1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/socket.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
17 #include <net/checksum.h>
18 #include "net_driver.h"
23 #include "workarounds.h"
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH 8
28 /* Size of buffer allocated for skb header area. */
29 #define EFX_SKB_HEADERS 64u
32 * rx_alloc_method - RX buffer allocation method
34 * This driver supports two methods for allocating and using RX buffers:
35 * each RX buffer may be backed by an skb or by an order-n page.
37 * When LRO is in use then the second method has a lower overhead,
38 * since we don't have to allocate then free skbs on reassembled frames.
41 * - RX_ALLOC_METHOD_AUTO = 0
42 * - RX_ALLOC_METHOD_SKB = 1
43 * - RX_ALLOC_METHOD_PAGE = 2
45 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
46 * controlled by the parameters below.
48 * - Since pushing and popping descriptors are separated by the rx_queue
49 * size, so the watermarks should be ~rxd_size.
50 * - The performance win by using page-based allocation for LRO is less
51 * than the performance hit of using page-based allocation of non-LRO,
52 * so the watermarks should reflect this.
54 * Per channel we maintain a single variable, updated by each channel:
56 * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
57 * RX_ALLOC_FACTOR_SKB)
58 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
59 * limits the hysteresis), and update the allocation strategy:
61 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
62 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
64 static int rx_alloc_method
= RX_ALLOC_METHOD_PAGE
;
66 #define RX_ALLOC_LEVEL_LRO 0x2000
67 #define RX_ALLOC_LEVEL_MAX 0x3000
68 #define RX_ALLOC_FACTOR_LRO 1
69 #define RX_ALLOC_FACTOR_SKB (-2)
71 /* This is the percentage fill level below which new RX descriptors
72 * will be added to the RX descriptor ring.
74 static unsigned int rx_refill_threshold
= 90;
76 /* This is the percentage fill level to which an RX queue will be refilled
77 * when the "RX refill threshold" is reached.
79 static unsigned int rx_refill_limit
= 95;
82 * RX maximum head room required.
84 * This must be at least 1 to prevent overflow and at least 2 to allow
87 #define EFX_RXD_HEAD_ROOM 2
89 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer
*buf
)
91 /* Offset is always within one page, so we don't need to consider
94 return (__force
unsigned long) buf
->data
& (PAGE_SIZE
- 1);
96 static inline unsigned int efx_rx_buf_size(struct efx_nic
*efx
)
98 return PAGE_SIZE
<< efx
->rx_buffer_order
;
102 /**************************************************************************
104 * Linux generic LRO handling
106 **************************************************************************
109 static int efx_lro_get_skb_hdr(struct sk_buff
*skb
, void **ip_hdr
,
110 void **tcpudp_hdr
, u64
*hdr_flags
, void *priv
)
112 struct efx_channel
*channel
= priv
;
116 iph
= (struct iphdr
*)skb
->data
;
117 if (skb
->protocol
!= htons(ETH_P_IP
) || iph
->protocol
!= IPPROTO_TCP
)
120 th
= (struct tcphdr
*)(skb
->data
+ iph
->ihl
* 4);
124 *hdr_flags
= LRO_IPV4
| LRO_TCP
;
126 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_LRO
;
129 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
