uwb: Use kcalloc instead of kzalloc to allocate array
[zen-stable.git] / drivers / spi / spi-topcliff-pch.c
blob6a80749391dbaa4406b5069a27090522f92395ea
1 /*
2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
4 * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
34 /* Register offsets */
35 #define PCH_SPCR 0x00 /* SPI control register */
36 #define PCH_SPBRR 0x04 /* SPI baud rate register */
37 #define PCH_SPSR 0x08 /* SPI status register */
38 #define PCH_SPDWR 0x0C /* SPI write data register */
39 #define PCH_SPDRR 0x10 /* SPI read data register */
40 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
41 #define PCH_SRST 0x1C /* SPI reset register */
42 #define PCH_ADDRESS_SIZE 0x20
44 #define PCH_SPSR_TFD 0x000007C0
45 #define PCH_SPSR_RFD 0x0000F800
47 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
50 #define PCH_RX_THOLD 7
51 #define PCH_RX_THOLD_MAX 15
53 #define PCH_TX_THOLD 2
55 #define PCH_MAX_BAUDRATE 5000000
56 #define PCH_MAX_FIFO_DEPTH 16
58 #define STATUS_RUNNING 1
59 #define STATUS_EXITING 2
60 #define PCH_SLEEP_TIME 10
62 #define SSN_LOW 0x02U
63 #define SSN_HIGH 0x03U
64 #define SSN_NO_CONTROL 0x00U
65 #define PCH_MAX_CS 0xFF
66 #define PCI_DEVICE_ID_GE_SPI 0x8816
68 #define SPCR_SPE_BIT (1 << 0)
69 #define SPCR_MSTR_BIT (1 << 1)
70 #define SPCR_LSBF_BIT (1 << 4)
71 #define SPCR_CPHA_BIT (1 << 5)
72 #define SPCR_CPOL_BIT (1 << 6)
73 #define SPCR_TFIE_BIT (1 << 8)
74 #define SPCR_RFIE_BIT (1 << 9)
75 #define SPCR_FIE_BIT (1 << 10)
76 #define SPCR_ORIE_BIT (1 << 11)
77 #define SPCR_MDFIE_BIT (1 << 12)
78 #define SPCR_FICLR_BIT (1 << 24)
79 #define SPSR_TFI_BIT (1 << 0)
80 #define SPSR_RFI_BIT (1 << 1)
81 #define SPSR_FI_BIT (1 << 2)
82 #define SPSR_ORF_BIT (1 << 3)
83 #define SPBRR_SIZE_BIT (1 << 10)
85 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
88 #define SPCR_RFIC_FIELD 20
89 #define SPCR_TFIC_FIELD 16
91 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
95 #define PCH_CLOCK_HZ 50000000
96 #define PCH_MAX_SPBR 1023
98 /* Definition for ML7213 by OKI SEMICONDUCTOR */
99 #define PCI_VENDOR_ID_ROHM 0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
104 * Set the number of SPI instance max
105 * Intel EG20T PCH : 1ch
106 * OKI SEMICONDUCTOR ML7213 IOH : 2ch
107 * OKI SEMICONDUCTOR ML7223 IOH : 1ch
109 #define PCH_SPI_MAX_DEV 2
111 #define PCH_BUF_SIZE 4096
112 #define PCH_DMA_TRANS_SIZE 12
114 static int use_dma = 1;
116 struct pch_spi_dma_ctrl {
117 struct dma_async_tx_descriptor *desc_tx;
118 struct dma_async_tx_descriptor *desc_rx;
119 struct pch_dma_slave param_tx;
120 struct pch_dma_slave param_rx;
121 struct dma_chan *chan_tx;
122 struct dma_chan *chan_rx;
123 struct scatterlist *sg_tx_p;
124 struct scatterlist *sg_rx_p;
125 struct scatterlist sg_tx;
126 struct scatterlist sg_rx;
127 int nent;
128 void *tx_buf_virt;
129 void *rx_buf_virt;
130 dma_addr_t tx_buf_dma;
131 dma_addr_t rx_buf_dma;
134 * struct pch_spi_data - Holds the SPI channel specific details
135 * @io_remap_addr: The remapped PCI base address
136 * @master: Pointer to the SPI master structure
137 * @work: Reference to work queue handler
138 * @wk: Workqueue for carrying out execution of the
139 * requests
140 * @wait: Wait queue for waking up upon receiving an
141 * interrupt.
142 * @transfer_complete: Status of SPI Transfer
143 * @bcurrent_msg_processing: Status flag for message processing
144 * @lock: Lock for protecting this structure
145 * @queue: SPI Message queue
146 * @status: Status of the SPI driver
147 * @bpw_len: Length of data to be transferred in bits per
148 * word
149 * @transfer_active: Flag showing active transfer
150 * @tx_index: Transmit data count; for bookkeeping during
151 * transfer
152 * @rx_index: Receive data count; for bookkeeping during
153 * transfer
154 * @tx_buff: Buffer for data to be transmitted
155 * @rx_index: Buffer for Received data
156 * @n_curnt_chip: The chip number that this SPI driver currently
157 * operates on
158 * @current_chip: Reference to the current chip that this SPI
159 * driver currently operates on
160 * @current_msg: The current message that this SPI driver is
161 * handling
162 * @cur_trans: The current transfer that this SPI driver is
163 * handling
164 * @board_dat: Reference to the SPI device data structure
165 * @plat_dev: platform_device structure
166 * @ch: SPI channel number
167 * @irq_reg_sts: Status of IRQ registration
169 struct pch_spi_data {
170 void __iomem *io_remap_addr;
171 unsigned long io_base_addr;
172 struct spi_master *master;
173 struct work_struct work;
174 struct workqueue_struct *wk;
175 wait_queue_head_t wait;
176 u8 transfer_complete;
177 u8 bcurrent_msg_processing;
178 spinlock_t lock;
179 struct list_head queue;
180 u8 status;
181 u32 bpw_len;
182 u8 transfer_active;
183 u32 tx_index;
184 u32 rx_index;
185 u16 *pkt_tx_buff;
186 u16 *pkt_rx_buff;
187 u8 n_curnt_chip;
188 struct spi_device *current_chip;
189 struct spi_message *current_msg;
190 struct spi_transfer *cur_trans;
191 struct pch_spi_board_data *board_dat;
192 struct platform_device *plat_dev;
193 int ch;
194 struct pch_spi_dma_ctrl dma;
195 int use_dma;
196 u8 irq_reg_sts;
200 * struct pch_spi_board_data - Holds the SPI device specific details
201 * @pdev: Pointer to the PCI device
202 * @suspend_sts: Status of suspend
203 * @num: The number of SPI device instance
205 struct pch_spi_board_data {
206 struct pci_dev *pdev;
207 u8 suspend_sts;
208 int num;
211 struct pch_pd_dev_save {
212 int num;
213 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
214 struct pch_spi_board_data *board_dat;
217 static struct pci_device_id pch_spi_pcidev_id[] = {
218 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
219 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
220 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
225 * pch_spi_writereg() - Performs register writes
226 * @master: Pointer to struct spi_master.
