gspca: Fix falling back to lower isoc alt settings
[zen-stable.git] / fs / xfs / xfs_log.c
blob34817adf4b9ed837da47d6f9ccfa977829fdd33c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
41 kmem_zone_t *xfs_log_ticket_zone;
43 /* Local miscellaneous function prototypes */
44 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
47 xfs_buftarg_t *log_target,
48 xfs_daddr_t blk_offset,
49 int num_bblks);
50 STATIC int xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void xlog_dealloc_log(xlog_t *log);
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int xlog_state_get_iclog_space(xlog_t *log,
58 int len,
59 xlog_in_core_t **iclog,
60 xlog_ticket_t *ticket,
61 int *continued_write,
62 int *logoffsetp);
63 STATIC int xlog_state_release_iclog(xlog_t *log,
64 xlog_in_core_t *iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t *log,
66 xlog_in_core_t *iclog,
67 int eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
70 /* local functions to manipulate grant head */
71 STATIC int xlog_grant_log_space(xlog_t *log,
72 xlog_ticket_t *xtic);
73 STATIC void xlog_grant_push_ail(struct log *log,
74 int need_bytes);
75 STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
76 xlog_ticket_t *ticket);
77 STATIC int xlog_regrant_write_log_space(xlog_t *log,
78 xlog_ticket_t *ticket);
79 STATIC void xlog_ungrant_log_space(xlog_t *log,
80 xlog_ticket_t *ticket);
82 #if defined(DEBUG)
83 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
84 STATIC void xlog_verify_grant_tail(struct log *log);
85 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
86 int count, boolean_t syncing);
87 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
88 xfs_lsn_t tail_lsn);
89 #else
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
94 #endif
96 STATIC int xlog_iclogs_empty(xlog_t *log);
98 static void
99 xlog_grant_sub_space(
100 struct log *log,
101 atomic64_t *head,
102 int bytes)
104 int64_t head_val = atomic64_read(head);
105 int64_t new, old;
107 do {
108 int cycle, space;
110 xlog_crack_grant_head_val(head_val, &cycle, &space);
112 space -= bytes;
113 if (space < 0) {
114 space += log->l_logsize;
115 cycle--;
118 old = head_val;
119 new = xlog_assign_grant_head_val(cycle, space);
120 head_val = atomic64_cmpxchg(head, old, new);
121 } while (head_val != old);
124 static void
125 xlog_grant_add_space(
126 struct log *log,
127 atomic64_t *head,
128 int bytes)
130 int64_t head_val = atomic64_read(head);
131 int64_t new, old;
133 do {
134 int tmp;
135 int cycle, space;
137 xlog_crack_grant_head_val(head_val, &cycle, &space);
139 tmp = log->l_logsize - space;
140 if (tmp > bytes)
141 space += bytes;
142 else {
143 space = bytes - tmp;
144 cycle++;
147 old = head_val;
148 new = xlog_assign_grant_head_val(cycle, space);
149 head_val = atomic64_cmpxchg(head, old, new);
150 } while (head_val != old);
153 STATIC bool
154 xlog_reserveq_wake(
155 struct log *log,
156 int *free_bytes)
158 struct xlog_ticket *tic;
159 int need_bytes;
161 list_for_each_entry(tic, &log->l_reserveq, t_queue) {
162 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
163 need_bytes = tic->t_unit_res * tic->t_cnt;
164 else
165 need_bytes = tic->t_unit_res;
167 if (*free_bytes < need_bytes)
168 return false;
169 *free_bytes -= need_bytes;
171 trace_xfs_log_grant_wake_up(log, tic);
172 wake_up(&tic->t_wait);
175 return true;
178 STATIC bool
179 xlog_writeq_wake(
180 struct log *log,
181 int *free_bytes)
183 struct xlog_ticket *tic;
184 int need_bytes;
186 list_for_each_entry(tic, &log->l_writeq, t_queue) {
187 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
189 need_bytes = tic->t_unit_res;
191 if (*free_bytes < need_bytes)
192 return false;
193 *free_bytes -= need_bytes;
195 trace_xfs_log_regrant_write_wake_up(log, tic);
196 wake_up(&tic->t_wait);
199 return true;
202 STATIC int
203 xlog_reserveq_wait(
204 struct log *log,
205 struct xlog_ticket *tic,
206 int need_bytes)
208 list_add_tail(&tic->t_queue, &log->l_reserveq);
210 do {
211 if (XLOG_FORCED_SHUTDOWN(log))
212 goto shutdown;
213 xlog_grant_push_ail(log, need_bytes);
215 XFS_STATS_INC(xs_sleep_logspace);
216 trace_xfs_log_grant_sleep(log, tic);
218 xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock);
219 trace_xfs_log_grant_wake(log, tic);
221 spin_lock(&log->l_grant_reserve_lock);
222 if (XLOG_FORCED_SHUTDOWN(log))
223 goto shutdown;
224 } while (xlog_space_left(log, &log->l_grant_reserve_head) < need_bytes);
226 list_del_init(&tic->t_queue);
227 return 0;
228 shutdown:
229 list_del_init(&tic->t_queue);
230 return XFS_ERROR(EIO);
233 STATIC int
234 xlog_writeq_wait(
235 struct log *log,
236 struct xlog_ticket *tic,
237 int need_bytes)
239 list_add_tail(&tic->t_queue, &log->l_writeq);
241 do {
242 if (XLOG_FORCED_SHUTDOWN(log))
243 goto shutdown;
244 xlog_grant_push_ail(log, need_bytes);
246 XFS_STATS_INC(xs_sleep_logspace);
247 trace_xfs_log_regrant_write_sleep(log, tic);
249 xlog_wait(&tic->t_wait, &log->l_grant_write_lock);
250 trace_xfs_log_regrant_write_wake(log, tic);
252 spin_lock(&log->l_grant_write_lock);
253 if (XLOG_FORCED_SHUTDOWN(log))
254 goto shutdown;
255 } while (xlog_space_left(log, &log->l_grant_write_head) < need_bytes);
257 list_del_init(&tic->t_queue);
258 return 0;
259 shutdown:
260 list_del_init(&tic->t_queue);
261 return XFS_ERROR(EIO);
264 static void
265 xlog_tic_reset_res(xlog_ticket_t *tic)
267 tic->t_res_num = 0;
268 tic->t_res_arr_sum = 0;
269 tic->t_res_num_ophdrs = 0;
272 static void
273 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
275 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
276 /* add to overflow and start again */
277 tic->t_res_o_flow += tic->t_res_arr_sum;
278 tic->t_res_num = 0;
279 tic->t_res_arr_sum = 0;
282 tic->t_res_arr[tic->t_res_num].r_len = len;
283 tic->t_res_arr[tic->t_res_num].r_type = type;
284 tic->t_res_arr_sum += len;
285 tic->t_res_num++;
289 * NOTES:
291 * 1. currblock field gets updated at startup and after in-core logs
292 * marked as with WANT_SYNC.
296 * This routine is called when a user of a log manager ticket is done with
297 * the reservation. If the ticket was ever used, then a commit record for
298 * the associated transaction is written out as a log operation header with
299 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
300 * a given ticket. If the ticket was one with a permanent reservation, then
301 * a few operations are done differently. Permanent reservation tickets by
302 * default don't release the reservation. They just commit the current
303 * transaction with the belief that the reservation is still needed. A flag
304 * must be passed in before permanent reservations are actually released.
305 * When these type of tickets are not released, they need to be set into
306 * the inited state again. By doing this, a start record will be written
307 * out when the next write occurs.
309 xfs_lsn_t
310 xfs_log_done(
311 struct xfs_mount *mp,
312 struct xlog_ticket *ticket,
313 struct xlog_in_core **iclog,
314 uint flags)
316 struct log *log = mp->m_log;
317 xfs_lsn_t lsn = 0;
319 if (XLOG_FORCED_SHUTDOWN(log) ||
321 * If nothing was ever written, don't write out commit record.
322 * If we get an error, just continue and give back the log ticket.
324 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
325 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
326 lsn = (xfs_lsn_t) -1;
327 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
328 flags |= XFS_LOG_REL_PERM_RESERV;
333 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
334 (flags & XFS_LOG_REL_PERM_RESERV)) {
335 trace_xfs_log_done_nonperm(log, ticket);
338 * Release ticket if not permanent reservation or a specific
339 * request has been made to release a permanent reservation.
341 xlog_ungrant_log_space(log, ticket);
342 xfs_log_ticket_put(ticket);
343 } else {
344 trace_xfs_log_done_perm(log, ticket);
346 xlog_regrant_reserve_log_space(log, ticket);
347 /* If this ticket was a permanent reservation and we aren't
348 * trying to release it, reset the inited flags; so next time
349 * we write, a start record will be written out.
351 ticket->t_flags |= XLOG_TIC_INITED;
354 return lsn;
358 * Attaches a new iclog I/O completion callback routine during
359 * transaction commit. If the log is in error state, a non-zero
360 * return code is handed back and the caller is responsible for
361 * executing the callback at an appropriate time.
364 xfs_log_notify(
365 struct xfs_mount *mp,
366 struct xlog_in_core *iclog,
367 xfs_log_callback_t *cb)
369 int abortflg;
371 spin_lock(&iclog->ic_callback_lock);
372 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
373 if (!abortflg) {
374 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
375 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
376 cb->cb_next = NULL;
377 *(iclog->ic_callback_tail) = cb;
378 iclog->ic_callback_tail = &(cb->cb_next);
380 spin_unlock(&iclog->ic_callback_lock);
381 return abortflg;
385 xfs_log_release_iclog(
386 struct xfs_mount *mp,
387 struct xlog_in_core *iclog)
389 if (xlog_state_release_iclog(mp->m_log, iclog)) {
390 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
391 return EIO;
394 return 0;
398 * 1. Reserve an amount of on-disk log space and return a ticket corresponding
399 * to the reservation.
400 * 2. Potentially, push buffers at tail of log to disk.
402 * Each reservation is going to reserve extra space for a log record header.
403 * When writes happen to the on-disk log, we don't subtract the length of the
404 * log record header from any reservation. By wasting space in each
405 * reservation, we prevent over allocation problems.
408 xfs_log_reserve(
409 struct xfs_mount *mp,
410 int unit_bytes,
411 int cnt,
412 struct xlog_ticket **ticket,
413 __uint8_t client,
414 uint flags,
415 uint t_type)
417 struct log *log = mp->m_log;
418 struct xlog_ticket *internal_ticket;
419 int retval = 0;
421 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
423 if (XLOG_FORCED_SHUTDOWN(log))
424 return XFS_ERROR(EIO);
426 XFS_STATS_INC(xs_try_logspace);
429 if (*ticket != NULL) {
430 ASSERT(flags & XFS_LOG_PERM_RESERV);
431 internal_ticket = *ticket;
434 * this is a new transaction on the ticket, so we need to
435 * change the transaction ID so that the next transaction has a
436 * different TID in the log. Just add one to the existing tid
437 * so that we can see chains of rolling transactions in the log
438 * easily.
