net: OpenFirmware GPIO based MDIO bitbang driver
[zen-stable.git] / drivers / net / fec.c
blob32a4f17d35fc5f1387ca232bc7100761cc7bcafe
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2006 Macq Electronique SA.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/ptrace.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
49 #include <asm/pgtable.h>
50 #include <asm/cacheflush.h>
52 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
54 defined(CONFIG_M520x) || defined(CONFIG_M532x)
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
57 #include "fec.h"
58 #else
59 #include <asm/8xx_immap.h>
60 #include <asm/mpc8xx.h>
61 #include "commproc.h"
62 #endif
64 #if defined(CONFIG_FEC2)
65 #define FEC_MAX_PORTS 2
66 #else
67 #define FEC_MAX_PORTS 1
68 #endif
70 #if defined(CONFIG_FADS) || defined(CONFIG_RPXCLASSIC) || defined(CONFIG_M5272)
71 #define HAVE_mii_link_interrupt
72 #endif
75 * Define the fixed address of the FEC hardware.
77 static unsigned int fec_hw[] = {
78 #if defined(CONFIG_M5272)
79 (MCF_MBAR + 0x840),
80 #elif defined(CONFIG_M527x)
81 (MCF_MBAR + 0x1000),
82 (MCF_MBAR + 0x1800),
83 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
84 (MCF_MBAR + 0x1000),
85 #elif defined(CONFIG_M520x)
86 (MCF_MBAR+0x30000),
87 #elif defined(CONFIG_M532x)
88 (MCF_MBAR+0xfc030000),
89 #else
90 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
91 #endif
94 static unsigned char fec_mac_default[] = {
95 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
99 * Some hardware gets it MAC address out of local flash memory.
100 * if this is non-zero then assume it is the address to get MAC from.
102 #if defined(CONFIG_NETtel)
103 #define FEC_FLASHMAC 0xf0006006
104 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
105 #define FEC_FLASHMAC 0xf0006000
106 #elif defined(CONFIG_CANCam)
107 #define FEC_FLASHMAC 0xf0020000
108 #elif defined (CONFIG_M5272C3)
109 #define FEC_FLASHMAC (0xffe04000 + 4)
110 #elif defined(CONFIG_MOD5272)
111 #define FEC_FLASHMAC 0xffc0406b
112 #else
113 #define FEC_FLASHMAC 0
114 #endif
116 /* Forward declarations of some structures to support different PHYs
119 typedef struct {
120 uint mii_data;
121 void (*funct)(uint mii_reg, struct net_device *dev);
122 } phy_cmd_t;
124 typedef struct {
125 uint id;
126 char *name;
128 const phy_cmd_t *config;
129 const phy_cmd_t *startup;
130 const phy_cmd_t *ack_int;
131 const phy_cmd_t *shutdown;
132 } phy_info_t;
134 /* The number of Tx and Rx buffers. These are allocated from the page
135 * pool. The code may assume these are power of two, so it it best
136 * to keep them that size.
137 * We don't need to allocate pages for the transmitter. We just use
138 * the skbuffer directly.
140 #define FEC_ENET_RX_PAGES 8
141 #define FEC_ENET_RX_FRSIZE 2048
142 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
143 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
144 #define FEC_ENET_TX_FRSIZE 2048
145 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
146 #define TX_RING_SIZE 16 /* Must be power of two */
147 #define TX_RING_MOD_MASK 15 /* for this to work */
149 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
150 #error "FEC: descriptor ring size constants too large"
151 #endif
153 /* Interrupt events/masks.
155 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
156 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
157 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
158 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
159 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
160 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
161 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
162 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
163 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
164 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
166 /* The FEC stores dest/src/type, data, and checksum for receive packets.
168 #define PKT_MAXBUF_SIZE 1518
169 #define PKT_MINBUF_SIZE 64
170 #define PKT_MAXBLR_SIZE 1520
174 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
175 * size bits. Other FEC hardware does not, so we need to take that into
176 * account when setting it.
178 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
179 defined(CONFIG_M520x) || defined(CONFIG_M532x)
180 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
181 #else
182 #define OPT_FRAME_SIZE 0
183 #endif
185 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
186 * tx_bd_base always point to the base of the buffer descriptors. The
187 * cur_rx and cur_tx point to the currently available buffer.
188 * The dirty_tx tracks the current buffer that is being sent by the
189 * controller. The cur_tx and dirty_tx are equal under both completely
190 * empty and completely full conditions. The empty/ready indicator in
191 * the buffer descriptor determines the actual condition.
193 struct fec_enet_private {
194 /* Hardware registers of the FEC device */
195 volatile fec_t *hwp;
197 struct net_device *netdev;
199 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
200 unsigned char *tx_bounce[TX_RING_SIZE];
201 struct sk_buff* tx_skbuff[TX_RING_SIZE];
202 ushort skb_cur;
203 ushort skb_dirty;
205 /* CPM dual port RAM relative addresses.
207 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
208 cbd_t *tx_bd_base;
209 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
210 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
211 uint tx_full;
212 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
213 spinlock_t hw_lock;
214 /* hold while accessing the mii_list_t() elements */
215 spinlock_t mii_lock;
217 uint phy_id;
218 uint phy_id_done;
219 uint phy_status;
220 uint phy_speed;
221 phy_info_t const *phy;
222 struct work_struct phy_task;
224 uint sequence_done;
225 uint mii_phy_task_queued;
227 uint phy_addr;
229 int index;
230 int opened;
231 int link;
232 int old_link;
233 int full_duplex;
236 static int fec_enet_open(struct net_device *dev);
237 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
238 static void fec_enet_mii(struct net_device *dev);
239 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
240 static void fec_enet_tx(struct net_device *dev);
241 static void fec_enet_rx(struct net_device *dev);
242 static int fec_enet_close(struct net_device *dev);
243 static void set_multicast_list(struct net_device *dev);
244 static void fec_restart(struct net_device *dev, int duplex);
245 static void fec_stop(struct net_device *dev);
246 static void fec_set_mac_address(struct net_device *dev);
249 /* MII processing. We keep this as simple as possible. Requests are
250 * placed on the list (if there is room). When the request is finished
251 * by the MII, an optional function may be called.
253 typedef struct mii_list {
254 uint mii_regval;
255 void (*mii_func)(uint val, struct net_device *dev);
256 struct mii_list *mii_next;
257 } mii_list_t;
259 #define NMII 20
260 static mii_list_t mii_cmds[NMII];
261 static mii_list_t *mii_free;
262 static mii_list_t *mii_head;
263 static mii_list_t *mii_tail;
265 static int mii_queue(struct net_device *dev, int request,
266 void (*func)(uint, struct net_device *));
268 /* Make MII read/write commands for the FEC.
270 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
271 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
272 (VAL & 0xffff))
273 #define mk_mii_end 0
275 /* Transmitter timeout.
277 #define TX_TIMEOUT (2*HZ)
279 /* Register definitions for the PHY.
282 #define MII_REG_CR 0 /* Control Register */
283 #define MII_REG_SR 1 /* Status Register */
284 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
285 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
286 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
287 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
288 #define MII_REG_ANER 6 /* A-N Expansion Register */
289 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
290 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
292 /* values for phy_status */
294 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
295 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
296 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
297 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
298 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
299 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
300 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
302 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
303 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
304 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
305 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
306 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
307 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
308 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
309 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
312 static int
313 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
315 struct fec_enet_private *fep;
316 volatile fec_t *fecp;
317 volatile cbd_t *bdp;
318 unsigned short status;
319 unsigned long flags;
321 fep = netdev_priv(dev);
322 fecp = (volatile fec_t*)dev->base_addr;
324 if (!fep->link) {
325 /* Link is down or autonegotiation is in progress. */
326 return 1;
329 spin_lock_irqsave(&fep->hw_lock, flags);
330 /* Fill in a Tx ring entry */
331 bdp = fep->cur_tx;
333 status = bdp->cbd_sc;
334 #ifndef final_version
335 if (status & BD_ENET_TX_READY) {
336 /* Ooops. All transmit buffers are full. Bail out.
337 * This should not happen, since dev->tbusy should be set.
339 printk("%s: tx queue full!.\n", dev->name);
340 spin_unlock_irqrestore(&fep->hw_lock, flags);
341 return 1;
343 #endif
345 /* Clear all of the status flags.
347 status &= ~BD_ENET_TX_STATS;
349 /* Set buffer length and buffer pointer.
351 bdp->cbd_bufaddr = __pa(skb->data);
352 bdp->cbd_datlen = skb->len;
355 * On some FEC implementations data must be aligned on
356 * 4-byte boundaries. Use bounce buffers to copy data
357 * and get it aligned. Ugh.