227 * @idx: Register offset.
228 * @val: Value to be written to register.
230 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
232 struct pch_spi_data *data = spi_master_get_devdata(master);
233 iowrite32(val, (data->io_remap_addr + idx));
237 * pch_spi_readreg() - Performs register reads
238 * @master: Pointer to struct spi_master.
239 * @idx: Register offset.
241 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
243 struct pch_spi_data *data = spi_master_get_devdata(master);
244 return ioread32(data->io_remap_addr + idx);
247 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
248 u32 set, u32 clr)
250 u32 tmp = pch_spi_readreg(master, idx);
251 tmp = (tmp & ~clr) | set;
252 pch_spi_writereg(master, idx, tmp);
255 static void pch_spi_set_master_mode(struct spi_master *master)
257 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
261 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
262 * @master: Pointer to struct spi_master.
264 static void pch_spi_clear_fifo(struct spi_master *master)
266 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
267 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
270 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
271 void __iomem *io_remap_addr)
273 u32 n_read, tx_index, rx_index, bpw_len;
274 u16 *pkt_rx_buffer, *pkt_tx_buff;
275 int read_cnt;
276 u32 reg_spcr_val;
277 void __iomem *spsr;
278 void __iomem *spdrr;
279 void __iomem *spdwr;
281 spsr = io_remap_addr + PCH_SPSR;
282 iowrite32(reg_spsr_val, spsr);
284 if (data->transfer_active) {
285 rx_index = data->rx_index;
286 tx_index = data->tx_index;
287 bpw_len = data->bpw_len;
288 pkt_rx_buffer = data->pkt_rx_buff;
289 pkt_tx_buff = data->pkt_tx_buff;
291 spdrr = io_remap_addr + PCH_SPDRR;
292 spdwr = io_remap_addr + PCH_SPDWR;
294 n_read = PCH_READABLE(reg_spsr_val);
296 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
297 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
298 if (tx_index < bpw_len)
299 iowrite32(pkt_tx_buff[tx_index++], spdwr);
302 /* disable RFI if not needed */
303 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
304 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
305 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
307 /* reset rx threshold */
308 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
309 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
311 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
314 /* update counts */
315 data->tx_index = tx_index;
316 data->rx_index = rx_index;
320 /* if transfer complete interrupt */
321 if (reg_spsr_val & SPSR_FI_BIT) {
322 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
323 /* disable interrupts */
324 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
326 /* transfer is completed;
327 inform pch_spi_process_messages */
328 data->transfer_complete = true;
329 data->transfer_active = false;
330 wake_up(&data->wait);
331 } else {
332 dev_err(&data->master->dev,
333 "%s : Transfer is not completed", __func__);
339 * pch_spi_handler() - Interrupt handler
340 * @irq: The interrupt number.
341 * @dev_id: Pointer to struct pch_spi_board_data.
343 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
345 u32 reg_spsr_val;
346 void __iomem *spsr;
347 void __iomem *io_remap_addr;
348 irqreturn_t ret = IRQ_NONE;
349 struct pch_spi_data *data = dev_id;
350 struct pch_spi_board_data *board_dat = data->board_dat;
352 if (board_dat->suspend_sts) {
353 dev_dbg(&board_dat->pdev->dev,
354 "%s returning due to suspend\n", __func__);
355 return IRQ_NONE;
358 io_remap_addr = data->io_remap_addr;
359 spsr = io_remap_addr + PCH_SPSR;
361 reg_spsr_val = ioread32(spsr);
363 if (reg_spsr_val & SPSR_ORF_BIT) {
364 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
365 if (data->current_msg->complete != 0) {
366 data->transfer_complete = true;
367 data->current_msg->status = -EIO;
368 data->current_msg->complete(data->current_msg->context);
369 data->bcurrent_msg_processing = false;
370 data->current_msg = NULL;
371 data->cur_trans = NULL;
375 if (data->use_dma)
376 return IRQ_NONE;
378 /* Check if the interrupt is for SPI device */
379 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
380 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
381 ret = IRQ_HANDLED;
384 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
385 __func__, ret);
387 return ret;
391 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
392 * @master: Pointer to struct spi_master.
393 * @speed_hz: Baud rate.
395 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
397 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
399 /* if baud rate is less than we can support limit it */
400 if (n_spbr > PCH_MAX_SPBR)
401 n_spbr = PCH_MAX_SPBR;
403 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
407 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
408 * @master: Pointer to struct spi_master.
409 * @bits_per_word: Bits per word for SPI transfer.
411 static void pch_spi_set_bits_per_word(struct spi_master *master,
412 u8 bits_per_word)
414 if (bits_per_word == 8)
415 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
416 else
417 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
421 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
422 * @spi: Pointer to struct spi_device.
424 static void pch_spi_setup_transfer(struct spi_device *spi)
426 u32 flags = 0;
428 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
429 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
430 spi->max_speed_hz);
431 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
433 /* set bits per word */
434 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
436 if (!(spi->mode & SPI_LSB_FIRST))
437 flags |= SPCR_LSBF_BIT;
438 if (spi->mode & SPI_CPOL)
439 flags |= SPCR_CPOL_BIT;
440 if (spi->mode & SPI_CPHA)
441 flags |= SPCR_CPHA_BIT;
442 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
443 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
445 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
446 pch_spi_clear_fifo(spi->master);
450 * pch_spi_reset() - Clears SPI registers
451 * @master: Pointer to struct spi_master.