440 internal_ticket->t_tid++;
442 trace_xfs_log_reserve(log, internal_ticket);
444 xlog_grant_push_ail(log, internal_ticket->t_unit_res);
445 retval = xlog_regrant_write_log_space(log, internal_ticket);
446 } else {
447 /* may sleep if need to allocate more tickets */
448 internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt,
449 client, flags,
450 KM_SLEEP|KM_MAYFAIL);
451 if (!internal_ticket)
452 return XFS_ERROR(ENOMEM);
453 internal_ticket->t_trans_type = t_type;
454 *ticket = internal_ticket;
456 trace_xfs_log_reserve(log, internal_ticket);
458 xlog_grant_push_ail(log,
459 (internal_ticket->t_unit_res *
460 internal_ticket->t_cnt));
461 retval = xlog_grant_log_space(log, internal_ticket);
464 if (unlikely(retval)) {
466 * If we are failing, make sure the ticket doesn't have any
467 * current reservations. We don't want to add this back
468 * when the ticket/ transaction gets cancelled.
470 internal_ticket->t_curr_res = 0;
471 /* ungrant will give back unit_res * t_cnt. */
472 internal_ticket->t_cnt = 0;
475 return retval;
480 * Mount a log filesystem
482 * mp - ubiquitous xfs mount point structure
483 * log_target - buftarg of on-disk log device
484 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
485 * num_bblocks - Number of BBSIZE blocks in on-disk log
487 * Return error or zero.
490 xfs_log_mount(
491 xfs_mount_t *mp,
492 xfs_buftarg_t *log_target,
493 xfs_daddr_t blk_offset,
494 int num_bblks)
496 int error;
498 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
499 xfs_notice(mp, "Mounting Filesystem");
500 else {
501 xfs_notice(mp,
502 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
503 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
506 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
507 if (IS_ERR(mp->m_log)) {
508 error = -PTR_ERR(mp->m_log);
509 goto out;
513 * Initialize the AIL now we have a log.
515 error = xfs_trans_ail_init(mp);
516 if (error) {
517 xfs_warn(mp, "AIL initialisation failed: error %d", error);
518 goto out_free_log;
520 mp->m_log->l_ailp = mp->m_ail;
523 * skip log recovery on a norecovery mount. pretend it all
524 * just worked.
526 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
527 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
529 if (readonly)
530 mp->m_flags &= ~XFS_MOUNT_RDONLY;
532 error = xlog_recover(mp->m_log);
534 if (readonly)
535 mp->m_flags |= XFS_MOUNT_RDONLY;
536 if (error) {
537 xfs_warn(mp, "log mount/recovery failed: error %d",
538 error);
539 goto out_destroy_ail;
543 /* Normal transactions can now occur */
544 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
547 * Now the log has been fully initialised and we know were our
548 * space grant counters are, we can initialise the permanent ticket
549 * needed for delayed logging to work.
551 xlog_cil_init_post_recovery(mp->m_log);
553 return 0;
555 out_destroy_ail:
556 xfs_trans_ail_destroy(mp);
557 out_free_log:
558 xlog_dealloc_log(mp->m_log);
559 out:
560 return error;
564 * Finish the recovery of the file system. This is separate from
565 * the xfs_log_mount() call, because it depends on the code in
566 * xfs_mountfs() to read in the root and real-time bitmap inodes
567 * between calling xfs_log_mount() and here.
569 * mp - ubiquitous xfs mount point structure
572 xfs_log_mount_finish(xfs_mount_t *mp)
574 int error;
576 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
577 error = xlog_recover_finish(mp->m_log);
578 else {
579 error = 0;
580 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
583 return error;
587 * Final log writes as part of unmount.
589 * Mark the filesystem clean as unmount happens. Note that during relocation
590 * this routine needs to be executed as part of source-bag while the
591 * deallocation must not be done until source-end.
595 * Unmount record used to have a string "Unmount filesystem--" in the
596 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
597 * We just write the magic number now since that particular field isn't
598 * currently architecture converted and "nUmount" is a bit foo.
599 * As far as I know, there weren't any dependencies on the old behaviour.
603 xfs_log_unmount_write(xfs_mount_t *mp)
605 xlog_t *log = mp->m_log;
606 xlog_in_core_t *iclog;
607 #ifdef DEBUG
608 xlog_in_core_t *first_iclog;
609 #endif
610 xlog_ticket_t *tic = NULL;
611 xfs_lsn_t lsn;
612 int error;
615 * Don't write out unmount record on read-only mounts.
616 * Or, if we are doing a forced umount (typically because of IO errors).
618 if (mp->m_flags & XFS_MOUNT_RDONLY)
619 return 0;
621 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
622 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
624 #ifdef DEBUG
625 first_iclog = iclog = log->l_iclog;
626 do {
627 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
628 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
629 ASSERT(iclog->ic_offset == 0);
631 iclog = iclog->ic_next;
632 } while (iclog != first_iclog);
633 #endif
634 if (! (XLOG_FORCED_SHUTDOWN(log))) {
635 error = xfs_log_reserve(mp, 600, 1, &tic,
636 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
637 if (!error) {
638 /* the data section must be 32 bit size aligned */
639 struct {
640 __uint16_t magic;
641 __uint16_t pad1;
642 __uint32_t pad2; /* may as well make it 64 bits */
643 } magic = {
644 .magic = XLOG_UNMOUNT_TYPE,
646 struct xfs_log_iovec reg = {
647 .i_addr = &magic,
648 .i_len = sizeof(magic),
649 .i_type = XLOG_REG_TYPE_UNMOUNT,
651 struct xfs_log_vec vec = {
652 .lv_niovecs = 1,
653 .lv_iovecp = &reg,
656 /* remove inited flag */
657 tic->t_flags = 0;
658 error = xlog_write(log, &vec, tic, &lsn,
659 NULL, XLOG_UNMOUNT_TRANS);
661 * At this point, we're umounting anyway,
662 * so there's no point in transitioning log state
663 * to IOERROR. Just continue...
667 if (error)
668 xfs_alert(mp, "%s: unmount record failed", __func__);
671 spin_lock(&log->l_icloglock);
672 iclog = log->l_iclog;
673 atomic_inc(&iclog->ic_refcnt);
674 xlog_state_want_sync(log, iclog);
675 spin_unlock(&log->l_icloglock);
676 error = xlog_state_release_iclog(log, iclog);
678 spin_lock(&log->l_icloglock);
679 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
680 iclog->ic_state == XLOG_STATE_DIRTY)) {
681 if (!XLOG_FORCED_SHUTDOWN(log)) {
682 xlog_wait(&iclog->ic_force_wait,
683 &log->l_icloglock);
684 } else {
685 spin_unlock(&log->l_icloglock);
687 } else {
688 spin_unlock(&log->l_icloglock);
690 if (tic) {
691 trace_xfs_log_umount_write(log, tic);
692 xlog_ungrant_log_space(log, tic);
693 xfs_log_ticket_put(tic);
695 } else {
697 * We're already in forced_shutdown mode, couldn't
698 * even attempt to write out the unmount transaction.
700 * Go through the motions of sync'ing and releasing
701 * the iclog, even though no I/O will actually happen,
702 * we need to wait for other log I/Os that may already
703 * be in progress. Do this as a separate section of
704 * code so we'll know if we ever get stuck here that
705 * we're in this odd situation of trying to unmount
706 * a file system that went into forced_shutdown as
707 * the result of an unmount..
709 spin_lock(&log->l_icloglock);
710 iclog = log->l_iclog;
711 atomic_inc(&iclog->ic_refcnt);
713 xlog_state_want_sync(log, iclog);
714 spin_unlock(&log->l_icloglock);
715 error = xlog_state_release_iclog(log, iclog);
717 spin_lock(&log->l_icloglock);
719 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
720 || iclog->ic_state == XLOG_STATE_DIRTY
721 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
723 xlog_wait(&iclog->ic_force_wait,
724 &log->l_icloglock);
725 } else {
726 spin_unlock(&log->l_icloglock);
730 return error;
731 } /* xfs_log_unmount_write */
734 * Deallocate log structures for unmount/relocation.
736 * We need to stop the aild from running before we destroy
737 * and deallocate the log as the aild references the log.
739 void
740 xfs_log_unmount(xfs_mount_t *mp)
742 xfs_trans_ail_destroy(mp);
743 xlog_dealloc_log(mp->m_log);
746 void
747 xfs_log_item_init(
748 struct xfs_mount *mp,
749 struct xfs_log_item *item,
750 int type,
751 const struct xfs_item_ops *ops)
753 item->li_mountp = mp;
754 item->li_ailp = mp->m_ail;
755 item->li_type = type;
756 item->li_ops = ops;
757 item->li_lv = NULL;
759 INIT_LIST_HEAD(&item->li_ail);
760 INIT_LIST_HEAD(&item->li_cil);
764 * Write region vectors to log. The write happens using the space reservation
765 * of the ticket (tic). It is not a requirement that all writes for a given
766 * transaction occur with one call to xfs_log_write(). However, it is important
767 * to note that the transaction reservation code makes an assumption about the
768 * number of log headers a transaction requires that may be violated if you
769 * don't pass all the transaction vectors in one call....
772 xfs_log_write(
773 struct xfs_mount *mp,
774 struct xfs_log_iovec reg[],
775 int nentries,
776 struct xlog_ticket *tic,
777 xfs_lsn_t *start_lsn)
779 struct log *log = mp->m_log;
780 int error;
781 struct xfs_log_vec vec = {
782 .lv_niovecs = nentries,
783 .lv_iovecp = reg,
786 if (XLOG_FORCED_SHUTDOWN(log))
787 return XFS_ERROR(EIO);
789 error = xlog_write(log, &vec, tic, start_lsn, NULL, 0);
790 if (error)
791 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
792 return error;
795 void
796 xfs_log_move_tail(xfs_mount_t *mp,
797 xfs_lsn_t tail_lsn)
799 xlog_ticket_t *tic;
800 xlog_t *log = mp->m_log;
801 int need_bytes, free_bytes;
803 if (XLOG_FORCED_SHUTDOWN(log))
804 return;
806 if (tail_lsn == 0)
807 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
809 /* tail_lsn == 1 implies that we weren't passed a valid value. */
810 if (tail_lsn != 1)
811 atomic64_set(&log->l_tail_lsn, tail_lsn);
813 if (!list_empty_careful(&log->l_writeq)) {
814 #ifdef DEBUG
815 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
816 panic("Recovery problem");
817 #endif
818 spin_lock(&log->l_grant_write_lock);
819 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
820 list_for_each_entry(tic, &log->l_writeq, t_queue) {
821 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
823 if (free_bytes < tic->t_unit_res && tail_lsn != 1)
824 break;
825 tail_lsn = 0;
826 free_bytes -= tic->t_unit_res;
827 trace_xfs_log_regrant_write_wake_up(log, tic);
828 wake_up(&tic->t_wait);
830 spin_unlock(&log->l_grant_write_lock);
833 if (!list_empty_careful(&log->l_reserveq)) {
834 #ifdef DEBUG
835 if (log->l_flags & XLOG_ACTIVE_RECOVERY)
836 panic("Recovery problem");
837 #endif
838 spin_lock(&log->l_grant_reserve_lock);
839 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
840 list_for_each_entry(tic, &log->l_reserveq, t_queue) {
841 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
842 need_bytes = tic->t_unit_res*tic->t_cnt;
843 else
844 need_bytes = tic->t_unit_res;
845 if (free_bytes < need_bytes && tail_lsn != 1)
846 break;
847 tail_lsn = 0;
848 free_bytes -= need_bytes;
849 trace_xfs_log_grant_wake_up(log, tic);
850 wake_up(&tic->t_wait);
852 spin_unlock(&log->l_grant_reserve_lock);
857 * Determine if we have a transaction that has gone to disk
858 * that needs to be covered. To begin the transition to the idle state
859 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
860 * If we are then in a state where covering is needed, the caller is informed
861 * that dummy transactions are required to move the log into the idle state.