359 if (bdp->cbd_bufaddr & 0x3) {
360 unsigned int index;
361 index = bdp - fep->tx_bd_base;
362 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
363 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
366 /* Save skb pointer.
368 fep->tx_skbuff[fep->skb_cur] = skb;
370 dev->stats.tx_bytes += skb->len;
371 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
373 /* Push the data cache so the CPM does not get stale memory
374 * data.
376 flush_dcache_range((unsigned long)skb->data,
377 (unsigned long)skb->data + skb->len);
379 /* Send it on its way. Tell FEC it's ready, interrupt when done,
380 * it's the last BD of the frame, and to put the CRC on the end.
383 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
384 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
385 bdp->cbd_sc = status;
387 dev->trans_start = jiffies;
389 /* Trigger transmission start */
390 fecp->fec_x_des_active = 0;
392 /* If this was the last BD in the ring, start at the beginning again.
394 if (status & BD_ENET_TX_WRAP) {
395 bdp = fep->tx_bd_base;
396 } else {
397 bdp++;
400 if (bdp == fep->dirty_tx) {
401 fep->tx_full = 1;
402 netif_stop_queue(dev);
405 fep->cur_tx = (cbd_t *)bdp;
407 spin_unlock_irqrestore(&fep->hw_lock, flags);
409 return 0;
412 static void
413 fec_timeout(struct net_device *dev)
415 struct fec_enet_private *fep = netdev_priv(dev);
417 printk("%s: transmit timed out.\n", dev->name);
418 dev->stats.tx_errors++;
419 #ifndef final_version
421 int i;
422 cbd_t *bdp;
424 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
425 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
426 (unsigned long)fep->dirty_tx,
427 (unsigned long)fep->cur_rx);
429 bdp = fep->tx_bd_base;
430 printk(" tx: %u buffers\n", TX_RING_SIZE);
431 for (i = 0 ; i < TX_RING_SIZE; i++) {
432 printk(" %08x: %04x %04x %08x\n",
433 (uint) bdp,
434 bdp->cbd_sc,
435 bdp->cbd_datlen,
436 (int) bdp->cbd_bufaddr);
437 bdp++;
440 bdp = fep->rx_bd_base;
441 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
442 for (i = 0 ; i < RX_RING_SIZE; i++) {
443 printk(" %08x: %04x %04x %08x\n",
444 (uint) bdp,
445 bdp->cbd_sc,
446 bdp->cbd_datlen,
447 (int) bdp->cbd_bufaddr);
448 bdp++;
451 #endif
452 fec_restart(dev, fep->full_duplex);
453 netif_wake_queue(dev);
456 /* The interrupt handler.
457 * This is called from the MPC core interrupt.
459 static irqreturn_t
460 fec_enet_interrupt(int irq, void * dev_id)
462 struct net_device *dev = dev_id;
463 volatile fec_t *fecp;
464 uint int_events;
465 irqreturn_t ret = IRQ_NONE;
467 fecp = (volatile fec_t*)dev->base_addr;
469 /* Get the interrupt events that caused us to be here.
471 do {
472 int_events = fecp->fec_ievent;
473 fecp->fec_ievent = int_events;
475 /* Handle receive event in its own function.
477 if (int_events & FEC_ENET_RXF) {
478 ret = IRQ_HANDLED;
479 fec_enet_rx(dev);
482 /* Transmit OK, or non-fatal error. Update the buffer
483 descriptors. FEC handles all errors, we just discover
484 them as part of the transmit process.
486 if (int_events & FEC_ENET_TXF) {
487 ret = IRQ_HANDLED;
488 fec_enet_tx(dev);
491 if (int_events & FEC_ENET_MII) {
492 ret = IRQ_HANDLED;
493 fec_enet_mii(dev);
496 } while (int_events);
498 return ret;
502 static void
503 fec_enet_tx(struct net_device *dev)
505 struct fec_enet_private *fep;
506 volatile cbd_t *bdp;
507 unsigned short status;
508 struct sk_buff *skb;
510 fep = netdev_priv(dev);
511 spin_lock_irq(&fep->hw_lock);
512 bdp = fep->dirty_tx;
514 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
515 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
517 skb = fep->tx_skbuff[fep->skb_dirty];
518 /* Check for errors. */
519 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
520 BD_ENET_TX_RL | BD_ENET_TX_UN |
521 BD_ENET_TX_CSL)) {
522 dev->stats.tx_errors++;
523 if (status & BD_ENET_TX_HB) /* No heartbeat */
524 dev->stats.tx_heartbeat_errors++;
525 if (status & BD_ENET_TX_LC) /* Late collision */
526 dev->stats.tx_window_errors++;
527 if (status & BD_ENET_TX_RL) /* Retrans limit */
528 dev->stats.tx_aborted_errors++;
529 if (status & BD_ENET_TX_UN) /* Underrun */
530 dev->stats.tx_fifo_errors++;
531 if (status & BD_ENET_TX_CSL) /* Carrier lost */
532 dev->stats.tx_carrier_errors++;
533 } else {
534 dev->stats.tx_packets++;
537 #ifndef final_version
538 if (status & BD_ENET_TX_READY)
539 printk("HEY! Enet xmit interrupt and TX_READY.\n");
540 #endif
541 /* Deferred means some collisions occurred during transmit,
542 * but we eventually sent the packet OK.
544 if (status & BD_ENET_TX_DEF)
545 dev->stats.collisions++;
547 /* Free the sk buffer associated with this last transmit.
549 dev_kfree_skb_any(skb);
550 fep->tx_skbuff[fep->skb_dirty] = NULL;
551 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
553 /* Update pointer to next buffer descriptor to be transmitted.
555 if (status & BD_ENET_TX_WRAP)
556 bdp = fep->tx_bd_base;
557 else
558 bdp++;
560 /* Since we have freed up a buffer, the ring is no longer
561 * full.
563 if (fep->tx_full) {
564 fep->tx_full = 0;
565 if (netif_queue_stopped(dev))
566 netif_wake_queue(dev);
569 fep->dirty_tx = (cbd_t *)bdp;
570 spin_unlock_irq(&fep->hw_lock);
574 /* During a receive, the cur_rx points to the current incoming buffer.
575 * When we update through the ring, if the next incoming buffer has
576 * not been given to the system, we just set the empty indicator,
577 * effectively tossing the packet.
579 static void
580 fec_enet_rx(struct net_device *dev)
582 struct fec_enet_private *fep;
583 volatile fec_t *fecp;
584 volatile cbd_t *bdp;
585 unsigned short status;
586 struct sk_buff *skb;
587 ushort pkt_len;
588 __u8 *data;
590 #ifdef CONFIG_M532x
591 flush_cache_all();
592 #endif
594 fep = netdev_priv(dev);
595 fecp = (volatile fec_t*)dev->base_addr;
597 spin_lock_irq(&fep->hw_lock);
599 /* First, grab all of the stats for the incoming packet.
600 * These get messed up if we get called due to a busy condition.
602 bdp = fep->cur_rx;
604 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
606 #ifndef final_version
607 /* Since we have allocated space to hold a complete frame,
608 * the last indicator should be set.
610 if ((status & BD_ENET_RX_LAST) == 0)
611 printk("FEC ENET: rcv is not +last\n");
612 #endif
614 if (!fep->opened)
615 goto rx_processing_done;
617 /* Check for errors. */
618 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
619 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
620 dev->stats.rx_errors++;
621 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
622 /* Frame too long or too short. */
623 dev->stats.rx_length_errors++;
625 if (status & BD_ENET_RX_NO) /* Frame alignment */
626 dev->stats.rx_frame_errors++;
627 if (status & BD_ENET_RX_CR) /* CRC Error */
628 dev->stats.rx_crc_errors++;
629 if (status & BD_ENET_RX_OV) /* FIFO overrun */
630 dev->stats.rx_fifo_errors++;
633 /* Report late collisions as a frame error.
634 * On this error, the BD is closed, but we don't know what we
635 * have in the buffer. So, just drop this frame on the floor.
637 if (status & BD_ENET_RX_CL) {
638 dev->stats.rx_errors++;
639 dev->stats.rx_frame_errors++;
640 goto rx_processing_done;
643 /* Process the incoming frame.
645 dev->stats.rx_packets++;
646 pkt_len = bdp->cbd_datlen;
647 dev->stats.rx_bytes += pkt_len;
648 data = (__u8*)__va(bdp->cbd_bufaddr);
650 /* This does 16 byte alignment, exactly what we need.
651 * The packet length includes FCS, but we don't want to
652 * include that when passing upstream as it messes up
653 * bridging applications.
