/netevent.h>
43 #include <net/route.h>
45 #include "tcb.h"
46 #include "cxgb3_offload.h"
47 #include "iwch.h"
48 #include "iwch_provider.h"
49 #include "iwch_cm.h"
51 static char *states[] = {
52 "idle",
53 "listen",
54 "connecting",
55 "mpa_wait_req",
56 "mpa_req_sent",
57 "mpa_req_rcvd",
58 "mpa_rep_sent",
59 "fpdu_mode",
60 "aborting",
61 "closing",
62 "moribund",
63 "dead",
64 NULL,
67 int peer2peer = 0;
68 module_param(peer2peer, int, 0644);
69 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
71 static int ep_timeout_secs = 60;
72 module_param(ep_timeout_secs, int, 0644);
73 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
74 "in seconds (default=60)");
76 static int mpa_rev = 1;
77 module_param(mpa_rev, int, 0644);
78 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
79 "1 is spec compliant. (default=1)");
81 static int markers_enabled = 0;
82 module_param(markers_enabled, int, 0644);
83 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
85 static int crc_enabled = 1;
86 module_param(crc_enabled, int, 0644);
87 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
89 static int rcv_win = 256 * 1024;
90 module_param(rcv_win, int, 0644);
91 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
93 static int snd_win = 32 * 1024;
94 module_param(snd_win, int, 0644);
95 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
97 static unsigned int nocong = 0;
98 module_param(nocong, uint, 0644);
99 MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
101 static unsigned int cong_flavor = 1;
102 module_param(cong_flavor, uint, 0644);
103 MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
105 static struct workqueue_struct *workq;
107 static struct sk_buff_head rxq;
109 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
110 static void ep_timeout(unsigned long arg);
111 static void connect_reply_upcall(struct iwch_ep *ep, int status);
113 static void start_ep_timer(struct iwch_ep *ep)
115 PDBG("%s ep %p\n", __func__, ep);
116 if (timer_pending(&ep->timer)) {
117 PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
118 del_timer_sync(&ep->timer);
119 } else
120 get_ep(&ep->com);
121 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
122 ep->timer.data = (unsigned long)ep;
123 ep->timer.function = ep_timeout;
124 add_timer(&ep->timer);
127 static void stop_ep_timer(struct iwch_ep *ep)
129 PDBG("%s ep %p\n", __func__, ep);
130 if (!timer_pending(&ep->timer)) {
131 printk(KERN_ERR "%s timer stopped when its not running! ep %p state %u\n",
132 __func__, ep, ep->com.state);
133 WARN_ON(1);
134 return;
136 del_timer_sync(&ep->timer);
137 put_ep(&ep->com);
140 static int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2e)
142 int error = 0;
143 struct cxio_rdev *rdev;
145 rdev = (struct cxio_rdev *)tdev->ulp;
146 if (cxio_fatal_error(rdev)) {
147 kfree_skb(skb);
148 return -EIO;
150 error = l2t_send(tdev, skb, l2e);
151 if (error < 0)
152 kfree_skb(skb);
153 return error;
156 int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb)
158 int error = 0;
159 struct cxio_rdev *rdev;
161 rdev = (struct cxio_rdev *)tdev->ulp;
162 if (cxio_fatal_error(rdev)) {
163 kfree_skb(skb);
164 return -EIO;
166 error = cxgb3_ofld_send(tdev, skb);
167 if (error < 0)
168 kfree_skb(skb);
169 return error;
172 static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
174 struct cpl_tid_release *req;
176 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
177 if (!skb)
178 return;
179 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
180 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
181 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
182 skb->priority = CPL_PRIORITY_SETUP;
183 iwch_cxgb3_ofld_send(tdev, skb);
184 return;
187 int iwch_quiesce_tid(struct iwch_ep *ep)
189 struct cpl_set_tcb_field *req;
190 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
192 if (!skb)
193 return -ENOMEM;
194 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
195 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
196 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
197 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
198 req->reply = 0;
199 req->cpu_idx = 0;
200 req->word = htons(W_TCB_RX_QUIESCE);
201 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
202 req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
204 skb->priority = CPL_PRIORITY_DATA;
205 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
208 int iwch_resume_tid(struct iwch_ep *ep)
210 struct cpl_set_tcb_field *req;
211 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
213 if (!skb)
214 return -ENOMEM;
215 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
216 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
217 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
218 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
219 req->reply = 0;
220 req->cpu_idx = 0;
221 req->word = htons(W_TCB_RX_QUIESCE);
222 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
223 req->val = 0;
225 skb->priority = CPL_PRIORITY_DATA;
226 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
229 static void set_emss(struct iwch_ep *ep, u16 opt)
231 PDBG("%s ep %p opt %u\n", __func__, ep, opt);
232 ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
233 if (G_TCPOPT_TSTAMP(opt))
234 ep->emss -= 12;
235 if (ep->emss < 128)
236 ep->emss = 128;
237 PDBG("emss=%d\n", ep->emss);
240 static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
242 unsigned long flags;
243 enum iwch_ep_state state;
245 spin_lock_irqsave(&epc->lock, flags);
246 state = epc->state;
247 spin_unlock_irqrestore(&epc->lock, flags);
248 return state;
251 static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
253 epc->state = new;
256 static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
258 unsigned long flags;
260 spin_lock_irqsave(&epc->lock, flags);
261 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
262 __state_set(epc, new);
263 spin_unlock_irqrestore(&epc->lock, flags);
264 return;
267 static void *alloc_ep(int size, gfp_t gfp)
269 struct iwch_ep_common *epc;
271 epc = kzalloc(size, gfp);
272 if (epc) {
273 kref_init(&epc->kref);
274 spin_lock_init(&epc->lock);
275 init_waitqueue_head(&epc->waitq);
277 PDBG("%s alloc ep %p\n", __func__, epc);
278 return epc;
281 void __free_ep(struct kref *kref)
283 struct iwch_ep *ep;
284 ep = container_of(container_of(kref, struct iwch_ep_common, kref),
285 struct iwch_ep, com);
286 PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
287 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
288 cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
289 dst_release(ep->dst);
290 l2t_release(ep->com.tdev, ep->l2t);
292 kfree(ep);
295 static void release_ep_resources(struct iwch_ep *ep)
297 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
298 set_bit(RELEASE_RESOURCES, &ep->com.flags);
299 put_ep(&ep->com);
302 static int status2errno(int status)
304 switch (status) {
305 case CPL_ERR_NONE:
306 return 0;
307 case CPL_ERR_CONN_RESET:
308 return -ECONNRESET;
309 case CPL_ERR_ARP_MISS:
310 return -EHOSTUNREACH;
311 case CPL_ERR_CONN_TIMEDOUT:
312 return -ETIMEDOUT;
313 case CPL_ERR_TCAM_FULL:
314 return -ENOMEM;
315 case CPL_ERR_CONN_EXIST:
316 return -EADDRINUSE;
317 default:
318 return -EIO;
323 * Try and reuse skbs already allocated...
325 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
327 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
328 skb_trim(skb, 0);
329 skb_get(skb);
330 } else {
331 skb = alloc_skb(len, gfp);
333 return skb;
336 static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
337 __be32 peer_ip, __be16 local_port,
338 __be16 peer_port, u8 tos)
340 struct rtable *rt;
341 struct flowi4 fl4;
343 rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
344 peer_port, local_port, IPPROTO_TCP,
345 tos, 0);
346 if (IS_ERR(rt))
347 return NULL;
348 return rt;
351 static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
353 int i = 0;
355 while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
356 ++i;
357 return i;
360 static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
362 PDBG("%s t3cdev %p\n", __func__, dev);
363 kfree_skb(skb);
367 * Handle an ARP failure for an active open.
369 static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
371 printk(KERN_ERR MOD "ARP failure duing connect\n");
372 kfree_skb(skb);
376 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
377 * and send it along.