133 static int efx_get_frag_hdr(struct skb_frag_struct
*frag
, void **mac_hdr
,
134 void **ip_hdr
, void **tcpudp_hdr
, u64
*hdr_flags
,
137 struct efx_channel
*channel
= priv
;
141 /* We support EtherII and VLAN encapsulated IPv4 */
142 eh
= page_address(frag
->page
) + frag
->page_offset
;
145 if (eh
->h_proto
== htons(ETH_P_IP
)) {
146 iph
= (struct iphdr
*)(eh
+ 1);
148 struct vlan_ethhdr
*veh
= (struct vlan_ethhdr
*)eh
;
149 if (veh
->h_vlan_encapsulated_proto
!= htons(ETH_P_IP
))
152 iph
= (struct iphdr
*)(veh
+ 1);
156 /* We can only do LRO over TCP */
157 if (iph
->protocol
!= IPPROTO_TCP
)
160 *hdr_flags
= LRO_IPV4
| LRO_TCP
;
161 *tcpudp_hdr
= (struct tcphdr
*)((u8
*) iph
+ iph
->ihl
* 4);
163 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_LRO
;
166 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
170 int efx_lro_init(struct net_lro_mgr
*lro_mgr
, struct efx_nic
*efx
)
172 size_t s
= sizeof(struct net_lro_desc
) * EFX_MAX_LRO_DESCRIPTORS
;
173 struct net_lro_desc
*lro_arr
;
175 /* Allocate the LRO descriptors structure */
176 lro_arr
= kzalloc(s
, GFP_KERNEL
);
180 lro_mgr
->lro_arr
= lro_arr
;
181 lro_mgr
->max_desc
= EFX_MAX_LRO_DESCRIPTORS
;
182 lro_mgr
->max_aggr
= EFX_MAX_LRO_AGGR
;
183 lro_mgr
->frag_align_pad
= EFX_PAGE_SKB_ALIGN
;
185 lro_mgr
->get_skb_header
= efx_lro_get_skb_hdr
;
186 lro_mgr
->get_frag_header
= efx_get_frag_hdr
;
187 lro_mgr
->dev
= efx
->net_dev
;
189 lro_mgr
->features
= LRO_F_NAPI
;
191 /* We can pass packets up with the checksum intact */
192 lro_mgr
->ip_summed
= CHECKSUM_UNNECESSARY
;
194 lro_mgr
->ip_summed_aggr
= CHECKSUM_UNNECESSARY
;
199 void efx_lro_fini(struct net_lro_mgr
*lro_mgr
)
201 kfree(lro_mgr
->lro_arr
);
202 lro_mgr
->lro_arr
= NULL
;
206 * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation
208 * @rx_queue: Efx RX queue
209 * @rx_buf: RX buffer structure to populate
211 * This allocates memory for a new receive buffer, maps it for DMA,
212 * and populates a struct efx_rx_buffer with the relevant
213 * information. Return a negative error code or 0 on success.
215 static inline int efx_init_rx_buffer_skb(struct efx_rx_queue
*rx_queue
,
216 struct efx_rx_buffer
*rx_buf
)
218 struct efx_nic
*efx
= rx_queue
->efx
;
219 struct net_device
*net_dev
= efx
->net_dev
;
220 int skb_len
= efx
->rx_buffer_len
;
222 rx_buf
->skb
= netdev_alloc_skb(net_dev
, skb_len
);
223 if (unlikely(!rx_buf
->skb
))
226 /* Adjust the SKB for padding and checksum */
227 skb_reserve(rx_buf
->skb
, NET_IP_ALIGN
);
228 rx_buf
->len
= skb_len
- NET_IP_ALIGN
;
229 rx_buf
->data
= (char *)rx_buf
->skb
->data
;
230 rx_buf
->skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
232 rx_buf
->dma_addr
= pci_map_single(efx
->pci_dev
,
233 rx_buf
->data
, rx_buf
->len
,
236 if (unlikely(pci_dma_mapping_error(rx_buf
->dma_addr
))) {
237 dev_kfree_skb_any(rx_buf
->skb
);
246 * efx_init_rx_buffer_page - create new RX buffer using page-based allocation
248 * @rx_queue: Efx RX queue
249 * @rx_buf: RX buffer structure to populate
251 * This allocates memory for a new receive buffer, maps it for DMA,
252 * and populates a struct efx_rx_buffer with the relevant
253 * information. Return a negative error code or 0 on success.