863 * Because this is called as part of the sync process, we should also indicate
864 * that dummy transactions should be issued in anything but the covered or
865 * idle states. This ensures that the log tail is accurately reflected in
866 * the log at the end of the sync, hence if a crash occurrs avoids replay
867 * of transactions where the metadata is already on disk.
870 xfs_log_need_covered(xfs_mount_t *mp)
872 int needed = 0;
873 xlog_t *log = mp->m_log;
875 if (!xfs_fs_writable(mp))
876 return 0;
878 spin_lock(&log->l_icloglock);
879 switch (log->l_covered_state) {
880 case XLOG_STATE_COVER_DONE:
881 case XLOG_STATE_COVER_DONE2:
882 case XLOG_STATE_COVER_IDLE:
883 break;
884 case XLOG_STATE_COVER_NEED:
885 case XLOG_STATE_COVER_NEED2:
886 if (!xfs_ail_min_lsn(log->l_ailp) &&
887 xlog_iclogs_empty(log)) {
888 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
889 log->l_covered_state = XLOG_STATE_COVER_DONE;
890 else
891 log->l_covered_state = XLOG_STATE_COVER_DONE2;
893 /* FALLTHRU */
894 default:
895 needed = 1;
896 break;
898 spin_unlock(&log->l_icloglock);
899 return needed;
902 /******************************************************************************
904 * local routines
906 ******************************************************************************
909 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
910 * The log manager must keep track of the last LR which was committed
911 * to disk. The lsn of this LR will become the new tail_lsn whenever
912 * xfs_trans_tail_ail returns 0. If we don't do this, we run into
913 * the situation where stuff could be written into the log but nothing
914 * was ever in the AIL when asked. Eventually, we panic since the
915 * tail hits the head.
917 * We may be holding the log iclog lock upon entering this routine.
919 xfs_lsn_t
920 xlog_assign_tail_lsn(
921 struct xfs_mount *mp)
923 xfs_lsn_t tail_lsn;
924 struct log *log = mp->m_log;
926 tail_lsn = xfs_ail_min_lsn(mp->m_ail);
927 if (!tail_lsn)
928 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
930 atomic64_set(&log->l_tail_lsn, tail_lsn);
931 return tail_lsn;
935 * Return the space in the log between the tail and the head. The head
936 * is passed in the cycle/bytes formal parms. In the special case where
937 * the reserve head has wrapped passed the tail, this calculation is no
938 * longer valid. In this case, just return 0 which means there is no space
939 * in the log. This works for all places where this function is called
940 * with the reserve head. Of course, if the write head were to ever
941 * wrap the tail, we should blow up. Rather than catch this case here,
942 * we depend on other ASSERTions in other parts of the code. XXXmiken
944 * This code also handles the case where the reservation head is behind
945 * the tail. The details of this case are described below, but the end
946 * result is that we return the size of the log as the amount of space left.
948 STATIC int
949 xlog_space_left(
950 struct log *log,
951 atomic64_t *head)
953 int free_bytes;
954 int tail_bytes;
955 int tail_cycle;
956 int head_cycle;
957 int head_bytes;
959 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
960 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
961 tail_bytes = BBTOB(tail_bytes);
962 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
963 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
964 else if (tail_cycle + 1 < head_cycle)
965 return 0;
966 else if (tail_cycle < head_cycle) {
967 ASSERT(tail_cycle == (head_cycle - 1));
968 free_bytes = tail_bytes - head_bytes;
969 } else {
971 * The reservation head is behind the tail.
972 * In this case we just want to return the size of the
973 * log as the amount of space left.
975 xfs_alert(log->l_mp,
976 "xlog_space_left: head behind tail\n"
977 " tail_cycle = %d, tail_bytes = %d\n"
978 " GH cycle = %d, GH bytes = %d",
979 tail_cycle, tail_bytes, head_cycle, head_bytes);
980 ASSERT(0);
981 free_bytes = log->l_logsize;
983 return free_bytes;
988 * Log function which is called when an io completes.
990 * The log manager needs its own routine, in order to control what
991 * happens with the buffer after the write completes.
993 void
994 xlog_iodone(xfs_buf_t *bp)
996 xlog_in_core_t *iclog = bp->b_fspriv;
997 xlog_t *l = iclog->ic_log;
998 int aborted = 0;
1001 * Race to shutdown the filesystem if we see an error.
1003 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1004 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1005 xfs_buf_ioerror_alert(bp, __func__);
1006 xfs_buf_stale(bp);
1007 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1009 * This flag will be propagated to the trans-committed
1010 * callback routines to let them know that the log-commit
1011 * didn't succeed.
1013 aborted = XFS_LI_ABORTED;
1014 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1015 aborted = XFS_LI_ABORTED;
1018 /* log I/O is always issued ASYNC */
1019 ASSERT(XFS_BUF_ISASYNC(bp));
1020 xlog_state_done_syncing(iclog, aborted);
1022 * do not reference the buffer (bp) here as we could race
1023 * with it being freed after writing the unmount record to the
1024 * log.
1027 } /* xlog_iodone */
1030 * Return size of each in-core log record buffer.
1032 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1034 * If the filesystem blocksize is too large, we may need to choose a
1035 * larger size since the directory code currently logs entire blocks.
1038 STATIC void
1039 xlog_get_iclog_buffer_size(xfs_mount_t *mp,
1040 xlog_t *log)
1042 int size;
1043 int xhdrs;
1045 if (mp->m_logbufs <= 0)
1046 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1047 else
1048 log->l_iclog_bufs = mp->m_logbufs;
1051 * Buffer size passed in from mount system call.
1053 if (mp->m_logbsize > 0) {
1054 size = log->l_iclog_size = mp->m_logbsize;
1055 log->l_iclog_size_log = 0;
1056 while (size != 1) {
1057 log->l_iclog_size_log++;
1058 size >>= 1;
1061 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1062 /* # headers = size / 32k
1063 * one header holds cycles from 32k of data
1066 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1067 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1068 xhdrs++;
1069 log->l_iclog_hsize = xhdrs << BBSHIFT;
1070 log->l_iclog_heads = xhdrs;
1071 } else {
1072 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1073 log->l_iclog_hsize = BBSIZE;
1074 log->l_iclog_heads = 1;
1076 goto done;
1079 /* All machines use 32kB buffers by default. */
1080 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1081 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1083 /* the default log size is 16k or 32k which is one header sector */
1084 log->l_iclog_hsize = BBSIZE;
1085 log->l_iclog_heads = 1;
1087 done:
1088 /* are we being asked to make the sizes selected above visible? */
1089 if (mp->m_logbufs == 0)
1090 mp->m_logbufs = log->l_iclog_bufs;
1091 if (mp->m_logbsize == 0)
1092 mp->m_logbsize = log->l_iclog_size;
1093 } /* xlog_get_iclog_buffer_size */
1097 * This routine initializes some of the log structure for a given mount point.
1098 * Its primary purpose is to fill in enough, so recovery can occur. However,
1099 * some other stuff may be filled in too.
1101 STATIC xlog_t *
1102 xlog_alloc_log(xfs_mount_t *mp,
1103 xfs_buftarg_t *log_target,
1104 xfs_daddr_t blk_offset,
1105 int num_bblks)
1107 xlog_t *log;
1108 xlog_rec_header_t *head;
1109 xlog_in_core_t **iclogp;
1110 xlog_in_core_t *iclog, *prev_iclog=NULL;
1111 xfs_buf_t *bp;
1112 int i;
1113 int error = ENOMEM;
1114 uint log2_size = 0;
1116 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1117 if (!log) {
1118 xfs_warn(mp, "Log allocation failed: No memory!");
1119 goto out;
1122 log->l_mp = mp;
1123 log->l_targ = log_target;
1124 log->l_logsize = BBTOB(num_bblks);
1125 log->l_logBBstart = blk_offset;
1126 log->l_logBBsize = num_bblks;
1127 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1128 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1130 log->l_prev_block = -1;
1131 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1132 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1133 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1134 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1135 xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0);
1136 xlog_assign_grant_head(&log->l_grant_write_head, 1, 0);
1137 INIT_LIST_HEAD(&log->l_reserveq);
1138 INIT_LIST_HEAD(&log->l_writeq);
1139 spin_lock_init(&log->l_grant_reserve_lock);
1140 spin_lock_init(&log->l_grant_write_lock);
1142 error = EFSCORRUPTED;
1143 if (xfs_sb_version_hassector(&mp->m_sb)) {
1144 log2_size = mp->m_sb.sb_logsectlog;
1145 if (log2_size < BBSHIFT) {
1146 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1147 log2_size, BBSHIFT);
1148 goto out_free_log;
1151 log2_size -= BBSHIFT;
1152 if (log2_size > mp->m_sectbb_log) {
1153 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1154 log2_size, mp->m_sectbb_log);
1155 goto out_free_log;
1158 /* for larger sector sizes, must have v2 or external log */
1159 if (log2_size && log->l_logBBstart > 0 &&
1160 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1161 xfs_warn(mp,
1162 "log sector size (0x%x) invalid for configuration.",
1163 log2_size);
1164 goto out_free_log;
1167 log->l_sectBBsize = 1 << log2_size;
1169 xlog_get_iclog_buffer_size(mp, log);
1171 error = ENOMEM;
1172 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, log->l_iclog_size, 0);
1173 if (!bp)
1174 goto out_free_log;
1175 bp->b_iodone = xlog_iodone;
1176 ASSERT(xfs_buf_islocked(bp));
1177 log->l_xbuf = bp;
1179 spin_lock_init(&log->l_icloglock);
1180 init_waitqueue_head(&log->l_flush_wait);
1182 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1183 ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1185 iclogp = &log->l_iclog;
1187 * The amount of memory to allocate for the iclog structure is
1188 * rather funky due to the way the structure is defined. It is
1189 * done this way so that we can use different sizes for machines
1190 * with different amounts of memory. See the definition of
1191 * xlog_in_core_t in xfs_log_priv.h for details.
