uwb: Use kcalloc instead of kzalloc to allocate array
[zen-stable.git] / drivers / md / dm-bufio.c
blob0a6806f80ab5cdf40d4dba56c41dc74ad3db772b
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 * This file is released under the GPL.
7 */
9 #include "dm-bufio.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/version.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
19 #define DM_MSG_PREFIX "bufio"
22 * Memory management policy:
23 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
24 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
25 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
26 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
27 * dirty buffers.
29 #define DM_BUFIO_MIN_BUFFERS 8
31 #define DM_BUFIO_MEMORY_PERCENT 2
32 #define DM_BUFIO_VMALLOC_PERCENT 25
33 #define DM_BUFIO_WRITEBACK_PERCENT 75
36 * Check buffer ages in this interval (seconds)
38 #define DM_BUFIO_WORK_TIMER_SECS 10
41 * Free buffers when they are older than this (seconds)
43 #define DM_BUFIO_DEFAULT_AGE_SECS 60
46 * The number of bvec entries that are embedded directly in the buffer.
47 * If the chunk size is larger, dm-io is used to do the io.
49 #define DM_BUFIO_INLINE_VECS 16
52 * Buffer hash
54 #define DM_BUFIO_HASH_BITS 20
55 #define DM_BUFIO_HASH(block) \
56 ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
57 ((1 << DM_BUFIO_HASH_BITS) - 1))
60 * Don't try to use kmem_cache_alloc for blocks larger than this.
61 * For explanation, see alloc_buffer_data below.
63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
67 * dm_buffer->list_mode
69 #define LIST_CLEAN 0
70 #define LIST_DIRTY 1
71 #define LIST_SIZE 2
74 * Linking of buffers:
75 * All buffers are linked to cache_hash with their hash_list field.
77 * Clean buffers that are not being written (B_WRITING not set)
78 * are linked to lru[LIST_CLEAN] with their lru_list field.
80 * Dirty and clean buffers that are being written are linked to
81 * lru[LIST_DIRTY] with their lru_list field. When the write
82 * finishes, the buffer cannot be relinked immediately (because we
83 * are in an interrupt context and relinking requires process
84 * context), so some clean-not-writing buffers can be held on
85 * dirty_lru too. They are later added to lru in the process
86 * context.
88 struct dm_bufio_client {
89 struct mutex lock;
91 struct list_head lru[LIST_SIZE];
92 unsigned long n_buffers[LIST_SIZE];
94 struct block_device *bdev;
95 unsigned block_size;
96 unsigned char sectors_per_block_bits;
97 unsigned char pages_per_block_bits;
98 unsigned char blocks_per_page_bits;
99 unsigned aux_size;
100 void (*alloc_callback)(struct dm_buffer *);
101 void (*write_callback)(struct dm_buffer *);
103 struct dm_io_client *dm_io;
105 struct list_head reserved_buffers;
106 unsigned need_reserved_buffers;
108 struct hlist_head *cache_hash;
109 wait_queue_head_t free_buffer_wait;
111 int async_write_error;
113 struct list_head client_list;
114 struct shrinker shrinker;
118 * Buffer state bits.
120 #define B_READING 0
121 #define B_WRITING 1
122 #define B_DIRTY 2
125 * Describes how the block was allocated:
126 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127 * See the comment at alloc_buffer_data.
129 enum data_mode {
130 DATA_MODE_SLAB = 0,
131 DATA_MODE_GET_FREE_PAGES = 1,
132 DATA_MODE_VMALLOC = 2,
133 DATA_MODE_LIMIT = 3
136 struct dm_buffer {
137 struct hlist_node hash_list;
138 struct list_head lru_list;
139 sector_t block;
140 void *data;
141 enum data_mode data_mode;
142 unsigned char list_mode; /* LIST_* */
143 unsigned hold_count;
144 int read_error;
145 int write_error;
146 unsigned long state;
147 unsigned long last_accessed;
148 struct dm_bufio_client *c;
149 struct bio bio;
150 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 /*----------------------------------------------------------------*/
155 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
156 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
158 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
160 unsigned ret = c->blocks_per_page_bits - 1;
162 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
164 return ret;
167 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
168 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
170 #define dm_bufio_in_request() (!!current->bio_list)
172 static void dm_bufio_lock(struct dm_bufio_client *c)
174 mutex_lock_nested(&c->lock, dm_bufio_in_request());
177 static int dm_bufio_trylock(struct dm_bufio_client *c)
179 return mutex_trylock(&c->lock);
182 static void dm_bufio_unlock(struct dm_bufio_client *c)
184 mutex_unlock(&c->lock);
188 * FIXME Move to sched.h?
190 #ifdef CONFIG_PREEMPT_VOLUNTARY
191 # define dm_bufio_cond_resched() \
192 do { \
193 if (unlikely(need_resched())) \
194 _cond_resched(); \
195 } while (0)
196 #else
197 # define dm_bufio_cond_resched() do { } while (0)
198 #endif
200 /*----------------------------------------------------------------*/
203 * Default cache size: available memory divided by the ratio.
205 static unsigned long dm_bufio_default_cache_size;
208 * Total cache size set by the user.
210 static unsigned long dm_bufio_cache_size;
213 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
214 * at any time. If it disagrees, the user has changed cache size.