255 static inline int efx_init_rx_buffer_page(struct efx_rx_queue
*rx_queue
,
256 struct efx_rx_buffer
*rx_buf
)
258 struct efx_nic
*efx
= rx_queue
->efx
;
259 int bytes
, space
, offset
;
261 bytes
= efx
->rx_buffer_len
- EFX_PAGE_IP_ALIGN
;
263 /* If there is space left in the previously allocated page,
264 * then use it. Otherwise allocate a new one */
265 rx_buf
->page
= rx_queue
->buf_page
;
266 if (rx_buf
->page
== NULL
) {
269 rx_buf
->page
= alloc_pages(__GFP_COLD
| __GFP_COMP
| GFP_ATOMIC
,
270 efx
->rx_buffer_order
);
271 if (unlikely(rx_buf
->page
== NULL
))
274 dma_addr
= pci_map_page(efx
->pci_dev
, rx_buf
->page
,
275 0, efx_rx_buf_size(efx
),
278 if (unlikely(pci_dma_mapping_error(dma_addr
))) {
279 __free_pages(rx_buf
->page
, efx
->rx_buffer_order
);
284 rx_queue
->buf_page
= rx_buf
->page
;
285 rx_queue
->buf_dma_addr
= dma_addr
;
286 rx_queue
->buf_data
= (page_address(rx_buf
->page
) +
291 rx_buf
->data
= rx_queue
->buf_data
;
292 offset
= efx_rx_buf_offset(rx_buf
);
293 rx_buf
->dma_addr
= rx_queue
->buf_dma_addr
+ offset
;
295 /* Try to pack multiple buffers per page */
296 if (efx
->rx_buffer_order
== 0) {
297 /* The next buffer starts on the next 512 byte boundary */
298 rx_queue
->buf_data
+= ((bytes
+ 0x1ff) & ~0x1ff);
299 offset
+= ((bytes
+ 0x1ff) & ~0x1ff);
301 space
= efx_rx_buf_size(efx
) - offset
;
302 if (space
>= bytes
) {
303 /* Refs dropped on kernel releasing each skb */
304 get_page(rx_queue
->buf_page
);
309 /* This is the final RX buffer for this page, so mark it for
311 rx_queue
->buf_page
= NULL
;
312 rx_buf
->unmap_addr
= rx_queue
->buf_dma_addr
;
318 /* This allocates memory for a new receive buffer, maps it for DMA,
319 * and populates a struct efx_rx_buffer with the relevant
322 static inline int efx_init_rx_buffer(struct efx_rx_queue
*rx_queue
,
323 struct efx_rx_buffer
*new_rx_buf
)
327 if (rx_queue
->channel
->rx_alloc_push_pages
) {
328 new_rx_buf
->skb
= NULL
;
329 rc
= efx_init_rx_buffer_page(rx_queue
, new_rx_buf
);
330 rx_queue
->alloc_page_count
++;
332 new_rx_buf
->page
= NULL
;
333 rc
= efx_init_rx_buffer_skb(rx_queue
, new_rx_buf
);
334 rx_queue
->alloc_skb_count
++;
337 if (unlikely(rc
< 0))
338 EFX_LOG_RL(rx_queue
->efx
, "%s RXQ[%d] =%d\n", __func__
,
339 rx_queue
->queue
, rc
);
343 static inline void efx_unmap_rx_buffer(struct efx_nic
*efx
,
344 struct efx_rx_buffer
*rx_buf
)
347 EFX_BUG_ON_PARANOID(rx_buf
->skb
);
348 if (rx_buf
->unmap_addr
) {
349 pci_unmap_page(efx
->pci_dev
, rx_buf
->unmap_addr
,
350 efx_rx_buf_size(efx
),
352 rx_buf
->unmap_addr
= 0;
354 } else if (likely(rx_buf
->skb
)) {
355 pci_unmap_single(efx
->pci_dev
, rx_buf
->dma_addr
,
356 rx_buf
->len
, PCI_DMA_FROMDEVICE
);
360 static inline void efx_free_rx_buffer(struct efx_nic
*efx
,
361 struct efx_rx_buffer
*rx_buf
)
364 __free_pages(rx_buf
->page
, efx
->rx_buffer_order
);
366 } else if (likely(rx_buf
->skb
)) {
367 dev_kfree_skb_any(rx_buf
->skb
);
372 static inline void efx_fini_rx_buffer(struct efx_rx_queue
*rx_queue
,
373 struct efx_rx_buffer
*rx_buf
)
375 efx_unmap_rx_buffer(rx_queue
->efx
, rx_buf
);
376 efx_free_rx_buffer(rx_queue
->efx
, rx_buf
);
380 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
381 * @rx_queue: RX descriptor queue
382 * @retry: Recheck the fill level
383 * This will aim to fill the RX descriptor queue up to
384 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
385 * memory to do so, the caller should retry.