379 static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
381 struct cpl_abort_req *req = cplhdr(skb);
383 PDBG("%s t3cdev %p\n", __func__, dev);
384 req->cmd = CPL_ABORT_NO_RST;
385 iwch_cxgb3_ofld_send(dev, skb);
388 static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
390 struct cpl_close_con_req *req;
391 struct sk_buff *skb;
393 PDBG("%s ep %p\n", __func__, ep);
394 skb = get_skb(NULL, sizeof(*req), gfp);
395 if (!skb) {
396 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
397 return -ENOMEM;
399 skb->priority = CPL_PRIORITY_DATA;
400 set_arp_failure_handler(skb, arp_failure_discard);
401 req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
402 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
403 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
404 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
405 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
408 static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
410 struct cpl_abort_req *req;
412 PDBG("%s ep %p\n", __func__, ep);
413 skb = get_skb(skb, sizeof(*req), gfp);
414 if (!skb) {
415 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
416 __func__);
417 return -ENOMEM;
419 skb->priority = CPL_PRIORITY_DATA;
420 set_arp_failure_handler(skb, abort_arp_failure);
421 req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
422 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
423 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
424 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
425 req->cmd = CPL_ABORT_SEND_RST;
426 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
429 static int send_connect(struct iwch_ep *ep)
431 struct cpl_act_open_req *req;
432 struct sk_buff *skb;
433 u32 opt0h, opt0l, opt2;
434 unsigned int mtu_idx;
435 int wscale;
437 PDBG("%s ep %p\n", __func__, ep);
439 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
440 if (!skb) {
441 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
442 __func__);
443 return -ENOMEM;
445 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
446 wscale = compute_wscale(rcv_win);
447 opt0h = V_NAGLE(0) |
448 V_NO_CONG(nocong) |
449 V_KEEP_ALIVE(1) |
450 F_TCAM_BYPASS |
451 V_WND_SCALE(wscale) |
452 V_MSS_IDX(mtu_idx) |
453 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
454 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
455 opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
456 V_CONG_CONTROL_FLAVOR(cong_flavor);
457 skb->priority = CPL_PRIORITY_SETUP;
458 set_arp_failure_handler(skb, act_open_req_arp_failure);
460 req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
461 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
462 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
463 req->local_port = ep->com.local_addr.sin_port;
464 req->peer_port = ep->com.remote_addr.sin_port;
465 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
466 req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
467 req->opt0h = htonl(opt0h);
468 req->opt0l = htonl(opt0l);
469 req->params = 0;
470 req->opt2 = htonl(opt2);
471 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
474 static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
476 int mpalen;
477 struct tx_data_wr *req;
478 struct mpa_message *mpa;
479 int len;
481 PDBG("%s ep %p pd_len %d\n", __func__, ep, ep->plen);
483 BUG_ON(skb_cloned(skb));
485 mpalen = sizeof(*mpa) + ep->plen;
486 if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
487 kfree_skb(skb);
488 skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
489 if (!skb) {
490 connect_reply_upcall(ep, -ENOMEM);
491 return;
494 skb_trim(skb, 0);
495 skb_reserve(skb, sizeof(*req));
496 skb_put(skb, mpalen);
497 skb->priority = CPL_PRIORITY_DATA;
498 mpa = (struct mpa_message *) skb->data;
499 memset(mpa, 0, sizeof(*mpa));
500 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
501 mpa->flags = (crc_enabled ? MPA_CRC : 0) |
502 (markers_enabled ? MPA_MARKERS : 0);
503 mpa->private_data_size = htons(ep->plen);
504 mpa->revision = mpa_rev;
506 if (ep->plen)
507 memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
510 * Reference the mpa skb. This ensures the data area
511 * will remain in memory until the hw acks the tx.
512 * Function tx_ack() will deref it.
514 skb_get(skb);
515 set_arp_failure_handler(skb, arp_failure_discard);
516 skb_reset_transport_header(skb);
517 len = skb->len;
518 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
519 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
520 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
521 req->len = htonl(len);
522 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
523 V_TX_SNDBUF(snd_win>>15));
524 req->flags = htonl(F_TX_INIT);
525 req->sndseq = htonl(ep->snd_seq);
526 BUG_ON(ep->mpa_skb);
527 ep->mpa_skb = skb;
528 iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
529 start_ep_timer(ep);
530 state_set(&ep->com, MPA_REQ_SENT);
531 return;
534 static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
536 int mpalen;
537 struct tx_data_wr *req;
538 struct mpa_message *mpa;
539 struct sk_buff *skb;
541 PDBG("%s ep %p plen %d\n", __func__, ep, plen);
543 mpalen = sizeof(*mpa) + plen;
545 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
546 if (!skb) {
547 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
548 return -ENOMEM;
550 skb_reserve(skb, sizeof(*req));
551 mpa = (struct mpa_message *) skb_put(skb, mpalen);
552 memset(mpa, 0, sizeof(*mpa));
553 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
554 mpa->flags = MPA_REJECT;
555 mpa->revision = mpa_rev;
556 mpa->private_data_size = htons(plen);
557 if (plen)
558 memcpy(mpa->private_data, pdata, plen);
561 * Reference the mpa skb again. This ensures the data area
562 * will remain in memory until the hw acks the tx.
563 * Function tx_ack() will deref it.
565 skb_get(skb);
566 skb->priority = CPL_PRIORITY_DATA;
567 set_arp_failure_handler(skb, arp_failure_discard);
568 skb_reset_transport_header(skb);
569 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
570 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
571 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
572 req->len = htonl(mpalen);
573 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
574 V_TX_SNDBUF(snd_win>>15));
575 req->flags = htonl(F_TX_INIT);
576 req->sndseq = htonl(ep->snd_seq);
577 BUG_ON(ep->mpa_skb);
578 ep->mpa_skb = skb;
579 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
582 static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
584 int mpalen;
585 struct tx_data_wr *req;
586 struct mpa_message *mpa;
587 int len;
588 struct sk_buff *skb;
590 PDBG("%s ep %p plen %d\n", __func__, ep, plen);
592 mpalen = sizeof(*mpa) + plen;
594 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
595 if (!skb) {
596 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
597 return -ENOMEM;
599 skb->priority = CPL_PRIORITY_DATA;
600 skb_reserve(skb, sizeof(*req));
601 mpa = (struct mpa_message *) skb_put(skb, mpalen);
602 memset(mpa, 0, sizeof(*mpa));
603 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
604 mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
605 (markers_enabled ? MPA_MARKERS : 0);
606 mpa->revision = mpa_rev;
607 mpa->private_data_size = htons(plen);
608 if (plen)
609 memcpy(mpa->private_data, pdata, plen);
612 * Reference the mpa skb. This ensures the data area
613 * will remain in memory until the hw acks the tx.
614 * Function tx_ack() will deref it.