453 static void pch_spi_reset(struct spi_master *master)
455 /* write 1 to reset SPI */
456 pch_spi_writereg(master, PCH_SRST, 0x1);
458 /* clear reset */
459 pch_spi_writereg(master, PCH_SRST, 0x0);
462 static int pch_spi_setup(struct spi_device *pspi)
464 /* check bits per word */
465 if (pspi->bits_per_word == 0) {
466 pspi->bits_per_word = 8;
467 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
470 if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
471 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
472 return -EINVAL;
475 /* Check baud rate setting */
476 /* if baud rate of chip is greater than
477 max we can support,return error */
478 if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
479 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
481 dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
482 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
484 return 0;
487 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
490 struct spi_transfer *transfer;
491 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
492 int retval;
493 unsigned long flags;
495 /* validate spi message and baud rate */
496 if (unlikely(list_empty(&pmsg->transfers) == 1)) {
497 dev_err(&pspi->dev, "%s list empty\n", __func__);
498 retval = -EINVAL;
499 goto err_out;
502 if (unlikely(pspi->max_speed_hz == 0)) {
503 dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
504 __func__, pspi->max_speed_hz);
505 retval = -EINVAL;
506 goto err_out;
509 dev_dbg(&pspi->dev, "%s Transfer List not empty. "
510 "Transfer Speed is set.\n", __func__);
512 spin_lock_irqsave(&data->lock, flags);
513 /* validate Tx/Rx buffers and Transfer length */
514 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
515 if (!transfer->tx_buf && !transfer->rx_buf) {
516 dev_err(&pspi->dev,
517 "%s Tx and Rx buffer NULL\n", __func__);
518 retval = -EINVAL;
519 goto err_return_spinlock;
522 if (!transfer->len) {
523 dev_err(&pspi->dev, "%s Transfer length invalid\n",
524 __func__);
525 retval = -EINVAL;
526 goto err_return_spinlock;
529 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
530 " valid\n", __func__);
532 /* if baud rate has been specified validate the same */
533 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
534 transfer->speed_hz = PCH_MAX_BAUDRATE;
536 /* if bits per word has been specified validate the same */
537 if (transfer->bits_per_word) {
538 if ((transfer->bits_per_word != 8)
539 && (transfer->bits_per_word != 16)) {
540 retval = -EINVAL;
541 dev_err(&pspi->dev,
542 "%s Invalid bits per word\n", __func__);
543 goto err_return_spinlock;
547 spin_unlock_irqrestore(&data->lock, flags);
549 /* We won't process any messages if we have been asked to terminate */
550 if (data->status == STATUS_EXITING) {
551 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
552 retval = -ESHUTDOWN;
553 goto err_out;
556 /* If suspended ,return -EINVAL */
557 if (data->board_dat->suspend_sts) {
558 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
559 retval = -EINVAL;
560 goto err_out;
563 /* set status of message */
564 pmsg->actual_length = 0;
565 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
567 pmsg->status = -EINPROGRESS;
568 spin_lock_irqsave(&data->lock, flags);
569 /* add message to queue */
570 list_add_tail(&pmsg->queue, &data->queue);
571 spin_unlock_irqrestore(&data->lock, flags);
573 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
575 /* schedule work queue to run */
576 queue_work(data->wk, &data->work);
577 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
579 retval = 0;
581 err_out:
582 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
583 return retval;
584 err_return_spinlock:
585 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
586 spin_unlock_irqrestore(&data->lock, flags);
587 return retval;
590 static inline void pch_spi_select_chip(struct pch_spi_data *data,
591 struct spi_device *pspi)
593 if (data->current_chip != NULL) {
594 if (pspi->chip_select != data->n_curnt_chip) {
595 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
596 data->current_chip = NULL;
600 data->current_chip = pspi;
602 data->n_curnt_chip = data->current_chip->chip_select;
604 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
605 pch_spi_setup_transfer(pspi);
608 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
610 int size;
611 u32 n_writes;
612 int j;
613 struct spi_message *pmsg;
614 const u8 *tx_buf;
615 const u16 *tx_sbuf;
617 /* set baud rate if needed */
618 if (data->cur_trans->speed_hz) {
619 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
620 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
623 /* set bits per word if needed */
624 if (data->cur_trans->bits_per_word &&
625 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
626 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
627 pch_spi_set_bits_per_word(data->master,
628 data->cur_trans->bits_per_word);
629 *bpw = data->cur_trans->bits_per_word;
630 } else {
631 *bpw = data->current_msg->spi->bits_per_word;
634 /* reset Tx/Rx index */
635 data->tx_index = 0;
636 data->rx_index = 0;
638 data->bpw_len = data->cur_trans->len / (*bpw / 8);
640 /* find alloc size */
641 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
643 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
644 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
645 if (data->pkt_tx_buff != NULL) {
646 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
647 if (!data->pkt_rx_buff)
648 kfree(data->pkt_tx_buff);
651 if (!data->pkt_rx_buff) {
652 /* flush queue and set status of all transfers to -ENOMEM */
653 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
654 list_for_each_entry(pmsg, data->queue.next, queue) {
655 pmsg->status = -ENOMEM;
657 if (pmsg->complete != 0)
658 pmsg->complete(pmsg->context);
660 /* delete from queue */
661 list_del_init(&pmsg->queue);
663 return;
666 /* copy Tx Data */
667 if (data->cur_trans->tx_buf != NULL) {
668 if (*bpw == 8) {
669 tx_buf = data->cur_trans->tx_buf;