1193 ASSERT(log->l_iclog_size >= 4096);
1194 for (i=0; i < log->l_iclog_bufs; i++) {
1195 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1196 if (!*iclogp)
1197 goto out_free_iclog;
1199 iclog = *iclogp;
1200 iclog->ic_prev = prev_iclog;
1201 prev_iclog = iclog;
1203 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1204 log->l_iclog_size, 0);
1205 if (!bp)
1206 goto out_free_iclog;
1208 bp->b_iodone = xlog_iodone;
1209 iclog->ic_bp = bp;
1210 iclog->ic_data = bp->b_addr;
1211 #ifdef DEBUG
1212 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1213 #endif
1214 head = &iclog->ic_header;
1215 memset(head, 0, sizeof(xlog_rec_header_t));
1216 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1217 head->h_version = cpu_to_be32(
1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1219 head->h_size = cpu_to_be32(log->l_iclog_size);
1220 /* new fields */
1221 head->h_fmt = cpu_to_be32(XLOG_FMT);
1222 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1224 iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1225 iclog->ic_state = XLOG_STATE_ACTIVE;
1226 iclog->ic_log = log;
1227 atomic_set(&iclog->ic_refcnt, 0);
1228 spin_lock_init(&iclog->ic_callback_lock);
1229 iclog->ic_callback_tail = &(iclog->ic_callback);
1230 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1232 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1233 init_waitqueue_head(&iclog->ic_force_wait);
1234 init_waitqueue_head(&iclog->ic_write_wait);
1236 iclogp = &iclog->ic_next;
1238 *iclogp = log->l_iclog; /* complete ring */
1239 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1241 error = xlog_cil_init(log);
1242 if (error)
1243 goto out_free_iclog;
1244 return log;
1246 out_free_iclog:
1247 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1248 prev_iclog = iclog->ic_next;
1249 if (iclog->ic_bp)
1250 xfs_buf_free(iclog->ic_bp);
1251 kmem_free(iclog);
1253 spinlock_destroy(&log->l_icloglock);
1254 xfs_buf_free(log->l_xbuf);
1255 out_free_log:
1256 kmem_free(log);
1257 out:
1258 return ERR_PTR(-error);
1259 } /* xlog_alloc_log */
1263 * Write out the commit record of a transaction associated with the given
1264 * ticket. Return the lsn of the commit record.
1266 STATIC int
1267 xlog_commit_record(
1268 struct log *log,
1269 struct xlog_ticket *ticket,
1270 struct xlog_in_core **iclog,
1271 xfs_lsn_t *commitlsnp)
1273 struct xfs_mount *mp = log->l_mp;
1274 int error;
1275 struct xfs_log_iovec reg = {
1276 .i_addr = NULL,
1277 .i_len = 0,
1278 .i_type = XLOG_REG_TYPE_COMMIT,
1280 struct xfs_log_vec vec = {
1281 .lv_niovecs = 1,
1282 .lv_iovecp = &reg,
1285 ASSERT_ALWAYS(iclog);
1286 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1287 XLOG_COMMIT_TRANS);
1288 if (error)
1289 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1290 return error;
1294 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1295 * log space. This code pushes on the lsn which would supposedly free up
1296 * the 25% which we want to leave free. We may need to adopt a policy which
1297 * pushes on an lsn which is further along in the log once we reach the high
1298 * water mark. In this manner, we would be creating a low water mark.
1300 STATIC void
1301 xlog_grant_push_ail(
1302 struct log *log,
1303 int need_bytes)
1305 xfs_lsn_t threshold_lsn = 0;
1306 xfs_lsn_t last_sync_lsn;
1307 int free_blocks;
1308 int free_bytes;
1309 int threshold_block;
1310 int threshold_cycle;
1311 int free_threshold;
1313 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1315 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
1316 free_blocks = BTOBBT(free_bytes);
1319 * Set the threshold for the minimum number of free blocks in the
1320 * log to the maximum of what the caller needs, one quarter of the
1321 * log, and 256 blocks.
1323 free_threshold = BTOBB(need_bytes);
1324 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1325 free_threshold = MAX(free_threshold, 256);
1326 if (free_blocks >= free_threshold)
1327 return;
1329 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1330 &threshold_block);
1331 threshold_block += free_threshold;
1332 if (threshold_block >= log->l_logBBsize) {
1333 threshold_block -= log->l_logBBsize;
1334 threshold_cycle += 1;
1336 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1337 threshold_block);
1339 * Don't pass in an lsn greater than the lsn of the last
1340 * log record known to be on disk. Use a snapshot of the last sync lsn
1341 * so that it doesn't change between the compare and the set.
1343 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1344 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1345 threshold_lsn = last_sync_lsn;
1348 * Get the transaction layer to kick the dirty buffers out to
1349 * disk asynchronously. No point in trying to do this if
1350 * the filesystem is shutting down.
1352 if (!XLOG_FORCED_SHUTDOWN(log))
1353 xfs_ail_push(log->l_ailp, threshold_lsn);
1357 * The bdstrat callback function for log bufs. This gives us a central
1358 * place to trap bufs in case we get hit by a log I/O error and need to
1359 * shutdown. Actually, in practice, even when we didn't get a log error,
1360 * we transition the iclogs to IOERROR state *after* flushing all existing
1361 * iclogs to disk. This is because we don't want anymore new transactions to be
1362 * started or completed afterwards.
1364 STATIC int
1365 xlog_bdstrat(
1366 struct xfs_buf *bp)
1368 struct xlog_in_core *iclog = bp->b_fspriv;
1370 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1371 xfs_buf_ioerror(bp, EIO);
1372 xfs_buf_stale(bp);
1373 xfs_buf_ioend(bp, 0);
1375 * It would seem logical to return EIO here, but we rely on
1376 * the log state machine to propagate I/O errors instead of
1377 * doing it here.
1379 return 0;
1382 xfs_buf_iorequest(bp);
1383 return 0;
1387 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1388 * fashion. Previously, we should have moved the current iclog
1389 * ptr in the log to point to the next available iclog. This allows further
1390 * write to continue while this code syncs out an iclog ready to go.
1391 * Before an in-core log can be written out, the data section must be scanned
1392 * to save away the 1st word of each BBSIZE block into the header. We replace
1393 * it with the current cycle count. Each BBSIZE block is tagged with the
1394 * cycle count because there in an implicit assumption that drives will
1395 * guarantee that entire 512 byte blocks get written at once. In other words,
1396 * we can't have part of a 512 byte block written and part not written. By
1397 * tagging each block, we will know which blocks are valid when recovering
1398 * after an unclean shutdown.
1400 * This routine is single threaded on the iclog. No other thread can be in
1401 * this routine with the same iclog. Changing contents of iclog can there-
1402 * fore be done without grabbing the state machine lock. Updating the global
1403 * log will require grabbing the lock though.
1405 * The entire log manager uses a logical block numbering scheme. Only
1406 * log_sync (and then only bwrite()) know about the fact that the log may
1407 * not start with block zero on a given device. The log block start offset
1408 * is added immediately before calling bwrite().
1411 STATIC int
1412 xlog_sync(xlog_t *log,
1413 xlog_in_core_t *iclog)
1415 xfs_caddr_t dptr; /* pointer to byte sized element */
1416 xfs_buf_t *bp;
1417 int i;
1418 uint count; /* byte count of bwrite */
1419 uint count_init; /* initial count before roundup */
1420 int roundoff; /* roundoff to BB or stripe */
1421 int split = 0; /* split write into two regions */
1422 int error;
1423 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1425 XFS_STATS_INC(xs_log_writes);
1426 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1428 /* Add for LR header */
1429 count_init = log->l_iclog_hsize + iclog->ic_offset;
1431 /* Round out the log write size */
1432 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1433 /* we have a v2 stripe unit to use */
1434 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1435 } else {
1436 count = BBTOB(BTOBB(count_init));
1438 roundoff = count - count_init;
1439 ASSERT(roundoff >= 0);
1440 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1441 roundoff < log->l_mp->m_sb.sb_logsunit)
1443 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1444 roundoff < BBTOB(1)));
1446 /* move grant heads by roundoff in sync */
1447 xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff);
1448 xlog_grant_add_space(log, &log->l_grant_write_head, roundoff);
1450 /* put cycle number in every block */
1451 xlog_pack_data(log, iclog, roundoff);
1453 /* real byte length */
1454 if (v2) {
1455 iclog->ic_header.h_len =
1456 cpu_to_be32(iclog->ic_offset + roundoff);
1457 } else {
1458 iclog->ic_header.h_len =
1459 cpu_to_be32(iclog->ic_offset);
1462 bp = iclog->ic_bp;
1463 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1465 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1467 /* Do we need to split this write into 2 parts? */
1468 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1469 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1470 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1471 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1472 } else {
1473 iclog->ic_bwritecnt = 1;
1475 XFS_BUF_SET_COUNT(bp, count);
1476 bp->b_fspriv = iclog;
1477 XFS_BUF_ZEROFLAGS(bp);
1478 XFS_BUF_ASYNC(bp);
1479 bp->b_flags |= XBF_SYNCIO;
1481 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1482 bp->b_flags |= XBF_FUA;
1485 * Flush the data device before flushing the log to make
1486 * sure all meta data written back from the AIL actually made
1487 * it to disk before stamping the new log tail LSN into the
1488 * log buffer. For an external log we need to issue the
1489 * flush explicitly, and unfortunately synchronously here;
1490 * for an internal log we can simply use the block layer
1491 * state machine for preflushes.
1493 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1494 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1495 else
1496 bp->b_flags |= XBF_FLUSH;
1499 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1500 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1502 xlog_verify_iclog(log, iclog, count, B_TRUE);
1504 /* account for log which doesn't start at block #0 */
1505 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1507 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1508 * is shutting down.
1510 XFS_BUF_WRITE(bp);
1512 error = xlog_bdstrat(bp);
1513 if (error) {
1514 xfs_buf_ioerror_alert(bp, "xlog_sync");
1515 return error;
1517 if (split) {
1518 bp = iclog->ic_log->l_xbuf;
1519 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1520 xfs_buf_associate_memory(bp,
1521 (char *)&iclog->ic_header + count, split);
1522 bp->b_fspriv = iclog;
1523 XFS_BUF_ZEROFLAGS(bp);
1524 XFS_BUF_ASYNC(bp);
1525 bp->b_flags |= XBF_SYNCIO;
1526 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1527 bp->b_flags |= XBF_FUA;
1528 dptr = bp->b_addr;
1530 * Bump the cycle numbers at the start of each block
1531 * since this part of the buffer is at the start of
1532 * a new cycle. Watch out for the header magic number
1533 * case, though.
1535 for (i = 0; i < split; i += BBSIZE) {
1536 be32_add_cpu((__be32 *)dptr, 1);
1537 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1538 be32_add_cpu((__be32 *)dptr, 1);
1539 dptr += BBSIZE;
1542 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1543 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1545 /* account for internal log which doesn't start at block #0 */
1546 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1547 XFS_BUF_WRITE(bp);
1548 error = xlog_bdstrat(bp);
1549 if (error) {
1550 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1551 return error;
1554 return 0;
1555 } /* xlog_sync */
1559 * Deallocate a log structure
1561 STATIC void
1562 xlog_dealloc_log(xlog_t *log)
1564 xlog_in_core_t *iclog, *next_iclog;
1565 int i;
1567 xlog_cil_destroy(log);
1570 * always need to ensure that the extra buffer does not point to memory
1571 * owned by another log buffer before we free it.
1573 xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size);
1574 xfs_buf_free(log->l_xbuf);
1576 iclog = log->l_iclog;
1577 for (i=0; i<log->l_iclog_bufs; i++) {
1578 xfs_buf_free(iclog->ic_bp);
1579 next_iclog = iclog->ic_next;
1580 kmem_free(iclog);
1581 iclog = next_iclog;
1583 spinlock_destroy(&log->l_icloglock);
1585 log->l_mp->m_log = NULL;
1586 kmem_free(log);
1587 } /* xlog_dealloc_log */
1590 * Update counters atomically now that memcpy is done.