616 skb_get(skb);
617 set_arp_failure_handler(skb, arp_failure_discard);
618 skb_reset_transport_header(skb);
619 len = skb->len;
620 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
621 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
622 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
623 req->len = htonl(len);
624 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
625 V_TX_SNDBUF(snd_win>>15));
626 req->flags = htonl(F_TX_INIT);
627 req->sndseq = htonl(ep->snd_seq);
628 ep->mpa_skb = skb;
629 state_set(&ep->com, MPA_REP_SENT);
630 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
633 static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
635 struct iwch_ep *ep = ctx;
636 struct cpl_act_establish *req = cplhdr(skb);
637 unsigned int tid = GET_TID(req);
639 PDBG("%s ep %p tid %d\n", __func__, ep, tid);
641 dst_confirm(ep->dst);
643 /* setup the hwtid for this connection */
644 ep->hwtid = tid;
645 cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
647 ep->snd_seq = ntohl(req->snd_isn);
648 ep->rcv_seq = ntohl(req->rcv_isn);
650 set_emss(ep, ntohs(req->tcp_opt));
652 /* dealloc the atid */
653 cxgb3_free_atid(ep->com.tdev, ep->atid);
655 /* start MPA negotiation */
656 send_mpa_req(ep, skb);
658 return 0;
661 static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
663 PDBG("%s ep %p\n", __FILE__, ep);
664 state_set(&ep->com, ABORTING);
665 send_abort(ep, skb, gfp);
668 static void close_complete_upcall(struct iwch_ep *ep)
670 struct iw_cm_event event;
672 PDBG("%s ep %p\n", __func__, ep);
673 memset(&event, 0, sizeof(event));
674 event.event = IW_CM_EVENT_CLOSE;
675 if (ep->com.cm_id) {
676 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
677 ep, ep->com.cm_id, ep->hwtid);
678 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
679 ep->com.cm_id->rem_ref(ep->com.cm_id);
680 ep->com.cm_id = NULL;
681 ep->com.qp = NULL;
685 static void peer_close_upcall(struct iwch_ep *ep)
687 struct iw_cm_event event;
689 PDBG("%s ep %p\n", __func__, ep);
690 memset(&event, 0, sizeof(event));
691 event.event = IW_CM_EVENT_DISCONNECT;
692 if (ep->com.cm_id) {
693 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
694 ep, ep->com.cm_id, ep->hwtid);
695 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
699 static void peer_abort_upcall(struct iwch_ep *ep)
701 struct iw_cm_event event;
703 PDBG("%s ep %p\n", __func__, ep);
704 memset(&event, 0, sizeof(event));
705 event.event = IW_CM_EVENT_CLOSE;
706 event.status = -ECONNRESET;
707 if (ep->com.cm_id) {
708 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
709 ep->com.cm_id, ep->hwtid);
710 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
711 ep->com.cm_id->rem_ref(ep->com.cm_id);
712 ep->com.cm_id = NULL;
713 ep->com.qp = NULL;
717 static void connect_reply_upcall(struct iwch_ep *ep, int status)
719 struct iw_cm_event event;
721 PDBG("%s ep %p status %d\n", __func__, ep, status);
722 memset(&event, 0, sizeof(event));
723 event.event = IW_CM_EVENT_CONNECT_REPLY;
724 event.status = status;
725 event.local_addr = ep->com.local_addr;
726 event.remote_addr = ep->com.remote_addr;
728 if ((status == 0) || (status == -ECONNREFUSED)) {
729 event.private_data_len = ep->plen;
730 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
732 if (ep->com.cm_id) {
733 PDBG("%s ep %p tid %d status %d\n", __func__, ep,
734 ep->hwtid, status);
735 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
737 if (status < 0) {
738 ep->com.cm_id->rem_ref(ep->com.cm_id);
739 ep->com.cm_id = NULL;
740 ep->com.qp = NULL;
744 static void connect_request_upcall(struct iwch_ep *ep)
746 struct iw_cm_event event;
748 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
749 memset(&event, 0, sizeof(event));
750 event.event = IW_CM_EVENT_CONNECT_REQUEST;
751 event.local_addr = ep->com.local_addr;
752 event.remote_addr = ep->com.remote_addr;
753 event.private_data_len = ep->plen;
754 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
755 event.provider_data = ep;
757 * Until ird/ord negotiation via MPAv2 support is added, send max
758 * supported values
760 event.ird = event.ord = 8;
761 if (state_read(&ep->parent_ep->com) != DEAD) {
762 get_ep(&ep->com);
763 ep->parent_ep->com.cm_id->event_handler(
764 ep->parent_ep->com.cm_id,
765 &event);
767 put_ep(&ep->parent_ep->com);
768 ep->parent_ep = NULL;
771 static void established_upcall(struct iwch_ep *ep)
773 struct iw_cm_event event;
775 PDBG("%s ep %p\n", __func__, ep);
776 memset(&event, 0, sizeof(event));
777 event.event = IW_CM_EVENT_ESTABLISHED;
779 * Until ird/ord negotiation via MPAv2 support is added, send max
780 * supported values
782 event.ird = event.ord = 8;
783 if (ep->com.cm_id) {
784 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
785 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
789 static int update_rx_credits(struct iwch_ep *ep, u32 credits)
791 struct cpl_rx_data_ack *req;
792 struct sk_buff *skb;
794 PDBG("%s ep %p credits %u\n", __func__, ep, credits);
795 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
796 if (!skb) {
797 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
798 return 0;
801 req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
802 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
803 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
804 req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
805 skb->priority = CPL_PRIORITY_ACK;
806 iwch_cxgb3_ofld_send(ep->com.tdev, skb);
807 return credits;
810 static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
812 struct mpa_message *mpa;
813 u16 plen;
814 struct iwch_qp_attributes attrs;
815 enum iwch_qp_attr_mask mask;
816 int err;
818 PDBG("%s ep %p\n", __func__, ep);
821 * Stop mpa timer. If it expired, then the state has
822 * changed and we bail since ep_timeout already aborted
823 * the connection.
825 stop_ep_timer(ep);
826 if (state_read(&ep->com) != MPA_REQ_SENT)
827 return;
830 * If we get more than the supported amount of private data
831 * then we must fail this connection.
833 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
834 err = -EINVAL;
835 goto err;
839 * copy the new data into our accumulation buffer.
841 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
842 skb->len);
843 ep->mpa_pkt_len += skb->len;
846 * if we don't even have the mpa message, then bail.
848 if (ep->mpa_pkt_len < sizeof(*mpa))
849 return;
850 mpa = (struct mpa_message *) ep->mpa_pkt;
852 /* Validate MPA header. */
853 if (mpa->revision != mpa_rev) {
854 err = -EPROTO;
855 goto err;
857 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
858 err = -EPROTO;
859 goto err;
862 plen = ntohs(mpa->private_data_size);
865 * Fail if there's too much private data.
867 if (plen > MPA_MAX_PRIVATE_DATA) {
868 err = -EPROTO;
869 goto err;
873 * If plen does not account for pkt size
875 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
876 err = -EPROTO;
877 goto err;
880 ep->plen = (u8) plen;
883 * If we don't have all the pdata yet, then bail.
884 * We'll continue process when more data arrives.
886 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
887 return;
889 if (mpa->flags & MPA_REJECT) {
890 err = -ECONNREFUSED;
891 goto err;
895 * If we get here we have accumulated the entire mpa
896 * start reply message including private data. And
897 * the MPA header is valid.
899 state_set(&ep->com, FPDU_MODE);
900 ep->mpa_attr.initiator = 1;
901 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
902 ep->mpa_attr.recv_marker_enabled = markers_enabled;
903 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
904 ep->mpa_attr.version = mpa_rev;
905 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
906 "xmit_marker_enabled=%d, version=%d\n", __func__,
907 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
908 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
910 attrs.mpa_attr = ep->mpa_attr;
911 attrs.max_ird = ep->ird;
912 attrs.max_ord = ep->ord;
913 attrs.llp_stream_handle = ep;
914 attrs.next_state = IWCH_QP_STATE_RTS;
916 mask = IWCH_QP_ATTR_NEXT_STATE |
917 IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
918 IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
920 /* bind QP and TID with INIT_WR */
921 err = iwch_modify_qp(ep->com.qp->rhp,
922 ep->com.qp, mask, &attrs, 1);
923 if (err)
924 goto err;
926 if (peer2peer && iwch_rqes_posted(ep->com.qp) == 0) {
927 iwch_post_zb_read(ep);
930 goto out;
931 err:
932 abort_connection(ep, skb, GFP_KERNEL);
933 out:
934 connect_reply_upcall(ep, err);
935 return;
938 static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
940 struct mpa_message *mpa;
941 u16 plen;
943 PDBG("%s ep %p\n", __func__, ep);
946 * Stop mpa timer. If it expired, then the state has
947 * changed and we bail since ep_timeout already aborted
948 * the connection.
950 stop_ep_timer(ep);
951 if (state_read(&ep->com) != MPA_REQ_WAIT)
952 return;
955 * If we get more than the supported amount of private data
956 * then we must fail this connection.