670 for (j = 0; j < data->bpw_len; j++)
671 data->pkt_tx_buff[j] = *tx_buf++;
672 } else {
673 tx_sbuf = data->cur_trans->tx_buf;
674 for (j = 0; j < data->bpw_len; j++)
675 data->pkt_tx_buff[j] = *tx_sbuf++;
679 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
680 n_writes = data->bpw_len;
681 if (n_writes > PCH_MAX_FIFO_DEPTH)
682 n_writes = PCH_MAX_FIFO_DEPTH;
684 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
685 "0x2 to SSNXCR\n", __func__);
686 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
688 for (j = 0; j < n_writes; j++)
689 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
691 /* update tx_index */
692 data->tx_index = j;
694 /* reset transfer complete flag */
695 data->transfer_complete = false;
696 data->transfer_active = true;
699 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
701 struct spi_message *pmsg;
702 dev_dbg(&data->master->dev, "%s called\n", __func__);
703 /* Invoke complete callback
704 * [To the spi core..indicating end of transfer] */
705 data->current_msg->status = 0;
707 if (data->current_msg->complete != 0) {
708 dev_dbg(&data->master->dev,
709 "%s:Invoking callback of SPI core\n", __func__);
710 data->current_msg->complete(data->current_msg->context);
713 /* update status in global variable */
714 data->bcurrent_msg_processing = false;
716 dev_dbg(&data->master->dev,
717 "%s:data->bcurrent_msg_processing = false\n", __func__);
719 data->current_msg = NULL;
720 data->cur_trans = NULL;
722 /* check if we have items in list and not suspending
723 * return 1 if list empty */
724 if ((list_empty(&data->queue) == 0) &&
725 (!data->board_dat->suspend_sts) &&
726 (data->status != STATUS_EXITING)) {
727 /* We have some more work to do (either there is more tranint
728 * bpw;sfer requests in the current message or there are
729 *more messages)
731 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
732 queue_work(data->wk, &data->work);
733 } else if (data->board_dat->suspend_sts ||
734 data->status == STATUS_EXITING) {
735 dev_dbg(&data->master->dev,
736 "%s suspend/remove initiated, flushing queue\n",
737 __func__);
738 list_for_each_entry(pmsg, data->queue.next, queue) {
739 pmsg->status = -EIO;
741 if (pmsg->complete)
742 pmsg->complete(pmsg->context);
744 /* delete from queue */
745 list_del_init(&pmsg->queue);
750 static void pch_spi_set_ir(struct pch_spi_data *data)
752 /* enable interrupts, set threshold, enable SPI */
753 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
754 /* set receive threshold to PCH_RX_THOLD */
755 pch_spi_setclr_reg(data->master, PCH_SPCR,
756 PCH_RX_THOLD << SPCR_RFIC_FIELD |
757 SPCR_FIE_BIT | SPCR_RFIE_BIT |
758 SPCR_ORIE_BIT | SPCR_SPE_BIT,
759 MASK_RFIC_SPCR_BITS | PCH_ALL);
760 else
761 /* set receive threshold to maximum */
762 pch_spi_setclr_reg(data->master, PCH_SPCR,
763 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
764 SPCR_FIE_BIT | SPCR_ORIE_BIT |
765 SPCR_SPE_BIT,
766 MASK_RFIC_SPCR_BITS | PCH_ALL);
768 /* Wait until the transfer completes; go to sleep after
769 initiating the transfer. */
770 dev_dbg(&data->master->dev,
771 "%s:waiting for transfer to get over\n", __func__);
773 wait_event_interruptible(data->wait, data->transfer_complete);
775 /* clear all interrupts */
776 pch_spi_writereg(data->master, PCH_SPSR,
777 pch_spi_readreg(data->master, PCH_SPSR));
778 /* Disable interrupts and SPI transfer */
779 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
780 /* clear FIFO */
781 pch_spi_clear_fifo(data->master);
784 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
786 int j;
787 u8 *rx_buf;
788 u16 *rx_sbuf;
790 /* copy Rx Data */
791 if (!data->cur_trans->rx_buf)
792 return;
794 if (bpw == 8) {
795 rx_buf = data->cur_trans->rx_buf;
796 for (j = 0; j < data->bpw_len; j++)
797 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
798 } else {
799 rx_sbuf = data->cur_trans->rx_buf;
800 for (j = 0; j < data->bpw_len; j++)
801 *rx_sbuf++ = data->pkt_rx_buff[j];
805 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
807 int j;
808 u8 *rx_buf;
809 u16 *rx_sbuf;
810 const u8 *rx_dma_buf;
811 const u16 *rx_dma_sbuf;
813 /* copy Rx Data */
814 if (!data->cur_trans->rx_buf)
815 return;
817 if (bpw == 8) {
818 rx_buf = data->cur_trans->rx_buf;
819 rx_dma_buf = data->dma.rx_buf_virt;
820 for (j = 0; j < data->bpw_len; j++)
821 *rx_buf++ = *rx_dma_buf++ & 0xFF;
822 } else {
823 rx_sbuf = data->cur_trans->rx_buf;
824 rx_dma_sbuf = data->dma.rx_buf_virt;
825 for (j = 0; j < data->bpw_len; j++)
826 *rx_sbuf++ = *rx_dma_sbuf++;
830 static int pch_spi_start_transfer(struct pch_spi_data *data)
832 struct pch_spi_dma_ctrl *dma;
833 unsigned long flags;
834 int rtn;
836 dma = &data->dma;
838 spin_lock_irqsave(&data->lock, flags);
840 /* disable interrupts, SPI set enable */
841 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
843 spin_unlock_irqrestore(&data->lock, flags);
845 /* Wait until the transfer completes; go to sleep after
846 initiating the transfer. */
847 dev_dbg(&data->master->dev,
848 "%s:waiting for transfer to get over\n", __func__);
849 rtn = wait_event_interruptible_timeout(data->wait,
850 data->transfer_complete,
851 msecs_to_jiffies(2 * HZ));
853 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
854 DMA_FROM_DEVICE);
856 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
857 DMA_FROM_DEVICE);
858 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
860 async_tx_ack(dma->desc_rx);
861 async_tx_ack(dma->desc_tx);
862 kfree(dma->sg_tx_p);
863 kfree(dma->sg_rx_p);
865 spin_lock_irqsave(&data->lock, flags);
867 /* clear fifo threshold, disable interrupts, disable SPI transfer */
868 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
869 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
870 SPCR_SPE_BIT);
871 /* clear all interrupts */
872 pch_spi_writereg(data->master, PCH_SPSR,
873 pch_spi_readreg(data->master, PCH_SPSR));
874 /* clear FIFO */
875 pch_spi_clear_fifo(data->master);
877 spin_unlock_irqrestore(&data->lock, flags);
879 return rtn;