387 static int __efx_fast_push_rx_descriptors(struct efx_rx_queue
*rx_queue
,
390 struct efx_rx_buffer
*rx_buf
;
391 unsigned fill_level
, index
;
392 int i
, space
, rc
= 0;
394 /* Calculate current fill level. Do this outside the lock,
395 * because most of the time we'll end up not wanting to do the
398 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
);
399 EFX_BUG_ON_PARANOID(fill_level
>
400 rx_queue
->efx
->type
->rxd_ring_mask
+ 1);
402 /* Don't fill if we don't need to */
403 if (fill_level
>= rx_queue
->fast_fill_trigger
)
406 /* Record minimum fill level */
407 if (unlikely(fill_level
< rx_queue
->min_fill
)) {
409 rx_queue
->min_fill
= fill_level
;
412 /* Acquire RX add lock. If this lock is contended, then a fast
413 * fill must already be in progress (e.g. in the refill
414 * tasklet), so we don't need to do anything
416 if (!spin_trylock_bh(&rx_queue
->add_lock
))
420 /* Recalculate current fill level now that we have the lock */
421 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
);
422 EFX_BUG_ON_PARANOID(fill_level
>
423 rx_queue
->efx
->type
->rxd_ring_mask
+ 1);
424 space
= rx_queue
->fast_fill_limit
- fill_level
;
425 if (space
< EFX_RX_BATCH
)
428 EFX_TRACE(rx_queue
->efx
, "RX queue %d fast-filling descriptor ring from"
429 " level %d to level %d using %s allocation\n",
430 rx_queue
->queue
, fill_level
, rx_queue
->fast_fill_limit
,
431 rx_queue
->channel
->rx_alloc_push_pages
? "page" : "skb");
434 for (i
= 0; i
< EFX_RX_BATCH
; ++i
) {
435 index
= (rx_queue
->added_count
&
436 rx_queue
->efx
->type
->rxd_ring_mask
);
437 rx_buf
= efx_rx_buffer(rx_queue
, index
);
438 rc
= efx_init_rx_buffer(rx_queue
, rx_buf
);
441 ++rx_queue
->added_count
;
443 } while ((space
-= EFX_RX_BATCH
) >= EFX_RX_BATCH
);
445 EFX_TRACE(rx_queue
->efx
, "RX queue %d fast-filled descriptor ring "
446 "to level %d\n", rx_queue
->queue
,
447 rx_queue
->added_count
- rx_queue
->removed_count
);
450 /* Send write pointer to card. */
451 falcon_notify_rx_desc(rx_queue
);
453 /* If the fast fill is running inside from the refill tasklet, then
454 * for SMP systems it may be running on a different CPU to
455 * RX event processing, which means that the fill level may now be
457 if (unlikely(retry
&& (rc
== 0)))
461 spin_unlock_bh(&rx_queue
->add_lock
);
467 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
468 * @rx_queue: RX descriptor queue
470 * This will aim to fill the RX descriptor queue up to
471 * @rx_queue->@fast_fill_limit. If there is insufficient memory to do so,
472 * it will schedule a work item to immediately continue the fast fill
474 void efx_fast_push_rx_descriptors(struct efx_rx_queue
*rx_queue
)
478 rc
= __efx_fast_push_rx_descriptors(rx_queue
, 0);
480 /* Schedule the work item to run immediately. The hope is