655 skb = dev_alloc_skb(pkt_len-4);
657 if (skb == NULL) {
658 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
659 dev->stats.rx_dropped++;
660 } else {
661 skb_put(skb,pkt_len-4); /* Make room */
662 skb_copy_to_linear_data(skb, data, pkt_len-4);
663 skb->protocol=eth_type_trans(skb,dev);
664 netif_rx(skb);
666 rx_processing_done:
668 /* Clear the status flags for this buffer.
670 status &= ~BD_ENET_RX_STATS;
672 /* Mark the buffer empty.
674 status |= BD_ENET_RX_EMPTY;
675 bdp->cbd_sc = status;
677 /* Update BD pointer to next entry.
679 if (status & BD_ENET_RX_WRAP)
680 bdp = fep->rx_bd_base;
681 else
682 bdp++;
684 #if 1
685 /* Doing this here will keep the FEC running while we process
686 * incoming frames. On a heavily loaded network, we should be
687 * able to keep up at the expense of system resources.
689 fecp->fec_r_des_active = 0;
690 #endif
691 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
692 fep->cur_rx = (cbd_t *)bdp;
694 #if 0
695 /* Doing this here will allow us to process all frames in the
696 * ring before the FEC is allowed to put more there. On a heavily
697 * loaded network, some frames may be lost. Unfortunately, this
698 * increases the interrupt overhead since we can potentially work
699 * our way back to the interrupt return only to come right back
700 * here.
702 fecp->fec_r_des_active = 0;
703 #endif
705 spin_unlock_irq(&fep->hw_lock);
709 /* called from interrupt context */
710 static void
711 fec_enet_mii(struct net_device *dev)
713 struct fec_enet_private *fep;
714 volatile fec_t *ep;
715 mii_list_t *mip;
716 uint mii_reg;
718 fep = netdev_priv(dev);
719 spin_lock_irq(&fep->mii_lock);
721 ep = fep->hwp;
722 mii_reg = ep->fec_mii_data;
724 if ((mip = mii_head) == NULL) {
725 printk("MII and no head!\n");
726 goto unlock;
729 if (mip->mii_func != NULL)
730 (*(mip->mii_func))(mii_reg, dev);
732 mii_head = mip->mii_next;
733 mip->mii_next = mii_free;
734 mii_free = mip;
736 if ((mip = mii_head) != NULL)
737 ep->fec_mii_data = mip->mii_regval;
739 unlock:
740 spin_unlock_irq(&fep->mii_lock);
743 static int
744 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
746 struct fec_enet_private *fep;
747 unsigned long flags;
748 mii_list_t *mip;
749 int retval;
751 /* Add PHY address to register command.
753 fep = netdev_priv(dev);
754 spin_lock_irqsave(&fep->mii_lock, flags);
756 regval |= fep->phy_addr << 23;
757 retval = 0;
759 if ((mip = mii_free) != NULL) {
760 mii_free = mip->mii_next;
761 mip->mii_regval = regval;
762 mip->mii_func = func;
763 mip->mii_next = NULL;
764 if (mii_head) {
765 mii_tail->mii_next = mip;
766 mii_tail = mip;
767 } else {
768 mii_head = mii_tail = mip;
769 fep->hwp->fec_mii_data = regval;
771 } else {
772 retval = 1;
775 spin_unlock_irqrestore(&fep->mii_lock, flags);
776 return retval;
779 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
781 if(!c)
782 return;
784 for (; c->mii_data != mk_mii_end; c++)
785 mii_queue(dev, c->mii_data, c->funct);
788 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
790 struct fec_enet_private *fep = netdev_priv(dev);
791 volatile uint *s = &(fep->phy_status);
792 uint status;
794 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
796 if (mii_reg & 0x0004)
797 status |= PHY_STAT_LINK;
798 if (mii_reg & 0x0010)
799 status |= PHY_STAT_FAULT;
800 if (mii_reg & 0x0020)
801 status |= PHY_STAT_ANC;
802 *s = status;
805 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
807 struct fec_enet_private *fep = netdev_priv(dev);
808 volatile uint *s = &(fep->phy_status);
809 uint status;
811 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
813 if (mii_reg & 0x1000)
814 status |= PHY_CONF_ANE;
815 if (mii_reg & 0x4000)
816 status |= PHY_CONF_LOOP;
817 *s = status;
820 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
822 struct fec_enet_private *fep = netdev_priv(dev);
823 volatile uint *s = &(fep->phy_status);
824 uint status;
826 status = *s & ~(PHY_CONF_SPMASK);
828 if (mii_reg & 0x0020)
829 status |= PHY_CONF_10HDX;
830 if (mii_reg & 0x0040)
831 status |= PHY_CONF_10FDX;
832 if (mii_reg & 0x0080)
833 status |= PHY_CONF_100HDX;
834 if (mii_reg & 0x00100)
835 status |= PHY_CONF_100FDX;
836 *s = status;
839 /* ------------------------------------------------------------------------- */
840 /* The Level one LXT970 is used by many boards */
842 #define MII_LXT970_MIRROR 16 /* Mirror register */
843 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
844 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
845 #define MII_LXT970_CONFIG 19 /* Configuration Register */
846 #define MII_LXT970_CSR 20 /* Chip Status Register */
848 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
850 struct fec_enet_private *fep = netdev_priv(dev);
851 volatile uint *s = &(fep->phy_status);
852 uint status;
854 status = *s & ~(PHY_STAT_SPMASK);
855 if (mii_reg & 0x0800) {
856 if (mii_reg & 0x1000)
857 status |= PHY_STAT_100FDX;
858 else
859 status |= PHY_STAT_100HDX;
860 } else {
861 if (mii_reg & 0x1000)
862 status |= PHY_STAT_10FDX;
863 else
864 status |= PHY_STAT_10HDX;
866 *s = status;
869 static phy_cmd_t const phy_cmd_lxt970_config[] = {
870 { mk_mii_read(MII_REG_CR), mii_parse_cr },
871 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
872 { mk_mii_end, }
874 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
875 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
876 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
877 { mk_mii_end, }
879 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
880 /* read SR and ISR to acknowledge */
881 { mk_mii_read(MII_REG_SR), mii_parse_sr },
882 { mk_mii_read(MII_LXT970_ISR), NULL },
884 /* find out the current status */
885 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
886 { mk_mii_end, }
888 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
889 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
890 { mk_mii_end, }
892 static phy_info_t const phy_info_lxt970 = {
893 .id = 0x07810000,
894 .name = "LXT970",
895 .config = phy_cmd_lxt970_config,
896 .startup = phy_cmd_lxt970_startup,
897 .ack_int = phy_cmd_lxt970_ack_int,
898 .shutdown = phy_cmd_lxt970_shutdown
901 /* ------------------------------------------------------------------------- */
902 /* The Level one LXT971 is used on some of my custom boards */
904 /* register definitions for the 971 */
906 #define MII_LXT971_PCR 16 /* Port Control Register */
907 #define MII_LXT971_SR2 17 /* Status Register 2 */
908 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
909 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
910 #define MII_LXT971_LCR 20 /* LED Control Register */
911 #define MII_LXT971_TCR 30 /* Transmit Control Register */
914 * I had some nice ideas of running the MDIO faster...
915 * The 971 should support 8MHz and I tried it, but things acted really
916 * weird, so 2.5 MHz ought to be enough for anyone...
919 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
921 struct fec_enet_private *fep = netdev_priv(dev);
922 volatile uint *s = &(fep->phy_status);
923 uint status;
925 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
927 if (mii_reg & 0x0400) {
928 fep->link = 1;
929 status |= PHY_STAT_LINK;
930 } else {
931 fep->link = 0;
933 if (mii_reg & 0x0080)
934 status |= PHY_STAT_ANC;
935 if (mii_reg & 0x4000) {
936 if (mii_reg & 0x0200)
937 status |= PHY_STAT_100FDX;
938 else
939 status |= PHY_STAT_100HDX;
940 } else {
941 if (mii_reg & 0x0200)
942 status |= PHY_STAT_10FDX;
943 else
944 status |= PHY_STAT_10HDX;
946 if (mii_reg & 0x0008)
947 status |= PHY_STAT_FAULT;
949 *s = status;
952 static phy_cmd_t const phy_cmd_lxt971_config[] = {
953 /* limit to 10MBit because my prototype board
954 * doesn't work with 100. */
955 { mk_mii_read(MII_REG_CR), mii_parse_cr },
956 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
957 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
958 { mk_mii_end, }
960 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
961 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
962 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
963 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
964 /* Somehow does the 971 tell me that the link is down
965 * the first read after power-up.