882 static void pch_dma_rx_complete(void *arg)
884 struct pch_spi_data *data = arg;
886 /* transfer is completed;inform pch_spi_process_messages_dma */
887 data->transfer_complete = true;
888 wake_up_interruptible(&data->wait);
891 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
893 struct pch_dma_slave *param = slave;
895 if ((chan->chan_id == param->chan_id) &&
896 (param->dma_dev == chan->device->dev)) {
897 chan->private = param;
898 return true;
899 } else {
900 return false;
904 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
906 dma_cap_mask_t mask;
907 struct dma_chan *chan;
908 struct pci_dev *dma_dev;
909 struct pch_dma_slave *param;
910 struct pch_spi_dma_ctrl *dma;
911 unsigned int width;
913 if (bpw == 8)
914 width = PCH_DMA_WIDTH_1_BYTE;
915 else
916 width = PCH_DMA_WIDTH_2_BYTES;
918 dma = &data->dma;
919 dma_cap_zero(mask);
920 dma_cap_set(DMA_SLAVE, mask);
922 /* Get DMA's dev information */
923 dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
925 /* Set Tx DMA */
926 param = &dma->param_tx;
927 param->dma_dev = &dma_dev->dev;
928 param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
929 param->tx_reg = data->io_base_addr + PCH_SPDWR;
930 param->width = width;
931 chan = dma_request_channel(mask, pch_spi_filter, param);
932 if (!chan) {
933 dev_err(&data->master->dev,
934 "ERROR: dma_request_channel FAILS(Tx)\n");
935 data->use_dma = 0;
936 return;
938 dma->chan_tx = chan;
940 /* Set Rx DMA */
941 param = &dma->param_rx;
942 param->dma_dev = &dma_dev->dev;
943 param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
944 param->rx_reg = data->io_base_addr + PCH_SPDRR;
945 param->width = width;
946 chan = dma_request_channel(mask, pch_spi_filter, param);
947 if (!chan) {
948 dev_err(&data->master->dev,
949 "ERROR: dma_request_channel FAILS(Rx)\n");
950 dma_release_channel(dma->chan_tx);
951 dma->chan_tx = NULL;
952 data->use_dma = 0;
953 return;
955 dma->chan_rx = chan;
958 static void pch_spi_release_dma(struct pch_spi_data *data)
960 struct pch_spi_dma_ctrl *dma;
962 dma = &data->dma;
963 if (dma->chan_tx) {
964 dma_release_channel(dma->chan_tx);
965 dma->chan_tx = NULL;
967 if (dma->chan_rx) {
968 dma_release_channel(dma->chan_rx);
969 dma->chan_rx = NULL;
971 return;
974 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
976 const u8 *tx_buf;
977 const u16 *tx_sbuf;
978 u8 *tx_dma_buf;
979 u16 *tx_dma_sbuf;
980 struct scatterlist *sg;
981 struct dma_async_tx_descriptor *desc_tx;
982 struct dma_async_tx_descriptor *desc_rx;
983 int num;
984 int i;
985 int size;
986 int rem;
987 unsigned long flags;
988 struct pch_spi_dma_ctrl *dma;
990 dma = &data->dma;
992 /* set baud rate if needed */
993 if (data->cur_trans->speed_hz) {
994 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
995 spin_lock_irqsave(&data->lock, flags);
996 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
997 spin_unlock_irqrestore(&data->lock, flags);
1000 /* set bits per word if needed */
1001 if (data->cur_trans->bits_per_word &&
1002 (data->current_msg->spi->bits_per_word !=
1003 data->cur_trans->bits_per_word)) {
1004 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1005 spin_lock_irqsave(&data->lock, flags);
1006 pch_spi_set_bits_per_word(data->master,
1007 data->cur_trans->bits_per_word);
1008 spin_unlock_irqrestore(&data->lock, flags);
1009 *bpw = data->cur_trans->bits_per_word;
1010 } else {
1011 *bpw = data->current_msg->spi->bits_per_word;
1013 data->bpw_len = data->cur_trans->len / (*bpw / 8);
1015 /* copy Tx Data */
1016 if (data->cur_trans->tx_buf != NULL) {
1017 if (*bpw == 8) {
1018 tx_buf = data->cur_trans->tx_buf;
1019 tx_dma_buf = dma->tx_buf_virt;
1020 for (i = 0; i < data->bpw_len; i++)
1021 *tx_dma_buf++ = *tx_buf++;
1022 } else {
1023 tx_sbuf = data->cur_trans->tx_buf;
1024 tx_dma_sbuf = dma->tx_buf_virt;
1025 for (i = 0; i < data->bpw_len; i++)
1026 *tx_dma_sbuf++ = *tx_sbuf++;
1029 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1030 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1031 size = PCH_DMA_TRANS_SIZE;
1032 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1033 } else {
1034 num = 1;
1035 size = data->bpw_len;
1036 rem = data->bpw_len;
1038 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1039 __func__, num, size, rem);
1040 spin_lock_irqsave(&data->lock, flags);
1042 /* set receive fifo threshold and transmit fifo threshold */
1043 pch_spi_setclr_reg(data->master, PCH_SPCR,
1044 ((size - 1) << SPCR_RFIC_FIELD) |
1045 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1046 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1048 spin_unlock_irqrestore(&data->lock, flags);
1050 /* RX */
1051 dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1052 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1053 /* offset, length setting */
1054 sg = dma->sg_rx_p;
1055 for (i = 0; i < num; i++, sg++) {
1056 if (i == (num - 2)) {
1057 sg->offset = size * i;
1058 sg->offset = sg->offset * (*bpw / 8);
1059 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1060 sg->offset);
1061 sg_dma_len(sg) = rem;
1062 } else if (i == (num - 1)) {
1063 sg->offset = size * (i - 1) + rem;
1064 sg->offset = sg->offset * (*bpw / 8);
1065 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1066 sg->offset);
1067 sg_dma_len(sg) = size;
1068 } else {
1069 sg->offset = size * i;
1070 sg->offset = sg->offset * (*bpw / 8);
1071 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1072 sg->offset);
1073 sg_dma_len(sg) = size;
1075 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1077 sg = dma->sg_rx_p;
1078 desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
1079 num, DMA_FROM_DEVICE,
1080 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1081 if (!desc_rx) {
1082 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1083 __func__);
1084 return;
1086 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1087 desc_rx->callback = pch_dma_rx_complete;
1088 desc_rx->callback_param = data;
1089 dma->nent = num;
1090 dma->desc_rx = desc_rx;
1092 /* TX */