216 static unsigned long dm_bufio_cache_size_latch;
218 static DEFINE_SPINLOCK(param_spinlock);
221 * Buffers are freed after this timeout
223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
225 static unsigned long dm_bufio_peak_allocated;
226 static unsigned long dm_bufio_allocated_kmem_cache;
227 static unsigned long dm_bufio_allocated_get_free_pages;
228 static unsigned long dm_bufio_allocated_vmalloc;
229 static unsigned long dm_bufio_current_allocated;
231 /*----------------------------------------------------------------*/
234 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
236 static unsigned long dm_bufio_cache_size_per_client;
239 * The current number of clients.
241 static int dm_bufio_client_count;
244 * The list of all clients.
246 static LIST_HEAD(dm_bufio_all_clients);
249 * This mutex protects dm_bufio_cache_size_latch,
250 * dm_bufio_cache_size_per_client and dm_bufio_client_count
252 static DEFINE_MUTEX(dm_bufio_clients_lock);
254 /*----------------------------------------------------------------*/
256 static void adjust_total_allocated(enum data_mode data_mode, long diff)
258 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
259 &dm_bufio_allocated_kmem_cache,
260 &dm_bufio_allocated_get_free_pages,
261 &dm_bufio_allocated_vmalloc,
264 spin_lock(&param_spinlock);
266 *class_ptr[data_mode] += diff;
268 dm_bufio_current_allocated += diff;
270 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
271 dm_bufio_peak_allocated = dm_bufio_current_allocated;
273 spin_unlock(&param_spinlock);
277 * Change the number of clients and recalculate per-client limit.
279 static void __cache_size_refresh(void)
281 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
282 BUG_ON(dm_bufio_client_count < 0);
284 dm_bufio_cache_size_latch = dm_bufio_cache_size;
286 barrier();
289 * Use default if set to 0 and report the actual cache size used.
291 if (!dm_bufio_cache_size_latch) {
292 (void)cmpxchg(&dm_bufio_cache_size, 0,
293 dm_bufio_default_cache_size);
294 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
297 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
298 (dm_bufio_client_count ? : 1);
302 * Allocating buffer data.
304 * Small buffers are allocated with kmem_cache, to use space optimally.
306 * For large buffers, we choose between get_free_pages and vmalloc.
307 * Each has advantages and disadvantages.
309 * __get_free_pages can randomly fail if the memory is fragmented.
310 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
311 * as low as 128M) so using it for caching is not appropriate.
313 * If the allocation may fail we use __get_free_pages. Memory fragmentation
314 * won't have a fatal effect here, but it just causes flushes of some other
315 * buffers and more I/O will be performed. Don't use __get_free_pages if it
316 * always fails (i.e. order >= MAX_ORDER).
318 * If the allocation shouldn't fail we use __vmalloc. This is only for the
319 * initial reserve allocation, so there's no risk of wasting all vmalloc
320 * space.
322 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
323 enum data_mode *data_mode)
325 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
326 *data_mode = DATA_MODE_SLAB;
327 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
330 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
331 gfp_mask & __GFP_NORETRY) {
332 *data_mode = DATA_MODE_GET_FREE_PAGES;
333 return (void *)__get_free_pages(gfp_mask,
334 c->pages_per_block_bits);
337 *data_mode = DATA_MODE_VMALLOC;
338 return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
342 * Free buffer's data.
344 static void free_buffer_data(struct dm_bufio_client *c,
345 void *data, enum data_mode data_mode)
347 switch (data_mode) {
348 case DATA_MODE_SLAB:
349 kmem_cache_free(DM_BUFIO_CACHE(c), data);
350 break;
352 case DATA_MODE_GET_FREE_PAGES:
353 free_pages((unsigned long)data, c->pages_per_block_bits);
354 break;
356 case DATA_MODE_VMALLOC:
357 vfree(data);
358 break;
360 default:
361 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
362 data_mode);
363 BUG();
368 * Allocate buffer and its data.
370 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
372 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
373 gfp_mask);
375 if (!b)
376 return NULL;
378 b->c = c;
380 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
381 if (!b->data) {
382 kfree(b);
383 return NULL;
386 adjust_total_allocated(b->data_mode, (long)c->block_size);
388 return b;
392 * Free buffer and its data.
394 static void free_buffer(struct dm_buffer *b)
396 struct dm_bufio_client *c = b->c;
398 adjust_total_allocated(b->data_mode, -(long)c->block_size);
400 free_buffer_data(c, b->data, b->data_mode);
401 kfree(b);
405 * Link buffer to the hash list and clean or dirty queue.
407 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
409 struct dm_bufio_client *c = b->c;
411 c->n_buffers[dirty]++;
412 b->block = block;
413 b->list_mode = dirty;
414 list_add(&b->lru_list, &c->lru[dirty]);
415 hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
416 b->last_accessed = jiffies;
420 * Unlink buffer from the hash list and dirty or clean queue.
422 static void __unlink_buffer(struct dm_buffer *b)
424 struct dm_bufio_client *c = b->c;
426 BUG_ON(!c->n_buffers[b->list_mode]);
428 c->n_buffers[b->list_mode]--;
429 hlist_del(&b->hash_list);
430 list_del(&b->lru_list);
434 * Place the buffer to the head of dirty or clean LRU queue.
