2 * Copyright (C) 2011 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
17 #define DM_MSG_PREFIX "thin"
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
28 * The block size of the device holding pool data must be
29 * between 64KB and 1GB.
31 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
32 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
35 * The metadata device is currently limited in size. The limitation is
36 * checked lower down in dm-space-map-metadata, but we also check it here
37 * so we can fail early.
39 * We have one block of index, which can hold 255 index entries. Each
40 * index entry contains allocation info about 16k metadata blocks.
42 #define METADATA_DEV_MAX_SECTORS (255 * (1 << 14) * (THIN_METADATA_BLOCK_SIZE / (1 << SECTOR_SHIFT)))
45 * Device id is restricted to 24 bits.
47 #define MAX_DEV_ID ((1 << 24) - 1)
50 * How do we handle breaking sharing of data blocks?
51 * =================================================
53 * We use a standard copy-on-write btree to store the mappings for the
54 * devices (note I'm talking about copy-on-write of the metadata here, not
55 * the data). When you take an internal snapshot you clone the root node
56 * of the origin btree. After this there is no concept of an origin or a
57 * snapshot. They are just two device trees that happen to point to the
60 * When we get a write in we decide if it's to a shared data block using
61 * some timestamp magic. If it is, we have to break sharing.
63 * Let's say we write to a shared block in what was the origin. The
66 * i) plug io further to this physical block. (see bio_prison code).
68 * ii) quiesce any read io to that shared data block. Obviously
69 * including all devices that share this block. (see deferred_set code)
71 * iii) copy the data block to a newly allocate block. This step can be
72 * missed out if the io covers the block. (schedule_copy).
74 * iv) insert the new mapping into the origin's btree
75 * (process_prepared_mappings). This act of inserting breaks some
76 * sharing of btree nodes between the two devices. Breaking sharing only
77 * effects the btree of that specific device. Btrees for the other
78 * devices that share the block never change. The btree for the origin
79 * device as it was after the last commit is untouched, ie. we're using
80 * persistent data structures in the functional programming sense.
82 * v) unplug io to this physical block, including the io that triggered
83 * the breaking of sharing.
85 * Steps (ii) and (iii) occur in parallel.
87 * The metadata _doesn't_ need to be committed before the io continues. We
88 * get away with this because the io is always written to a _new_ block.
89 * If there's a crash, then:
91 * - The origin mapping will point to the old origin block (the shared
92 * one). This will contain the data as it was before the io that triggered
93 * the breaking of sharing came in.
95 * - The snap mapping still points to the old block. As it would after
98 * The downside of this scheme is the timestamp magic isn't perfect, and
99 * will continue to think that data block in the snapshot device is shared
100 * even after the write to the origin has broken sharing. I suspect data
101 * blocks will typically be shared by many different devices, so we're
102 * breaking sharing n + 1 times, rather than n, where n is the number of
103 * devices that reference this data block. At the moment I think the
104 * benefits far, far outweigh the disadvantages.
107 /*----------------------------------------------------------------*/
110 * Sometimes we can't deal with a bio straight away. We put them in prison
111 * where they can't cause any mischief. Bios are put in a cell identified
112 * by a key, multiple bios can be in the same cell. When the cell is
113 * subsequently unlocked the bios become available.
124 struct hlist_node list
;
125 struct bio_prison
*prison
;
128 struct bio_list bios
;
133 mempool_t
*cell_pool
;
137 struct hlist_head
*cells
;
140 static uint32_t calc_nr_buckets(unsigned nr_cells
)
145 nr_cells
= min(nr_cells
, 8192u);
154 * @nr_cells should be the number of cells you want in use _concurrently_.
155 * Don't confuse it with the number of distinct keys.
157 static struct bio_prison
*prison_create(unsigned nr_cells
)
160 uint32_t nr_buckets
= calc_nr_buckets(nr_cells
);
161 size_t len
= sizeof(struct bio_prison
) +
162 (sizeof(struct hlist_head
) * nr_buckets
);
163 struct bio_prison
*prison
= kmalloc(len
, GFP_KERNEL
);
168 spin_lock_init(&prison
->lock
);
169 prison
->cell_pool
= mempool_create_kmalloc_pool(nr_cells
,
170 sizeof(struct cell
));
171 if (!prison
->cell_pool
) {
176 prison
->nr_buckets
= nr_buckets
;
177 prison
->hash_mask
= nr_buckets
- 1;
178 prison
->cells
= (struct hlist_head
*) (prison
+ 1);
179 for (i
= 0; i
< nr_buckets
; i
++)
180 INIT_HLIST_HEAD(prison
->cells
+ i
);
185 static void prison_destroy(struct bio_prison
*prison
)
187 mempool_destroy(prison
->cell_pool
);
191 static uint32_t hash_key(struct bio_prison
*prison
, struct cell_key
*key
)
193 const unsigned long BIG_PRIME
= 4294967291UL;
194 uint64_t hash
= key
->block
* BIG_PRIME
;
196 return (uint32_t) (hash
& prison
->hash_mask
);
199 static int keys_equal(struct cell_key
*lhs
, struct cell_key
*rhs
)
201 return (lhs
->virtual == rhs
->virtual) &&
202 (lhs
->dev
== rhs
->dev
) &&
203 (lhs
->block
== rhs
->block
);
206 static struct cell
*__search_bucket(struct hlist_head
*bucket
,
207 struct cell_key
*key
)
210 struct hlist_node
*tmp
;
212 hlist_for_each_entry(cell
, tmp
, bucket
, list
)
213 if (keys_equal(&cell
->key
, key
))
220 * This may block if a new cell needs allocating. You must ensure that
221 * cells will be unlocked even if the calling thread is blocked.
223 * Returns the number of entries in the cell prior to the new addition
226 static int bio_detain(struct bio_prison
*prison
, struct cell_key
*key
,
227 struct bio
*inmate
, struct cell
**ref
)
231 uint32_t hash
= hash_key(prison
, key
);
232 struct cell
*uninitialized_var(cell
), *cell2
= NULL
;
234 BUG_ON(hash
> prison
->nr_buckets
);
236 spin_lock_irqsave(&prison
->lock
, flags
);
237 cell
= __search_bucket(prison
->cells
+ hash
, key
);
241 * Allocate a new cell
243 spin_unlock_irqrestore(&prison
->lock
, flags
);
244 cell2
= mempool_alloc(prison
->cell_pool
, GFP_NOIO
);
245 spin_lock_irqsave(&prison
->lock
, flags
);
248 * We've been unlocked, so we have to double check that
249 * nobody else has inserted this cell in the meantime.