958 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
959 abort_connection(ep, skb, GFP_KERNEL);
960 return;
963 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
966 * Copy the new data into our accumulation buffer.
968 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
969 skb->len);
970 ep->mpa_pkt_len += skb->len;
973 * If we don't even have the mpa message, then bail.
974 * We'll continue process when more data arrives.
976 if (ep->mpa_pkt_len < sizeof(*mpa))
977 return;
978 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
979 mpa = (struct mpa_message *) ep->mpa_pkt;
982 * Validate MPA Header.
984 if (mpa->revision != mpa_rev) {
985 abort_connection(ep, skb, GFP_KERNEL);
986 return;
989 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
990 abort_connection(ep, skb, GFP_KERNEL);
991 return;
994 plen = ntohs(mpa->private_data_size);
997 * Fail if there's too much private data.
999 if (plen > MPA_MAX_PRIVATE_DATA) {
1000 abort_connection(ep, skb, GFP_KERNEL);
1001 return;
1005 * If plen does not account for pkt size
1007 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1008 abort_connection(ep, skb, GFP_KERNEL);
1009 return;
1011 ep->plen = (u8) plen;
1014 * If we don't have all the pdata yet, then bail.
1016 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1017 return;
1020 * If we get here we have accumulated the entire mpa
1021 * start reply message including private data.
1023 ep->mpa_attr.initiator = 0;
1024 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1025 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1026 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1027 ep->mpa_attr.version = mpa_rev;
1028 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1029 "xmit_marker_enabled=%d, version=%d\n", __func__,
1030 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1031 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
1033 state_set(&ep->com, MPA_REQ_RCVD);
1035 /* drive upcall */
1036 connect_request_upcall(ep);
1037 return;
1040 static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1042 struct iwch_ep *ep = ctx;
1043 struct cpl_rx_data *hdr = cplhdr(skb);
1044 unsigned int dlen = ntohs(hdr->len);
1046 PDBG("%s ep %p dlen %u\n", __func__, ep, dlen);
1048 skb_pull(skb, sizeof(*hdr));
1049 skb_trim(skb, dlen);
1051 ep->rcv_seq += dlen;
1052 BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1054 switch (state_read(&ep->com)) {
1055 case MPA_REQ_SENT:
1056 process_mpa_reply(ep, skb);
1057 break;
1058 case MPA_REQ_WAIT:
1059 process_mpa_request(ep, skb);
1060 break;
1061 case MPA_REP_SENT:
1062 break;
1063 default:
1064 printk(KERN_ERR MOD "%s Unexpected streaming data."
1065 " ep %p state %d tid %d\n",
1066 __func__, ep, state_read(&ep->com), ep->hwtid);
1069 * The ep will timeout and inform the ULP of the failure.
1070 * See ep_timeout().
1072 break;
1075 /* update RX credits */
1076 update_rx_credits(ep, dlen);
1078 return CPL_RET_BUF_DONE;
1082 * Upcall from the adapter indicating data has been transmitted.
1083 * For us its just the single MPA request or reply. We can now free
1084 * the skb holding the mpa message.
1086 static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1088 struct iwch_ep *ep = ctx;
1089 struct cpl_wr_ack *hdr = cplhdr(skb);
1090 unsigned int credits = ntohs(hdr->credits);
1091 unsigned long flags;
1092 int post_zb = 0;
1094 PDBG("%s ep %p credits %u\n", __func__, ep, credits);
1096 if (credits == 0) {
1097 PDBG("%s 0 credit ack ep %p state %u\n",
1098 __func__, ep, state_read(&ep->com));
1099 return CPL_RET_BUF_DONE;
1102 spin_lock_irqsave(&ep->com.lock, flags);
1103 BUG_ON(credits != 1);
1104 dst_confirm(ep->dst);
1105 if (!ep->mpa_skb) {
1106 PDBG("%s rdma_init wr_ack ep %p state %u\n",
1107 __func__, ep, ep->com.state);
1108 if (ep->mpa_attr.initiator) {
1109 PDBG("%s initiator ep %p state %u\n",
1110 __func__, ep, ep->com.state);
1111 if (peer2peer && ep->com.state == FPDU_MODE)
1112 post_zb = 1;
1113 } else {
1114 PDBG("%s responder ep %p state %u\n",
1115 __func__, ep, ep->com.state);
1116 if (ep->com.state == MPA_REQ_RCVD) {
1117 ep->com.rpl_done = 1;
1118 wake_up(&ep->com.waitq);
1121 } else {
1122 PDBG("%s lsm ack ep %p state %u freeing skb\n",
1123 __func__, ep, ep->com.state);
1124 kfree_skb(ep->mpa_skb);
1125 ep->mpa_skb = NULL;
1127 spin_unlock_irqrestore(&ep->com.lock, flags);
1128 if (post_zb)
1129 iwch_post_zb_read(ep);
1130 return CPL_RET_BUF_DONE;
1133 static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1135 struct iwch_ep *ep = ctx;
1136 unsigned long flags;
1137 int release = 0;
1139 PDBG("%s ep %p\n", __func__, ep);
1140 BUG_ON(!ep);
1143 * We get 2 abort replies from the HW. The first one must
1144 * be ignored except for scribbling that we need one more.
1146 if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) {
1147 return CPL_RET_BUF_DONE;
1150 spin_lock_irqsave(&ep->com.lock, flags);
1151 switch (ep->com.state) {
1152 case ABORTING:
1153 close_complete_upcall(ep);
1154 __state_set(&ep->com, DEAD);
1155 release = 1;
1156 break;
1157 default:
1158 printk(KERN_ERR "%s ep %p state %d\n",
1159 __func__, ep, ep->com.state);
1160 break;
1162 spin_unlock_irqrestore(&ep->com.lock, flags);
1164 if (release)
1165 release_ep_resources(ep);
1166 return CPL_RET_BUF_DONE;
1170 * Return whether a failed active open has allocated a TID
1172 static inline int act_open_has_tid(int status)
1174 return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1175 status != CPL_ERR_ARP_MISS;
1178 static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1180 struct iwch_ep *ep = ctx;
1181 struct cpl_act_open_rpl *rpl = cplhdr(skb);
1183 PDBG("%s ep %p status %u errno %d\n", __func__, ep, rpl->status,
1184 status2errno(rpl->status));
1185 connect_reply_upcall(ep, status2errno(rpl->status));
1186 state_set(&ep->com, DEAD);
1187 if (ep->com.tdev->type != T3A && act_open_has_tid(rpl->status))
1188 release_tid(ep->com.tdev, GET_TID(rpl), NULL);
1189 cxgb3_free_atid(ep->com.tdev, ep->atid);
1190 dst_release(ep->dst);
1191 l2t_release(ep->com.tdev, ep->l2t);
1192 put_ep(&ep->com);
1193 return CPL_RET_BUF_DONE;
1196 static int listen_start(struct iwch_listen_ep *ep)
1198 struct sk_buff *skb;
1199 struct cpl_pass_open_req *req;
1201 PDBG("%s ep %p\n", __func__, ep);
1202 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1203 if (!skb) {
1204 printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
1205 return -ENOMEM;
1208 req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
1209 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1210 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
1211 req->local_port = ep->com.local_addr.sin_port;
1212 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
1213 req->peer_port = 0;
1214 req->peer_ip = 0;
1215 req->peer_netmask = 0;
1216 req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
1217 req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
1218 req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
1220 skb->priority = 1;
1221 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1224 static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1226 struct iwch_listen_ep *ep = ctx;