1093 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1094 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1095 size = PCH_DMA_TRANS_SIZE;
1096 rem = 16;
1097 } else {
1098 num = 1;
1099 size = data->bpw_len;
1100 rem = data->bpw_len;
1103 dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1104 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1105 /* offset, length setting */
1106 sg = dma->sg_tx_p;
1107 for (i = 0; i < num; i++, sg++) {
1108 if (i == 0) {
1109 sg->offset = 0;
1110 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1111 sg->offset);
1112 sg_dma_len(sg) = rem;
1113 } else {
1114 sg->offset = rem + size * (i - 1);
1115 sg->offset = sg->offset * (*bpw / 8);
1116 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1117 sg->offset);
1118 sg_dma_len(sg) = size;
1120 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1122 sg = dma->sg_tx_p;
1123 desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
1124 sg, num, DMA_TO_DEVICE,
1125 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1126 if (!desc_tx) {
1127 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1128 __func__);
1129 return;
1131 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1132 desc_tx->callback = NULL;
1133 desc_tx->callback_param = data;
1134 dma->nent = num;
1135 dma->desc_tx = desc_tx;
1137 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1138 "0x2 to SSNXCR\n", __func__);
1140 spin_lock_irqsave(&data->lock, flags);
1141 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1142 desc_rx->tx_submit(desc_rx);
1143 desc_tx->tx_submit(desc_tx);
1144 spin_unlock_irqrestore(&data->lock, flags);
1146 /* reset transfer complete flag */
1147 data->transfer_complete = false;
1150 static void pch_spi_process_messages(struct work_struct *pwork)
1152 struct spi_message *pmsg;
1153 struct pch_spi_data *data;
1154 int bpw;
1156 data = container_of(pwork, struct pch_spi_data, work);
1157 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1159 spin_lock(&data->lock);
1160 /* check if suspend has been initiated;if yes flush queue */
1161 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1162 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1163 "flushing queue\n", __func__);
1164 list_for_each_entry(pmsg, data->queue.next, queue) {
1165 pmsg->status = -EIO;
1167 if (pmsg->complete != 0) {
1168 spin_unlock(&data->lock);
1169 pmsg->complete(pmsg->context);
1170 spin_lock(&data->lock);
1173 /* delete from queue */
1174 list_del_init(&pmsg->queue);
1177 spin_unlock(&data->lock);
1178 return;
1181 data->bcurrent_msg_processing = true;
1182 dev_dbg(&data->master->dev,
1183 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1185 /* Get the message from the queue and delete it from there. */
1186 data->current_msg = list_entry(data->queue.next, struct spi_message,
1187 queue);
1189 list_del_init(&data->current_msg->queue);
1191 data->current_msg->status = 0;
1193 pch_spi_select_chip(data, data->current_msg->spi);
1195 spin_unlock(&data->lock);
1197 if (data->use_dma)
1198 pch_spi_request_dma(data,
1199 data->current_msg->spi->bits_per_word);
1200 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1201 do {
1202 /* If we are already processing a message get the next
1203 transfer structure from the message otherwise retrieve
1204 the 1st transfer request from the message. */
1205 spin_lock(&data->lock);
1206 if (data->cur_trans == NULL) {
1207 data->cur_trans =
1208 list_entry(data->current_msg->transfers.next,
1209 struct spi_transfer, transfer_list);
1210 dev_dbg(&data->master->dev, "%s "
1211 ":Getting 1st transfer message\n", __func__);
1212 } else {
1213 data->cur_trans =
1214 list_entry(data->cur_trans->transfer_list.next,
1215 struct spi_transfer, transfer_list);
1216 dev_dbg(&data->master->dev, "%s "
1217 ":Getting next transfer message\n", __func__);
1219 spin_unlock(&data->lock);
1221 if (data->use_dma) {
1222 pch_spi_handle_dma(data, &bpw);
1223 if (!pch_spi_start_transfer(data))
1224 goto out;
1225 pch_spi_copy_rx_data_for_dma(data, bpw);
1226 } else {
1227 pch_spi_set_tx(data, &bpw);
1228 pch_spi_set_ir(data);
1229 pch_spi_copy_rx_data(data, bpw);
1230 kfree(data->pkt_rx_buff);
1231 data->pkt_rx_buff = NULL;
1232 kfree(data->pkt_tx_buff);
1233 data->pkt_tx_buff = NULL;
1235 /* increment message count */
1236 data->current_msg->actual_length += data->cur_trans->len;
1238 dev_dbg(&data->master->dev,
1239 "%s:data->current_msg->actual_length=%d\n",
1240 __func__, data->current_msg->actual_length);
1242 /* check for delay */
1243 if (data->cur_trans->delay_usecs) {
1244 dev_dbg(&data->master->dev, "%s:"
1245 "delay in usec=%d\n", __func__,
1246 data->cur_trans->delay_usecs);
1247 udelay(data->cur_trans->delay_usecs);
1250 spin_lock(&data->lock);
1252 /* No more transfer in this message. */
1253 if ((data->cur_trans->transfer_list.next) ==
1254 &(data->current_msg->transfers)) {
1255 pch_spi_nomore_transfer(data);
1258 spin_unlock(&data->lock);
1260 } while (data->cur_trans != NULL);
1262 out:
1263 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1264 if (data->use_dma)
1265 pch_spi_release_dma(data);
1268 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1269 struct pch_spi_data *data)
1271 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1273 /* free workqueue */
1274 if (data->wk != NULL) {
1275 destroy_workqueue(data->wk);
1276 data->wk = NULL;
1277 dev_dbg(&board_dat->pdev->dev,
1278 "%s destroy_workqueue invoked successfully\n",
1279 __func__);
1283 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1284 struct pch_spi_data *data)
1286 int retval = 0;
1288 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1290 /* create workqueue */
1291 data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1292 if (!data->wk) {
1293 dev_err(&board_dat->pdev->dev,
1294 "%s create_singlet hread_workqueue failed\n", __func__);
1295 retval = -EBUSY;
1296 goto err_return;
1299 /* reset PCH SPI h/w */
1300 pch_spi_reset(data->master);
1301 dev_dbg(&board_dat->pdev->dev,