251 cell
= __search_bucket(prison
->cells
+ hash
, key
);
257 cell
->prison
= prison
;
258 memcpy(&cell
->key
, key
, sizeof(cell
->key
));
260 bio_list_init(&cell
->bios
);
261 hlist_add_head(&cell
->list
, prison
->cells
+ hash
);
266 bio_list_add(&cell
->bios
, inmate
);
267 spin_unlock_irqrestore(&prison
->lock
, flags
);
270 mempool_free(cell2
, prison
->cell_pool
);
278 * @inmates must have been initialised prior to this call
280 static void __cell_release(struct cell
*cell
, struct bio_list
*inmates
)
282 struct bio_prison
*prison
= cell
->prison
;
284 hlist_del(&cell
->list
);
287 bio_list_merge(inmates
, &cell
->bios
);
289 mempool_free(cell
, prison
->cell_pool
);
292 static void cell_release(struct cell
*cell
, struct bio_list
*bios
)
295 struct bio_prison
*prison
= cell
->prison
;
297 spin_lock_irqsave(&prison
->lock
, flags
);
298 __cell_release(cell
, bios
);
299 spin_unlock_irqrestore(&prison
->lock
, flags
);
303 * There are a couple of places where we put a bio into a cell briefly
304 * before taking it out again. In these situations we know that no other
305 * bio may be in the cell. This function releases the cell, and also does
308 static void cell_release_singleton(struct cell
*cell
, struct bio
*bio
)
310 struct bio_prison
*prison
= cell
->prison
;
311 struct bio_list bios
;
315 bio_list_init(&bios
);
317 spin_lock_irqsave(&prison
->lock
, flags
);
318 __cell_release(cell
, &bios
);
319 spin_unlock_irqrestore(&prison
->lock
, flags
);
321 b
= bio_list_pop(&bios
);
323 BUG_ON(!bio_list_empty(&bios
));
326 static void cell_error(struct cell
*cell
)
328 struct bio_prison
*prison
= cell
->prison
;
329 struct bio_list bios
;
333 bio_list_init(&bios
);
335 spin_lock_irqsave(&prison
->lock
, flags
);
336 __cell_release(cell
, &bios
);
337 spin_unlock_irqrestore(&prison
->lock
, flags
);
339 while ((bio
= bio_list_pop(&bios
)))
343 /*----------------------------------------------------------------*/
346 * We use the deferred set to keep track of pending reads to shared blocks.
347 * We do this to ensure the new mapping caused by a write isn't performed
348 * until these prior reads have completed. Otherwise the insertion of the
349 * new mapping could free the old block that the read bios are mapped to.
353 struct deferred_entry
{
354 struct deferred_set
*ds
;
356 struct list_head work_items
;
359 struct deferred_set
{
361 unsigned current_entry
;
363 struct deferred_entry entries
[DEFERRED_SET_SIZE
];
366 static void ds_init(struct deferred_set
*ds
)
370 spin_lock_init(&ds
->lock
);
371 ds
->current_entry
= 0;
373 for (i
= 0; i
< DEFERRED_SET_SIZE
; i
++) {
374 ds
->entries
[i
].ds
= ds
;
375 ds
->entries
[i
].count
= 0;
376 INIT_LIST_HEAD(&ds
->entries
[i
].work_items
);
380 static struct deferred_entry
*ds_inc(struct deferred_set
*ds
)
383 struct deferred_entry
*entry
;
385 spin_lock_irqsave(&ds
->lock
, flags
);
386 entry
= ds
->entries
+ ds
->current_entry
;
388 spin_unlock_irqrestore(&ds
->lock
, flags
);
393 static unsigned ds_next(unsigned index
)
395 return (index
+ 1) % DEFERRED_SET_SIZE
;
398 static void __sweep(struct deferred_set
*ds
, struct list_head
*head
)
400 while ((ds
->sweeper
!= ds
->current_entry
) &&
401 !ds
->entries
[ds
->sweeper
].count
) {
402 list_splice_init(&ds
->entries
[ds
->sweeper
].work_items
, head
);
403 ds
->sweeper
= ds_next(ds
->sweeper
);
406 if ((ds
->sweeper
== ds
->current_entry
) && !ds
->entries
[ds
->sweeper
].count
)
407 list_splice_init(&ds
->entries
[ds
->sweeper
].work_items
, head
);
410 static void ds_dec(struct deferred_entry
*entry
, struct list_head
*head
)
414 spin_lock_irqsave(&entry
->ds
->lock
, flags
);
415 BUG_ON(!entry
->count
);
417 __sweep(entry
->ds
, head
);
418 spin_unlock_irqrestore(&entry
->ds
->lock
, flags
);
422 * Returns 1 if deferred or 0 if no pending items to delay job.
424 static int ds_add_work(struct deferred_set
*ds
, struct list_head
*work
)
430 spin_lock_irqsave(&ds
->lock
, flags
);
431 if ((ds
->sweeper
== ds
->current_entry
) &&
432 !ds
->entries
[ds
->current_entry
].count
)
435 list_add(work
, &ds
->entries
[ds
->current_entry
].work_items
);
436 next_entry
= ds_next(ds
->current_entry
);
437 if (!ds
->entries
[next_entry
].count
)
438 ds
->current_entry
= next_entry
;
440 spin_unlock_irqrestore(&ds
->lock
, flags
);
445 /*----------------------------------------------------------------*/
450 static void build_data_key(struct dm_thin_device
*td
,
451 dm_block_t b
, struct cell_key
*key
)
454 key
->dev
= dm_thin_dev_id(td
);
458 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
459 struct cell_key
*key
)
462 key
->dev
= dm_thin_dev_id(td
);
466 /*----------------------------------------------------------------*/
469 * A pool device ties together a metadata device and a data device. It
470 * also provides the interface for creating and destroying internal
475 struct list_head list
;
476 struct dm_target
*ti
; /* Only set if a pool target is bound */
478 struct mapped_device
*pool_md
;
479 struct block_device
*md_dev
;
480 struct dm_pool_metadata
*pmd
;
482 uint32_t sectors_per_block
;
483 unsigned block_shift
;
484 dm_block_t offset_mask
;
485 dm_block_t low_water_blocks
;
487 unsigned zero_new_blocks
:1;
488 unsigned low_water_triggered
:1; /* A dm event has been sent */
489 unsigned no_free_space
:1; /* A -ENOSPC warning has been issued */
491 struct bio_prison
*prison
;
492 struct dm_kcopyd_client
*copier
;
494 struct workqueue_struct
*wq
;
495 struct work_struct worker
;
500 struct bio_list deferred_bios
;
501 struct bio_list deferred_flush_bios
;
502 struct list_head prepared_mappings
;
504 struct bio_list retry_on_resume_list
;
506 struct deferred_set ds
; /* FIXME: move to thin_c */
508 struct new_mapping
*next_mapping
;
509 mempool_t
*mapping_pool
;
510 mempool_t
*endio_hook_pool
;
514 * Target context for a pool.
517 struct dm_target
*ti
;
519 struct dm_dev
*data_dev
;
520 struct dm_dev
*metadata_dev
;
521 struct dm_target_callbacks callbacks
;
523 dm_block_t low_water_blocks
;
524 unsigned zero_new_blocks
:1;
528 * Target context for a thin.
531 struct dm_dev
*pool_dev
;
535 struct dm_thin_device
*td
;
538 /*----------------------------------------------------------------*/
541 * A global list of pools that uses a struct mapped_device as a key.