966 * read here to get a valid value in ack_int */
967 { mk_mii_read(MII_REG_SR), mii_parse_sr },
968 { mk_mii_end, }
970 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
971 /* acknowledge the int before reading status ! */
972 { mk_mii_read(MII_LXT971_ISR), NULL },
973 /* find out the current status */
974 { mk_mii_read(MII_REG_SR), mii_parse_sr },
975 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
976 { mk_mii_end, }
978 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
979 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
980 { mk_mii_end, }
982 static phy_info_t const phy_info_lxt971 = {
983 .id = 0x0001378e,
984 .name = "LXT971",
985 .config = phy_cmd_lxt971_config,
986 .startup = phy_cmd_lxt971_startup,
987 .ack_int = phy_cmd_lxt971_ack_int,
988 .shutdown = phy_cmd_lxt971_shutdown
991 /* ------------------------------------------------------------------------- */
992 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
994 /* register definitions */
996 #define MII_QS6612_MCR 17 /* Mode Control Register */
997 #define MII_QS6612_FTR 27 /* Factory Test Register */
998 #define MII_QS6612_MCO 28 /* Misc. Control Register */
999 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
1000 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1001 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1003 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1005 struct fec_enet_private *fep = netdev_priv(dev);
1006 volatile uint *s = &(fep->phy_status);
1007 uint status;
1009 status = *s & ~(PHY_STAT_SPMASK);
1011 switch((mii_reg >> 2) & 7) {
1012 case 1: status |= PHY_STAT_10HDX; break;
1013 case 2: status |= PHY_STAT_100HDX; break;
1014 case 5: status |= PHY_STAT_10FDX; break;
1015 case 6: status |= PHY_STAT_100FDX; break;
1018 *s = status;
1021 static phy_cmd_t const phy_cmd_qs6612_config[] = {
1022 /* The PHY powers up isolated on the RPX,
1023 * so send a command to allow operation.
1025 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1027 /* parse cr and anar to get some info */
1028 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1029 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1030 { mk_mii_end, }
1032 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1033 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1034 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1035 { mk_mii_end, }
1037 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1038 /* we need to read ISR, SR and ANER to acknowledge */
1039 { mk_mii_read(MII_QS6612_ISR), NULL },
1040 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1041 { mk_mii_read(MII_REG_ANER), NULL },
1043 /* read pcr to get info */
1044 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1045 { mk_mii_end, }
1047 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1048 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1049 { mk_mii_end, }
1051 static phy_info_t const phy_info_qs6612 = {
1052 .id = 0x00181440,
1053 .name = "QS6612",
1054 .config = phy_cmd_qs6612_config,
1055 .startup = phy_cmd_qs6612_startup,
1056 .ack_int = phy_cmd_qs6612_ack_int,
1057 .shutdown = phy_cmd_qs6612_shutdown
1060 /* ------------------------------------------------------------------------- */
1061 /* AMD AM79C874 phy */
1063 /* register definitions for the 874 */
1065 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1066 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1067 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1068 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1069 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1070 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1071 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1073 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1075 struct fec_enet_private *fep = netdev_priv(dev);
1076 volatile uint *s = &(fep->phy_status);
1077 uint status;
1079 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1081 if (mii_reg & 0x0080)
1082 status |= PHY_STAT_ANC;
1083 if (mii_reg & 0x0400)
1084 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1085 else
1086 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1088 *s = status;
1091 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1092 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1093 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1094 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1095 { mk_mii_end, }
1097 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1098 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1099 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1100 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1101 { mk_mii_end, }
1103 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1104 /* find out the current status */
1105 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1106 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1107 /* we only need to read ISR to acknowledge */
1108 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1109 { mk_mii_end, }
1111 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1112 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1113 { mk_mii_end, }
1115 static phy_info_t const phy_info_am79c874 = {
1116 .id = 0x00022561,
1117 .name = "AM79C874",
1118 .config = phy_cmd_am79c874_config,
1119 .startup = phy_cmd_am79c874_startup,
1120 .ack_int = phy_cmd_am79c874_ack_int,
1121 .shutdown = phy_cmd_am79c874_shutdown
1125 /* ------------------------------------------------------------------------- */
1126 /* Kendin KS8721BL phy */
1128 /* register definitions for the 8721 */
1130 #define MII_KS8721BL_RXERCR 21
1131 #define MII_KS8721BL_ICSR 22
1132 #define MII_KS8721BL_PHYCR 31
1134 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1135 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1136 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1137 { mk_mii_end, }
1139 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1140 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1141 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1142 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1143 { mk_mii_end, }
1145 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1146 /* find out the current status */
1147 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1148 /* we only need to read ISR to acknowledge */
1149 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1150 { mk_mii_end, }
1152 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1153 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1154 { mk_mii_end, }
1156 static phy_info_t const phy_info_ks8721bl = {
1157 .id = 0x00022161,
1158 .name = "KS8721BL",
1159 .config = phy_cmd_ks8721bl_config,
1160 .startup = phy_cmd_ks8721bl_startup,
1161 .ack_int = phy_cmd_ks8721bl_ack_int,
1162 .shutdown = phy_cmd_ks8721bl_shutdown
1165 /* ------------------------------------------------------------------------- */
1166 /* register definitions for the DP83848 */
1168 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1170 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1172 struct fec_enet_private *fep = dev->priv;
1173 volatile uint *s = &(fep->phy_status);
1175 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1177 /* Link up */
1178 if (mii_reg & 0x0001) {
1179 fep->link = 1;
1180 *s |= PHY_STAT_LINK;
1181 } else
1182 fep->link = 0;
1183 /* Status of link */
1184 if (mii_reg & 0x0010) /* Autonegotioation complete */
1185 *s |= PHY_STAT_ANC;
1186 if (mii_reg & 0x0002) { /* 10MBps? */
1187 if (mii_reg & 0x0004) /* Full Duplex? */
1188 *s |= PHY_STAT_10FDX;
1189 else
1190 *s |= PHY_STAT_10HDX;
1191 } else { /* 100 Mbps? */
1192 if (mii_reg & 0x0004) /* Full Duplex? */
1193 *s |= PHY_STAT_100FDX;
1194 else
1195 *s |= PHY_STAT_100HDX;
1197 if (mii_reg & 0x0008)
1198 *s |= PHY_STAT_FAULT;
1201 static phy_info_t phy_info_dp83848= {
1202 0x020005c9,
1203 "DP83848",
1205 (const phy_cmd_t []) { /* config */
1206 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1207 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1208 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1209 { mk_mii_end, }
1211 (const phy_cmd_t []) { /* startup - enable interrupts */
1212 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1213 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1214 { mk_mii_end, }
1216 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1217 { mk_mii_end, }
1219 (const phy_cmd_t []) { /* shutdown */
1220 { mk_mii_end, }
1224 /* ------------------------------------------------------------------------- */
1226 static phy_info_t const * const phy_info[] = {
1227 &phy_info_lxt970,
1228 &phy_info_lxt971,
1229 &phy_info_qs6612,
1230 &phy_info_am79c874,
1231 &phy_info_ks8721bl,
1232 &phy_info_dp83848,
1233 NULL
1236 /* ------------------------------------------------------------------------- */
1237 #ifdef HAVE_mii_link_interrupt
1238 #ifdef CONFIG_RPXCLASSIC
1239 static void
1240 mii_link_interrupt(void *dev_id);
1241 #else
1242 static irqreturn_t
1243 mii_link_interrupt(int irq, void * dev_id);
1244 #endif
1245 #endif
1247 #if defined(CONFIG_M5272)
1249 * Code specific to Coldfire 5272 setup.
1251 static void __inline__ fec_request_intrs(struct net_device *dev)
1253 volatile unsigned long *icrp;
1254 static const struct idesc {
1255 char *name;
1256 unsigned short irq;
1257 irq_handler_t handler;
1258 } *idp, id[] = {
1259 { "fec(RX)", 86, fec_enet_interrupt },
1260 { "fec(TX)", 87, fec_enet_interrupt },
1261 { "fec(OTHER)", 88, fec_enet_interrupt },
1262 { "fec(MII)", 66, mii_link_interrupt },
1263 { NULL },
1266 /* Setup interrupt handlers. */
1267 for (idp = id; idp->name; idp++) {
1268 if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
1269 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1272 /* Unmask interrupt at ColdFire 5272 SIM */
1273 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1274 *icrp = 0x00000ddd;
1275 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1276 *icrp = 0x0d000000;
1279 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1281 volatile fec_t *fecp;
1283 fecp = fep->hwp;
1284 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1285 fecp->fec_x_cntrl = 0x00;
1288 * Set MII speed to 2.5 MHz
1289 * See 5272 manual section 11.5.8: MSCR
1291 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1292 fecp->fec_mii_speed = fep->phy_speed;
1294 fec_restart(dev, 0);
1297 static void __inline__ fec_get_mac(struct net_device *dev)
1299 struct fec_enet_private *fep = netdev_priv(dev);
1300 volatile fec_t *fecp;
1301 unsigned char *iap, tmpaddr[ETH_ALEN];
1303 fecp = fep->hwp;
1305 if (FEC_FLASHMAC) {
1307 * Get MAC address from FLASH.