481 * that work is immediately pending to free some memory
482 * (e.g. an RX event or TX completion)
484 efx_schedule_slow_fill(rx_queue
, 0);
488 void efx_rx_work(struct work_struct
*data
)
490 struct efx_rx_queue
*rx_queue
;
493 rx_queue
= container_of(data
, struct efx_rx_queue
, work
.work
);
495 if (unlikely(!rx_queue
->channel
->enabled
))
498 EFX_TRACE(rx_queue
->efx
, "RX queue %d worker thread executing on CPU "
499 "%d\n", rx_queue
->queue
, raw_smp_processor_id());
501 ++rx_queue
->slow_fill_count
;
502 /* Push new RX descriptors, allowing at least 1 jiffy for
503 * the kernel to free some more memory. */
504 rc
= __efx_fast_push_rx_descriptors(rx_queue
, 1);
506 efx_schedule_slow_fill(rx_queue
, 1);
509 static inline void efx_rx_packet__check_len(struct efx_rx_queue
*rx_queue
,
510 struct efx_rx_buffer
*rx_buf
,
511 int len
, int *discard
,
514 struct efx_nic
*efx
= rx_queue
->efx
;
515 unsigned max_len
= rx_buf
->len
- efx
->type
->rx_buffer_padding
;
517 if (likely(len
<= max_len
))
520 /* The packet must be discarded, but this is only a fatal error
521 * if the caller indicated it was
525 if ((len
> rx_buf
->len
) && EFX_WORKAROUND_8071(efx
)) {
526 EFX_ERR_RL(efx
, " RX queue %d seriously overlength "
527 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
528 rx_queue
->queue
, len
, max_len
,
529 efx
->type
->rx_buffer_padding
);
530 /* If this buffer was skb-allocated, then the meta
531 * data at the end of the skb will be trashed. So
532 * we have no choice but to leak the fragment.
534 *leak_packet
= (rx_buf
->skb
!= NULL
);
535 efx_schedule_reset(efx
, RESET_TYPE_RX_RECOVERY
);
537 EFX_ERR_RL(efx
, " RX queue %d overlength RX event "
538 "(0x%x > 0x%x)\n", rx_queue
->queue
, len
, max_len
);
541 rx_queue
->channel
->n_rx_overlength
++;
544 /* Pass a received packet up through the generic LRO stack
546 * Handles driverlink veto, and passes the fragment up via
547 * the appropriate LRO method
549 static inline void efx_rx_packet_lro(struct efx_channel
*channel
,
550 struct efx_rx_buffer
*rx_buf
)
552 struct net_lro_mgr
*lro_mgr
= &channel
->lro_mgr
;
553 void *priv
= channel
;
555 /* Pass the skb/page into the LRO engine */
557 struct skb_frag_struct frags
;
559 frags
.page
= rx_buf
->page
;
560 frags
.page_offset
= efx_rx_buf_offset(rx_buf
);
561 frags
.size
= rx_buf
->len
;
563 lro_receive_frags(lro_mgr
, &frags
, rx_buf
->len
,
564 rx_buf
->len
, priv
, 0);
566 EFX_BUG_ON_PARANOID(rx_buf
->skb
);
569 EFX_BUG_ON_PARANOID(!rx_buf
->skb
);
571 lro_receive_skb(lro_mgr
, rx_buf
->skb
, priv
);
576 /* Allocate and construct an SKB around a struct page.*/
577 static inline struct sk_buff
*efx_rx_mk_skb(struct efx_rx_buffer
*rx_buf
,
583 /* Allocate an SKB to store the headers */