543 static struct dm_thin_pool_table
{
545 struct list_head pools
;
546 } dm_thin_pool_table
;
548 static void pool_table_init(void)
550 mutex_init(&dm_thin_pool_table
.mutex
);
551 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
554 static void __pool_table_insert(struct pool
*pool
)
556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
557 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
560 static void __pool_table_remove(struct pool
*pool
)
562 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
563 list_del(&pool
->list
);
566 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
568 struct pool
*pool
= NULL
, *tmp
;
570 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
572 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
573 if (tmp
->pool_md
== md
) {
582 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
584 struct pool
*pool
= NULL
, *tmp
;
586 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
588 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
589 if (tmp
->md_dev
== md_dev
) {
598 /*----------------------------------------------------------------*/
600 static void __requeue_bio_list(struct thin_c
*tc
, struct bio_list
*master
)
603 struct bio_list bios
;
605 bio_list_init(&bios
);
606 bio_list_merge(&bios
, master
);
607 bio_list_init(master
);
609 while ((bio
= bio_list_pop(&bios
))) {
610 if (dm_get_mapinfo(bio
)->ptr
== tc
)
611 bio_endio(bio
, DM_ENDIO_REQUEUE
);
613 bio_list_add(master
, bio
);
617 static void requeue_io(struct thin_c
*tc
)
619 struct pool
*pool
= tc
->pool
;
622 spin_lock_irqsave(&pool
->lock
, flags
);
623 __requeue_bio_list(tc
, &pool
->deferred_bios
);
624 __requeue_bio_list(tc
, &pool
->retry_on_resume_list
);
625 spin_unlock_irqrestore(&pool
->lock
, flags
);
629 * This section of code contains the logic for processing a thin device's IO.
630 * Much of the code depends on pool object resources (lists, workqueues, etc)
631 * but most is exclusively called from the thin target rather than the thin-pool
635 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
637 return bio
->bi_sector
>> tc
->pool
->block_shift
;
640 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
642 struct pool
*pool
= tc
->pool
;
644 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
645 bio
->bi_sector
= (block
<< pool
->block_shift
) +
646 (bio
->bi_sector
& pool
->offset_mask
);
649 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
652 struct pool
*pool
= tc
->pool
;
655 remap(tc
, bio
, block
);
658 * Batch together any FUA/FLUSH bios we find and then issue
659 * a single commit for them in process_deferred_bios().
661 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
662 spin_lock_irqsave(&pool
->lock
, flags
);
663 bio_list_add(&pool
->deferred_flush_bios
, bio
);
664 spin_unlock_irqrestore(&pool
->lock
, flags
);
666 generic_make_request(bio
);
670 * wake_worker() is used when new work is queued and when pool_resume is
671 * ready to continue deferred IO processing.
673 static void wake_worker(struct pool
*pool
)
675 queue_work(pool
->wq
, &pool
->worker
);
678 /*----------------------------------------------------------------*/
681 * Bio endio functions.
685 bio_end_io_t
*saved_bi_end_io
;
686 struct deferred_entry
*entry
;
690 struct list_head list
;
695 dm_block_t virt_block
;
696 dm_block_t data_block
;
701 * If the bio covers the whole area of a block then we can avoid
702 * zeroing or copying. Instead this bio is hooked. The bio will
703 * still be in the cell, so care has to be taken to avoid issuing
707 bio_end_io_t
*saved_bi_end_io
;
710 static void __maybe_add_mapping(struct new_mapping
*m
)
712 struct pool
*pool
= m
->tc
->pool
;
714 if (list_empty(&m
->list
) && m
->prepared
) {
715 list_add(&m
->list
, &pool
->prepared_mappings
);
720 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
723 struct new_mapping
*m
= context
;
724 struct pool
*pool
= m
->tc
->pool
;
726 m
->err
= read_err
|| write_err
? -EIO
: 0;
728 spin_lock_irqsave(&pool
->lock
, flags
);
730 __maybe_add_mapping(m
);
731 spin_unlock_irqrestore(&pool
->lock
, flags
);
734 static void overwrite_endio(struct bio
*bio
, int err
)
737 struct new_mapping
*m
= dm_get_mapinfo(bio
)->ptr
;
738 struct pool
*pool
= m
->tc
->pool
;
742 spin_lock_irqsave(&pool
->lock
, flags
);
744 __maybe_add_mapping(m
);
745 spin_unlock_irqrestore(&pool
->lock
, flags
);
748 static void shared_read_endio(struct bio
*bio
, int err
)
750 struct list_head mappings
;
751 struct new_mapping
*m
, *tmp
;
752 struct endio_hook
*h
= dm_get_mapinfo(bio
)->ptr
;
754 struct pool
*pool
= h
->tc
->pool
;
756 bio
->bi_end_io
= h
->saved_bi_end_io
;
759 INIT_LIST_HEAD(&mappings
);
760 ds_dec(h
->entry
, &mappings
);
762 spin_lock_irqsave(&pool
->lock
, flags
);
763 list_for_each_entry_safe(m
, tmp
, &mappings
, list
) {
765 INIT_LIST_HEAD(&m
->list
);
766 __maybe_add_mapping(m
);
768 spin_unlock_irqrestore(&pool
->lock
, flags
);
770 mempool_free(h
, pool
->endio_hook_pool
);
773 /*----------------------------------------------------------------*/
780 * Prepared mapping jobs.
784 * This sends the bios in the cell back to the deferred_bios list.
786 static void cell_defer(struct thin_c
*tc
, struct cell
*cell
,
787 dm_block_t data_block
)
789 struct pool
*pool
= tc
->pool
;
792 spin_lock_irqsave(&pool
->lock
, flags
);
793 cell_release(cell
, &pool
->deferred_bios
);
794 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
800 * Same as cell_defer above, except it omits one particular detainee,
801 * a write bio that covers the block and has already been processed.
803 static void cell_defer_except(struct thin_c
*tc
, struct cell
*cell
,
804 struct bio
*exception
)
806 struct bio_list bios
;
808 struct pool
*pool
= tc
->pool
;
811 bio_list_init(&bios
);
812 cell_release(cell
, &bios
);
814 spin_lock_irqsave(&pool
->lock
, flags
);
815 while ((bio
= bio_list_pop(&bios
)))
816 if (bio
!= exception
)
817 bio_list_add(&pool
->deferred_bios
, bio
);
818 spin_unlock_irqrestore(&pool
->lock
, flags
);
823 static void process_prepared_mapping(struct new_mapping
*m
)
825 struct thin_c
*tc
= m
->tc
;
831 bio
->bi_end_io
= m
->saved_bi_end_io
;
839 * Commit the prepared block into the mapping btree.
840 * Any I/O for this block arriving after this point will get
841 * remapped to it directly.
843 r
= dm_thin_insert_block(tc
->td
, m
->virt_block
, m
->data_block
);
845 DMERR("dm_thin_insert_block() failed");
851 * Release any bios held while the block was being provisioned.