1308 * If it is all 1's or 0's, use the default.
1310 iap = (unsigned char *)FEC_FLASHMAC;
1311 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1312 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1313 iap = fec_mac_default;
1314 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1315 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1316 iap = fec_mac_default;
1317 } else {
1318 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1319 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1320 iap = &tmpaddr[0];
1323 memcpy(dev->dev_addr, iap, ETH_ALEN);
1325 /* Adjust MAC if using default MAC address */
1326 if (iap == fec_mac_default)
1327 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1330 static void __inline__ fec_enable_phy_intr(void)
1334 static void __inline__ fec_disable_phy_intr(void)
1336 volatile unsigned long *icrp;
1337 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1338 *icrp = 0x08000000;
1341 static void __inline__ fec_phy_ack_intr(void)
1343 volatile unsigned long *icrp;
1344 /* Acknowledge the interrupt */
1345 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1346 *icrp = 0x0d000000;
1349 static void __inline__ fec_localhw_setup(void)
1354 * Do not need to make region uncached on 5272.
1356 static void __inline__ fec_uncache(unsigned long addr)
1360 /* ------------------------------------------------------------------------- */
1362 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1365 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1366 * the 5270/5271/5274/5275 and 5280/5282 setups.
1368 static void __inline__ fec_request_intrs(struct net_device *dev)
1370 struct fec_enet_private *fep;
1371 int b;
1372 static const struct idesc {
1373 char *name;
1374 unsigned short irq;
1375 } *idp, id[] = {
1376 { "fec(TXF)", 23 },
1377 { "fec(RXF)", 27 },
1378 { "fec(MII)", 29 },
1379 { NULL },
1382 fep = netdev_priv(dev);
1383 b = (fep->index) ? 128 : 64;
1385 /* Setup interrupt handlers. */
1386 for (idp = id; idp->name; idp++) {
1387 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
1388 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1391 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1393 volatile unsigned char *icrp;
1394 volatile unsigned long *imrp;
1395 int i, ilip;
1397 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1398 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1399 MCFINTC_ICR0);
1400 for (i = 23, ilip = 0x28; (i < 36); i++)
1401 icrp[i] = ilip--;
1403 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1404 MCFINTC_IMRH);
1405 *imrp &= ~0x0000000f;
1406 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1407 MCFINTC_IMRL);
1408 *imrp &= ~0xff800001;
1411 #if defined(CONFIG_M528x)
1412 /* Set up gpio outputs for MII lines */
1414 volatile u16 *gpio_paspar;
1415 volatile u8 *gpio_pehlpar;
1417 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1418 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1419 *gpio_paspar |= 0x0f00;
1420 *gpio_pehlpar = 0xc0;
1422 #endif
1424 #if defined(CONFIG_M527x)
1425 /* Set up gpio outputs for MII lines */
1427 volatile u8 *gpio_par_fec;
1428 volatile u16 *gpio_par_feci2c;
1430 gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
1431 /* Set up gpio outputs for FEC0 MII lines */
1432 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);
1434 *gpio_par_feci2c |= 0x0f00;
1435 *gpio_par_fec |= 0xc0;
1437 #if defined(CONFIG_FEC2)
1438 /* Set up gpio outputs for FEC1 MII lines */
1439 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);
1441 *gpio_par_feci2c |= 0x00a0;
1442 *gpio_par_fec |= 0xc0;
1443 #endif /* CONFIG_FEC2 */
1445 #endif /* CONFIG_M527x */
1448 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1450 volatile fec_t *fecp;
1452 fecp = fep->hwp;
1453 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1454 fecp->fec_x_cntrl = 0x00;
1457 * Set MII speed to 2.5 MHz
1458 * See 5282 manual section 17.5.4.7: MSCR
1460 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1461 fecp->fec_mii_speed = fep->phy_speed;
1463 fec_restart(dev, 0);
1466 static void __inline__ fec_get_mac(struct net_device *dev)
1468 struct fec_enet_private *fep = netdev_priv(dev);
1469 volatile fec_t *fecp;
1470 unsigned char *iap, tmpaddr[ETH_ALEN];
1472 fecp = fep->hwp;
1474 if (FEC_FLASHMAC) {
1476 * Get MAC address from FLASH.
1477 * If it is all 1's or 0's, use the default.
1479 iap = FEC_FLASHMAC;
1480 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1481 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1482 iap = fec_mac_default;
1483 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1484 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1485 iap = fec_mac_default;
1486 } else {
1487 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1488 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1489 iap = &tmpaddr[0];
1492 memcpy(dev->dev_addr, iap, ETH_ALEN);
1494 /* Adjust MAC if using default MAC address */
1495 if (iap == fec_mac_default)
1496 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1499 static void __inline__ fec_enable_phy_intr(void)
1503 static void __inline__ fec_disable_phy_intr(void)
1507 static void __inline__ fec_phy_ack_intr(void)
1511 static void __inline__ fec_localhw_setup(void)
1516 * Do not need to make region uncached on 5272.
1518 static void __inline__ fec_uncache(unsigned long addr)
1522 /* ------------------------------------------------------------------------- */
1524 #elif defined(CONFIG_M520x)
1527 * Code specific to Coldfire 520x
1529 static void __inline__ fec_request_intrs(struct net_device *dev)
1531 struct fec_enet_private *fep;
1532 int b;
1533 static const struct idesc {
1534 char *name;
1535 unsigned short irq;
1536 } *idp, id[] = {
1537 { "fec(TXF)", 23 },
1538 { "fec(RXF)", 27 },
1539 { "fec(MII)", 29 },
1540 { NULL },
1543 fep = netdev_priv(dev);
1544 b = 64 + 13;
1546 /* Setup interrupt handlers. */
1547 for (idp = id; idp->name; idp++) {
1548 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1549 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1552 /* Unmask interrupts at ColdFire interrupt controller */
1554 volatile unsigned char *icrp;
1555 volatile unsigned long *imrp;
1557 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1558 MCFINTC_ICR0);
1559 for (b = 36; (b < 49); b++)
1560 icrp[b] = 0x04;
1561 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1562 MCFINTC_IMRH);
1563 *imrp &= ~0x0001FFF0;
1565 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1566 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1569 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1571 volatile fec_t *fecp;
1573 fecp = fep->hwp;
1574 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1575 fecp->fec_x_cntrl = 0x00;
1578 * Set MII speed to 2.5 MHz
1579 * See 5282 manual section 17.5.4.7: MSCR
1581 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1582 fecp->fec_mii_speed = fep->phy_speed;
1584 fec_restart(dev, 0);
1587 static void __inline__ fec_get_mac(struct net_device *dev)
1589 struct fec_enet_private *fep = netdev_priv(dev);
1590 volatile fec_t *fecp;
1591 unsigned char *iap, tmpaddr[ETH_ALEN];
1593 fecp = fep->hwp;
1595 if (FEC_FLASHMAC) {
1597 * Get MAC address from FLASH.
1598 * If it is all 1's or 0's, use the default.