1302 "%s pch_spi_reset invoked successfully\n", __func__);
1304 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1306 err_return:
1307 if (retval != 0) {
1308 dev_err(&board_dat->pdev->dev,
1309 "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1310 pch_spi_free_resources(board_dat, data);
1313 dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1315 return retval;
1318 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1319 struct pch_spi_data *data)
1321 struct pch_spi_dma_ctrl *dma;
1323 dma = &data->dma;
1324 if (dma->tx_buf_dma)
1325 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1326 dma->tx_buf_virt, dma->tx_buf_dma);
1327 if (dma->rx_buf_dma)
1328 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1329 dma->rx_buf_virt, dma->rx_buf_dma);
1330 return;
1333 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1334 struct pch_spi_data *data)
1336 struct pch_spi_dma_ctrl *dma;
1338 dma = &data->dma;
1339 /* Get Consistent memory for Tx DMA */
1340 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1341 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1342 /* Get Consistent memory for Rx DMA */
1343 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1344 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1347 static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1349 int ret;
1350 struct spi_master *master;
1351 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1352 struct pch_spi_data *data;
1354 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1356 master = spi_alloc_master(&board_dat->pdev->dev,
1357 sizeof(struct pch_spi_data));
1358 if (!master) {
1359 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1360 plat_dev->id);
1361 return -ENOMEM;
1364 data = spi_master_get_devdata(master);
1365 data->master = master;
1367 platform_set_drvdata(plat_dev, data);
1369 /* baseaddress + address offset) */
1370 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1371 PCH_ADDRESS_SIZE * plat_dev->id;
1372 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1373 PCH_ADDRESS_SIZE * plat_dev->id;
1374 if (!data->io_remap_addr) {
1375 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1376 ret = -ENOMEM;
1377 goto err_pci_iomap;
1380 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1381 plat_dev->id, data->io_remap_addr);
1383 /* initialize members of SPI master */
1384 master->bus_num = -1;
1385 master->num_chipselect = PCH_MAX_CS;
1386 master->setup = pch_spi_setup;
1387 master->transfer = pch_spi_transfer;
1389 data->board_dat = board_dat;
1390 data->plat_dev = plat_dev;
1391 data->n_curnt_chip = 255;
1392 data->status = STATUS_RUNNING;
1393 data->ch = plat_dev->id;
1394 data->use_dma = use_dma;
1396 INIT_LIST_HEAD(&data->queue);
1397 spin_lock_init(&data->lock);
1398 INIT_WORK(&data->work, pch_spi_process_messages);
1399 init_waitqueue_head(&data->wait);
1401 ret = pch_spi_get_resources(board_dat, data);
1402 if (ret) {
1403 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1404 goto err_spi_get_resources;
1407 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1408 IRQF_SHARED, KBUILD_MODNAME, data);
1409 if (ret) {
1410 dev_err(&plat_dev->dev,
1411 "%s request_irq failed\n", __func__);
1412 goto err_request_irq;
1414 data->irq_reg_sts = true;
1416 pch_spi_set_master_mode(master);
1418 ret = spi_register_master(master);
1419 if (ret != 0) {
1420 dev_err(&plat_dev->dev,
1421 "%s spi_register_master FAILED\n", __func__);
1422 goto err_spi_register_master;
1425 if (use_dma) {
1426 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1427 pch_alloc_dma_buf(board_dat, data);
1430 return 0;
1432 err_spi_register_master:
1433 free_irq(board_dat->pdev->irq, board_dat);
1434 err_request_irq:
1435 pch_spi_free_resources(board_dat, data);
1436 err_spi_get_resources:
1437 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1438 err_pci_iomap:
1439 spi_master_put(master);
1441 return ret;
1444 static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1446 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1447 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1448 int count;
1449 unsigned long flags;
1451 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1452 __func__, plat_dev->id, board_dat->pdev->irq);
1454 if (use_dma)
1455 pch_free_dma_buf(board_dat, data);
1457 /* check for any pending messages; no action is taken if the queue
1458 * is still full; but at least we tried. Unload anyway */
1459 count = 500;
1460 spin_lock_irqsave(&data->lock, flags);
1461 data->status = STATUS_EXITING;
1462 while ((list_empty(&data->queue) == 0) && --count) {
1463 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1464 __func__);
1465 spin_unlock_irqrestore(&data->lock, flags);
1466 msleep(PCH_SLEEP_TIME);
1467 spin_lock_irqsave(&data->lock, flags);
1469 spin_unlock_irqrestore(&data->lock, flags);
1471 pch_spi_free_resources(board_dat, data);
1472 /* disable interrupts & free IRQ */
1473 if (data->irq_reg_sts) {
1474 /* disable interrupts */
1475 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1476 data->irq_reg_sts = false;
1477 free_irq(board_dat->pdev->irq, data);
1480 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1481 spi_unregister_master(data->master);
1482 spi_master_put(data->master);
1483 platform_set_drvdata(plat_dev, NULL);
1485 return 0;
1487 #ifdef CONFIG_PM
1488 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1489 pm_message_t state)
1491 u8 count;
1492 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1493 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1495 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1497 if (!board_dat) {
1498 dev_err(&pd_dev->dev,
1499 "%s pci_get_drvdata returned NULL\n", __func__);
1500 return -EFAULT;
1503 /* check if the current message is processed:
1504 Only after thats done the transfer will be suspended */
1505 count = 255;
1506 while ((--count) > 0) {
1507 if (!(data->bcurrent_msg_processing))
1508 break;
1509 msleep(PCH_SLEEP_TIME);
1512 /* Free IRQ */
1513 if (data->irq_reg_sts) {