1227 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1229 PDBG("%s ep %p status %d error %d\n", __func__, ep,
1230 rpl->status, status2errno(rpl->status));
1231 ep->com.rpl_err = status2errno(rpl->status);
1232 ep->com.rpl_done = 1;
1233 wake_up(&ep->com.waitq);
1235 return CPL_RET_BUF_DONE;
1238 static int listen_stop(struct iwch_listen_ep *ep)
1240 struct sk_buff *skb;
1241 struct cpl_close_listserv_req *req;
1243 PDBG("%s ep %p\n", __func__, ep);
1244 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1245 if (!skb) {
1246 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
1247 return -ENOMEM;
1249 req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
1250 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1251 req->cpu_idx = 0;
1252 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
1253 skb->priority = 1;
1254 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1257 static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
1258 void *ctx)
1260 struct iwch_listen_ep *ep = ctx;
1261 struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
1263 PDBG("%s ep %p\n", __func__, ep);
1264 ep->com.rpl_err = status2errno(rpl->status);
1265 ep->com.rpl_done = 1;
1266 wake_up(&ep->com.waitq);
1267 return CPL_RET_BUF_DONE;
1270 static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
1272 struct cpl_pass_accept_rpl *rpl;
1273 unsigned int mtu_idx;
1274 u32 opt0h, opt0l, opt2;
1275 int wscale;
1277 PDBG("%s ep %p\n", __func__, ep);
1278 BUG_ON(skb_cloned(skb));
1279 skb_trim(skb, sizeof(*rpl));
1280 skb_get(skb);
1281 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
1282 wscale = compute_wscale(rcv_win);
1283 opt0h = V_NAGLE(0) |
1284 V_NO_CONG(nocong) |
1285 V_KEEP_ALIVE(1) |
1286 F_TCAM_BYPASS |
1287 V_WND_SCALE(wscale) |
1288 V_MSS_IDX(mtu_idx) |
1289 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
1290 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
1291 opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1292 V_CONG_CONTROL_FLAVOR(cong_flavor);
1294 rpl = cplhdr(skb);
1295 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1296 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
1297 rpl->peer_ip = peer_ip;
1298 rpl->opt0h = htonl(opt0h);
1299 rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
1300 rpl->opt2 = htonl(opt2);
1301 rpl->rsvd = rpl->opt2; /* workaround for HW bug */
1302 skb->priority = CPL_PRIORITY_SETUP;
1303 iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
1305 return;
1308 static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
1309 struct sk_buff *skb)
1311 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__, tdev, hwtid,
1312 peer_ip);
1313 BUG_ON(skb_cloned(skb));
1314 skb_trim(skb, sizeof(struct cpl_tid_release));
1315 skb_get(skb);
1317 if (tdev->type != T3A)
1318 release_tid(tdev, hwtid, skb);
1319 else {
1320 struct cpl_pass_accept_rpl *rpl;
1322 rpl = cplhdr(skb);
1323 skb->priority = CPL_PRIORITY_SETUP;
1324 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1325 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1326 hwtid));
1327 rpl->peer_ip = peer_ip;
1328 rpl->opt0h = htonl(F_TCAM_BYPASS);
1329 rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
1330 rpl->opt2 = 0;
1331 rpl->rsvd = rpl->opt2;
1332 iwch_cxgb3_ofld_send(tdev, skb);
1336 static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1338 struct iwch_ep *child_ep, *parent_ep = ctx;
1339 struct cpl_pass_accept_req *req = cplhdr(skb);
1340 unsigned int hwtid = GET_TID(req);
1341 struct neighbour *neigh;
1342 struct dst_entry *dst;
1343 struct l2t_entry *l2t;
1344 struct rtable *rt;
1345 struct iff_mac tim;
1347 PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
1349 if (state_read(&parent_ep->com) != LISTEN) {
1350 printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1351 __func__);
1352 goto reject;
1356 * Find the netdev for this connection request.
1358 tim.mac_addr = req->dst_mac;
1359 tim.vlan_tag = ntohs(req->vlan_tag);
1360 if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
1361 printk(KERN_ERR "%s bad dst mac %pM\n",
1362 __func__, req->dst_mac);
1363 goto reject;
1366 /* Find output route */
1367 rt = find_route(tdev,
1368 req->local_ip,
1369 req->peer_ip,
1370 req->local_port,
1371 req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
1372 if (!rt) {
1373 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1374 __func__);
1375 goto reject;
1377 dst = &rt->dst;
1378 rcu_read_lock();
1379 neigh = dst_get_neighbour(dst);
1380 l2t = t3_l2t_get(tdev, neigh, neigh->dev);
1381 rcu_read_unlock();
1382 if (!l2t) {
1383 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1384 __func__);
1385 dst_release(dst);
1386 goto reject;
1388 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1389 if (!child_ep) {
1390 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1391 __func__);
1392 l2t_release(tdev, l2t);
1393 dst_release(dst);
1394 goto reject;
1396 state_set(&child_ep->com, CONNECTING);
1397 child_ep->com.tdev = tdev;
1398 child_ep->com.cm_id = NULL;
1399 child_ep->com.local_addr.sin_family = PF_INET;
1400 child_ep->com.local_addr.sin_port = req->local_port;
1401 child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
1402 child_ep->com.remote_addr.sin_family = PF_INET;
1403 child_ep->com.remote_addr.sin_port = req->peer_port;
1404 child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
1405 get_ep(&parent_ep->com);
1406 child_ep->parent_ep = parent_ep;
1407 child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
1408 child_ep->l2t = l2t;
1409 child_ep->dst = dst;
1410 child_ep->hwtid = hwtid;
1411 init_timer(&child_ep->timer);
1412 cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
1413 accept_cr(child_ep, req->peer_ip, skb);
1414 goto out;
1415 reject:
1416 reject_cr(tdev, hwtid, req->peer_ip, skb);
1417 out:
1418 return CPL_RET_BUF_DONE;
1421 static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1423 struct iwch_ep *ep = ctx;
1424 struct cpl_pass_establish *req = cplhdr(skb);
1426 PDBG("%s ep %p\n", __func__, ep);
1427 ep->snd_seq = ntohl(req->snd_isn);
1428 ep->rcv_seq = ntohl(req->rcv_isn);
1430 set_emss(ep, ntohs(req->tcp_opt));
1432 dst_confirm(ep->dst);
1433 state_set(&ep->com, MPA_REQ_WAIT);
1434 start_ep_timer(ep);
1436 return CPL_RET_BUF_DONE;
1439 static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1441 struct iwch_ep *ep = ctx;
1442 struct iwch_qp_attributes attrs;
1443 unsigned long flags;
1444 int disconnect = 1;
1445 int release = 0;
1447 PDBG("%s ep %p\n", __func__, ep);
1448 dst_confirm(ep->dst);
1450 spin_lock_irqsave(&ep->com.lock, flags);
1451 switch (ep->com.state) {
1452 case MPA_REQ_WAIT:
1453 __state_set(&ep->com, CLOSING);
1454 break;
1455 case MPA_REQ_SENT:
1456 __state_set(&ep->com, CLOSING);
1457 connect_reply_upcall(ep, -ECONNRESET);
1458 break;
1459 case MPA_REQ_RCVD:
1462 * We're gonna mark this puppy DEAD, but keep
1463 * the reference on it until the ULP accepts or
1464 * rejects the CR. Also wake up anyone waiting
1465 * in rdma connection migration (see iwch_accept_cr()).