852 * If we are processing a write bio that completely covers the block,
853 * we already processed it so can ignore it now when processing
854 * the bios in the cell.
857 cell_defer_except(tc
, m
->cell
, bio
);
860 cell_defer(tc
, m
->cell
, m
->data_block
);
863 mempool_free(m
, tc
->pool
->mapping_pool
);
866 static void process_prepared_mappings(struct pool
*pool
)
869 struct list_head maps
;
870 struct new_mapping
*m
, *tmp
;
872 INIT_LIST_HEAD(&maps
);
873 spin_lock_irqsave(&pool
->lock
, flags
);
874 list_splice_init(&pool
->prepared_mappings
, &maps
);
875 spin_unlock_irqrestore(&pool
->lock
, flags
);
877 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
878 process_prepared_mapping(m
);
884 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
886 return ((bio_data_dir(bio
) == WRITE
) &&
887 !(bio
->bi_sector
& pool
->offset_mask
)) &&
888 (bio
->bi_size
== (pool
->sectors_per_block
<< SECTOR_SHIFT
));
891 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
894 *save
= bio
->bi_end_io
;
898 static int ensure_next_mapping(struct pool
*pool
)
900 if (pool
->next_mapping
)
903 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
905 return pool
->next_mapping
? 0 : -ENOMEM
;
908 static struct new_mapping
*get_next_mapping(struct pool
*pool
)
910 struct new_mapping
*r
= pool
->next_mapping
;
912 BUG_ON(!pool
->next_mapping
);
914 pool
->next_mapping
= NULL
;
919 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
920 dm_block_t data_origin
, dm_block_t data_dest
,
921 struct cell
*cell
, struct bio
*bio
)
924 struct pool
*pool
= tc
->pool
;
925 struct new_mapping
*m
= get_next_mapping(pool
);
927 INIT_LIST_HEAD(&m
->list
);
930 m
->virt_block
= virt_block
;
931 m
->data_block
= data_dest
;
936 ds_add_work(&pool
->ds
, &m
->list
);
939 * IO to pool_dev remaps to the pool target's data_dev.
941 * If the whole block of data is being overwritten, we can issue the
942 * bio immediately. Otherwise we use kcopyd to clone the data first.
944 if (io_overwrites_block(pool
, bio
)) {
946 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
947 dm_get_mapinfo(bio
)->ptr
= m
;
948 remap_and_issue(tc
, bio
, data_dest
);
950 struct dm_io_region from
, to
;
952 from
.bdev
= tc
->pool_dev
->bdev
;
953 from
.sector
= data_origin
* pool
->sectors_per_block
;
954 from
.count
= pool
->sectors_per_block
;
956 to
.bdev
= tc
->pool_dev
->bdev
;
957 to
.sector
= data_dest
* pool
->sectors_per_block
;
958 to
.count
= pool
->sectors_per_block
;
960 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
961 0, copy_complete
, m
);
963 mempool_free(m
, pool
->mapping_pool
);
964 DMERR("dm_kcopyd_copy() failed");
970 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
971 dm_block_t data_block
, struct cell
*cell
,
974 struct pool
*pool
= tc
->pool
;
975 struct new_mapping
*m
= get_next_mapping(pool
);
977 INIT_LIST_HEAD(&m
->list
);
980 m
->virt_block
= virt_block
;
981 m
->data_block
= data_block
;
987 * If the whole block of data is being overwritten or we are not
988 * zeroing pre-existing data, we can issue the bio immediately.
989 * Otherwise we use kcopyd to zero the data first.
991 if (!pool
->zero_new_blocks
)
992 process_prepared_mapping(m
);
994 else if (io_overwrites_block(pool
, bio
)) {
996 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
997 dm_get_mapinfo(bio
)->ptr
= m
;
998 remap_and_issue(tc
, bio
, data_block
);
1002 struct dm_io_region to
;
1004 to
.bdev
= tc
->pool_dev
->bdev
;
1005 to
.sector
= data_block
* pool
->sectors_per_block
;
1006 to
.count
= pool
->sectors_per_block
;
1008 r
= dm_kcopyd_zero(pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1010 mempool_free(m
, pool
->mapping_pool
);
1011 DMERR("dm_kcopyd_zero() failed");
1017 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1020 dm_block_t free_blocks
;
1021 unsigned long flags
;
1022 struct pool
*pool
= tc
->pool
;
1024 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1028 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1029 DMWARN("%s: reached low water mark, sending event.",
1030 dm_device_name(pool
->pool_md
));
1031 spin_lock_irqsave(&pool
->lock
, flags
);
1032 pool
->low_water_triggered
= 1;
1033 spin_unlock_irqrestore(&pool
->lock
, flags
);
1034 dm_table_event(pool
->ti
->table
);
1038 if (pool
->no_free_space
)
1042 * Try to commit to see if that will free up some
1045 r
= dm_pool_commit_metadata(pool
->pmd
);
1047 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1052 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1057 * If we still have no space we set a flag to avoid
1058 * doing all this checking and return -ENOSPC.
1061 DMWARN("%s: no free space available.",
1062 dm_device_name(pool
->pool_md
));
1063 spin_lock_irqsave(&pool
->lock
, flags
);
1064 pool
->no_free_space
= 1;
1065 spin_unlock_irqrestore(&pool
->lock
, flags
);
1071 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1079 * If we have run out of space, queue bios until the device is
1080 * resumed, presumably after having been reloaded with more space.
1082 static void retry_on_resume(struct bio
*bio
)
1084 struct thin_c
*tc
= dm_get_mapinfo(bio
)->ptr
;
1085 struct pool
*pool
= tc
->pool
;
1086 unsigned long flags
;
1088 spin_lock_irqsave(&pool
->lock
, flags
);
1089 bio_list_add(&pool
->retry_on_resume_list
, bio
);
1090 spin_unlock_irqrestore(&pool
->lock
, flags
);
1093 static void no_space(struct cell
*cell
)
1096 struct bio_list bios
;
1098 bio_list_init(&bios
);
1099 cell_release(cell
, &bios
);
1101 while ((bio
= bio_list_pop(&bios
)))
1102 retry_on_resume(bio
);
1105 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1106 struct cell_key
*key
,
1107 struct dm_thin_lookup_result
*lookup_result
,
1111 dm_block_t data_block
;
1113 r
= alloc_data_block(tc
, &data_block
);
1116 schedule_copy(tc
, block
, lookup_result
->block
,
1117 data_block
, cell
, bio
);
1125 DMERR("%s: alloc_data_block() failed, error = %d", __func__
, r
);
1131 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1133 struct dm_thin_lookup_result
*lookup_result
)
1136 struct pool
*pool
= tc
->pool
;
1137 struct cell_key key
;
1140 * If cell is already occupied, then sharing is already in the process
1141 * of being broken so we have nothing further to do here.