1600 iap = FEC_FLASHMAC;
1601 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1602 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1603 iap = fec_mac_default;
1604 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1605 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1606 iap = fec_mac_default;
1607 } else {
1608 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1609 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1610 iap = &tmpaddr[0];
1613 memcpy(dev->dev_addr, iap, ETH_ALEN);
1615 /* Adjust MAC if using default MAC address */
1616 if (iap == fec_mac_default)
1617 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1620 static void __inline__ fec_enable_phy_intr(void)
1624 static void __inline__ fec_disable_phy_intr(void)
1628 static void __inline__ fec_phy_ack_intr(void)
1632 static void __inline__ fec_localhw_setup(void)
1636 static void __inline__ fec_uncache(unsigned long addr)
1640 /* ------------------------------------------------------------------------- */
1642 #elif defined(CONFIG_M532x)
1644 * Code specific for M532x
1646 static void __inline__ fec_request_intrs(struct net_device *dev)
1648 struct fec_enet_private *fep;
1649 int b;
1650 static const struct idesc {
1651 char *name;
1652 unsigned short irq;
1653 } *idp, id[] = {
1654 { "fec(TXF)", 36 },
1655 { "fec(RXF)", 40 },
1656 { "fec(MII)", 42 },
1657 { NULL },
1660 fep = netdev_priv(dev);
1661 b = (fep->index) ? 128 : 64;
1663 /* Setup interrupt handlers. */
1664 for (idp = id; idp->name; idp++) {
1665 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1666 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1667 idp->name, b+idp->irq);
1670 /* Unmask interrupts */
1671 MCF_INTC0_ICR36 = 0x2;
1672 MCF_INTC0_ICR37 = 0x2;
1673 MCF_INTC0_ICR38 = 0x2;
1674 MCF_INTC0_ICR39 = 0x2;
1675 MCF_INTC0_ICR40 = 0x2;
1676 MCF_INTC0_ICR41 = 0x2;
1677 MCF_INTC0_ICR42 = 0x2;
1678 MCF_INTC0_ICR43 = 0x2;
1679 MCF_INTC0_ICR44 = 0x2;
1680 MCF_INTC0_ICR45 = 0x2;
1681 MCF_INTC0_ICR46 = 0x2;
1682 MCF_INTC0_ICR47 = 0x2;
1683 MCF_INTC0_ICR48 = 0x2;
1685 MCF_INTC0_IMRH &= ~(
1686 MCF_INTC_IMRH_INT_MASK36 |
1687 MCF_INTC_IMRH_INT_MASK37 |
1688 MCF_INTC_IMRH_INT_MASK38 |
1689 MCF_INTC_IMRH_INT_MASK39 |
1690 MCF_INTC_IMRH_INT_MASK40 |
1691 MCF_INTC_IMRH_INT_MASK41 |
1692 MCF_INTC_IMRH_INT_MASK42 |
1693 MCF_INTC_IMRH_INT_MASK43 |
1694 MCF_INTC_IMRH_INT_MASK44 |
1695 MCF_INTC_IMRH_INT_MASK45 |
1696 MCF_INTC_IMRH_INT_MASK46 |
1697 MCF_INTC_IMRH_INT_MASK47 |
1698 MCF_INTC_IMRH_INT_MASK48 );
1700 /* Set up gpio outputs for MII lines */
1701 MCF_GPIO_PAR_FECI2C |= (0 |
1702 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1703 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1704 MCF_GPIO_PAR_FEC = (0 |
1705 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1706 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1709 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1711 volatile fec_t *fecp;
1713 fecp = fep->hwp;
1714 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1715 fecp->fec_x_cntrl = 0x00;
1718 * Set MII speed to 2.5 MHz
1720 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1721 fecp->fec_mii_speed = fep->phy_speed;
1723 fec_restart(dev, 0);
1726 static void __inline__ fec_get_mac(struct net_device *dev)
1728 struct fec_enet_private *fep = netdev_priv(dev);
1729 volatile fec_t *fecp;
1730 unsigned char *iap, tmpaddr[ETH_ALEN];
1732 fecp = fep->hwp;
1734 if (FEC_FLASHMAC) {
1736 * Get MAC address from FLASH.
1737 * If it is all 1's or 0's, use the default.
1739 iap = FEC_FLASHMAC;
1740 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1741 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1742 iap = fec_mac_default;
1743 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1744 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1745 iap = fec_mac_default;
1746 } else {
1747 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1748 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1749 iap = &tmpaddr[0];
1752 memcpy(dev->dev_addr, iap, ETH_ALEN);
1754 /* Adjust MAC if using default MAC address */
1755 if (iap == fec_mac_default)
1756 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1759 static void __inline__ fec_enable_phy_intr(void)
1763 static void __inline__ fec_disable_phy_intr(void)
1767 static void __inline__ fec_phy_ack_intr(void)
1771 static void __inline__ fec_localhw_setup(void)
1776 * Do not need to make region uncached on 532x.
1778 static void __inline__ fec_uncache(unsigned long addr)
1782 /* ------------------------------------------------------------------------- */
1785 #else
1788 * Code specific to the MPC860T setup.
1790 static void __inline__ fec_request_intrs(struct net_device *dev)
1792 volatile immap_t *immap;
1794 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1796 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1797 panic("Could not allocate FEC IRQ!");
1799 #ifdef CONFIG_RPXCLASSIC
1800 /* Make Port C, bit 15 an input that causes interrupts.
1802 immap->im_ioport.iop_pcpar &= ~0x0001;
1803 immap->im_ioport.iop_pcdir &= ~0x0001;
1804 immap->im_ioport.iop_pcso &= ~0x0001;
1805 immap->im_ioport.iop_pcint |= 0x0001;
1806 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1808 /* Make LEDS reflect Link status.
1810 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1811 #endif
1812 #ifdef CONFIG_FADS
1813 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1814 panic("Could not allocate MII IRQ!");
1815 #endif
1818 static void __inline__ fec_get_mac(struct net_device *dev)
1820 bd_t *bd;
1822 bd = (bd_t *)__res;
1823 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1825 #ifdef CONFIG_RPXCLASSIC
1826 /* The Embedded Planet boards have only one MAC address in
1827 * the EEPROM, but can have two Ethernet ports. For the
1828 * FEC port, we create another address by setting one of
1829 * the address bits above something that would have (up to
1830 * now) been allocated.
1832 dev->dev_adrd[3] |= 0x80;
1833 #endif
1836 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1838 extern uint _get_IMMR(void);
1839 volatile immap_t *immap;
1840 volatile fec_t *fecp;
1842 fecp = fep->hwp;
1843 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1845 /* Configure all of port D for MII.
1847 immap->im_ioport.iop_pdpar = 0x1fff;
1849 /* Bits moved from Rev. D onward.
1851 if ((_get_IMMR() & 0xffff) < 0x0501)
1852 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1853 else
1854 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1856 /* Set MII speed to 2.5 MHz
1858 fecp->fec_mii_speed = fep->phy_speed =
1859 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1862 static void __inline__ fec_enable_phy_intr(void)
1864 volatile fec_t *fecp;
1866 fecp = fep->hwp;
1868 /* Enable MII command finished interrupt
1870 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1873 static void __inline__ fec_disable_phy_intr(void)
1877 static void __inline__ fec_phy_ack_intr(void)
1881 static void __inline__ fec_localhw_setup(void)
1883 volatile fec_t *fecp;
1885 fecp = fep->hwp;
1886 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1887 /* Enable big endian and don't care about SDMA FC.
1889 fecp->fec_fun_code = 0x78000000;
1892 static void __inline__ fec_uncache(unsigned long addr)
1894 pte_t *pte;
1895 pte = va_to_pte(mem_addr);
1896 pte_val(*pte) |= _PAGE_NO_CACHE;
1897 flush_tlb_page(init_mm.mmap, mem_addr);
1900 #endif
1902 /* ------------------------------------------------------------------------- */
1904 static void mii_display_status(struct net_device *dev)
1906 struct fec_enet_private *fep = netdev_priv(dev);
1907 volatile uint *s = &(fep->phy_status);
1909 if (!fep->link && !fep->old_link) {
1910 /* Link is still down - don't print anything */
1911 return;
1914 printk("%s: status: ", dev->name);
1916 if (!fep->link) {
1917 printk("link down");
1918 } else {
1919 printk("link up");
1921 switch(*s & PHY_STAT_SPMASK) {
1922 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1923 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1924 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1925 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1926 default:
1927 printk(", Unknown speed/duplex");
1930 if (*s & PHY_STAT_ANC)
1931 printk(", auto-negotiation complete");
1934 if (*s & PHY_STAT_FAULT)
1935 printk(", remote fault");
1937 printk(".\n");
1940 static void mii_display_config(struct work_struct *work)
1942 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1943 struct net_device *dev = fep->netdev;
1944 uint status = fep->phy_status;
1947 ** When we get here, phy_task is already removed from
1948 ** the workqueue. It is thus safe to allow to reuse it.
1950 fep->mii_phy_task_queued = 0;
1951 printk("%s: config: auto-negotiation ", dev->name);
1953 if (status & PHY_CONF_ANE)
1954 printk("on");
1955 else
1956 printk("off");
1958 if (status & PHY_CONF_100FDX)
1959 printk(", 100FDX");
1960 if (status & PHY_CONF_100HDX)
1961 printk(", 100HDX");
1962 if (status & PHY_CONF_10FDX)
1963 printk(", 10FDX");
1964 if (status & PHY_CONF_10HDX)
1965 printk(", 10HDX");
1966 if (!(status & PHY_CONF_SPMASK))
1967 printk(", No speed/duplex selected?");
1969 if (status & PHY_CONF_LOOP)
1970 printk(", loopback enabled");
1972 printk(".\n");
1974 fep->sequence_done = 1;
1977 static void mii_relink(struct work_struct *work)
1979 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1980 struct net_device *dev = fep->netdev;
1981 int duplex;
1984 ** When we get here, phy_task is already removed from
1985 ** the workqueue. It is thus safe to allow to reuse it.
1987 fep->mii_phy_task_queued = 0;
1988 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1989 mii_display_status(dev);
1990 fep->old_link = fep->link;
1992 if (fep->link) {
1993 duplex = 0;
1994 if (fep->phy_status
1995 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1996 duplex = 1;
1997 fec_restart(dev, duplex);
1998 } else
1999 fec_stop(dev);
2001 #if 0
2002 enable_irq(fep->mii_irq);
2003 #endif
2007 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2008 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
2010 struct fec_enet_private *fep = netdev_priv(dev);
2013 ** We cannot queue phy_task twice in the workqueue. It
2014 ** would cause an endless loop in the workqueue.