1467 __state_set(&ep->com, CLOSING);
1468 ep->com.rpl_done = 1;
1469 ep->com.rpl_err = -ECONNRESET;
1470 PDBG("waking up ep %p\n", ep);
1471 wake_up(&ep->com.waitq);
1472 break;
1473 case MPA_REP_SENT:
1474 __state_set(&ep->com, CLOSING);
1475 ep->com.rpl_done = 1;
1476 ep->com.rpl_err = -ECONNRESET;
1477 PDBG("waking up ep %p\n", ep);
1478 wake_up(&ep->com.waitq);
1479 break;
1480 case FPDU_MODE:
1481 start_ep_timer(ep);
1482 __state_set(&ep->com, CLOSING);
1483 attrs.next_state = IWCH_QP_STATE_CLOSING;
1484 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1485 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1486 peer_close_upcall(ep);
1487 break;
1488 case ABORTING:
1489 disconnect = 0;
1490 break;
1491 case CLOSING:
1492 __state_set(&ep->com, MORIBUND);
1493 disconnect = 0;
1494 break;
1495 case MORIBUND:
1496 stop_ep_timer(ep);
1497 if (ep->com.cm_id && ep->com.qp) {
1498 attrs.next_state = IWCH_QP_STATE_IDLE;
1499 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1500 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1502 close_complete_upcall(ep);
1503 __state_set(&ep->com, DEAD);
1504 release = 1;
1505 disconnect = 0;
1506 break;
1507 case DEAD:
1508 disconnect = 0;
1509 break;
1510 default:
1511 BUG_ON(1);
1513 spin_unlock_irqrestore(&ep->com.lock, flags);
1514 if (disconnect)
1515 iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1516 if (release)
1517 release_ep_resources(ep);
1518 return CPL_RET_BUF_DONE;
1522 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1524 static int is_neg_adv_abort(unsigned int status)
1526 return status == CPL_ERR_RTX_NEG_ADVICE ||
1527 status == CPL_ERR_PERSIST_NEG_ADVICE;
1530 static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1532 struct cpl_abort_req_rss *req = cplhdr(skb);
1533 struct iwch_ep *ep = ctx;
1534 struct cpl_abort_rpl *rpl;
1535 struct sk_buff *rpl_skb;
1536 struct iwch_qp_attributes attrs;
1537 int ret;
1538 int release = 0;
1539 unsigned long flags;
1541 if (is_neg_adv_abort(req->status)) {
1542 PDBG("%s neg_adv_abort ep %p tid %d\n", __func__, ep,
1543 ep->hwtid);
1544 t3_l2t_send_event(ep->com.tdev, ep->l2t);
1545 return CPL_RET_BUF_DONE;
1549 * We get 2 peer aborts from the HW. The first one must
1550 * be ignored except for scribbling that we need one more.
1552 if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) {
1553 return CPL_RET_BUF_DONE;
1556 spin_lock_irqsave(&ep->com.lock, flags);
1557 PDBG("%s ep %p state %u\n", __func__, ep, ep->com.state);
1558 switch (ep->com.state) {
1559 case CONNECTING:
1560 break;
1561 case MPA_REQ_WAIT:
1562 stop_ep_timer(ep);
1563 break;
1564 case MPA_REQ_SENT:
1565 stop_ep_timer(ep);
1566 connect_reply_upcall(ep, -ECONNRESET);
1567 break;
1568 case MPA_REP_SENT:
1569 ep->com.rpl_done = 1;
1570 ep->com.rpl_err = -ECONNRESET;
1571 PDBG("waking up ep %p\n", ep);
1572 wake_up(&ep->com.waitq);
1573 break;
1574 case MPA_REQ_RCVD:
1577 * We're gonna mark this puppy DEAD, but keep
1578 * the reference on it until the ULP accepts or
1579 * rejects the CR. Also wake up anyone waiting
1580 * in rdma connection migration (see iwch_accept_cr()).
1582 ep->com.rpl_done = 1;
1583 ep->com.rpl_err = -ECONNRESET;
1584 PDBG("waking up ep %p\n", ep);
1585 wake_up(&ep->com.waitq);
1586 break;
1587 case MORIBUND:
1588 case CLOSING:
1589 stop_ep_timer(ep);
1590 /*FALLTHROUGH*/
1591 case FPDU_MODE:
1592 if (ep->com.cm_id && ep->com.qp) {
1593 attrs.next_state = IWCH_QP_STATE_ERROR;
1594 ret = iwch_modify_qp(ep->com.qp->rhp,
1595 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1596 &attrs, 1);
1597 if (ret)
1598 printk(KERN_ERR MOD
1599 "%s - qp <- error failed!\n",
1600 __func__);
1602 peer_abort_upcall(ep);
1603 break;
1604 case ABORTING:
1605 break;
1606 case DEAD:
1607 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
1608 spin_unlock_irqrestore(&ep->com.lock, flags);
1609 return CPL_RET_BUF_DONE;
1610 default:
1611 BUG_ON(1);
1612 break;
1614 dst_confirm(ep->dst);
1615 if (ep->com.state != ABORTING) {
1616 __state_set(&ep->com, DEAD);
1617 release = 1;
1619 spin_unlock_irqrestore(&ep->com.lock, flags);
1621 rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
1622 if (!rpl_skb) {
1623 printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
1624 __func__);
1625 release = 1;
1626 goto out;
1628 rpl_skb->priority = CPL_PRIORITY_DATA;
1629 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
1630 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
1631 rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
1632 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
1633 rpl->cmd = CPL_ABORT_NO_RST;
1634 iwch_cxgb3_ofld_send(ep->com.tdev, rpl_skb);
1635 out:
1636 if (release)
1637 release_ep_resources(ep);
1638 return CPL_RET_BUF_DONE;
1641 static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1643 struct iwch_ep *ep = ctx;
1644 struct iwch_qp_attributes attrs;
1645 unsigned long flags;
1646 int release = 0;
1648 PDBG("%s ep %p\n", __func__, ep);
1649 BUG_ON(!ep);
1651 /* The cm_id may be null if we failed to connect */
1652 spin_lock_irqsave(&ep->com.lock, flags);
1653 switch (ep->com.state) {
1654 case CLOSING:
1655 __state_set(&ep->com, MORIBUND);
1656 break;
1657 case MORIBUND:
1658 stop_ep_timer(ep);
1659 if ((ep->com.cm_id) && (ep->com.qp)) {
1660 attrs.next_state = IWCH_QP_STATE_IDLE;
1661 iwch_modify_qp(ep->com.qp->rhp,
1662 ep->com.qp,
1663 IWCH_QP_ATTR_NEXT_STATE,
1664 &attrs, 1);
1666 close_complete_upcall(ep);
1667 __state_set(&ep->com, DEAD);
1668 release = 1;
1669 break;
1670 case ABORTING:
1671 case DEAD:
1672 break;
1673 default:
1674 BUG_ON(1);
1675 break;
1677 spin_unlock_irqrestore(&ep->com.lock, flags);
1678 if (release)
1679 release_ep_resources(ep);
1680 return CPL_RET_BUF_DONE;
1684 * T3A does 3 things when a TERM is received:
1685 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1686 * 2) generate an async event on the QP with the TERMINATE opcode
1687 * 3) post a TERMINATE opcde cqe into the associated CQ.
1689 * For (1), we save the message in the qp for later consumer consumption.
1690 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1691 * For (3), we toss the CQE in cxio_poll_cq().
1693 * terminate() handles case (1)...