1592 /* ARGSUSED */
1593 static inline void
1594 xlog_state_finish_copy(xlog_t *log,
1595 xlog_in_core_t *iclog,
1596 int record_cnt,
1597 int copy_bytes)
1599 spin_lock(&log->l_icloglock);
1601 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1602 iclog->ic_offset += copy_bytes;
1604 spin_unlock(&log->l_icloglock);
1605 } /* xlog_state_finish_copy */
1611 * print out info relating to regions written which consume
1612 * the reservation
1614 void
1615 xlog_print_tic_res(
1616 struct xfs_mount *mp,
1617 struct xlog_ticket *ticket)
1619 uint i;
1620 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1622 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1623 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1624 "bformat",
1625 "bchunk",
1626 "efi_format",
1627 "efd_format",
1628 "iformat",
1629 "icore",
1630 "iext",
1631 "ibroot",
1632 "ilocal",
1633 "iattr_ext",
1634 "iattr_broot",
1635 "iattr_local",
1636 "qformat",
1637 "dquot",
1638 "quotaoff",
1639 "LR header",
1640 "unmount",
1641 "commit",
1642 "trans header"
1644 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1645 "SETATTR_NOT_SIZE",
1646 "SETATTR_SIZE",
1647 "INACTIVE",
1648 "CREATE",
1649 "CREATE_TRUNC",
1650 "TRUNCATE_FILE",
1651 "REMOVE",
1652 "LINK",
1653 "RENAME",
1654 "MKDIR",
1655 "RMDIR",
1656 "SYMLINK",
1657 "SET_DMATTRS",
1658 "GROWFS",
1659 "STRAT_WRITE",
1660 "DIOSTRAT",
1661 "WRITE_SYNC",
1662 "WRITEID",
1663 "ADDAFORK",
1664 "ATTRINVAL",
1665 "ATRUNCATE",
1666 "ATTR_SET",
1667 "ATTR_RM",
1668 "ATTR_FLAG",
1669 "CLEAR_AGI_BUCKET",
1670 "QM_SBCHANGE",
1671 "DUMMY1",
1672 "DUMMY2",
1673 "QM_QUOTAOFF",
1674 "QM_DQALLOC",
1675 "QM_SETQLIM",
1676 "QM_DQCLUSTER",
1677 "QM_QINOCREATE",
1678 "QM_QUOTAOFF_END",
1679 "SB_UNIT",
1680 "FSYNC_TS",
1681 "GROWFSRT_ALLOC",
1682 "GROWFSRT_ZERO",
1683 "GROWFSRT_FREE",
1684 "SWAPEXT"
1687 xfs_warn(mp,
1688 "xfs_log_write: reservation summary:\n"
1689 " trans type = %s (%u)\n"
1690 " unit res = %d bytes\n"
1691 " current res = %d bytes\n"
1692 " total reg = %u bytes (o/flow = %u bytes)\n"
1693 " ophdrs = %u (ophdr space = %u bytes)\n"
1694 " ophdr + reg = %u bytes\n"
1695 " num regions = %u\n",
1696 ((ticket->t_trans_type <= 0 ||
1697 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1698 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1699 ticket->t_trans_type,
1700 ticket->t_unit_res,
1701 ticket->t_curr_res,
1702 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1703 ticket->t_res_num_ophdrs, ophdr_spc,
1704 ticket->t_res_arr_sum +
1705 ticket->t_res_o_flow + ophdr_spc,
1706 ticket->t_res_num);
1708 for (i = 0; i < ticket->t_res_num; i++) {
1709 uint r_type = ticket->t_res_arr[i].r_type;
1710 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1711 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1712 "bad-rtype" : res_type_str[r_type-1]),
1713 ticket->t_res_arr[i].r_len);
1716 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1717 "xfs_log_write: reservation ran out. Need to up reservation");
1718 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1722 * Calculate the potential space needed by the log vector. Each region gets
1723 * its own xlog_op_header_t and may need to be double word aligned.
1725 static int
1726 xlog_write_calc_vec_length(
1727 struct xlog_ticket *ticket,
1728 struct xfs_log_vec *log_vector)
1730 struct xfs_log_vec *lv;
1731 int headers = 0;
1732 int len = 0;
1733 int i;
1735 /* acct for start rec of xact */
1736 if (ticket->t_flags & XLOG_TIC_INITED)
1737 headers++;
1739 for (lv = log_vector; lv; lv = lv->lv_next) {
1740 headers += lv->lv_niovecs;
1742 for (i = 0; i < lv->lv_niovecs; i++) {
1743 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1745 len += vecp->i_len;
1746 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1750 ticket->t_res_num_ophdrs += headers;
1751 len += headers * sizeof(struct xlog_op_header);
1753 return len;
1757 * If first write for transaction, insert start record We can't be trying to
1758 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1760 static int
1761 xlog_write_start_rec(
1762 struct xlog_op_header *ophdr,
1763 struct xlog_ticket *ticket)
1765 if (!(ticket->t_flags & XLOG_TIC_INITED))
1766 return 0;
1768 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1769 ophdr->oh_clientid = ticket->t_clientid;
1770 ophdr->oh_len = 0;
1771 ophdr->oh_flags = XLOG_START_TRANS;
1772 ophdr->oh_res2 = 0;
1774 ticket->t_flags &= ~XLOG_TIC_INITED;
1776 return sizeof(struct xlog_op_header);
1779 static xlog_op_header_t *
1780 xlog_write_setup_ophdr(
1781 struct log *log,
1782 struct xlog_op_header *ophdr,
1783 struct xlog_ticket *ticket,
1784 uint flags)
1786 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1787 ophdr->oh_clientid = ticket->t_clientid;
1788 ophdr->oh_res2 = 0;
1790 /* are we copying a commit or unmount record? */
1791 ophdr->oh_flags = flags;
1794 * We've seen logs corrupted with bad transaction client ids. This
1795 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1796 * and shut down the filesystem.
1798 switch (ophdr->oh_clientid) {
1799 case XFS_TRANSACTION:
1800 case XFS_VOLUME:
1801 case XFS_LOG:
1802 break;
1803 default:
1804 xfs_warn(log->l_mp,
1805 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1806 ophdr->oh_clientid, ticket);
1807 return NULL;
1810 return ophdr;
1814 * Set up the parameters of the region copy into the log. This has
1815 * to handle region write split across multiple log buffers - this
1816 * state is kept external to this function so that this code can
1817 * can be written in an obvious, self documenting manner.
1819 static int
1820 xlog_write_setup_copy(
1821 struct xlog_ticket *ticket,
1822 struct xlog_op_header *ophdr,
1823 int space_available,
1824 int space_required,
1825 int *copy_off,
1826 int *copy_len,
1827 int *last_was_partial_copy,
1828 int *bytes_consumed)
1830 int still_to_copy;
1832 still_to_copy = space_required - *bytes_consumed;
1833 *copy_off = *bytes_consumed;
1835 if (still_to_copy <= space_available) {
1836 /* write of region completes here */
1837 *copy_len = still_to_copy;
1838 ophdr->oh_len = cpu_to_be32(*copy_len);
1839 if (*last_was_partial_copy)
1840 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1841 *last_was_partial_copy = 0;
1842 *bytes_consumed = 0;
1843 return 0;
1846 /* partial write of region, needs extra log op header reservation */
1847 *copy_len = space_available;
1848 ophdr->oh_len = cpu_to_be32(*copy_len);
1849 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1850 if (*last_was_partial_copy)
1851 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1852 *bytes_consumed += *copy_len;
1853 (*last_was_partial_copy)++;
1855 /* account for new log op header */
1856 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1857 ticket->t_res_num_ophdrs++;
1859 return sizeof(struct xlog_op_header);
1862 static int
1863 xlog_write_copy_finish(
1864 struct log *log,
1865 struct xlog_in_core *iclog,
1866 uint flags,
1867 int *record_cnt,
1868 int *data_cnt,
1869 int *partial_copy,
1870 int *partial_copy_len,
1871 int log_offset,
1872 struct xlog_in_core **commit_iclog)
1874 if (*partial_copy) {
1876 * This iclog has already been marked WANT_SYNC by
1877 * xlog_state_get_iclog_space.
1879 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1880 *record_cnt = 0;
1881 *data_cnt = 0;
1882 return xlog_state_release_iclog(log, iclog);
1885 *partial_copy = 0;
1886 *partial_copy_len = 0;
1888 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1889 /* no more space in this iclog - push it. */
1890 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1891 *record_cnt = 0;
1892 *data_cnt = 0;
1894 spin_lock(&log->l_icloglock);
1895 xlog_state_want_sync(log, iclog);
1896 spin_unlock(&log->l_icloglock);
1898 if (!commit_iclog)
1899 return xlog_state_release_iclog(log, iclog);
1900 ASSERT(flags & XLOG_COMMIT_TRANS);
1901 *commit_iclog = iclog;
1904 return 0;
1908 * Write some region out to in-core log
1910 * This will be called when writing externally provided regions or when
1911 * writing out a commit record for a given transaction.
1913 * General algorithm:
1914 * 1. Find total length of this write. This may include adding to the
1915 * lengths passed in.
1916 * 2. Check whether we violate the tickets reservation.
1917 * 3. While writing to this iclog
1918 * A. Reserve as much space in this iclog as can get
1919 * B. If this is first write, save away start lsn
1920 * C. While writing this region:
1921 * 1. If first write of transaction, write start record
1922 * 2. Write log operation header (header per region)
1923 * 3. Find out if we can fit entire region into this iclog
1924 * 4. Potentially, verify destination memcpy ptr
1925 * 5. Memcpy (partial) region
1926 * 6. If partial copy, release iclog; otherwise, continue
1927 * copying more regions into current iclog
1928 * 4. Mark want sync bit (in simulation mode)
1929 * 5. Release iclog for potential flush to on-disk log.
1931 * ERRORS:
1932 * 1. Panic if reservation is overrun. This should never happen since
1933 * reservation amounts are generated internal to the filesystem.
1934 * NOTES:
1935 * 1. Tickets are single threaded data structures.
1936 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1937 * syncing routine. When a single log_write region needs to span
1938 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1939 * on all log operation writes which don't contain the end of the
1940 * region. The XLOG_END_TRANS bit is used for the in-core log
1941 * operation which contains the end of the continued log_write region.
1942 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1943 * we don't really know exactly how much space will be used. As a result,
1944 * we don't update ic_offset until the end when we know exactly how many
1945 * bytes have been written out.
1948 xlog_write(
1949 struct log *log,
1950 struct xfs_log_vec *log_vector,
1951 struct xlog_ticket *ticket,
1952 xfs_lsn_t *start_lsn,
1953 struct xlog_in_core **commit_iclog,
1954 uint flags)
1956 struct xlog_in_core *iclog = NULL;
1957 struct xfs_log_iovec *vecp;
1958 struct xfs_log_vec *lv;
1959 int len;
1960 int index;
1961 int partial_copy = 0;
1962 int partial_copy_len = 0;
1963 int contwr = 0;
1964 int record_cnt = 0;
1965 int data_cnt = 0;
1966 int error;
1968 *start_lsn = 0;
1970 len = xlog_write_calc_vec_length(ticket, log_vector);
1971 if (log->l_cilp) {
1973 * Region headers and bytes are already accounted for.
1974 * We only need to take into account start records and
1975 * split regions in this function.
1977 if (ticket->t_flags & XLOG_TIC_INITED)
1978 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1981 * Commit record headers need to be accounted for. These
1982 * come in as separate writes so are easy to detect.