2015 ** Fortunately, if the last mii_relink entry has not yet been
2016 ** executed now, it will do the job for the current interrupt,
2017 ** which is just what we want.
2019 if (fep->mii_phy_task_queued)
2020 return;
2022 fep->mii_phy_task_queued = 1;
2023 INIT_WORK(&fep->phy_task, mii_relink);
2024 schedule_work(&fep->phy_task);
2027 /* mii_queue_config is called in interrupt context from fec_enet_mii */
2028 static void mii_queue_config(uint mii_reg, struct net_device *dev)
2030 struct fec_enet_private *fep = netdev_priv(dev);
2032 if (fep->mii_phy_task_queued)
2033 return;
2035 fep->mii_phy_task_queued = 1;
2036 INIT_WORK(&fep->phy_task, mii_display_config);
2037 schedule_work(&fep->phy_task);
2040 phy_cmd_t const phy_cmd_relink[] = {
2041 { mk_mii_read(MII_REG_CR), mii_queue_relink },
2042 { mk_mii_end, }
2044 phy_cmd_t const phy_cmd_config[] = {
2045 { mk_mii_read(MII_REG_CR), mii_queue_config },
2046 { mk_mii_end, }
2049 /* Read remainder of PHY ID.
2051 static void
2052 mii_discover_phy3(uint mii_reg, struct net_device *dev)
2054 struct fec_enet_private *fep;
2055 int i;
2057 fep = netdev_priv(dev);
2058 fep->phy_id |= (mii_reg & 0xffff);
2059 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2061 for(i = 0; phy_info[i]; i++) {
2062 if(phy_info[i]->id == (fep->phy_id >> 4))
2063 break;
2066 if (phy_info[i])
2067 printk(" -- %s\n", phy_info[i]->name);
2068 else
2069 printk(" -- unknown PHY!\n");
2071 fep->phy = phy_info[i];
2072 fep->phy_id_done = 1;
2075 /* Scan all of the MII PHY addresses looking for someone to respond
2076 * with a valid ID. This usually happens quickly.
2078 static void
2079 mii_discover_phy(uint mii_reg, struct net_device *dev)
2081 struct fec_enet_private *fep;
2082 volatile fec_t *fecp;
2083 uint phytype;
2085 fep = netdev_priv(dev);
2086 fecp = fep->hwp;
2088 if (fep->phy_addr < 32) {
2089 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
2091 /* Got first part of ID, now get remainder.
2093 fep->phy_id = phytype << 16;
2094 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2095 mii_discover_phy3);
2096 } else {
2097 fep->phy_addr++;
2098 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2099 mii_discover_phy);
2101 } else {
2102 printk("FEC: No PHY device found.\n");
2103 /* Disable external MII interface */
2104 fecp->fec_mii_speed = fep->phy_speed = 0;
2105 fec_disable_phy_intr();
2109 /* This interrupt occurs when the PHY detects a link change.
2111 #ifdef HAVE_mii_link_interrupt
2112 #ifdef CONFIG_RPXCLASSIC
2113 static void
2114 mii_link_interrupt(void *dev_id)
2115 #else
2116 static irqreturn_t
2117 mii_link_interrupt(int irq, void * dev_id)
2118 #endif
2120 struct net_device *dev = dev_id;
2121 struct fec_enet_private *fep = netdev_priv(dev);
2123 fec_phy_ack_intr();
2125 #if 0
2126 disable_irq(fep->mii_irq); /* disable now, enable later */
2127 #endif
2129 mii_do_cmd(dev, fep->phy->ack_int);
2130 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
2132 return IRQ_HANDLED;
2134 #endif
2136 static int
2137 fec_enet_open(struct net_device *dev)
2139 struct fec_enet_private *fep = netdev_priv(dev);
2141 /* I should reset the ring buffers here, but I don't yet know
2142 * a simple way to do that.
2144 fec_set_mac_address(dev);
2146 fep->sequence_done = 0;
2147 fep->link = 0;
2149 if (fep->phy) {
2150 mii_do_cmd(dev, fep->phy->ack_int);
2151 mii_do_cmd(dev, fep->phy->config);
2152 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2154 /* Poll until the PHY tells us its configuration
2155 * (not link state).
2156 * Request is initiated by mii_do_cmd above, but answer
2157 * comes by interrupt.
2158 * This should take about 25 usec per register at 2.5 MHz,
2159 * and we read approximately 5 registers.
2161 while(!fep->sequence_done)
2162 schedule();
2164 mii_do_cmd(dev, fep->phy->startup);
2166 /* Set the initial link state to true. A lot of hardware
2167 * based on this device does not implement a PHY interrupt,
2168 * so we are never notified of link change.
2170 fep->link = 1;
2171 } else {
2172 fep->link = 1; /* lets just try it and see */
2173 /* no phy, go full duplex, it's most likely a hub chip */
2174 fec_restart(dev, 1);
2177 netif_start_queue(dev);
2178 fep->opened = 1;
2179 return 0; /* Success */
2182 static int
2183 fec_enet_close(struct net_device *dev)
2185 struct fec_enet_private *fep = netdev_priv(dev);
2187 /* Don't know what to do yet.
2189 fep->opened = 0;
2190 netif_stop_queue(dev);
2191 fec_stop(dev);
2193 return 0;
2196 /* Set or clear the multicast filter for this adaptor.
2197 * Skeleton taken from sunlance driver.
2198 * The CPM Ethernet implementation allows Multicast as well as individual
2199 * MAC address filtering. Some of the drivers check to make sure it is
2200 * a group multicast address, and discard those that are not. I guess I
2201 * will do the same for now, but just remove the test if you want
2202 * individual filtering as well (do the upper net layers want or support
2203 * this kind of feature?).
2206 #define HASH_BITS 6 /* #bits in hash */
2207 #define CRC32_POLY 0xEDB88320
2209 static void set_multicast_list(struct net_device *dev)
2211 struct fec_enet_private *fep;
2212 volatile fec_t *ep;
2213 struct dev_mc_list *dmi;
2214 unsigned int i, j, bit, data, crc;
2215 unsigned char hash;
2217 fep = netdev_priv(dev);
2218 ep = fep->hwp;
2220 if (dev->flags&IFF_PROMISC) {
2221 ep->fec_r_cntrl |= 0x0008;
2222 } else {
2224 ep->fec_r_cntrl &= ~0x0008;
2226 if (dev->flags & IFF_ALLMULTI) {
2227 /* Catch all multicast addresses, so set the
2228 * filter to all 1's.
2230 ep->fec_grp_hash_table_high = 0xffffffff;
2231 ep->fec_grp_hash_table_low = 0xffffffff;
2232 } else {
2233 /* Clear filter and add the addresses in hash register.
2235 ep->fec_grp_hash_table_high = 0;
2236 ep->fec_grp_hash_table_low = 0;
2238 dmi = dev->mc_list;
2240 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2242 /* Only support group multicast for now.
2244 if (!(dmi->dmi_addr[0] & 1))
2245 continue;
2247 /* calculate crc32 value of mac address
2249 crc = 0xffffffff;
2251 for (i = 0; i < dmi->dmi_addrlen; i++)
2253 data = dmi->dmi_addr[i];
2254 for (bit = 0; bit < 8; bit++, data >>= 1)
2256 crc = (crc >> 1) ^
2257 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2261 /* only upper 6 bits (HASH_BITS) are used
2262 which point to specific bit in he hash registers
2264 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2266 if (hash > 31)
2267 ep->fec_grp_hash_table_high |= 1 << (hash - 32);
2268 else
2269 ep->fec_grp_hash_table_low |= 1 << hash;
2275 /* Set a MAC change in hardware.
2277 static void
2278 fec_set_mac_address(struct net_device *dev)
2280 volatile fec_t *fecp;
2282 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
2284 /* Set station address. */
2285 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2286 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2287 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2288 (dev->dev_addr[4] << 24);
2292 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2295 * XXX: We need to clean up on failure exits here.
2297 int __init fec_enet_init(struct net_device *dev)
2299 struct fec_enet_private *fep = netdev_priv(dev);
2300 unsigned long mem_addr;
2301 volatile cbd_t *bdp;
2302 cbd_t *cbd_base;
2303 volatile fec_t *fecp;
2304 int i, j;
2305 static int index = 0;
2307 /* Only allow us to be probed once. */
2308 if (index >= FEC_MAX_PORTS)
2309 return -ENXIO;
2311 /* Allocate memory for buffer descriptors.