1695 static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1697 struct iwch_ep *ep = ctx;
1699 if (state_read(&ep->com) != FPDU_MODE)
1700 return CPL_RET_BUF_DONE;
1702 PDBG("%s ep %p\n", __func__, ep);
1703 skb_pull(skb, sizeof(struct cpl_rdma_terminate));
1704 PDBG("%s saving %d bytes of term msg\n", __func__, skb->len);
1705 skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
1706 skb->len);
1707 ep->com.qp->attr.terminate_msg_len = skb->len;
1708 ep->com.qp->attr.is_terminate_local = 0;
1709 return CPL_RET_BUF_DONE;
1712 static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1714 struct cpl_rdma_ec_status *rep = cplhdr(skb);
1715 struct iwch_ep *ep = ctx;
1717 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid,
1718 rep->status);
1719 if (rep->status) {
1720 struct iwch_qp_attributes attrs;
1722 printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
1723 __func__, ep->hwtid);
1724 stop_ep_timer(ep);
1725 attrs.next_state = IWCH_QP_STATE_ERROR;
1726 iwch_modify_qp(ep->com.qp->rhp,
1727 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1728 &attrs, 1);
1729 abort_connection(ep, NULL, GFP_KERNEL);
1731 return CPL_RET_BUF_DONE;
1734 static void ep_timeout(unsigned long arg)
1736 struct iwch_ep *ep = (struct iwch_ep *)arg;
1737 struct iwch_qp_attributes attrs;
1738 unsigned long flags;
1739 int abort = 1;
1741 spin_lock_irqsave(&ep->com.lock, flags);
1742 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
1743 ep->com.state);
1744 switch (ep->com.state) {
1745 case MPA_REQ_SENT:
1746 __state_set(&ep->com, ABORTING);
1747 connect_reply_upcall(ep, -ETIMEDOUT);
1748 break;
1749 case MPA_REQ_WAIT:
1750 __state_set(&ep->com, ABORTING);
1751 break;
1752 case CLOSING:
1753 case MORIBUND:
1754 if (ep->com.cm_id && ep->com.qp) {
1755 attrs.next_state = IWCH_QP_STATE_ERROR;
1756 iwch_modify_qp(ep->com.qp->rhp,
1757 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1758 &attrs, 1);
1760 __state_set(&ep->com, ABORTING);
1761 break;
1762 default:
1763 printk(KERN_ERR "%s unexpected state ep %p state %u\n",
1764 __func__, ep, ep->com.state);
1765 WARN_ON(1);
1766 abort = 0;
1768 spin_unlock_irqrestore(&ep->com.lock, flags);
1769 if (abort)
1770 abort_connection(ep, NULL, GFP_ATOMIC);
1771 put_ep(&ep->com);
1774 int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
1776 int err;
1777 struct iwch_ep *ep = to_ep(cm_id);
1778 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1780 if (state_read(&ep->com) == DEAD) {
1781 put_ep(&ep->com);
1782 return -ECONNRESET;
1784 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1785 if (mpa_rev == 0)
1786 abort_connection(ep, NULL, GFP_KERNEL);
1787 else {
1788 err = send_mpa_reject(ep, pdata, pdata_len);
1789 err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1791 put_ep(&ep->com);
1792 return 0;
1795 int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1797 int err;
1798 struct iwch_qp_attributes attrs;
1799 enum iwch_qp_attr_mask mask;
1800 struct iwch_ep *ep = to_ep(cm_id);
1801 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1802 struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
1804 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1805 if (state_read(&ep->com) == DEAD) {
1806 err = -ECONNRESET;
1807 goto err;
1810 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1811 BUG_ON(!qp);
1813 if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
1814 (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
1815 abort_connection(ep, NULL, GFP_KERNEL);
1816 err = -EINVAL;
1817 goto err;
1820 cm_id->add_ref(cm_id);
1821 ep->com.cm_id = cm_id;
1822 ep->com.qp = qp;
1824 ep->ird = conn_param->ird;
1825 ep->ord = conn_param->ord;
1827 if (peer2peer && ep->ird == 0)
1828 ep->ird = 1;
1830 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
1832 /* bind QP to EP and move to RTS */
1833 attrs.mpa_attr = ep->mpa_attr;
1834 attrs.max_ird = ep->ird;
1835 attrs.max_ord = ep->ord;
1836 attrs.llp_stream_handle = ep;
1837 attrs.next_state = IWCH_QP_STATE_RTS;
1839 /* bind QP and TID with INIT_WR */
1840 mask = IWCH_QP_ATTR_NEXT_STATE |
1841 IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1842 IWCH_QP_ATTR_MPA_ATTR |
1843 IWCH_QP_ATTR_MAX_IRD |
1844 IWCH_QP_ATTR_MAX_ORD;
1846 err = iwch_modify_qp(ep->com.qp->rhp,
1847 ep->com.qp, mask, &attrs, 1);
1848 if (err)
1849 goto err1;
1851 /* if needed, wait for wr_ack */
1852 if (iwch_rqes_posted(qp)) {
1853 wait_event(ep->com.waitq, ep->com.rpl_done);
1854 err = ep->com.rpl_err;
1855 if (err)
1856 goto err1;
1859 err = send_mpa_reply(ep, conn_param->private_data,
1860 conn_param->private_data_len);
1861 if (err)
1862 goto err1;
1865 state_set(&ep->com, FPDU_MODE);
1866 established_upcall(ep);
1867 put_ep(&ep->com);
1868 return 0;
1869 err1:
1870 ep->com.cm_id = NULL;
1871 ep->com.qp = NULL;
1872 cm_id->rem_ref(cm_id);
1873 err:
1874 put_ep(&ep->com);
1875 return err;
1878 static int is_loopback_dst(struct iw_cm_id *cm_id)
1880 struct net_device *dev;
1882 dev = ip_dev_find(&init_net, cm_id->remote_addr.sin_addr.s_addr);
1883 if (!dev)
1884 return 0;
1885 dev_put(dev);
1886 return 1;
1889 int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1891 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1892 struct neighbour *neigh;
1893 struct iwch_ep *ep;
1894 struct rtable *rt;
1895 int err = 0;
1897 if (is_loopback_dst(cm_id)) {
1898 err = -ENOSYS;
1899 goto out;
1902 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1903 if (!ep) {
1904 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1905 err = -ENOMEM;
1906 goto out;
1908 init_timer(&ep->timer);
1909 ep->plen = conn_param->private_data_len;
1910 if (ep->plen)
1911 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
1912 conn_param->private_data, ep->plen);
1913 ep->ird = conn_param->ird;
1914 ep->ord = conn_param->ord;
1916 if (peer2peer && ep->ord == 0)
1917 ep->ord = 1;
1919 ep->com.tdev = h->rdev.t3cdev_p;
1921 cm_id->add_ref(cm_id);
1922 ep->com.cm_id = cm_id;
1923 ep->com.qp = get_qhp(h, conn_param->qpn);
1924 BUG_ON(!ep->com.qp);
1925 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
1926 ep->com.qp, cm_id);
1929 * Allocate an active TID to initiate a TCP connection.
1931 ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
1932 if (ep->atid == -1) {
1933 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1934 err = -ENOMEM;
1935 goto fail2;
1938 /* find a route */
1939 rt = find_route(h->rdev.t3cdev_p,
1940 cm_id->local_addr.sin_addr.s_addr,
1941 cm_id->remote_addr.sin_addr.s_addr,
1942 cm_id->local_addr.sin_port,
1943 cm_id->remote_addr.sin_port, IPTOS_LOWDELAY);
1944 if (!rt) {
1945 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
1946 err = -EHOSTUNREACH;
1947 goto fail3;
1949 ep->dst = &rt->dst;
1951 rcu_read_lock();
1952 neigh = dst_get_neighbour(ep->dst);
1954 /* get a l2t entry */
1955 ep->l2t = t3_l2t_get(ep->com.tdev, neigh, neigh->dev);
1956 rcu_read_unlock();
1957 if (!ep->l2t) {
1958 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
1959 err = -ENOMEM;
1960 goto fail4;
1963 state_set(&ep->com, CONNECTING);
1964 ep->tos = IPTOS_LOWDELAY;
1965 ep->com.local_addr = cm_id->local_addr;
1966 ep->com.remote_addr = cm_id->remote_addr;
1968 /* send connect request to rnic */
1969 err = send_connect(ep);
1970 if (!err)
1971 goto out;
1973 l2t_release(h->rdev.t3cdev_p, ep->l2t);
1974 fail4:
1975 dst_release(ep->dst);
1976 fail3:
1977 cxgb3_free_atid(ep->com.tdev, ep->atid);
1978 fail2:
1979 cm_id->rem_ref(cm_id);
1980 put_ep(&ep->com);
1981 out:
1982 return err;
1985 int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
1987 int err = 0;
1988 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1989 struct iwch_listen_ep *ep;
1992 might_sleep();
1994 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1995 if (!ep) {
1996 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1997 err = -ENOMEM;
1998 goto fail1;
2000 PDBG("%s ep %p\n", __func__, ep);
2001 ep->com.tdev = h->rdev.t3cdev_p;
2002 cm_id->add_ref(cm_id);
2003 ep->com.cm_id = cm_id;
2004 ep->backlog = backlog;
2005 ep->com.local_addr = cm_id->local_addr;
2008 * Allocate a server TID.