584 skb
= netdev_alloc_skb(efx
->net_dev
, hdr_len
+ EFX_PAGE_SKB_ALIGN
);
585 if (unlikely(skb
== NULL
)) {
586 EFX_ERR_RL(efx
, "RX out of memory for skb\n");
590 EFX_BUG_ON_PARANOID(skb_shinfo(skb
)->nr_frags
);
591 EFX_BUG_ON_PARANOID(rx_buf
->len
< hdr_len
);
593 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
594 skb_reserve(skb
, EFX_PAGE_SKB_ALIGN
);
596 skb
->len
= rx_buf
->len
;
597 skb
->truesize
= rx_buf
->len
+ sizeof(struct sk_buff
);
598 memcpy(skb
->data
, rx_buf
->data
, hdr_len
);
599 skb
->tail
+= hdr_len
;
601 /* Append the remaining page onto the frag list */
602 if (unlikely(rx_buf
->len
> hdr_len
)) {
603 struct skb_frag_struct
*frag
= skb_shinfo(skb
)->frags
;
604 frag
->page
= rx_buf
->page
;
605 frag
->page_offset
= efx_rx_buf_offset(rx_buf
) + hdr_len
;
606 frag
->size
= skb
->len
- hdr_len
;
607 skb_shinfo(skb
)->nr_frags
= 1;
608 skb
->data_len
= frag
->size
;
610 __free_pages(rx_buf
->page
, efx
->rx_buffer_order
);
614 /* Ownership has transferred from the rx_buf to skb */
617 /* Move past the ethernet header */
618 skb
->protocol
= eth_type_trans(skb
, efx
->net_dev
);
623 void efx_rx_packet(struct efx_rx_queue
*rx_queue
, unsigned int index
,
624 unsigned int len
, int checksummed
, int discard
)
626 struct efx_nic
*efx
= rx_queue
->efx
;
627 struct efx_rx_buffer
*rx_buf
;
630 rx_buf
= efx_rx_buffer(rx_queue
, index
);
631 EFX_BUG_ON_PARANOID(!rx_buf
->data
);
632 EFX_BUG_ON_PARANOID(rx_buf
->skb
&& rx_buf
->page
);
633 EFX_BUG_ON_PARANOID(!(rx_buf
->skb
|| rx_buf
->page
));
635 /* This allows the refill path to post another buffer.
636 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
637 * isn't overwritten yet.
639 rx_queue
->removed_count
++;
641 /* Validate the length encoded in the event vs the descriptor pushed */
642 efx_rx_packet__check_len(rx_queue
, rx_buf
, len
,
643 &discard
, &leak_packet
);
645 EFX_TRACE(efx
, "RX queue %d received id %x at %llx+%x %s%s\n",
646 rx_queue
->queue
, index
,
647 (unsigned long long)rx_buf
->dma_addr
, len
,
648 (checksummed
? " [SUMMED]" : ""),
649 (discard
? " [DISCARD]" : ""));
651 /* Discard packet, if instructed to do so */
652 if (unlikely(discard
)) {
653 if (unlikely(leak_packet
))
654 rx_queue
->channel
->n_skbuff_leaks
++;
656 /* We haven't called efx_unmap_rx_buffer yet,
657 * so fini the entire rx_buffer here */
658 efx_fini_rx_buffer(rx_queue
, rx_buf
);
662 /* Release card resources - assumes all RX buffers consumed in-order
665 efx_unmap_rx_buffer(efx
, rx_buf
);
667 /* Prefetch nice and early so data will (hopefully) be in cache by
668 * the time we look at it.
670 prefetch(rx_buf
->data
);
672 /* Pipeline receives so that we give time for packet headers to be
673 * prefetched into cache.