1514 /* disable all interrupts */
1515 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1516 pch_spi_reset(data->master);
1517 free_irq(board_dat->pdev->irq, data);
1519 data->irq_reg_sts = false;
1520 dev_dbg(&pd_dev->dev,
1521 "%s free_irq invoked successfully.\n", __func__);
1524 return 0;
1527 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1529 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1530 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1531 int retval;
1533 if (!board_dat) {
1534 dev_err(&pd_dev->dev,
1535 "%s pci_get_drvdata returned NULL\n", __func__);
1536 return -EFAULT;
1539 if (!data->irq_reg_sts) {
1540 /* register IRQ */
1541 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1542 IRQF_SHARED, KBUILD_MODNAME, data);
1543 if (retval < 0) {
1544 dev_err(&pd_dev->dev,
1545 "%s request_irq failed\n", __func__);
1546 return retval;
1549 /* reset PCH SPI h/w */
1550 pch_spi_reset(data->master);
1551 pch_spi_set_master_mode(data->master);
1552 data->irq_reg_sts = true;
1554 return 0;
1556 #else
1557 #define pch_spi_pd_suspend NULL
1558 #define pch_spi_pd_resume NULL
1559 #endif
1561 static struct platform_driver pch_spi_pd_driver = {
1562 .driver = {
1563 .name = "pch-spi",
1564 .owner = THIS_MODULE,
1566 .probe = pch_spi_pd_probe,
1567 .remove = __devexit_p(pch_spi_pd_remove),
1568 .suspend = pch_spi_pd_suspend,
1569 .resume = pch_spi_pd_resume
1572 static int __devinit pch_spi_probe(struct pci_dev *pdev,
1573 const struct pci_device_id *id)
1575 struct pch_spi_board_data *board_dat;
1576 struct platform_device *pd_dev = NULL;
1577 int retval;
1578 int i;
1579 struct pch_pd_dev_save *pd_dev_save;
1581 pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1582 if (!pd_dev_save) {
1583 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1584 return -ENOMEM;
1587 board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1588 if (!board_dat) {
1589 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1590 retval = -ENOMEM;
1591 goto err_no_mem;
1594 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1595 if (retval) {
1596 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1597 goto pci_request_regions;
1600 board_dat->pdev = pdev;
1601 board_dat->num = id->driver_data;
1602 pd_dev_save->num = id->driver_data;
1603 pd_dev_save->board_dat = board_dat;
1605 retval = pci_enable_device(pdev);
1606 if (retval) {
1607 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1608 goto pci_enable_device;
1611 for (i = 0; i < board_dat->num; i++) {
1612 pd_dev = platform_device_alloc("pch-spi", i);
1613 if (!pd_dev) {
1614 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1615 goto err_platform_device;
1617 pd_dev_save->pd_save[i] = pd_dev;
1618 pd_dev->dev.parent = &pdev->dev;
1620 retval = platform_device_add_data(pd_dev, board_dat,
1621 sizeof(*board_dat));
1622 if (retval) {
1623 dev_err(&pdev->dev,
1624 "platform_device_add_data failed\n");
1625 platform_device_put(pd_dev);
1626 goto err_platform_device;
1629 retval = platform_device_add(pd_dev);
1630 if (retval) {
1631 dev_err(&pdev->dev, "platform_device_add failed\n");
1632 platform_device_put(pd_dev);
1633 goto err_platform_device;
1637 pci_set_drvdata(pdev, pd_dev_save);
1639 return 0;
1641 err_platform_device:
1642 pci_disable_device(pdev);
1643 pci_enable_device:
1644 pci_release_regions(pdev);
1645 pci_request_regions:
1646 kfree(board_dat);
1647 err_no_mem:
1648 kfree(pd_dev_save);
1650 return retval;
1653 static void __devexit pch_spi_remove(struct pci_dev *pdev)
1655 int i;
1656 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1658 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1660 for (i = 0; i < pd_dev_save->num; i++)
1661 platform_device_unregister(pd_dev_save->pd_save[i]);
1663 pci_disable_device(pdev);
1664 pci_release_regions(pdev);
1665 kfree(pd_dev_save->board_dat);
1666 kfree(pd_dev_save);
1669 #ifdef CONFIG_PM
1670 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1672 int retval;
1673 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1675 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1677 pd_dev_save->board_dat->suspend_sts = true;
1679 /* save config space */
1680 retval = pci_save_state(pdev);
1681 if (retval == 0) {
1682 pci_enable_wake(pdev, PCI_D3hot, 0);
1683 pci_disable_device(pdev);
1684 pci_set_power_state(pdev, PCI_D3hot);
1685 } else {
1686 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1689 return retval;
1692 static int pch_spi_resume(struct pci_dev *pdev)
1694 int retval;
1695 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1696 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1698 pci_set_power_state(pdev, PCI_D0);
1699 pci_restore_state(pdev);
1701 retval = pci_enable_device(pdev);
1702 if (retval < 0) {
1703 dev_err(&pdev->dev,
1704 "%s pci_enable_device failed\n", __func__);
1705 } else {
1706 pci_enable_wake(pdev, PCI_D3hot, 0);
1708 /* set suspend status to false */
1709 pd_dev_save->board_dat->suspend_sts = false;
1712 return retval;
1714 #else
1715 #define pch_spi_suspend NULL
1716 #define pch_spi_resume NULL
1718 #endif
1720 static struct pci_driver pch_spi_pcidev = {
1721 .name = "pch_spi",
1722 .id_table = pch_spi_pcidev_id,
1723 .probe = pch_spi_probe,
1724 .remove = pch_spi_remove,
1725 .suspend = pch_spi_suspend,
1726 .resume = pch_spi_resume,
1729 static int __init pch_spi_init(void)
1731 int ret;
1732 ret = platform_driver_register(&pch_spi_pd_driver);
1733 if (ret)
1734 return ret;
1736 ret = pci_register_driver(&pch_spi_pcidev);
1737 if (ret)
1738 return ret;
1740 return 0;
1742 module_init(pch_spi_init);
1744 static void __exit pch_spi_exit(void)
1746 pci_unregister_driver(&pch_spi_pcidev);
1747 platform_driver_unregister(&pch_spi_pd_driver);
1749 module_exit(pch_spi_exit);
1751 module_param(use_dma, int, 0644);
1752 MODULE_PARM_DESC(use_dma,
1753 "to use DMA for data transfers pass 1 else 0; default 1");
1755 MODULE_LICENSE("GPL");
1756 MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7xxx IOH SPI Driver");