436 static void __relink_lru(struct dm_buffer *b, int dirty)
438 struct dm_bufio_client *c = b->c;
440 BUG_ON(!c->n_buffers[b->list_mode]);
442 c->n_buffers[b->list_mode]--;
443 c->n_buffers[dirty]++;
444 b->list_mode = dirty;
445 list_del(&b->lru_list);
446 list_add(&b->lru_list, &c->lru[dirty]);
449 /*----------------------------------------------------------------
450 * Submit I/O on the buffer.
452 * Bio interface is faster but it has some problems:
453 * the vector list is limited (increasing this limit increases
454 * memory-consumption per buffer, so it is not viable);
456 * the memory must be direct-mapped, not vmalloced;
458 * the I/O driver can reject requests spuriously if it thinks that
459 * the requests are too big for the device or if they cross a
460 * controller-defined memory boundary.
462 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
463 * it is not vmalloced, try using the bio interface.
465 * If the buffer is big, if it is vmalloced or if the underlying device
466 * rejects the bio because it is too large, use dm-io layer to do the I/O.
467 * The dm-io layer splits the I/O into multiple requests, avoiding the above
468 * shortcomings.
469 *--------------------------------------------------------------*/
472 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
473 * that the request was handled directly with bio interface.
475 static void dmio_complete(unsigned long error, void *context)
477 struct dm_buffer *b = context;
479 b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
482 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
483 bio_end_io_t *end_io)
485 int r;
486 struct dm_io_request io_req = {
487 .bi_rw = rw,
488 .notify.fn = dmio_complete,
489 .notify.context = b,
490 .client = b->c->dm_io,
492 struct dm_io_region region = {
493 .bdev = b->c->bdev,
494 .sector = block << b->c->sectors_per_block_bits,
495 .count = b->c->block_size >> SECTOR_SHIFT,
498 if (b->data_mode != DATA_MODE_VMALLOC) {
499 io_req.mem.type = DM_IO_KMEM;
500 io_req.mem.ptr.addr = b->data;
501 } else {
502 io_req.mem.type = DM_IO_VMA;
503 io_req.mem.ptr.vma = b->data;
506 b->bio.bi_end_io = end_io;
508 r = dm_io(&io_req, 1, &region, NULL);
509 if (r)
510 end_io(&b->bio, r);
513 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
514 bio_end_io_t *end_io)
516 char *ptr;
517 int len;
519 bio_init(&b->bio);
520 b->bio.bi_io_vec = b->bio_vec;
521 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
522 b->bio.bi_sector = block << b->c->sectors_per_block_bits;
523 b->bio.bi_bdev = b->c->bdev;
524 b->bio.bi_end_io = end_io;
527 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
528 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
530 ptr = b->data;
531 len = b->c->block_size;
533 if (len >= PAGE_SIZE)
534 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
535 else
536 BUG_ON((unsigned long)ptr & (len - 1));
538 do {
539 if (!bio_add_page(&b->bio, virt_to_page(ptr),
540 len < PAGE_SIZE ? len : PAGE_SIZE,
541 virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
542 BUG_ON(b->c->block_size <= PAGE_SIZE);
543 use_dmio(b, rw, block, end_io);
544 return;
547 len -= PAGE_SIZE;
548 ptr += PAGE_SIZE;
549 } while (len > 0);
551 submit_bio(rw, &b->bio);
554 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
555 bio_end_io_t *end_io)
557 if (rw == WRITE && b->c->write_callback)
558 b->c->write_callback(b);
560 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
561 b->data_mode != DATA_MODE_VMALLOC)
562 use_inline_bio(b, rw, block, end_io);
563 else
564 use_dmio(b, rw, block, end_io);
567 /*----------------------------------------------------------------
568 * Writing dirty buffers
569 *--------------------------------------------------------------*/
572 * The endio routine for write.
574 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
575 * it.
577 static void write_endio(struct bio *bio, int error)
579 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
581 b->write_error = error;
582 if (error) {
583 struct dm_bufio_client *c = b->c;
584 (void)cmpxchg(&c->async_write_error, 0, error);
587 BUG_ON(!test_bit(B_WRITING, &b->state));
589 smp_mb__before_clear_bit();
590 clear_bit(B_WRITING, &b->state);
591 smp_mb__after_clear_bit();
593 wake_up_bit(&b->state, B_WRITING);
597 * This function is called when wait_on_bit is actually waiting.
599 static int do_io_schedule(void *word)
601 io_schedule();
603 return 0;
607 * Initiate a write on a dirty buffer, but don't wait for it.
609 * - If the buffer is not dirty, exit.
610 * - If there some previous write going on, wait for it to finish (we can't
611 * have two writes on the same buffer simultaneously).
612 * - Submit our write and don't wait on it. We set B_WRITING indicating
613 * that there is a write in progress.
615 static void __write_dirty_buffer(struct dm_buffer *b)
617 if (!test_bit(B_DIRTY, &b->state))
618 return;
620 clear_bit(B_DIRTY, &b->state);
621 wait_on_bit_lock(&b->state, B_WRITING,
622 do_io_schedule, TASK_UNINTERRUPTIBLE);
624 submit_io(b, WRITE, b->block, write_endio);
628 * Wait until any activity on the buffer finishes. Possibly write the
629 * buffer if it is dirty. When this function finishes, there is no I/O
630 * running on the buffer and the buffer is not dirty.