2010 ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
2011 if (ep->stid == -1) {
2012 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
2013 err = -ENOMEM;
2014 goto fail2;
2017 state_set(&ep->com, LISTEN);
2018 err = listen_start(ep);
2019 if (err)
2020 goto fail3;
2022 /* wait for pass_open_rpl */
2023 wait_event(ep->com.waitq, ep->com.rpl_done);
2024 err = ep->com.rpl_err;
2025 if (!err) {
2026 cm_id->provider_data = ep;
2027 goto out;
2029 fail3:
2030 cxgb3_free_stid(ep->com.tdev, ep->stid);
2031 fail2:
2032 cm_id->rem_ref(cm_id);
2033 put_ep(&ep->com);
2034 fail1:
2035 out:
2036 return err;
2039 int iwch_destroy_listen(struct iw_cm_id *cm_id)
2041 int err;
2042 struct iwch_listen_ep *ep = to_listen_ep(cm_id);
2044 PDBG("%s ep %p\n", __func__, ep);
2046 might_sleep();
2047 state_set(&ep->com, DEAD);
2048 ep->com.rpl_done = 0;
2049 ep->com.rpl_err = 0;
2050 err = listen_stop(ep);
2051 if (err)
2052 goto done;
2053 wait_event(ep->com.waitq, ep->com.rpl_done);
2054 cxgb3_free_stid(ep->com.tdev, ep->stid);
2055 done:
2056 err = ep->com.rpl_err;
2057 cm_id->rem_ref(cm_id);
2058 put_ep(&ep->com);
2059 return err;
2062 int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
2064 int ret=0;
2065 unsigned long flags;
2066 int close = 0;
2067 int fatal = 0;
2068 struct t3cdev *tdev;
2069 struct cxio_rdev *rdev;
2071 spin_lock_irqsave(&ep->com.lock, flags);
2073 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
2074 states[ep->com.state], abrupt);
2076 tdev = (struct t3cdev *)ep->com.tdev;
2077 rdev = (struct cxio_rdev *)tdev->ulp;
2078 if (cxio_fatal_error(rdev)) {
2079 fatal = 1;
2080 close_complete_upcall(ep);
2081 ep->com.state = DEAD;
2083 switch (ep->com.state) {
2084 case MPA_REQ_WAIT:
2085 case MPA_REQ_SENT:
2086 case MPA_REQ_RCVD:
2087 case MPA_REP_SENT:
2088 case FPDU_MODE:
2089 close = 1;
2090 if (abrupt)
2091 ep->com.state = ABORTING;
2092 else {
2093 ep->com.state = CLOSING;
2094 start_ep_timer(ep);
2096 set_bit(CLOSE_SENT, &ep->com.flags);
2097 break;
2098 case CLOSING:
2099 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
2100 close = 1;
2101 if (abrupt) {
2102 stop_ep_timer(ep);
2103 ep->com.state = ABORTING;
2104 } else
2105 ep->com.state = MORIBUND;
2107 break;
2108 case MORIBUND:
2109 case ABORTING:
2110 case DEAD:
2111 PDBG("%s ignoring disconnect ep %p state %u\n",
2112 __func__, ep, ep->com.state);
2113 break;
2114 default:
2115 BUG();
2116 break;
2119 spin_unlock_irqrestore(&ep->com.lock, flags);
2120 if (close) {
2121 if (abrupt)
2122 ret = send_abort(ep, NULL, gfp);
2123 else
2124 ret = send_halfclose(ep, gfp);
2125 if (ret)
2126 fatal = 1;
2128 if (fatal)
2129 release_ep_resources(ep);
2130 return ret;
2133 int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
2134 struct l2t_entry *l2t)
2136 struct iwch_ep *ep = ctx;
2138 if (ep->dst != old)
2139 return 0;
2141 PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new,
2142 l2t);
2143 dst_hold(new);
2144 l2t_release(ep->com.tdev, ep->l2t);
2145 ep->l2t = l2t;
2146 dst_release(old);
2147 ep->dst = new;
2148 return 1;
2152 * All the CM events are handled on a work queue to have a safe context.
2153 * These are the real handlers that are called from the work queue.
2155 static const cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS] = {
2156 [CPL_ACT_ESTABLISH] = act_establish,
2157 [CPL_ACT_OPEN_RPL] = act_open_rpl,
2158 [CPL_RX_DATA] = rx_data,
2159 [CPL_TX_DMA_ACK] = tx_ack,
2160 [CPL_ABORT_RPL_RSS] = abort_rpl,
2161 [CPL_ABORT_RPL] = abort_rpl,
2162 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
2163 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
2164 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
2165 [CPL_PASS_ESTABLISH] = pass_establish,
2166 [CPL_PEER_CLOSE] = peer_close,
2167 [CPL_ABORT_REQ_RSS] = peer_abort,
2168 [CPL_CLOSE_CON_RPL] = close_con_rpl,
2169 [CPL_RDMA_TERMINATE] = terminate,
2170 [CPL_RDMA_EC_STATUS] = ec_status,
2173 static void process_work(struct work_struct *work)
2175 struct sk_buff *skb = NULL;
2176 void *ep;
2177 struct t3cdev *tdev;
2178 int ret;
2180 while ((skb = skb_dequeue(&rxq))) {
2181 ep = *((void **) (skb->cb));
2182 tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
2183 ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
2184 if (ret & CPL_RET_BUF_DONE)
2185 kfree_skb(skb);
2188 * ep was referenced in sched(), and is freed here.
2190 put_ep((struct iwch_ep_common *)ep);
2194 static DECLARE_WORK(skb_work, process_work);
2196 static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2198 struct iwch_ep_common *epc = ctx;
2200 get_ep(epc);
2203 * Save ctx and tdev in the skb->cb area.
2205 *((void **) skb->cb) = ctx;
2206 *((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
2209 * Queue the skb and schedule the worker thread.
2211 skb_queue_tail(&rxq, skb);
2212 queue_work(workq, &skb_work);
2213 return 0;
2216 static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2218 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
2220 if (rpl->status != CPL_ERR_NONE) {
2221 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
2222 "for tid %u\n", rpl->status, GET_TID(rpl));
2224 return CPL_RET_BUF_DONE;
2228 * All upcalls from the T3 Core go to sched() to schedule the
2229 * processing on a work queue.
2231 cxgb3_cpl_handler_func t3c_handlers[NUM_CPL_CMDS] = {
2232 [CPL_ACT_ESTABLISH] = sched,
2233 [CPL_ACT_OPEN_RPL] = sched,
2234 [CPL_RX_DATA] = sched,
2235 [CPL_TX_DMA_ACK] = sched,
2236 [CPL_ABORT_RPL_RSS] = sched,
2237 [CPL_ABORT_RPL] = sched,
2238 [CPL_PASS_OPEN_RPL] = sched,
2239 [CPL_CLOSE_LISTSRV_RPL] = sched,
2240 [CPL_PASS_ACCEPT_REQ] = sched,
2241 [CPL_PASS_ESTABLISH] = sched,
2242 [CPL_PEER_CLOSE] = sched,
2243 [CPL_CLOSE_CON_RPL] = sched,
2244 [CPL_ABORT_REQ_RSS] = sched,
2245 [CPL_RDMA_TERMINATE] = sched,
2246 [CPL_RDMA_EC_STATUS] = sched,
2247 [CPL_SET_TCB_RPL] = set_tcb_rpl,
2250 int __init iwch_cm_init(void)
2252 skb_queue_head_init(&rxq);
2254 workq = create_singlethread_workqueue("iw_cxgb3");
2255 if (!workq)
2256 return -ENOMEM;
2258 return 0;
2261 void __exit iwch_cm_term(void)
2263 flush_workqueue(workq);
2264 destroy_workqueue(workq);