1143 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1144 if (bio_detain(pool
->prison
, &key
, bio
, &cell
))
1147 if (bio_data_dir(bio
) == WRITE
)
1148 break_sharing(tc
, bio
, block
, &key
, lookup_result
, cell
);
1150 struct endio_hook
*h
;
1151 h
= mempool_alloc(pool
->endio_hook_pool
, GFP_NOIO
);
1154 h
->entry
= ds_inc(&pool
->ds
);
1155 save_and_set_endio(bio
, &h
->saved_bi_end_io
, shared_read_endio
);
1156 dm_get_mapinfo(bio
)->ptr
= h
;
1158 cell_release_singleton(cell
, bio
);
1159 remap_and_issue(tc
, bio
, lookup_result
->block
);
1163 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1167 dm_block_t data_block
;
1170 * Remap empty bios (flushes) immediately, without provisioning.
1172 if (!bio
->bi_size
) {
1173 cell_release_singleton(cell
, bio
);
1174 remap_and_issue(tc
, bio
, 0);
1179 * Fill read bios with zeroes and complete them immediately.
1181 if (bio_data_dir(bio
) == READ
) {
1183 cell_release_singleton(cell
, bio
);
1188 r
= alloc_data_block(tc
, &data_block
);
1191 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1199 DMERR("%s: alloc_data_block() failed, error = %d", __func__
, r
);
1205 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1208 dm_block_t block
= get_bio_block(tc
, bio
);
1210 struct cell_key key
;
1211 struct dm_thin_lookup_result lookup_result
;
1214 * If cell is already occupied, then the block is already
1215 * being provisioned so we have nothing further to do here.
1217 build_virtual_key(tc
->td
, block
, &key
);
1218 if (bio_detain(tc
->pool
->prison
, &key
, bio
, &cell
))
1221 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1225 * We can release this cell now. This thread is the only
1226 * one that puts bios into a cell, and we know there were
1227 * no preceding bios.
1230 * TODO: this will probably have to change when discard goes
1233 cell_release_singleton(cell
, bio
);
1235 if (lookup_result
.shared
)
1236 process_shared_bio(tc
, bio
, block
, &lookup_result
);
1238 remap_and_issue(tc
, bio
, lookup_result
.block
);
1242 provision_block(tc
, bio
, block
, cell
);
1246 DMERR("dm_thin_find_block() failed, error = %d", r
);
1252 static void process_deferred_bios(struct pool
*pool
)
1254 unsigned long flags
;
1256 struct bio_list bios
;
1259 bio_list_init(&bios
);
1261 spin_lock_irqsave(&pool
->lock
, flags
);
1262 bio_list_merge(&bios
, &pool
->deferred_bios
);
1263 bio_list_init(&pool
->deferred_bios
);
1264 spin_unlock_irqrestore(&pool
->lock
, flags
);
1266 while ((bio
= bio_list_pop(&bios
))) {
1267 struct thin_c
*tc
= dm_get_mapinfo(bio
)->ptr
;
1269 * If we've got no free new_mapping structs, and processing
1270 * this bio might require one, we pause until there are some
1271 * prepared mappings to process.
1273 if (ensure_next_mapping(pool
)) {
1274 spin_lock_irqsave(&pool
->lock
, flags
);
1275 bio_list_merge(&pool
->deferred_bios
, &bios
);
1276 spin_unlock_irqrestore(&pool
->lock
, flags
);
1280 process_bio(tc
, bio
);
1284 * If there are any deferred flush bios, we must commit
1285 * the metadata before issuing them.
1287 bio_list_init(&bios
);
1288 spin_lock_irqsave(&pool
->lock
, flags
);
1289 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
1290 bio_list_init(&pool
->deferred_flush_bios
);
1291 spin_unlock_irqrestore(&pool
->lock
, flags
);
1293 if (bio_list_empty(&bios
))
1296 r
= dm_pool_commit_metadata(pool
->pmd
);
1298 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1300 while ((bio
= bio_list_pop(&bios
)))
1305 while ((bio
= bio_list_pop(&bios
)))
1306 generic_make_request(bio
);
1309 static void do_worker(struct work_struct
*ws
)
1311 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
1313 process_prepared_mappings(pool
);
1314 process_deferred_bios(pool
);
1317 /*----------------------------------------------------------------*/
1320 * Mapping functions.
1324 * Called only while mapping a thin bio to hand it over to the workqueue.
1326 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
1328 unsigned long flags
;
1329 struct pool
*pool
= tc
->pool
;
1331 spin_lock_irqsave(&pool
->lock
, flags
);
1332 bio_list_add(&pool
->deferred_bios
, bio
);
1333 spin_unlock_irqrestore(&pool
->lock
, flags
);
1339 * Non-blocking function called from the thin target's map function.
1341 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
,
1342 union map_info
*map_context
)
1345 struct thin_c
*tc
= ti
->private;
1346 dm_block_t block
= get_bio_block(tc
, bio
);
1347 struct dm_thin_device
*td
= tc
->td
;
1348 struct dm_thin_lookup_result result
;
1351 * Save the thin context for easy access from the deferred bio later.
1353 map_context
->ptr
= tc
;
1355 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1356 thin_defer_bio(tc
, bio
);
1357 return DM_MAPIO_SUBMITTED
;
1360 r
= dm_thin_find_block(td
, block
, 0, &result
);
1363 * Note that we defer readahead too.
1367 if (unlikely(result
.shared
)) {
1369 * We have a race condition here between the
1370 * result.shared value returned by the lookup and
1371 * snapshot creation, which may cause new
1374 * To avoid this always quiesce the origin before
1375 * taking the snap. You want to do this anyway to
1376 * ensure a consistent application view
1379 * More distant ancestors are irrelevant. The
1380 * shared flag will be set in their case.
1382 thin_defer_bio(tc
, bio
);
1383 r
= DM_MAPIO_SUBMITTED
;
1385 remap(tc
, bio
, result
.block
);
1386 r
= DM_MAPIO_REMAPPED
;
1392 * In future, the failed dm_thin_find_block above could
1393 * provide the hint to load the metadata into cache.