632 static void __make_buffer_clean(struct dm_buffer *b)
634 BUG_ON(b->hold_count);
636 if (!b->state) /* fast case */
637 return;
639 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
640 __write_dirty_buffer(b);
641 wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
645 * Find some buffer that is not held by anybody, clean it, unlink it and
646 * return it.
648 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
650 struct dm_buffer *b;
652 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
653 BUG_ON(test_bit(B_WRITING, &b->state));
654 BUG_ON(test_bit(B_DIRTY, &b->state));
656 if (!b->hold_count) {
657 __make_buffer_clean(b);
658 __unlink_buffer(b);
659 return b;
661 dm_bufio_cond_resched();
664 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
665 BUG_ON(test_bit(B_READING, &b->state));
667 if (!b->hold_count) {
668 __make_buffer_clean(b);
669 __unlink_buffer(b);
670 return b;
672 dm_bufio_cond_resched();
675 return NULL;
679 * Wait until some other threads free some buffer or release hold count on
680 * some buffer.
682 * This function is entered with c->lock held, drops it and regains it
683 * before exiting.
685 static void __wait_for_free_buffer(struct dm_bufio_client *c)
687 DECLARE_WAITQUEUE(wait, current);
689 add_wait_queue(&c->free_buffer_wait, &wait);
690 set_task_state(current, TASK_UNINTERRUPTIBLE);
691 dm_bufio_unlock(c);
693 io_schedule();
695 set_task_state(current, TASK_RUNNING);
696 remove_wait_queue(&c->free_buffer_wait, &wait);
698 dm_bufio_lock(c);
702 * Allocate a new buffer. If the allocation is not possible, wait until
703 * some other thread frees a buffer.
705 * May drop the lock and regain it.
707 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c)
709 struct dm_buffer *b;
712 * dm-bufio is resistant to allocation failures (it just keeps
713 * one buffer reserved in cases all the allocations fail).
714 * So set flags to not try too hard:
715 * GFP_NOIO: don't recurse into the I/O layer
716 * __GFP_NORETRY: don't retry and rather return failure
717 * __GFP_NOMEMALLOC: don't use emergency reserves
718 * __GFP_NOWARN: don't print a warning in case of failure
720 * For debugging, if we set the cache size to 1, no new buffers will
721 * be allocated.
723 while (1) {
724 if (dm_bufio_cache_size_latch != 1) {
725 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
726 if (b)
727 return b;
730 if (!list_empty(&c->reserved_buffers)) {
731 b = list_entry(c->reserved_buffers.next,
732 struct dm_buffer, lru_list);
733 list_del(&b->lru_list);
734 c->need_reserved_buffers++;
736 return b;
739 b = __get_unclaimed_buffer(c);
740 if (b)
741 return b;
743 __wait_for_free_buffer(c);
747 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c)
749 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c);
751 if (c->alloc_callback)
752 c->alloc_callback(b);
754 return b;
758 * Free a buffer and wake other threads waiting for free buffers.
760 static void __free_buffer_wake(struct dm_buffer *b)
762 struct dm_bufio_client *c = b->c;
764 if (!c->need_reserved_buffers)
765 free_buffer(b);
766 else {
767 list_add(&b->lru_list, &c->reserved_buffers);
768 c->need_reserved_buffers--;
771 wake_up(&c->free_buffer_wait);
774 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait)
776 struct dm_buffer *b, *tmp;
778 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
779 BUG_ON(test_bit(B_READING, &b->state));
781 if (!test_bit(B_DIRTY, &b->state) &&
782 !test_bit(B_WRITING, &b->state)) {
783 __relink_lru(b, LIST_CLEAN);
784 continue;
787 if (no_wait && test_bit(B_WRITING, &b->state))
788 return;
790 __write_dirty_buffer(b);
791 dm_bufio_cond_resched();
796 * Get writeback threshold and buffer limit for a given client.
798 static void __get_memory_limit(struct dm_bufio_client *c,
799 unsigned long *threshold_buffers,
800 unsigned long *limit_buffers)
802 unsigned long buffers;
804 if (dm_bufio_cache_size != dm_bufio_cache_size_latch) {
805 mutex_lock(&dm_bufio_clients_lock);
806 __cache_size_refresh();
807 mutex_unlock(&dm_bufio_clients_lock);
810 buffers = dm_bufio_cache_size_per_client >>
811 (c->sectors_per_block_bits + SECTOR_SHIFT);
813 if (buffers < DM_BUFIO_MIN_BUFFERS)
814 buffers = DM_BUFIO_MIN_BUFFERS;
816 *limit_buffers = buffers;
817 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
821 * Check if we're over watermark.
822 * If we are over threshold_buffers, start freeing buffers.
823 * If we're over "limit_buffers", block until we get under the limit.
825 static void __check_watermark(struct dm_bufio_client *c)
827 unsigned long threshold_buffers, limit_buffers;
829 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
831 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
832 limit_buffers) {
834 struct dm_buffer *b = __get_unclaimed_buffer(c);
836 if (!b)
837 return;
839 __free_buffer_wake(b);
840 dm_bufio_cond_resched();
843 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
844 __write_dirty_buffers_async(c, 1);
848 * Find a buffer in the hash.