676 if (rx_queue
->channel
->rx_pkt
)
677 __efx_rx_packet(rx_queue
->channel
,
678 rx_queue
->channel
->rx_pkt
,
679 rx_queue
->channel
->rx_pkt_csummed
);
680 rx_queue
->channel
->rx_pkt
= rx_buf
;
681 rx_queue
->channel
->rx_pkt_csummed
= checksummed
;
684 /* Handle a received packet. Second half: Touches packet payload. */
685 void __efx_rx_packet(struct efx_channel
*channel
,
686 struct efx_rx_buffer
*rx_buf
, int checksummed
)
688 struct efx_nic
*efx
= channel
->efx
;
690 int lro
= efx
->net_dev
->features
& NETIF_F_LRO
;
692 /* If we're in loopback test, then pass the packet directly to the
693 * loopback layer, and free the rx_buf here
695 if (unlikely(efx
->loopback_selftest
)) {
696 efx_loopback_rx_packet(efx
, rx_buf
->data
, rx_buf
->len
);
697 efx_free_rx_buffer(efx
, rx_buf
);
702 prefetch(skb_shinfo(rx_buf
->skb
));
704 skb_put(rx_buf
->skb
, rx_buf
->len
);
706 /* Move past the ethernet header. rx_buf->data still points
707 * at the ethernet header */
708 rx_buf
->skb
->protocol
= eth_type_trans(rx_buf
->skb
,
712 /* Both our generic-LRO and SFC-SSR support skb and page based
713 * allocation, but neither support switching from one to the
714 * other on the fly. If we spot that the allocation mode has
715 * changed, then flush the LRO state.
717 if (unlikely(channel
->rx_alloc_pop_pages
!= (rx_buf
->page
!= NULL
))) {
718 efx_flush_lro(channel
);
719 channel
->rx_alloc_pop_pages
= (rx_buf
->page
!= NULL
);
721 if (likely(checksummed
&& lro
)) {
722 efx_rx_packet_lro(channel
, rx_buf
);
726 /* Form an skb if required */
728 int hdr_len
= min(rx_buf
->len
, EFX_SKB_HEADERS
);
729 skb
= efx_rx_mk_skb(rx_buf
, efx
, hdr_len
);
730 if (unlikely(skb
== NULL
)) {
731 efx_free_rx_buffer(efx
, rx_buf
);
735 /* We now own the SKB */
740 EFX_BUG_ON_PARANOID(rx_buf
->page
);
741 EFX_BUG_ON_PARANOID(rx_buf
->skb
);
742 EFX_BUG_ON_PARANOID(!skb
);
744 /* Set the SKB flags */
745 if (unlikely(!checksummed
|| !efx
->rx_checksum_enabled
))
746 skb
->ip_summed
= CHECKSUM_NONE
;
748 /* Pass the packet up */
749 netif_receive_skb(skb
);
751 /* Update allocation strategy method */
752 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
755 efx
->net_dev
->last_rx
= jiffies
;
758 void efx_rx_strategy(struct efx_channel
*channel
)
760 enum efx_rx_alloc_method method
= rx_alloc_method
;
762 /* Only makes sense to use page based allocation if LRO is enabled */
763 if (!(channel
->efx
->net_dev
->features
& NETIF_F_LRO
)) {
764 method
= RX_ALLOC_METHOD_SKB
;
765 } else if (method
== RX_ALLOC_METHOD_AUTO
) {
766 /* Constrain the rx_alloc_level */
767 if (channel
->rx_alloc_level
< 0)
768 channel
->rx_alloc_level
= 0;
769 else if (channel
->rx_alloc_level
> RX_ALLOC_LEVEL_MAX
)
770 channel
->rx_alloc_level
= RX_ALLOC_LEVEL_MAX
;
772 /* Decide on the allocation method */
773 method
= ((channel
->rx_alloc_level
> RX_ALLOC_LEVEL_LRO
) ?