1396 thin_defer_bio(tc
, bio
);
1397 r
= DM_MAPIO_SUBMITTED
;
1404 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
1407 unsigned long flags
;
1408 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
1410 spin_lock_irqsave(&pt
->pool
->lock
, flags
);
1411 r
= !bio_list_empty(&pt
->pool
->retry_on_resume_list
);
1412 spin_unlock_irqrestore(&pt
->pool
->lock
, flags
);
1415 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1416 r
= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1422 static void __requeue_bios(struct pool
*pool
)
1424 bio_list_merge(&pool
->deferred_bios
, &pool
->retry_on_resume_list
);
1425 bio_list_init(&pool
->retry_on_resume_list
);
1428 /*----------------------------------------------------------------
1429 * Binding of control targets to a pool object
1430 *--------------------------------------------------------------*/
1431 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1433 struct pool_c
*pt
= ti
->private;
1436 pool
->low_water_blocks
= pt
->low_water_blocks
;
1437 pool
->zero_new_blocks
= pt
->zero_new_blocks
;
1442 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1448 /*----------------------------------------------------------------
1450 *--------------------------------------------------------------*/
1451 static void __pool_destroy(struct pool
*pool
)
1453 __pool_table_remove(pool
);
1455 if (dm_pool_metadata_close(pool
->pmd
) < 0)
1456 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1458 prison_destroy(pool
->prison
);
1459 dm_kcopyd_client_destroy(pool
->copier
);
1462 destroy_workqueue(pool
->wq
);
1464 if (pool
->next_mapping
)
1465 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
1466 mempool_destroy(pool
->mapping_pool
);
1467 mempool_destroy(pool
->endio_hook_pool
);
1471 static struct pool
*pool_create(struct mapped_device
*pool_md
,
1472 struct block_device
*metadata_dev
,
1473 unsigned long block_size
, char **error
)
1478 struct dm_pool_metadata
*pmd
;
1480 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
);
1482 *error
= "Error creating metadata object";
1483 return (struct pool
*)pmd
;
1486 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
1488 *error
= "Error allocating memory for pool";
1489 err_p
= ERR_PTR(-ENOMEM
);
1494 pool
->sectors_per_block
= block_size
;
1495 pool
->block_shift
= ffs(block_size
) - 1;
1496 pool
->offset_mask
= block_size
- 1;
1497 pool
->low_water_blocks
= 0;
1498 pool
->zero_new_blocks
= 1;
1499 pool
->prison
= prison_create(PRISON_CELLS
);
1500 if (!pool
->prison
) {
1501 *error
= "Error creating pool's bio prison";
1502 err_p
= ERR_PTR(-ENOMEM
);
1506 pool
->copier
= dm_kcopyd_client_create();
1507 if (IS_ERR(pool
->copier
)) {
1508 r
= PTR_ERR(pool
->copier
);
1509 *error
= "Error creating pool's kcopyd client";
1511 goto bad_kcopyd_client
;
1515 * Create singlethreaded workqueue that will service all devices
1516 * that use this metadata.
1518 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
1520 *error
= "Error creating pool's workqueue";
1521 err_p
= ERR_PTR(-ENOMEM
);
1525 INIT_WORK(&pool
->worker
, do_worker
);
1526 spin_lock_init(&pool
->lock
);
1527 bio_list_init(&pool
->deferred_bios
);
1528 bio_list_init(&pool
->deferred_flush_bios
);
1529 INIT_LIST_HEAD(&pool
->prepared_mappings
);
1530 pool
->low_water_triggered
= 0;
1531 pool
->no_free_space
= 0;
1532 bio_list_init(&pool
->retry_on_resume_list
);
1535 pool
->next_mapping
= NULL
;
1536 pool
->mapping_pool
=
1537 mempool_create_kmalloc_pool(MAPPING_POOL_SIZE
, sizeof(struct new_mapping
));
1538 if (!pool
->mapping_pool
) {
1539 *error
= "Error creating pool's mapping mempool";
1540 err_p
= ERR_PTR(-ENOMEM
);
1541 goto bad_mapping_pool
;
1544 pool
->endio_hook_pool
=
1545 mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE
, sizeof(struct endio_hook
));
1546 if (!pool
->endio_hook_pool
) {
1547 *error
= "Error creating pool's endio_hook mempool";
1548 err_p
= ERR_PTR(-ENOMEM
);
1549 goto bad_endio_hook_pool
;
1551 pool
->ref_count
= 1;
1552 pool
->pool_md
= pool_md
;
1553 pool
->md_dev
= metadata_dev
;
1554 __pool_table_insert(pool
);
1558 bad_endio_hook_pool
:
1559 mempool_destroy(pool
->mapping_pool
);
1561 destroy_workqueue(pool
->wq
);
1563 dm_kcopyd_client_destroy(pool
->copier
);
1565 prison_destroy(pool
->prison
);
1569 if (dm_pool_metadata_close(pmd
))
1570 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1575 static void __pool_inc(struct pool
*pool
)
1577 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
1581 static void __pool_dec(struct pool
*pool
)
1583 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
1584 BUG_ON(!pool
->ref_count
);
1585 if (!--pool
->ref_count
)
1586 __pool_destroy(pool
);
1589 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
1590 struct block_device
*metadata_dev
,
1591 unsigned long block_size
, char **error
)
1593 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
1596 if (pool
->pool_md
!= pool_md
)
1597 return ERR_PTR(-EBUSY
);
1601 pool
= __pool_table_lookup(pool_md
);
1603 if (pool
->md_dev
!= metadata_dev
)
1604 return ERR_PTR(-EINVAL
);
1608 pool
= pool_create(pool_md
, metadata_dev
, block_size
, error
);
1614 /*----------------------------------------------------------------
1615 * Pool target methods
1616 *--------------------------------------------------------------*/
1617 static void pool_dtr(struct dm_target
*ti
)
1619 struct pool_c
*pt
= ti
->private;
1621 mutex_lock(&dm_thin_pool_table
.mutex
);
1623 unbind_control_target(pt
->pool
, ti
);
1624 __pool_dec(pt
->pool
);
1625 dm_put_device(ti
, pt
->metadata_dev
);
1626 dm_put_device(ti
, pt
->data_dev
);
1629 mutex_unlock(&dm_thin_pool_table
.mutex
);
1632 struct pool_features
{
1633 unsigned zero_new_blocks
:1;
1636 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
1637 struct dm_target
*ti
)
1641 const char *arg_name
;
1643 static struct dm_arg _args
[] = {
1644 {0, 1, "Invalid number of pool feature arguments"},
1648 * No feature arguments supplied.
1653 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
1657 while (argc
&& !r
) {
1658 arg_name
= dm_shift_arg(as
);
1661 if (!strcasecmp(arg_name
, "skip_block_zeroing")) {
1662 pf
->zero_new_blocks
= 0;
1666 ti
->error
= "Unrecognised pool feature requested";
1674 * thin-pool <metadata dev> <data dev>
1675 * <data block size (sectors)>
1676 * <low water mark (blocks)>
1677 * [<#feature args> [<arg>]*]
1679 * Optional feature arguments are:
1680 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1682 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
1687 struct pool_features pf
;
1688 struct dm_arg_set as
;
1689 struct dm_dev
*data_dev
;
1690 unsigned long block_size
;
1691 dm_block_t low_water_blocks
;
1692 struct dm_dev
*metadata_dev
;
1693 sector_t metadata_dev_size
;
1696 * FIXME Remove validation from scope of lock.
1698 mutex_lock(&dm_thin_pool_table
.mutex
);
1701 ti
->error
= "Invalid argument count";
1708 r
= dm_get_device(ti
, argv
[0], FMODE_READ
| FMODE_WRITE
, &metadata_dev
);
1710 ti
->error
= "Error opening metadata block device";
1714 metadata_dev_size
= i_size_read(metadata_dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
1715 if (metadata_dev_size
> METADATA_DEV_MAX_SECTORS
) {
1716 ti
->error
= "Metadata device is too large";
1721 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
1723 ti
->error
= "Error getting data device";
1727 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
1728 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
1729 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
1730 !is_power_of_2(block_size
)) {
1731 ti
->error
= "Invalid block size";
1736 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
1737 ti
->error
= "Invalid low water mark";
1743 * Set default pool features.