850 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
852 struct dm_buffer *b;
853 struct hlist_node *hn;
855 hlist_for_each_entry(b, hn, &c->cache_hash[DM_BUFIO_HASH(block)],
856 hash_list) {
857 dm_bufio_cond_resched();
858 if (b->block == block)
859 return b;
862 return NULL;
865 /*----------------------------------------------------------------
866 * Getting a buffer
867 *--------------------------------------------------------------*/
869 enum new_flag {
870 NF_FRESH = 0,
871 NF_READ = 1,
872 NF_GET = 2
875 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
876 enum new_flag nf, struct dm_buffer **bp,
877 int *need_submit)
879 struct dm_buffer *b, *new_b = NULL;
881 *need_submit = 0;
883 b = __find(c, block);
884 if (b) {
885 b->hold_count++;
886 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
887 test_bit(B_WRITING, &b->state));
888 return b;
891 if (nf == NF_GET)
892 return NULL;
894 new_b = __alloc_buffer_wait(c);
897 * We've had a period where the mutex was unlocked, so need to
898 * recheck the hash table.
900 b = __find(c, block);
901 if (b) {
902 __free_buffer_wake(new_b);
903 b->hold_count++;
904 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
905 test_bit(B_WRITING, &b->state));
906 return b;
909 __check_watermark(c);
911 b = new_b;
912 b->hold_count = 1;
913 b->read_error = 0;
914 b->write_error = 0;
915 __link_buffer(b, block, LIST_CLEAN);
917 if (nf == NF_FRESH) {
918 b->state = 0;
919 return b;
922 b->state = 1 << B_READING;
923 *need_submit = 1;
925 return b;
929 * The endio routine for reading: set the error, clear the bit and wake up
930 * anyone waiting on the buffer.
932 static void read_endio(struct bio *bio, int error)
934 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
936 b->read_error = error;
938 BUG_ON(!test_bit(B_READING, &b->state));
940 smp_mb__before_clear_bit();
941 clear_bit(B_READING, &b->state);
942 smp_mb__after_clear_bit();
944 wake_up_bit(&b->state, B_READING);
948 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
949 * functions is similar except that dm_bufio_new doesn't read the
950 * buffer from the disk (assuming that the caller overwrites all the data
951 * and uses dm_bufio_mark_buffer_dirty to write new data back).
953 static void *new_read(struct dm_bufio_client *c, sector_t block,
954 enum new_flag nf, struct dm_buffer **bp)
956 int need_submit;
957 struct dm_buffer *b;
959 dm_bufio_lock(c);
960 b = __bufio_new(c, block, nf, bp, &need_submit);
961 dm_bufio_unlock(c);
963 if (!b || IS_ERR(b))
964 return b;
966 if (need_submit)
967 submit_io(b, READ, b->block, read_endio);
969 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
971 if (b->read_error) {
972 int error = b->read_error;
974 dm_bufio_release(b);
976 return ERR_PTR(error);
979 *bp = b;
981 return b->data;
984 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
985 struct dm_buffer **bp)
987 return new_read(c, block, NF_GET, bp);
989 EXPORT_SYMBOL_GPL(dm_bufio_get);
991 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
992 struct dm_buffer **bp)
994 BUG_ON(dm_bufio_in_request());
996 return new_read(c, block, NF_READ, bp);
998 EXPORT_SYMBOL_GPL(dm_bufio_read);
1000 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1001 struct dm_buffer **bp)
1003 BUG_ON(dm_bufio_in_request());
1005 return new_read(c, block, NF_FRESH, bp);
1007 EXPORT_SYMBOL_GPL(dm_bufio_new);
1009 void dm_bufio_release(struct dm_buffer *b)
1011 struct dm_bufio_client *c = b->c;
1013 dm_bufio_lock(c);
1015 BUG_ON(test_bit(B_READING, &b->state));
1016 BUG_ON(!b->hold_count);
1018 b->hold_count--;
1019 if (!b->hold_count) {
1020 wake_up(&c->free_buffer_wait);
1023 * If there were errors on the buffer, and the buffer is not
1024 * to be written, free the buffer. There is no point in caching
1025 * invalid buffer.
1027 if ((b->read_error || b->write_error) &&
1028 !test_bit(B_WRITING, &b->state) &&
1029 !test_bit(B_DIRTY, &b->state)) {
1030 __unlink_buffer(b);
1031 __free_buffer_wake(b);
1035 dm_bufio_unlock(c);
1037 EXPORT_SYMBOL_GPL(dm_bufio_release);
1039 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1041 struct dm_bufio_client *c = b->c;
1043 dm_bufio_lock(c);
1045 if (!test_and_set_bit(B_DIRTY, &b->state))
1046 __relink_lru(b, LIST_DIRTY);
1048 dm_bufio_unlock(c);
1050 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1052 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1054 BUG_ON(dm_bufio_in_request());
1056 dm_bufio_lock(c);
1057 __write_dirty_buffers_async(c, 0);
1058 dm_bufio_unlock(c);
1060 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1063 * For performance, it is essential that the buffers are written asynchronously
1064 * and simultaneously (so that the block layer can merge the writes) and then
1065 * waited upon.
1067 * Finally, we flush hardware disk cache.