1984 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1985 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1986 } else
1987 ticket->t_curr_res -= len;
1989 if (ticket->t_curr_res < 0)
1990 xlog_print_tic_res(log->l_mp, ticket);
1992 index = 0;
1993 lv = log_vector;
1994 vecp = lv->lv_iovecp;
1995 while (lv && index < lv->lv_niovecs) {
1996 void *ptr;
1997 int log_offset;
1999 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2000 &contwr, &log_offset);
2001 if (error)
2002 return error;
2004 ASSERT(log_offset <= iclog->ic_size - 1);
2005 ptr = iclog->ic_datap + log_offset;
2007 /* start_lsn is the first lsn written to. That's all we need. */
2008 if (!*start_lsn)
2009 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2012 * This loop writes out as many regions as can fit in the amount
2013 * of space which was allocated by xlog_state_get_iclog_space().
2015 while (lv && index < lv->lv_niovecs) {
2016 struct xfs_log_iovec *reg = &vecp[index];
2017 struct xlog_op_header *ophdr;
2018 int start_rec_copy;
2019 int copy_len;
2020 int copy_off;
2022 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2023 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2025 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2026 if (start_rec_copy) {
2027 record_cnt++;
2028 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2029 start_rec_copy);
2032 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2033 if (!ophdr)
2034 return XFS_ERROR(EIO);
2036 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2037 sizeof(struct xlog_op_header));
2039 len += xlog_write_setup_copy(ticket, ophdr,
2040 iclog->ic_size-log_offset,
2041 reg->i_len,
2042 &copy_off, &copy_len,
2043 &partial_copy,
2044 &partial_copy_len);
2045 xlog_verify_dest_ptr(log, ptr);
2047 /* copy region */
2048 ASSERT(copy_len >= 0);
2049 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2050 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2052 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2053 record_cnt++;
2054 data_cnt += contwr ? copy_len : 0;
2056 error = xlog_write_copy_finish(log, iclog, flags,
2057 &record_cnt, &data_cnt,
2058 &partial_copy,
2059 &partial_copy_len,
2060 log_offset,
2061 commit_iclog);
2062 if (error)
2063 return error;
2066 * if we had a partial copy, we need to get more iclog
2067 * space but we don't want to increment the region
2068 * index because there is still more is this region to
2069 * write.
2071 * If we completed writing this region, and we flushed
2072 * the iclog (indicated by resetting of the record
2073 * count), then we also need to get more log space. If
2074 * this was the last record, though, we are done and
2075 * can just return.
2077 if (partial_copy)
2078 break;
2080 if (++index == lv->lv_niovecs) {
2081 lv = lv->lv_next;
2082 index = 0;
2083 if (lv)
2084 vecp = lv->lv_iovecp;
2086 if (record_cnt == 0) {
2087 if (!lv)
2088 return 0;
2089 break;
2094 ASSERT(len == 0);
2096 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2097 if (!commit_iclog)
2098 return xlog_state_release_iclog(log, iclog);
2100 ASSERT(flags & XLOG_COMMIT_TRANS);
2101 *commit_iclog = iclog;
2102 return 0;
2106 /*****************************************************************************
2108 * State Machine functions
2110 *****************************************************************************
2113 /* Clean iclogs starting from the head. This ordering must be
2114 * maintained, so an iclog doesn't become ACTIVE beyond one that
2115 * is SYNCING. This is also required to maintain the notion that we use
2116 * a ordered wait queue to hold off would be writers to the log when every
2117 * iclog is trying to sync to disk.
2119 * State Change: DIRTY -> ACTIVE
2121 STATIC void
2122 xlog_state_clean_log(xlog_t *log)
2124 xlog_in_core_t *iclog;
2125 int changed = 0;
2127 iclog = log->l_iclog;
2128 do {
2129 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2130 iclog->ic_state = XLOG_STATE_ACTIVE;
2131 iclog->ic_offset = 0;
2132 ASSERT(iclog->ic_callback == NULL);
2134 * If the number of ops in this iclog indicate it just
2135 * contains the dummy transaction, we can
2136 * change state into IDLE (the second time around).
2137 * Otherwise we should change the state into
2138 * NEED a dummy.
2139 * We don't need to cover the dummy.
2141 if (!changed &&
2142 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2143 XLOG_COVER_OPS)) {
2144 changed = 1;
2145 } else {
2147 * We have two dirty iclogs so start over
2148 * This could also be num of ops indicates
2149 * this is not the dummy going out.
2151 changed = 2;
2153 iclog->ic_header.h_num_logops = 0;
2154 memset(iclog->ic_header.h_cycle_data, 0,
2155 sizeof(iclog->ic_header.h_cycle_data));
2156 iclog->ic_header.h_lsn = 0;
2157 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2158 /* do nothing */;
2159 else
2160 break; /* stop cleaning */
2161 iclog = iclog->ic_next;
2162 } while (iclog != log->l_iclog);
2164 /* log is locked when we are called */
2166 * Change state for the dummy log recording.
2167 * We usually go to NEED. But we go to NEED2 if the changed indicates
2168 * we are done writing the dummy record.
2169 * If we are done with the second dummy recored (DONE2), then
2170 * we go to IDLE.
2172 if (changed) {
2173 switch (log->l_covered_state) {
2174 case XLOG_STATE_COVER_IDLE:
2175 case XLOG_STATE_COVER_NEED:
2176 case XLOG_STATE_COVER_NEED2:
2177 log->l_covered_state = XLOG_STATE_COVER_NEED;
2178 break;
2180 case XLOG_STATE_COVER_DONE:
2181 if (changed == 1)
2182 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2183 else
2184 log->l_covered_state = XLOG_STATE_COVER_NEED;
2185 break;
2187 case XLOG_STATE_COVER_DONE2:
2188 if (changed == 1)
2189 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2190 else
2191 log->l_covered_state = XLOG_STATE_COVER_NEED;
2192 break;
2194 default:
2195 ASSERT(0);
2198 } /* xlog_state_clean_log */
2200 STATIC xfs_lsn_t
2201 xlog_get_lowest_lsn(
2202 xlog_t *log)
2204 xlog_in_core_t *lsn_log;
2205 xfs_lsn_t lowest_lsn, lsn;
2207 lsn_log = log->l_iclog;
2208 lowest_lsn = 0;
2209 do {
2210 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2211 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2212 if ((lsn && !lowest_lsn) ||
2213 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2214 lowest_lsn = lsn;
2217 lsn_log = lsn_log->ic_next;
2218 } while (lsn_log != log->l_iclog);
2219 return lowest_lsn;
2223 STATIC void
2224 xlog_state_do_callback(
2225 xlog_t *log,
2226 int aborted,
2227 xlog_in_core_t *ciclog)
2229 xlog_in_core_t *iclog;
2230 xlog_in_core_t *first_iclog; /* used to know when we've
2231 * processed all iclogs once */
2232 xfs_log_callback_t *cb, *cb_next;
2233 int flushcnt = 0;
2234 xfs_lsn_t lowest_lsn;
2235 int ioerrors; /* counter: iclogs with errors */
2236 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2237 int funcdidcallbacks; /* flag: function did callbacks */
2238 int repeats; /* for issuing console warnings if
2239 * looping too many times */
2240 int wake = 0;
2242 spin_lock(&log->l_icloglock);
2243 first_iclog = iclog = log->l_iclog;
2244 ioerrors = 0;
2245 funcdidcallbacks = 0;
2246 repeats = 0;
2248 do {
2250 * Scan all iclogs starting with the one pointed to by the
2251 * log. Reset this starting point each time the log is
2252 * unlocked (during callbacks).
2254 * Keep looping through iclogs until one full pass is made
2255 * without running any callbacks.
2257 first_iclog = log->l_iclog;
2258 iclog = log->l_iclog;
2259 loopdidcallbacks = 0;
2260 repeats++;
2262 do {
2264 /* skip all iclogs in the ACTIVE & DIRTY states */
2265 if (iclog->ic_state &
2266 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2267 iclog = iclog->ic_next;
2268 continue;
2272 * Between marking a filesystem SHUTDOWN and stopping
2273 * the log, we do flush all iclogs to disk (if there
2274 * wasn't a log I/O error). So, we do want things to
2275 * go smoothly in case of just a SHUTDOWN w/o a
2276 * LOG_IO_ERROR.
2278 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2280 * Can only perform callbacks in order. Since
2281 * this iclog is not in the DONE_SYNC/
2282 * DO_CALLBACK state, we skip the rest and
2283 * just try to clean up. If we set our iclog
2284 * to DO_CALLBACK, we will not process it when
2285 * we retry since a previous iclog is in the
2286 * CALLBACK and the state cannot change since
2287 * we are holding the l_icloglock.
2289 if (!(iclog->ic_state &
2290 (XLOG_STATE_DONE_SYNC |
2291 XLOG_STATE_DO_CALLBACK))) {
2292 if (ciclog && (ciclog->ic_state ==
2293 XLOG_STATE_DONE_SYNC)) {
2294 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2296 break;
2299 * We now have an iclog that is in either the
2300 * DO_CALLBACK or DONE_SYNC states. The other
2301 * states (WANT_SYNC, SYNCING, or CALLBACK were
2302 * caught by the above if and are going to
2303 * clean (i.e. we aren't doing their callbacks)
2304 * see the above if.
2308 * We will do one more check here to see if we
2309 * have chased our tail around.
2312 lowest_lsn = xlog_get_lowest_lsn(log);
2313 if (lowest_lsn &&
2314 XFS_LSN_CMP(lowest_lsn,
2315 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2316 iclog = iclog->ic_next;
2317 continue; /* Leave this iclog for
2318 * another thread */
2321 iclog->ic_state = XLOG_STATE_CALLBACK;
2325 * update the last_sync_lsn before we drop the
2326 * icloglock to ensure we are the only one that
2327 * can update it.
2329 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2330 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2331 atomic64_set(&log->l_last_sync_lsn,
2332 be64_to_cpu(iclog->ic_header.h_lsn));
2334 } else
2335 ioerrors++;
2337 spin_unlock(&log->l_icloglock);
2340 * Keep processing entries in the callback list until
2341 * we come around and it is empty. We need to
2342 * atomically see that the list is empty and change the
2343 * state to DIRTY so that we don't miss any more
2344 * callbacks being added.
2346 spin_lock(&iclog->ic_callback_lock);
2347 cb = iclog->ic_callback;
2348 while (cb) {
2349 iclog->ic_callback_tail = &(iclog->ic_callback);
2350 iclog->ic_callback = NULL;
2351 spin_unlock(&iclog->ic_callback_lock);
2353 /* perform callbacks in the order given */
2354 for (; cb; cb = cb_next) {
2355 cb_next = cb->cb_next;
2356 cb->cb_func(cb->cb_arg, aborted);
2358 spin_lock(&iclog->ic_callback_lock);
2359 cb = iclog->ic_callback;
2362 loopdidcallbacks++;
2363 funcdidcallbacks++;
2365 spin_lock(&log->l_icloglock);
2366 ASSERT(iclog->ic_callback == NULL);
2367 spin_unlock(&iclog->ic_callback_lock);
2368 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2369 iclog->ic_state = XLOG_STATE_DIRTY;
2372 * Transition from DIRTY to ACTIVE if applicable.