1745 memset(&pf
, 0, sizeof(pf
));
1746 pf
.zero_new_blocks
= 1;
1748 dm_consume_args(&as
, 4);
1749 r
= parse_pool_features(&as
, &pf
, ti
);
1753 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
1759 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
1760 block_size
, &ti
->error
);
1768 pt
->metadata_dev
= metadata_dev
;
1769 pt
->data_dev
= data_dev
;
1770 pt
->low_water_blocks
= low_water_blocks
;
1771 pt
->zero_new_blocks
= pf
.zero_new_blocks
;
1772 ti
->num_flush_requests
= 1;
1773 ti
->num_discard_requests
= 0;
1776 pt
->callbacks
.congested_fn
= pool_is_congested
;
1777 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
1779 mutex_unlock(&dm_thin_pool_table
.mutex
);
1786 dm_put_device(ti
, data_dev
);
1788 dm_put_device(ti
, metadata_dev
);
1790 mutex_unlock(&dm_thin_pool_table
.mutex
);
1795 static int pool_map(struct dm_target
*ti
, struct bio
*bio
,
1796 union map_info
*map_context
)
1799 struct pool_c
*pt
= ti
->private;
1800 struct pool
*pool
= pt
->pool
;
1801 unsigned long flags
;
1804 * As this is a singleton target, ti->begin is always zero.
1806 spin_lock_irqsave(&pool
->lock
, flags
);
1807 bio
->bi_bdev
= pt
->data_dev
->bdev
;
1808 r
= DM_MAPIO_REMAPPED
;
1809 spin_unlock_irqrestore(&pool
->lock
, flags
);
1815 * Retrieves the number of blocks of the data device from
1816 * the superblock and compares it to the actual device size,
1817 * thus resizing the data device in case it has grown.
1819 * This both copes with opening preallocated data devices in the ctr
1820 * being followed by a resume
1822 * calling the resume method individually after userspace has
1823 * grown the data device in reaction to a table event.
1825 static int pool_preresume(struct dm_target
*ti
)
1828 struct pool_c
*pt
= ti
->private;
1829 struct pool
*pool
= pt
->pool
;
1830 dm_block_t data_size
, sb_data_size
;
1833 * Take control of the pool object.
1835 r
= bind_control_target(pool
, ti
);
1839 data_size
= ti
->len
>> pool
->block_shift
;
1840 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
1842 DMERR("failed to retrieve data device size");
1846 if (data_size
< sb_data_size
) {
1847 DMERR("pool target too small, is %llu blocks (expected %llu)",
1848 data_size
, sb_data_size
);
1851 } else if (data_size
> sb_data_size
) {
1852 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
1854 DMERR("failed to resize data device");
1858 r
= dm_pool_commit_metadata(pool
->pmd
);
1860 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1869 static void pool_resume(struct dm_target
*ti
)
1871 struct pool_c
*pt
= ti
->private;
1872 struct pool
*pool
= pt
->pool
;
1873 unsigned long flags
;
1875 spin_lock_irqsave(&pool
->lock
, flags
);
1876 pool
->low_water_triggered
= 0;
1877 pool
->no_free_space
= 0;
1878 __requeue_bios(pool
);
1879 spin_unlock_irqrestore(&pool
->lock
, flags
);
1884 static void pool_postsuspend(struct dm_target
*ti
)
1887 struct pool_c
*pt
= ti
->private;
1888 struct pool
*pool
= pt
->pool
;
1890 flush_workqueue(pool
->wq
);
1892 r
= dm_pool_commit_metadata(pool
->pmd
);
1894 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1896 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
1900 static int check_arg_count(unsigned argc
, unsigned args_required
)
1902 if (argc
!= args_required
) {
1903 DMWARN("Message received with %u arguments instead of %u.",
1904 argc
, args_required
);
1911 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
1913 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
1914 *dev_id
<= MAX_DEV_ID
)
1918 DMWARN("Message received with invalid device id: %s", arg
);
1923 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
1928 r
= check_arg_count(argc
, 2);
1932 r
= read_dev_id(argv
[1], &dev_id
, 1);
1936 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
1938 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
1946 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
1949 dm_thin_id origin_dev_id
;
1952 r
= check_arg_count(argc
, 3);
1956 r
= read_dev_id(argv
[1], &dev_id
, 1);
1960 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
1964 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
1966 DMWARN("Creation of new snapshot %s of device %s failed.",
1974 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
1979 r
= check_arg_count(argc
, 2);
1983 r
= read_dev_id(argv
[1], &dev_id
, 1);
1987 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
1989 DMWARN("Deletion of thin device %s failed.", argv
[1]);
1994 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
1996 dm_thin_id old_id
, new_id
;
1999 r
= check_arg_count(argc
, 3);
2003 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
2004 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
2008 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
2009 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
2013 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
2015 DMWARN("Failed to change transaction id from %s to %s.",
2024 * Messages supported:
2025 * create_thin <dev_id>
2026 * create_snap <dev_id> <origin_id>
2028 * trim <dev_id> <new_size_in_sectors>
2029 * set_transaction_id <current_trans_id> <new_trans_id>
2031 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2034 struct pool_c
*pt
= ti
->private;
2035 struct pool
*pool
= pt
->pool
;
2037 if (!strcasecmp(argv
[0], "create_thin"))
2038 r
= process_create_thin_mesg(argc
, argv
, pool
);
2040 else if (!strcasecmp(argv
[0], "create_snap"))
2041 r
= process_create_snap_mesg(argc
, argv
, pool
);
2043 else if (!strcasecmp(argv
[0], "delete"))
2044 r
= process_delete_mesg(argc
, argv
, pool
);
2046 else if (!strcasecmp(argv
[0], "set_transaction_id"))
2047 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
2050 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
2053 r
= dm_pool_commit_metadata(pool
->pmd
);
2055 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2064 * <transaction id> <used metadata sectors>/<total metadata sectors>
2065 * <used data sectors>/<total data sectors> <held metadata root>
2067 static int pool_status(struct dm_target
*ti
, status_type_t type
,
2068 char *result
, unsigned maxlen
)
2072 uint64_t transaction_id
;
2073 dm_block_t nr_free_blocks_data
;
2074 dm_block_t nr_free_blocks_metadata
;
2075 dm_block_t nr_blocks_data
;
2076 dm_block_t nr_blocks_metadata
;
2077 dm_block_t held_root
;
2078 char buf
[BDEVNAME_SIZE
];
2079 char buf2
[BDEVNAME_SIZE
];
2080 struct pool_c
*pt
= ti
->private;
2081 struct pool
*pool
= pt
->pool
;
2084 case STATUSTYPE_INFO
:
2085 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
,
2090 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
,
2091 &nr_free_blocks_metadata
);