1069 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1071 int a, f;
1072 unsigned long buffers_processed = 0;
1073 struct dm_buffer *b, *tmp;
1075 dm_bufio_lock(c);
1076 __write_dirty_buffers_async(c, 0);
1078 again:
1079 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1080 int dropped_lock = 0;
1082 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1083 buffers_processed++;
1085 BUG_ON(test_bit(B_READING, &b->state));
1087 if (test_bit(B_WRITING, &b->state)) {
1088 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1089 dropped_lock = 1;
1090 b->hold_count++;
1091 dm_bufio_unlock(c);
1092 wait_on_bit(&b->state, B_WRITING,
1093 do_io_schedule,
1094 TASK_UNINTERRUPTIBLE);
1095 dm_bufio_lock(c);
1096 b->hold_count--;
1097 } else
1098 wait_on_bit(&b->state, B_WRITING,
1099 do_io_schedule,
1100 TASK_UNINTERRUPTIBLE);
1103 if (!test_bit(B_DIRTY, &b->state) &&
1104 !test_bit(B_WRITING, &b->state))
1105 __relink_lru(b, LIST_CLEAN);
1107 dm_bufio_cond_resched();
1110 * If we dropped the lock, the list is no longer consistent,
1111 * so we must restart the search.
1113 * In the most common case, the buffer just processed is
1114 * relinked to the clean list, so we won't loop scanning the
1115 * same buffer again and again.
1117 * This may livelock if there is another thread simultaneously
1118 * dirtying buffers, so we count the number of buffers walked
1119 * and if it exceeds the total number of buffers, it means that
1120 * someone is doing some writes simultaneously with us. In
1121 * this case, stop, dropping the lock.
1123 if (dropped_lock)
1124 goto again;
1126 wake_up(&c->free_buffer_wait);
1127 dm_bufio_unlock(c);
1129 a = xchg(&c->async_write_error, 0);
1130 f = dm_bufio_issue_flush(c);
1131 if (a)
1132 return a;
1134 return f;
1136 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1139 * Use dm-io to send and empty barrier flush the device.
1141 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1143 struct dm_io_request io_req = {
1144 .bi_rw = REQ_FLUSH,
1145 .mem.type = DM_IO_KMEM,
1146 .mem.ptr.addr = NULL,
1147 .client = c->dm_io,
1149 struct dm_io_region io_reg = {
1150 .bdev = c->bdev,
1151 .sector = 0,
1152 .count = 0,
1155 BUG_ON(dm_bufio_in_request());
1157 return dm_io(&io_req, 1, &io_reg, NULL);
1159 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1162 * We first delete any other buffer that may be at that new location.
1164 * Then, we write the buffer to the original location if it was dirty.
1166 * Then, if we are the only one who is holding the buffer, relink the buffer
1167 * in the hash queue for the new location.
1169 * If there was someone else holding the buffer, we write it to the new
1170 * location but not relink it, because that other user needs to have the buffer
1171 * at the same place.
1173 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1175 struct dm_bufio_client *c = b->c;
1176 struct dm_buffer *new;
1178 BUG_ON(dm_bufio_in_request());
1180 dm_bufio_lock(c);
1182 retry:
1183 new = __find(c, new_block);
1184 if (new) {
1185 if (new->hold_count) {
1186 __wait_for_free_buffer(c);
1187 goto retry;
1191 * FIXME: Is there any point waiting for a write that's going
1192 * to be overwritten in a bit?
1194 __make_buffer_clean(new);
1195 __unlink_buffer(new);
1196 __free_buffer_wake(new);
1199 BUG_ON(!b->hold_count);
1200 BUG_ON(test_bit(B_READING, &b->state));
1202 __write_dirty_buffer(b);
1203 if (b->hold_count == 1) {
1204 wait_on_bit(&b->state, B_WRITING,
1205 do_io_schedule, TASK_UNINTERRUPTIBLE);
1206 set_bit(B_DIRTY, &b->state);
1207 __unlink_buffer(b);
1208 __link_buffer(b, new_block, LIST_DIRTY);
1209 } else {
1210 sector_t old_block;
1211 wait_on_bit_lock(&b->state, B_WRITING,
1212 do_io_schedule, TASK_UNINTERRUPTIBLE);
1214 * Relink buffer to "new_block" so that write_callback
1215 * sees "new_block" as a block number.
1216 * After the write, link the buffer back to old_block.
1217 * All this must be done in bufio lock, so that block number
1218 * change isn't visible to other threads.
1220 old_block = b->block;
1221 __unlink_buffer(b);
1222 __link_buffer(b, new_block, b->list_mode);
1223 submit_io(b, WRITE, new_block, write_endio);
1224 wait_on_bit(&b->state, B_WRITING,
1225 do_io_schedule, TASK_UNINTERRUPTIBLE);
1226 __unlink_buffer(b);
1227 __link_buffer(b, old_block, b->list_mode);
1230 dm_bufio_unlock(c);
1231 dm_bufio_release(b);
1233 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1235 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1237 return c->block_size;
1239 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1241 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1243 return i_size_read(c->bdev->bd_inode) >>
1244 (SECTOR_SHIFT + c->sectors_per_block_bits);
1246 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1248 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1250 return b->block;
1252 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1254 void *dm_bufio_get_block_data(struct dm_buffer *b)
1256 return b->data;
1258 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1260 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1262 return b + 1;
1264 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1266 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1268 return b->c;
1270 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1272 static void drop_buffers(struct dm_bufio_client *c)
1274 struct dm_buffer *b;
1275 int i;
1277 BUG_ON(dm_bufio_in_request());
1280 * An optimization so that the buffers are not written one-by-one.