2313 mem_addr = __get_free_page(GFP_KERNEL);
2314 if (mem_addr == 0) {
2315 printk("FEC: allocate descriptor memory failed?\n");
2316 return -ENOMEM;
2319 spin_lock_init(&fep->hw_lock);
2320 spin_lock_init(&fep->mii_lock);
2322 /* Create an Ethernet device instance.
2324 fecp = (volatile fec_t *) fec_hw[index];
2326 fep->index = index;
2327 fep->hwp = fecp;
2328 fep->netdev = dev;
2330 /* Whack a reset. We should wait for this.
2332 fecp->fec_ecntrl = 1;
2333 udelay(10);
2335 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2336 * this needs some work to get unique addresses.
2338 * This is our default MAC address unless the user changes
2339 * it via eth_mac_addr (our dev->set_mac_addr handler).
2341 fec_get_mac(dev);
2343 cbd_base = (cbd_t *)mem_addr;
2344 /* XXX: missing check for allocation failure */
2346 fec_uncache(mem_addr);
2348 /* Set receive and transmit descriptor base.
2350 fep->rx_bd_base = cbd_base;
2351 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2353 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2354 fep->cur_rx = fep->rx_bd_base;
2356 fep->skb_cur = fep->skb_dirty = 0;
2358 /* Initialize the receive buffer descriptors.
2360 bdp = fep->rx_bd_base;
2361 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2363 /* Allocate a page.
2365 mem_addr = __get_free_page(GFP_KERNEL);
2366 /* XXX: missing check for allocation failure */
2368 fec_uncache(mem_addr);
2370 /* Initialize the BD for every fragment in the page.
2372 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2373 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2374 bdp->cbd_bufaddr = __pa(mem_addr);
2375 mem_addr += FEC_ENET_RX_FRSIZE;
2376 bdp++;
2380 /* Set the last buffer to wrap.
2382 bdp--;
2383 bdp->cbd_sc |= BD_SC_WRAP;
2385 /* ...and the same for transmmit.
2387 bdp = fep->tx_bd_base;
2388 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2389 if (j >= FEC_ENET_TX_FRPPG) {
2390 mem_addr = __get_free_page(GFP_KERNEL);
2391 j = 1;
2392 } else {
2393 mem_addr += FEC_ENET_TX_FRSIZE;
2394 j++;
2396 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2398 /* Initialize the BD for every fragment in the page.
2400 bdp->cbd_sc = 0;
2401 bdp->cbd_bufaddr = 0;
2402 bdp++;
2405 /* Set the last buffer to wrap.
2407 bdp--;
2408 bdp->cbd_sc |= BD_SC_WRAP;
2410 /* Set receive and transmit descriptor base.
2412 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2413 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2415 /* Install our interrupt handlers. This varies depending on
2416 * the architecture.
2418 fec_request_intrs(dev);
2420 fecp->fec_grp_hash_table_high = 0;
2421 fecp->fec_grp_hash_table_low = 0;
2422 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2423 fecp->fec_ecntrl = 2;
2424 fecp->fec_r_des_active = 0;
2425 #ifndef CONFIG_M5272
2426 fecp->fec_hash_table_high = 0;
2427 fecp->fec_hash_table_low = 0;
2428 #endif
2430 dev->base_addr = (unsigned long)fecp;
2432 /* The FEC Ethernet specific entries in the device structure. */
2433 dev->open = fec_enet_open;
2434 dev->hard_start_xmit = fec_enet_start_xmit;
2435 dev->tx_timeout = fec_timeout;
2436 dev->watchdog_timeo = TX_TIMEOUT;
2437 dev->stop = fec_enet_close;
2438 dev->set_multicast_list = set_multicast_list;
2440 for (i=0; i<NMII-1; i++)
2441 mii_cmds[i].mii_next = &mii_cmds[i+1];
2442 mii_free = mii_cmds;
2444 /* setup MII interface */
2445 fec_set_mii(dev, fep);
2447 /* Clear and enable interrupts */
2448 fecp->fec_ievent = 0xffc00000;
2449 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2451 /* Queue up command to detect the PHY and initialize the
2452 * remainder of the interface.
2454 fep->phy_id_done = 0;
2455 fep->phy_addr = 0;
2456 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2458 index++;
2459 return 0;
2462 /* This function is called to start or restart the FEC during a link
2463 * change. This only happens when switching between half and full
2464 * duplex.
2466 static void
2467 fec_restart(struct net_device *dev, int duplex)
2469 struct fec_enet_private *fep;
2470 volatile cbd_t *bdp;
2471 volatile fec_t *fecp;
2472 int i;
2474 fep = netdev_priv(dev);
2475 fecp = fep->hwp;
2477 /* Whack a reset. We should wait for this.
2479 fecp->fec_ecntrl = 1;
2480 udelay(10);
2482 /* Clear any outstanding interrupt.
2484 fecp->fec_ievent = 0xffc00000;
2485 fec_enable_phy_intr();
2487 /* Set station address.
2489 fec_set_mac_address(dev);
2491 /* Reset all multicast.
2493 fecp->fec_grp_hash_table_high = 0;
2494 fecp->fec_grp_hash_table_low = 0;
2496 /* Set maximum receive buffer size.
2498 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2500 fec_localhw_setup();
2502 /* Set receive and transmit descriptor base.
2504 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2505 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2507 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2508 fep->cur_rx = fep->rx_bd_base;
2510 /* Reset SKB transmit buffers.
2512 fep->skb_cur = fep->skb_dirty = 0;
2513 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2514 if (fep->tx_skbuff[i] != NULL) {
2515 dev_kfree_skb_any(fep->tx_skbuff[i]);
2516 fep->tx_skbuff[i] = NULL;
2520 /* Initialize the receive buffer descriptors.
2522 bdp = fep->rx_bd_base;
2523 for (i=0; i<RX_RING_SIZE; i++) {
2525 /* Initialize the BD for every fragment in the page.
2527 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2528 bdp++;
2531 /* Set the last buffer to wrap.
2533 bdp--;
2534 bdp->cbd_sc |= BD_SC_WRAP;
2536 /* ...and the same for transmmit.
2538 bdp = fep->tx_bd_base;
2539 for (i=0; i<TX_RING_SIZE; i++) {
2541 /* Initialize the BD for every fragment in the page.
2543 bdp->cbd_sc = 0;
2544 bdp->cbd_bufaddr = 0;
2545 bdp++;
2548 /* Set the last buffer to wrap.
2550 bdp--;
2551 bdp->cbd_sc |= BD_SC_WRAP;
2553 /* Enable MII mode.
2555 if (duplex) {
2556 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2557 fecp->fec_x_cntrl = 0x04; /* FD enable */
2558 } else {
2559 /* MII enable|No Rcv on Xmit */
2560 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2561 fecp->fec_x_cntrl = 0x00;
2563 fep->full_duplex = duplex;
2565 /* Set MII speed.
2567 fecp->fec_mii_speed = fep->phy_speed;
2569 /* And last, enable the transmit and receive processing.
2571 fecp->fec_ecntrl = 2;
2572 fecp->fec_r_des_active = 0;
2574 /* Enable interrupts we wish to service.
2576 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2579 static void
2580 fec_stop(struct net_device *dev)
2582 volatile fec_t *fecp;
2583 struct fec_enet_private *fep;
2585 fep = netdev_priv(dev);
2586 fecp = fep->hwp;
2589 ** We cannot expect a graceful transmit stop without link !!!
2591 if (fep->link)
2593 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2594 udelay(10);
2595 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2596 printk("fec_stop : Graceful transmit stop did not complete !\n");
2599 /* Whack a reset. We should wait for this.
2601 fecp->fec_ecntrl = 1;
2602 udelay(10);
2604 /* Clear outstanding MII command interrupts.
2606 fecp->fec_ievent = FEC_ENET_MII;
2607 fec_enable_phy_intr();
2609 fecp->fec_imask = FEC_ENET_MII;
2610 fecp->fec_mii_speed = fep->phy_speed;
2613 static int __init fec_enet_module_init(void)
2615 struct net_device *dev;
2616 int i, err;
2617 DECLARE_MAC_BUF(mac);
2619 printk("FEC ENET Version 0.2\n");
2621 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2622 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2623 if (!dev)
2624 return -ENOMEM;
2625 err = fec_enet_init(dev);
2626 if (err) {
2627 free_netdev(dev);
2628 continue;
2630 if (register_netdev(dev) != 0) {
2631 /* XXX: missing cleanup here */
2632 free_netdev(dev);
2633 return -EIO;
2636 printk("%s: ethernet %s\n",
2637 dev->name, print_mac(mac, dev->dev_addr));
2639 return 0;
2642 module_init(fec_enet_module_init);
2644 MODULE_LICENSE("GPL");