2095 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
2099 r
= dm_pool_get_free_block_count(pool
->pmd
,
2100 &nr_free_blocks_data
);
2104 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
2108 r
= dm_pool_get_held_metadata_root(pool
->pmd
, &held_root
);
2112 DMEMIT("%llu %llu/%llu %llu/%llu ",
2113 (unsigned long long)transaction_id
,
2114 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
2115 (unsigned long long)nr_blocks_metadata
,
2116 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
2117 (unsigned long long)nr_blocks_data
);
2120 DMEMIT("%llu", held_root
);
2126 case STATUSTYPE_TABLE
:
2127 DMEMIT("%s %s %lu %llu ",
2128 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
2129 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
2130 (unsigned long)pool
->sectors_per_block
,
2131 (unsigned long long)pt
->low_water_blocks
);
2133 DMEMIT("%u ", !pool
->zero_new_blocks
);
2135 if (!pool
->zero_new_blocks
)
2136 DMEMIT("skip_block_zeroing ");
2143 static int pool_iterate_devices(struct dm_target
*ti
,
2144 iterate_devices_callout_fn fn
, void *data
)
2146 struct pool_c
*pt
= ti
->private;
2148 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
2151 static int pool_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
2152 struct bio_vec
*biovec
, int max_size
)
2154 struct pool_c
*pt
= ti
->private;
2155 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2157 if (!q
->merge_bvec_fn
)
2160 bvm
->bi_bdev
= pt
->data_dev
->bdev
;
2162 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
2165 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2167 struct pool_c
*pt
= ti
->private;
2168 struct pool
*pool
= pt
->pool
;
2170 blk_limits_io_min(limits
, 0);
2171 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
2174 static struct target_type pool_target
= {
2175 .name
= "thin-pool",
2176 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
2177 DM_TARGET_IMMUTABLE
,
2178 .version
= {1, 0, 0},
2179 .module
= THIS_MODULE
,
2183 .postsuspend
= pool_postsuspend
,
2184 .preresume
= pool_preresume
,
2185 .resume
= pool_resume
,
2186 .message
= pool_message
,
2187 .status
= pool_status
,
2188 .merge
= pool_merge
,
2189 .iterate_devices
= pool_iterate_devices
,
2190 .io_hints
= pool_io_hints
,
2193 /*----------------------------------------------------------------
2194 * Thin target methods
2195 *--------------------------------------------------------------*/
2196 static void thin_dtr(struct dm_target
*ti
)
2198 struct thin_c
*tc
= ti
->private;
2200 mutex_lock(&dm_thin_pool_table
.mutex
);
2202 __pool_dec(tc
->pool
);
2203 dm_pool_close_thin_device(tc
->td
);
2204 dm_put_device(ti
, tc
->pool_dev
);
2207 mutex_unlock(&dm_thin_pool_table
.mutex
);
2211 * Thin target parameters:
2213 * <pool_dev> <dev_id>
2215 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2216 * dev_id: the internal device identifier
2218 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2222 struct dm_dev
*pool_dev
;
2223 struct mapped_device
*pool_md
;
2225 mutex_lock(&dm_thin_pool_table
.mutex
);
2228 ti
->error
= "Invalid argument count";
2233 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
2235 ti
->error
= "Out of memory";
2240 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
2242 ti
->error
= "Error opening pool device";
2245 tc
->pool_dev
= pool_dev
;
2247 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
2248 ti
->error
= "Invalid device id";
2253 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
2255 ti
->error
= "Couldn't get pool mapped device";
2260 tc
->pool
= __pool_table_lookup(pool_md
);
2262 ti
->error
= "Couldn't find pool object";
2264 goto bad_pool_lookup
;
2266 __pool_inc(tc
->pool
);
2268 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
2270 ti
->error
= "Couldn't open thin internal device";
2274 ti
->split_io
= tc
->pool
->sectors_per_block
;
2275 ti
->num_flush_requests
= 1;
2276 ti
->num_discard_requests
= 0;
2277 ti
->discards_supported
= 0;
2281 mutex_unlock(&dm_thin_pool_table
.mutex
);
2286 __pool_dec(tc
->pool
);
2290 dm_put_device(ti
, tc
->pool_dev
);
2294 mutex_unlock(&dm_thin_pool_table
.mutex
);
2299 static int thin_map(struct dm_target
*ti
, struct bio
*bio
,
2300 union map_info
*map_context
)
2302 bio
->bi_sector
-= ti
->begin
;
2304 return thin_bio_map(ti
, bio
, map_context
);
2307 static void thin_postsuspend(struct dm_target
*ti
)
2309 if (dm_noflush_suspending(ti
))
2310 requeue_io((struct thin_c
*)ti
->private);
2314 * <nr mapped sectors> <highest mapped sector>
2316 static int thin_status(struct dm_target
*ti
, status_type_t type
,
2317 char *result
, unsigned maxlen
)
2321 dm_block_t mapped
, highest
;
2322 char buf
[BDEVNAME_SIZE
];
2323 struct thin_c
*tc
= ti
->private;
2329 case STATUSTYPE_INFO
:
2330 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
2334 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
2338 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
2340 DMEMIT("%llu", ((highest
+ 1) *
2341 tc
->pool
->sectors_per_block
) - 1);
2346 case STATUSTYPE_TABLE
:
2348 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
2349 (unsigned long) tc
->dev_id
);
2357 static int thin_iterate_devices(struct dm_target
*ti
,
2358 iterate_devices_callout_fn fn
, void *data
)
2361 struct thin_c
*tc
= ti
->private;
2364 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2365 * we follow a more convoluted path through to the pool's target.
2368 return 0; /* nothing is bound */
2370 blocks
= tc
->pool
->ti
->len
>> tc
->pool
->block_shift
;
2372 return fn(ti
, tc
->pool_dev
, 0, tc
->pool
->sectors_per_block
* blocks
, data
);
2377 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2379 struct thin_c
*tc
= ti
->private;
2381 blk_limits_io_min(limits
, 0);
2382 blk_limits_io_opt(limits
, tc
->pool
->sectors_per_block
<< SECTOR_SHIFT
);
2385 static struct target_type thin_target
= {
2387 .version
= {1, 0, 0},
2388 .module
= THIS_MODULE
,
2392 .postsuspend
= thin_postsuspend
,
2393 .status
= thin_status
,
2394 .iterate_devices
= thin_iterate_devices
,
2395 .io_hints
= thin_io_hints
,
2398 /*----------------------------------------------------------------*/
2400 static int __init
dm_thin_init(void)
2406 r
= dm_register_target(&thin_target
);
2410 r
= dm_register_target(&pool_target
);
2412 dm_unregister_target(&thin_target
);
2417 static void dm_thin_exit(void)
2419 dm_unregister_target(&thin_target
);
2420 dm_unregister_target(&pool_target
);
2423 module_init(dm_thin_init
);
2424 module_exit(dm_thin_exit
);
2426 MODULE_DESCRIPTION(DM_NAME
"device-mapper thin provisioning target");
2427 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2428 MODULE_LICENSE("GPL");