1282 dm_bufio_write_dirty_buffers_async(c);
1284 dm_bufio_lock(c);
1286 while ((b = __get_unclaimed_buffer(c)))
1287 __free_buffer_wake(b);
1289 for (i = 0; i < LIST_SIZE; i++)
1290 list_for_each_entry(b, &c->lru[i], lru_list)
1291 DMERR("leaked buffer %llx, hold count %u, list %d",
1292 (unsigned long long)b->block, b->hold_count, i);
1294 for (i = 0; i < LIST_SIZE; i++)
1295 BUG_ON(!list_empty(&c->lru[i]));
1297 dm_bufio_unlock(c);
1301 * Test if the buffer is unused and too old, and commit it.
1302 * At if noio is set, we must not do any I/O because we hold
1303 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1304 * different bufio client.
1306 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1307 unsigned long max_jiffies)
1309 if (jiffies - b->last_accessed < max_jiffies)
1310 return 1;
1312 if (!(gfp & __GFP_IO)) {
1313 if (test_bit(B_READING, &b->state) ||
1314 test_bit(B_WRITING, &b->state) ||
1315 test_bit(B_DIRTY, &b->state))
1316 return 1;
1319 if (b->hold_count)
1320 return 1;
1322 __make_buffer_clean(b);
1323 __unlink_buffer(b);
1324 __free_buffer_wake(b);
1326 return 0;
1329 static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1330 struct shrink_control *sc)
1332 int l;
1333 struct dm_buffer *b, *tmp;
1335 for (l = 0; l < LIST_SIZE; l++) {
1336 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list)
1337 if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) &&
1338 !--nr_to_scan)
1339 return;
1340 dm_bufio_cond_resched();
1344 static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
1346 struct dm_bufio_client *c =
1347 container_of(shrinker, struct dm_bufio_client, shrinker);
1348 unsigned long r;
1349 unsigned long nr_to_scan = sc->nr_to_scan;
1351 if (sc->gfp_mask & __GFP_IO)
1352 dm_bufio_lock(c);
1353 else if (!dm_bufio_trylock(c))
1354 return !nr_to_scan ? 0 : -1;
1356 if (nr_to_scan)
1357 __scan(c, nr_to_scan, sc);
1359 r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1360 if (r > INT_MAX)
1361 r = INT_MAX;
1363 dm_bufio_unlock(c);
1365 return r;
1369 * Create the buffering interface
1371 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1372 unsigned reserved_buffers, unsigned aux_size,
1373 void (*alloc_callback)(struct dm_buffer *),
1374 void (*write_callback)(struct dm_buffer *))
1376 int r;
1377 struct dm_bufio_client *c;
1378 unsigned i;
1380 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1381 (block_size & (block_size - 1)));
1383 c = kmalloc(sizeof(*c), GFP_KERNEL);
1384 if (!c) {
1385 r = -ENOMEM;
1386 goto bad_client;
1388 c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1389 if (!c->cache_hash) {
1390 r = -ENOMEM;
1391 goto bad_hash;
1394 c->bdev = bdev;
1395 c->block_size = block_size;
1396 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1397 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1398 ffs(block_size) - 1 - PAGE_SHIFT : 0;
1399 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1400 PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1402 c->aux_size = aux_size;
1403 c->alloc_callback = alloc_callback;
1404 c->write_callback = write_callback;
1406 for (i = 0; i < LIST_SIZE; i++) {
1407 INIT_LIST_HEAD(&c->lru[i]);
1408 c->n_buffers[i] = 0;
1411 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1412 INIT_HLIST_HEAD(&c->cache_hash[i]);
1414 mutex_init(&c->lock);
1415 INIT_LIST_HEAD(&c->reserved_buffers);
1416 c->need_reserved_buffers = reserved_buffers;
1418 init_waitqueue_head(&c->free_buffer_wait);
1419 c->async_write_error = 0;
1421 c->dm_io = dm_io_client_create();
1422 if (IS_ERR(c->dm_io)) {
1423 r = PTR_ERR(c->dm_io);
1424 goto bad_dm_io;
1427 mutex_lock(&dm_bufio_clients_lock);
1428 if (c->blocks_per_page_bits) {
1429 if (!DM_BUFIO_CACHE_NAME(c)) {
1430 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1431 if (!DM_BUFIO_CACHE_NAME(c)) {
1432 r = -ENOMEM;
1433 mutex_unlock(&dm_bufio_clients_lock);
1434 goto bad_cache;
1438 if (!DM_BUFIO_CACHE(c)) {
1439 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1440 c->block_size,
1441 c->block_size, 0, NULL);
1442 if (!DM_BUFIO_CACHE(c)) {
1443 r = -ENOMEM;
1444 mutex_unlock(&dm_bufio_clients_lock);
1445 goto bad_cache;
1449 mutex_unlock(&dm_bufio_clients_lock);
1451 while (c->need_reserved_buffers) {
1452 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1454 if (!b) {
1455 r = -ENOMEM;
1456 goto bad_buffer;
1458 __free_buffer_wake(b);
1461 mutex_lock(&dm_bufio_clients_lock);
1462 dm_bufio_client_count++;
1463 list_add(&c->client_list, &dm_bufio_all_clients);
1464 __cache_size_refresh();
1465 mutex_unlock(&dm_bufio_clients_lock);
1467 c->shrinker.shrink = shrink;
1468 c->shrinker.seeks = 1;
1469 c->shrinker.batch = 0;
1470 register_shrinker(&c->shrinker);
1472 return c;
1474 bad_buffer:
1475 bad_cache:
1476 while (!list_empty(&c->reserved_buffers)) {
1477 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1478 struct dm_buffer, lru_list);
1479 list_del(&b->lru_list);
1480 free_buffer(b);
1482 dm_io_client_destroy(c->dm_io);
1483 bad_dm_io:
1484 vfree(c->cache_hash);
1485 bad_hash:
1486 kfree(c);
1487 bad_client:
1488 return ERR_PTR(r);
1490 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1493 * Free the buffering interface.