774 RX_ALLOC_METHOD_PAGE
: RX_ALLOC_METHOD_SKB
);
777 /* Push the option */
778 channel
->rx_alloc_push_pages
= (method
== RX_ALLOC_METHOD_PAGE
);
781 int efx_probe_rx_queue(struct efx_rx_queue
*rx_queue
)
783 struct efx_nic
*efx
= rx_queue
->efx
;
784 unsigned int rxq_size
;
787 EFX_LOG(efx
, "creating RX queue %d\n", rx_queue
->queue
);
789 /* Allocate RX buffers */
790 rxq_size
= (efx
->type
->rxd_ring_mask
+ 1) * sizeof(*rx_queue
->buffer
);
791 rx_queue
->buffer
= kzalloc(rxq_size
, GFP_KERNEL
);
792 if (!rx_queue
->buffer
) {
797 rc
= falcon_probe_rx(rx_queue
);
804 kfree(rx_queue
->buffer
);
805 rx_queue
->buffer
= NULL
;
812 int efx_init_rx_queue(struct efx_rx_queue
*rx_queue
)
814 struct efx_nic
*efx
= rx_queue
->efx
;
815 unsigned int max_fill
, trigger
, limit
;
817 EFX_LOG(rx_queue
->efx
, "initialising RX queue %d\n", rx_queue
->queue
);
819 /* Initialise ptr fields */
820 rx_queue
->added_count
= 0;
821 rx_queue
->notified_count
= 0;
822 rx_queue
->removed_count
= 0;
823 rx_queue
->min_fill
= -1U;
824 rx_queue
->min_overfill
= -1U;
826 /* Initialise limit fields */
827 max_fill
= efx
->type
->rxd_ring_mask
+ 1 - EFX_RXD_HEAD_ROOM
;
828 trigger
= max_fill
* min(rx_refill_threshold
, 100U) / 100U;
829 limit
= max_fill
* min(rx_refill_limit
, 100U) / 100U;
831 rx_queue
->max_fill
= max_fill
;
832 rx_queue
->fast_fill_trigger
= trigger
;
833 rx_queue
->fast_fill_limit
= limit
;
835 /* Set up RX descriptor ring */
836 return falcon_init_rx(rx_queue
);
839 void efx_fini_rx_queue(struct efx_rx_queue
*rx_queue
)
842 struct efx_rx_buffer
*rx_buf
;
844 EFX_LOG(rx_queue
->efx
, "shutting down RX queue %d\n", rx_queue
->queue
);
846 falcon_fini_rx(rx_queue
);
848 /* Release RX buffers NB start at index 0 not current HW ptr */
849 if (rx_queue
->buffer
) {
850 for (i
= 0; i
<= rx_queue
->efx
->type
->rxd_ring_mask
; i
++) {
851 rx_buf
= efx_rx_buffer(rx_queue
, i
);
852 efx_fini_rx_buffer(rx_queue
, rx_buf
);
856 /* For a page that is part-way through splitting into RX buffers */
857 if (rx_queue
->buf_page
!= NULL
) {
858 pci_unmap_page(rx_queue
->efx
->pci_dev
, rx_queue
->buf_dma_addr
,
859 efx_rx_buf_size(rx_queue
->efx
),
861 __free_pages(rx_queue
->buf_page
,
862 rx_queue
->efx
->rx_buffer_order
);
863 rx_queue
->buf_page
= NULL
;
867 void efx_remove_rx_queue(struct efx_rx_queue
*rx_queue
)
869 EFX_LOG(rx_queue
->efx
, "destroying RX queue %d\n", rx_queue
->queue
);
871 falcon_remove_rx(rx_queue
);
873 kfree(rx_queue
->buffer
);
874 rx_queue
->buffer
= NULL
;
878 void efx_flush_lro(struct efx_channel
*channel
)
880 lro_flush_all(&channel
->lro_mgr
);
884 module_param(rx_alloc_method
, int, 0644);
885 MODULE_PARM_DESC(rx_alloc_method
, "Allocation method used for RX buffers");
887 module_param(rx_refill_threshold
, uint
, 0444);
888 MODULE_PARM_DESC(rx_refill_threshold
,
889 "RX descriptor ring fast/slow fill threshold (%)");