2373 * NOP if STATE_IOERROR.
2375 xlog_state_clean_log(log);
2377 /* wake up threads waiting in xfs_log_force() */
2378 wake_up_all(&iclog->ic_force_wait);
2380 iclog = iclog->ic_next;
2381 } while (first_iclog != iclog);
2383 if (repeats > 5000) {
2384 flushcnt += repeats;
2385 repeats = 0;
2386 xfs_warn(log->l_mp,
2387 "%s: possible infinite loop (%d iterations)",
2388 __func__, flushcnt);
2390 } while (!ioerrors && loopdidcallbacks);
2393 * make one last gasp attempt to see if iclogs are being left in
2394 * limbo..
2396 #ifdef DEBUG
2397 if (funcdidcallbacks) {
2398 first_iclog = iclog = log->l_iclog;
2399 do {
2400 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2402 * Terminate the loop if iclogs are found in states
2403 * which will cause other threads to clean up iclogs.
2405 * SYNCING - i/o completion will go through logs
2406 * DONE_SYNC - interrupt thread should be waiting for
2407 * l_icloglock
2408 * IOERROR - give up hope all ye who enter here
2410 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2411 iclog->ic_state == XLOG_STATE_SYNCING ||
2412 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2413 iclog->ic_state == XLOG_STATE_IOERROR )
2414 break;
2415 iclog = iclog->ic_next;
2416 } while (first_iclog != iclog);
2418 #endif
2420 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2421 wake = 1;
2422 spin_unlock(&log->l_icloglock);
2424 if (wake)
2425 wake_up_all(&log->l_flush_wait);
2430 * Finish transitioning this iclog to the dirty state.
2432 * Make sure that we completely execute this routine only when this is
2433 * the last call to the iclog. There is a good chance that iclog flushes,
2434 * when we reach the end of the physical log, get turned into 2 separate
2435 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2436 * routine. By using the reference count bwritecnt, we guarantee that only
2437 * the second completion goes through.
2439 * Callbacks could take time, so they are done outside the scope of the
2440 * global state machine log lock.
2442 STATIC void
2443 xlog_state_done_syncing(
2444 xlog_in_core_t *iclog,
2445 int aborted)
2447 xlog_t *log = iclog->ic_log;
2449 spin_lock(&log->l_icloglock);
2451 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2452 iclog->ic_state == XLOG_STATE_IOERROR);
2453 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2454 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2458 * If we got an error, either on the first buffer, or in the case of
2459 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2460 * and none should ever be attempted to be written to disk
2461 * again.
2463 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2464 if (--iclog->ic_bwritecnt == 1) {
2465 spin_unlock(&log->l_icloglock);
2466 return;
2468 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2472 * Someone could be sleeping prior to writing out the next
2473 * iclog buffer, we wake them all, one will get to do the
2474 * I/O, the others get to wait for the result.
2476 wake_up_all(&iclog->ic_write_wait);
2477 spin_unlock(&log->l_icloglock);
2478 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2479 } /* xlog_state_done_syncing */
2483 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2484 * sleep. We wait on the flush queue on the head iclog as that should be
2485 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2486 * we will wait here and all new writes will sleep until a sync completes.
2488 * The in-core logs are used in a circular fashion. They are not used
2489 * out-of-order even when an iclog past the head is free.
2491 * return:
2492 * * log_offset where xlog_write() can start writing into the in-core
2493 * log's data space.
2494 * * in-core log pointer to which xlog_write() should write.
2495 * * boolean indicating this is a continued write to an in-core log.
2496 * If this is the last write, then the in-core log's offset field
2497 * needs to be incremented, depending on the amount of data which
2498 * is copied.
2500 STATIC int
2501 xlog_state_get_iclog_space(xlog_t *log,
2502 int len,
2503 xlog_in_core_t **iclogp,
2504 xlog_ticket_t *ticket,
2505 int *continued_write,
2506 int *logoffsetp)
2508 int log_offset;
2509 xlog_rec_header_t *head;
2510 xlog_in_core_t *iclog;
2511 int error;
2513 restart:
2514 spin_lock(&log->l_icloglock);
2515 if (XLOG_FORCED_SHUTDOWN(log)) {
2516 spin_unlock(&log->l_icloglock);
2517 return XFS_ERROR(EIO);
2520 iclog = log->l_iclog;
2521 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2522 XFS_STATS_INC(xs_log_noiclogs);
2524 /* Wait for log writes to have flushed */
2525 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2526 goto restart;
2529 head = &iclog->ic_header;
2531 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2532 log_offset = iclog->ic_offset;
2534 /* On the 1st write to an iclog, figure out lsn. This works
2535 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2536 * committing to. If the offset is set, that's how many blocks
2537 * must be written.
2539 if (log_offset == 0) {
2540 ticket->t_curr_res -= log->l_iclog_hsize;
2541 xlog_tic_add_region(ticket,
2542 log->l_iclog_hsize,
2543 XLOG_REG_TYPE_LRHEADER);
2544 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2545 head->h_lsn = cpu_to_be64(
2546 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2547 ASSERT(log->l_curr_block >= 0);
2550 /* If there is enough room to write everything, then do it. Otherwise,
2551 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2552 * bit is on, so this will get flushed out. Don't update ic_offset
2553 * until you know exactly how many bytes get copied. Therefore, wait
2554 * until later to update ic_offset.
2556 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2557 * can fit into remaining data section.
2559 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2560 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2563 * If I'm the only one writing to this iclog, sync it to disk.
2564 * We need to do an atomic compare and decrement here to avoid
2565 * racing with concurrent atomic_dec_and_lock() calls in
2566 * xlog_state_release_iclog() when there is more than one
2567 * reference to the iclog.
2569 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2570 /* we are the only one */
2571 spin_unlock(&log->l_icloglock);
2572 error = xlog_state_release_iclog(log, iclog);
2573 if (error)
2574 return error;
2575 } else {
2576 spin_unlock(&log->l_icloglock);
2578 goto restart;
2581 /* Do we have enough room to write the full amount in the remainder
2582 * of this iclog? Or must we continue a write on the next iclog and
2583 * mark this iclog as completely taken? In the case where we switch
2584 * iclogs (to mark it taken), this particular iclog will release/sync
2585 * to disk in xlog_write().
2587 if (len <= iclog->ic_size - iclog->ic_offset) {
2588 *continued_write = 0;
2589 iclog->ic_offset += len;
2590 } else {
2591 *continued_write = 1;
2592 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2594 *iclogp = iclog;
2596 ASSERT(iclog->ic_offset <= iclog->ic_size);
2597 spin_unlock(&log->l_icloglock);
2599 *logoffsetp = log_offset;
2600 return 0;
2601 } /* xlog_state_get_iclog_space */
2604 * Atomically get the log space required for a log ticket.
2606 * Once a ticket gets put onto the reserveq, it will only return after the
2607 * needed reservation is satisfied.
2609 * This function is structured so that it has a lock free fast path. This is
2610 * necessary because every new transaction reservation will come through this
2611 * path. Hence any lock will be globally hot if we take it unconditionally on
2612 * every pass.
2614 * As tickets are only ever moved on and off the reserveq under the
2615 * l_grant_reserve_lock, we only need to take that lock if we are going to add
2616 * the ticket to the queue and sleep. We can avoid taking the lock if the ticket
2617 * was never added to the reserveq because the t_queue list head will be empty
2618 * and we hold the only reference to it so it can safely be checked unlocked.
2620 STATIC int
2621 xlog_grant_log_space(
2622 struct log *log,
2623 struct xlog_ticket *tic)
2625 int free_bytes, need_bytes;
2626 int error = 0;
2628 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
2630 trace_xfs_log_grant_enter(log, tic);
2633 * If there are other waiters on the queue then give them a chance at
2634 * logspace before us. Wake up the first waiters, if we do not wake
2635 * up all the waiters then go to sleep waiting for more free space,
2636 * otherwise try to get some space for this transaction.
2638 need_bytes = tic->t_unit_res;
2639 if (tic->t_flags & XFS_LOG_PERM_RESERV)
2640 need_bytes *= tic->t_ocnt;
2641 free_bytes = xlog_space_left(log, &log->l_grant_reserve_head);
2642 if (!list_empty_careful(&log->l_reserveq)) {
2643 spin_lock(&log->l_grant_reserve_lock);
2644 if (!xlog_reserveq_wake(log, &free_bytes) ||
2645 free_bytes < need_bytes)
2646 error = xlog_reserveq_wait(log, tic, need_bytes);
2647 spin_unlock(&log->l_grant_reserve_lock);
2648 } else if (free_bytes < need_bytes) {
2649 spin_lock(&log->l_grant_reserve_lock);
2650 error = xlog_reserveq_wait(log, tic, need_bytes);
2651 spin_unlock(&log->l_grant_reserve_lock);
2653 if (error)
2654 return error;
2656 xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes);
2657 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2658 trace_xfs_log_grant_exit(log, tic);
2659 xlog_verify_grant_tail(log);
2660 return 0;
2664 * Replenish the byte reservation required by moving the grant write head.
2666 * Similar to xlog_grant_log_space, the function is structured to have a lock
2667 * free fast path.
2669 STATIC int
2670 xlog_regrant_write_log_space(
2671 struct log *log,
2672 struct xlog_ticket *tic)
2674 int free_bytes, need_bytes;
2675 int error = 0;
2677 tic->t_curr_res = tic->t_unit_res;
2678 xlog_tic_reset_res(tic);
2680 if (tic->t_cnt > 0)
2681 return 0;
2683 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
2685 trace_xfs_log_regrant_write_enter(log, tic);
2688 * If there are other waiters on the queue then give them a chance at
2689 * logspace before us. Wake up the first waiters, if we do not wake
2690 * up all the waiters then go to sleep waiting for more free space,
2691 * otherwise try to get some space for this transaction.
2693 need_bytes = tic->t_unit_res;
2694 free_bytes = xlog_space_left(log, &log->l_grant_write_head);
2695 if (!list_empty_careful(&log->l_writeq)) {
2696 spin_lock(&log->l_grant_write_lock);
2697 if (!xlog_writeq_wake(log, &free_bytes) ||
2698 free_bytes < need_bytes)
2699 error = xlog_writeq_wait(log, tic, need_bytes);
2700 spin_unlock(&log->l_grant_write_lock);
2701 } else if (free_bytes < need_bytes) {
2702 spin_lock(&log->l_grant_write_lock);
2703 error = xlog_writeq_wait(log, tic, need_bytes);
2704 spin_unlock(&log->l_grant_write_lock);
2707 if (error)
2708 return error;
2710 xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes);
2711 trace_xfs_log_regrant_write_exit(log, tic);
2712 xlog_verify_grant_tail(log);
2713 return 0;
2716 /* The first cnt-1 times through here we don't need to
2717 * move the grant write head because the permanent
2718 * reservation has reserved cnt times the unit amount.
2719 * Release part of current permanent unit reservation and
2720 * reset current reservation to be one units worth. Also
2721 * move grant reservation head forward.