1494 * It is required that there are no references on any buffers.
1496 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1498 unsigned i;
1500 drop_buffers(c);
1502 unregister_shrinker(&c->shrinker);
1504 mutex_lock(&dm_bufio_clients_lock);
1506 list_del(&c->client_list);
1507 dm_bufio_client_count--;
1508 __cache_size_refresh();
1510 mutex_unlock(&dm_bufio_clients_lock);
1512 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1513 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1515 BUG_ON(c->need_reserved_buffers);
1517 while (!list_empty(&c->reserved_buffers)) {
1518 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1519 struct dm_buffer, lru_list);
1520 list_del(&b->lru_list);
1521 free_buffer(b);
1524 for (i = 0; i < LIST_SIZE; i++)
1525 if (c->n_buffers[i])
1526 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1528 for (i = 0; i < LIST_SIZE; i++)
1529 BUG_ON(c->n_buffers[i]);
1531 dm_io_client_destroy(c->dm_io);
1532 vfree(c->cache_hash);
1533 kfree(c);
1535 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1537 static void cleanup_old_buffers(void)
1539 unsigned long max_age = dm_bufio_max_age;
1540 struct dm_bufio_client *c;
1542 barrier();
1544 if (max_age > ULONG_MAX / HZ)
1545 max_age = ULONG_MAX / HZ;
1547 mutex_lock(&dm_bufio_clients_lock);
1548 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1549 if (!dm_bufio_trylock(c))
1550 continue;
1552 while (!list_empty(&c->lru[LIST_CLEAN])) {
1553 struct dm_buffer *b;
1554 b = list_entry(c->lru[LIST_CLEAN].prev,
1555 struct dm_buffer, lru_list);
1556 if (__cleanup_old_buffer(b, 0, max_age * HZ))
1557 break;
1558 dm_bufio_cond_resched();
1561 dm_bufio_unlock(c);
1562 dm_bufio_cond_resched();
1564 mutex_unlock(&dm_bufio_clients_lock);
1567 static struct workqueue_struct *dm_bufio_wq;
1568 static struct delayed_work dm_bufio_work;
1570 static void work_fn(struct work_struct *w)
1572 cleanup_old_buffers();
1574 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1575 DM_BUFIO_WORK_TIMER_SECS * HZ);
1578 /*----------------------------------------------------------------
1579 * Module setup
1580 *--------------------------------------------------------------*/
1583 * This is called only once for the whole dm_bufio module.
1584 * It initializes memory limit.
1586 static int __init dm_bufio_init(void)
1588 __u64 mem;
1590 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1591 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1593 mem = (__u64)((totalram_pages - totalhigh_pages) *
1594 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1596 if (mem > ULONG_MAX)
1597 mem = ULONG_MAX;
1599 #ifdef CONFIG_MMU
1601 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1602 * in fs/proc/internal.h
1604 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1605 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1606 #endif
1608 dm_bufio_default_cache_size = mem;
1610 mutex_lock(&dm_bufio_clients_lock);
1611 __cache_size_refresh();
1612 mutex_unlock(&dm_bufio_clients_lock);
1614 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1615 if (!dm_bufio_wq)
1616 return -ENOMEM;
1618 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1619 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1620 DM_BUFIO_WORK_TIMER_SECS * HZ);
1622 return 0;
1626 * This is called once when unloading the dm_bufio module.
1628 static void __exit dm_bufio_exit(void)
1630 int bug = 0;
1631 int i;
1633 cancel_delayed_work_sync(&dm_bufio_work);
1634 destroy_workqueue(dm_bufio_wq);
1636 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1637 struct kmem_cache *kc = dm_bufio_caches[i];
1639 if (kc)
1640 kmem_cache_destroy(kc);
1643 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1644 kfree(dm_bufio_cache_names[i]);
1646 if (dm_bufio_client_count) {
1647 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1648 __func__, dm_bufio_client_count);
1649 bug = 1;
1652 if (dm_bufio_current_allocated) {
1653 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1654 __func__, dm_bufio_current_allocated);
1655 bug = 1;
1658 if (dm_bufio_allocated_get_free_pages) {
1659 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1660 __func__, dm_bufio_allocated_get_free_pages);
1661 bug = 1;
1664 if (dm_bufio_allocated_vmalloc) {
1665 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1666 __func__, dm_bufio_allocated_vmalloc);
1667 bug = 1;
1670 if (bug)
1671 BUG();
1674 module_init(dm_bufio_init)
1675 module_exit(dm_bufio_exit)
1677 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1678 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1680 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1681 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1683 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1684 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1686 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1687 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1689 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1690 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1692 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1693 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1695 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1696 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1698 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1699 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1700 MODULE_LICENSE("GPL");