2723 STATIC void
2724 xlog_regrant_reserve_log_space(xlog_t *log,
2725 xlog_ticket_t *ticket)
2727 trace_xfs_log_regrant_reserve_enter(log, ticket);
2729 if (ticket->t_cnt > 0)
2730 ticket->t_cnt--;
2732 xlog_grant_sub_space(log, &log->l_grant_reserve_head,
2733 ticket->t_curr_res);
2734 xlog_grant_sub_space(log, &log->l_grant_write_head,
2735 ticket->t_curr_res);
2736 ticket->t_curr_res = ticket->t_unit_res;
2737 xlog_tic_reset_res(ticket);
2739 trace_xfs_log_regrant_reserve_sub(log, ticket);
2741 /* just return if we still have some of the pre-reserved space */
2742 if (ticket->t_cnt > 0)
2743 return;
2745 xlog_grant_add_space(log, &log->l_grant_reserve_head,
2746 ticket->t_unit_res);
2748 trace_xfs_log_regrant_reserve_exit(log, ticket);
2750 ticket->t_curr_res = ticket->t_unit_res;
2751 xlog_tic_reset_res(ticket);
2752 } /* xlog_regrant_reserve_log_space */
2756 * Give back the space left from a reservation.
2758 * All the information we need to make a correct determination of space left
2759 * is present. For non-permanent reservations, things are quite easy. The
2760 * count should have been decremented to zero. We only need to deal with the
2761 * space remaining in the current reservation part of the ticket. If the
2762 * ticket contains a permanent reservation, there may be left over space which
2763 * needs to be released. A count of N means that N-1 refills of the current
2764 * reservation can be done before we need to ask for more space. The first
2765 * one goes to fill up the first current reservation. Once we run out of
2766 * space, the count will stay at zero and the only space remaining will be
2767 * in the current reservation field.
2769 STATIC void
2770 xlog_ungrant_log_space(xlog_t *log,
2771 xlog_ticket_t *ticket)
2773 int bytes;
2775 if (ticket->t_cnt > 0)
2776 ticket->t_cnt--;
2778 trace_xfs_log_ungrant_enter(log, ticket);
2779 trace_xfs_log_ungrant_sub(log, ticket);
2782 * If this is a permanent reservation ticket, we may be able to free
2783 * up more space based on the remaining count.
2785 bytes = ticket->t_curr_res;
2786 if (ticket->t_cnt > 0) {
2787 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2788 bytes += ticket->t_unit_res*ticket->t_cnt;
2791 xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes);
2792 xlog_grant_sub_space(log, &log->l_grant_write_head, bytes);
2794 trace_xfs_log_ungrant_exit(log, ticket);
2796 xfs_log_move_tail(log->l_mp, 1);
2797 } /* xlog_ungrant_log_space */
2801 * Flush iclog to disk if this is the last reference to the given iclog and
2802 * the WANT_SYNC bit is set.
2804 * When this function is entered, the iclog is not necessarily in the
2805 * WANT_SYNC state. It may be sitting around waiting to get filled.
2809 STATIC int
2810 xlog_state_release_iclog(
2811 xlog_t *log,
2812 xlog_in_core_t *iclog)
2814 int sync = 0; /* do we sync? */
2816 if (iclog->ic_state & XLOG_STATE_IOERROR)
2817 return XFS_ERROR(EIO);
2819 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2820 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2821 return 0;
2823 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2824 spin_unlock(&log->l_icloglock);
2825 return XFS_ERROR(EIO);
2827 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2828 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2830 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2831 /* update tail before writing to iclog */
2832 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2833 sync++;
2834 iclog->ic_state = XLOG_STATE_SYNCING;
2835 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2836 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2837 /* cycle incremented when incrementing curr_block */
2839 spin_unlock(&log->l_icloglock);
2842 * We let the log lock go, so it's possible that we hit a log I/O
2843 * error or some other SHUTDOWN condition that marks the iclog
2844 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2845 * this iclog has consistent data, so we ignore IOERROR
2846 * flags after this point.
2848 if (sync)
2849 return xlog_sync(log, iclog);
2850 return 0;
2851 } /* xlog_state_release_iclog */
2855 * This routine will mark the current iclog in the ring as WANT_SYNC
2856 * and move the current iclog pointer to the next iclog in the ring.
2857 * When this routine is called from xlog_state_get_iclog_space(), the
2858 * exact size of the iclog has not yet been determined. All we know is
2859 * that every data block. We have run out of space in this log record.
2861 STATIC void
2862 xlog_state_switch_iclogs(xlog_t *log,
2863 xlog_in_core_t *iclog,
2864 int eventual_size)
2866 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2867 if (!eventual_size)
2868 eventual_size = iclog->ic_offset;
2869 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2870 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2871 log->l_prev_block = log->l_curr_block;
2872 log->l_prev_cycle = log->l_curr_cycle;
2874 /* roll log?: ic_offset changed later */
2875 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2877 /* Round up to next log-sunit */
2878 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2879 log->l_mp->m_sb.sb_logsunit > 1) {
2880 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2881 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2884 if (log->l_curr_block >= log->l_logBBsize) {
2885 log->l_curr_cycle++;
2886 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2887 log->l_curr_cycle++;
2888 log->l_curr_block -= log->l_logBBsize;
2889 ASSERT(log->l_curr_block >= 0);
2891 ASSERT(iclog == log->l_iclog);
2892 log->l_iclog = iclog->ic_next;
2893 } /* xlog_state_switch_iclogs */
2896 * Write out all data in the in-core log as of this exact moment in time.
2898 * Data may be written to the in-core log during this call. However,
2899 * we don't guarantee this data will be written out. A change from past
2900 * implementation means this routine will *not* write out zero length LRs.
2902 * Basically, we try and perform an intelligent scan of the in-core logs.
2903 * If we determine there is no flushable data, we just return. There is no
2904 * flushable data if:
2906 * 1. the current iclog is active and has no data; the previous iclog
2907 * is in the active or dirty state.
2908 * 2. the current iclog is drity, and the previous iclog is in the
2909 * active or dirty state.
2911 * We may sleep if:
2913 * 1. the current iclog is not in the active nor dirty state.
2914 * 2. the current iclog dirty, and the previous iclog is not in the
2915 * active nor dirty state.
2916 * 3. the current iclog is active, and there is another thread writing
2917 * to this particular iclog.
2918 * 4. a) the current iclog is active and has no other writers
2919 * b) when we return from flushing out this iclog, it is still
2920 * not in the active nor dirty state.
2923 _xfs_log_force(
2924 struct xfs_mount *mp,
2925 uint flags,
2926 int *log_flushed)
2928 struct log *log = mp->m_log;
2929 struct xlog_in_core *iclog;
2930 xfs_lsn_t lsn;
2932 XFS_STATS_INC(xs_log_force);
2934 if (log->l_cilp)
2935 xlog_cil_force(log);
2937 spin_lock(&log->l_icloglock);
2939 iclog = log->l_iclog;
2940 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2941 spin_unlock(&log->l_icloglock);
2942 return XFS_ERROR(EIO);
2945 /* If the head iclog is not active nor dirty, we just attach
2946 * ourselves to the head and go to sleep.
2948 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2949 iclog->ic_state == XLOG_STATE_DIRTY) {
2951 * If the head is dirty or (active and empty), then
2952 * we need to look at the previous iclog. If the previous
2953 * iclog is active or dirty we are done. There is nothing
2954 * to sync out. Otherwise, we attach ourselves to the
2955 * previous iclog and go to sleep.
2957 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2958 (atomic_read(&iclog->ic_refcnt) == 0
2959 && iclog->ic_offset == 0)) {
2960 iclog = iclog->ic_prev;
2961 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2962 iclog->ic_state == XLOG_STATE_DIRTY)
2963 goto no_sleep;
2964 else
2965 goto maybe_sleep;
2966 } else {
2967 if (atomic_read(&iclog->ic_refcnt) == 0) {
2968 /* We are the only one with access to this
2969 * iclog. Flush it out now. There should
2970 * be a roundoff of zero to show that someone
2971 * has already taken care of the roundoff from
2972 * the previous sync.
2974 atomic_inc(&iclog->ic_refcnt);
2975 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2976 xlog_state_switch_iclogs(log, iclog, 0);
2977 spin_unlock(&log->l_icloglock);
2979 if (xlog_state_release_iclog(log, iclog))
2980 return XFS_ERROR(EIO);
2982 if (log_flushed)
2983 *log_flushed = 1;
2984 spin_lock(&log->l_icloglock);
2985 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2986 iclog->ic_state != XLOG_STATE_DIRTY)
2987 goto maybe_sleep;
2988 else
2989 goto no_sleep;
2990 } else {
2991 /* Someone else is writing to this iclog.
2992 * Use its call to flush out the data. However,
2993 * the other thread may not force out this LR,
2994 * so we mark it WANT_SYNC.
2996 xlog_state_switch_iclogs(log, iclog, 0);
2997 goto maybe_sleep;
3002 /* By the time we come around again, the iclog could've been filled
3003 * which would give it another lsn. If we have a new lsn, just
3004 * return because the relevant data has been flushed.
3006 maybe_sleep:
3007 if (flags & XFS_LOG_SYNC) {
3009 * We must check if we're shutting down here, before
3010 * we wait, while we're holding the l_icloglock.
3011 * Then we check again after waking up, in case our
3012 * sleep was disturbed by a bad news.
3014 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3015 spin_unlock(&log->l_icloglock);
3016 return XFS_ERROR(EIO);
3018 XFS_STATS_INC(xs_log_force_sleep);
3019 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3021 * No need to grab the log lock here since we're
3022 * only deciding whether or not to return EIO
3023 * and the memory read should be atomic.
3025 if (iclog->ic_state & XLOG_STATE_IOERROR)
3026 return XFS_ERROR(EIO);
3027 if (log_flushed)
3028 *log_flushed = 1;
3029 } else {
3031 no_sleep:
3032 spin_unlock(&log->l_icloglock);
3034 return 0;
3038 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3039 * about errors or whether the log was flushed or not. This is the normal
3040 * interface to use when trying to unpin items or move the log forward.
3042 void
3043 xfs_log_force(
3044 xfs_mount_t *mp,
3045 uint flags)
3047 int error;
3049 error = _xfs_log_force(mp, flags, NULL);
3050 if (error)
3051 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3055 * Force the in-core log to disk for a specific LSN.
3057 * Find in-core log with lsn.
3058 * If it is in the DIRTY state, just return.
3059 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3060 * state and go to sleep or return.
3061 * If it is in any other state, go to sleep or return.
3063 * Synchronous forces are implemented with a signal variable. All callers
3064 * to force a given lsn to disk will wait on a the sv attached to the
3065 * specific in-core log. When given in-core log finally completes its
3066 * write to disk, that thread will wake up all threads waiting on the
3067 * sv.
3070 _xfs_log_force_lsn(
3071 struct xfs_mount *mp,
3072 xfs_lsn_t lsn,
3073 uint flags,
3074 int *log_flushed)
3076 struct log *log = mp->m_log;
3077 struct xlog_in_core *iclog;
3078 int already_slept = 0;
3080 ASSERT(lsn != 0);
3082 XFS_STATS_INC(xs_log_force);
3084 if (log->l_cilp) {
3085 lsn = xlog_cil_force_lsn(log, lsn);
3086 if (lsn == NULLCOMMITLSN)
3087 return 0;
3090 try_again:
3091 spin_lock(&log->l_icloglock);
3092 iclog = log->l_iclog;
3093 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3094 spin_unlock(&log->l_icloglock);
3095 return XFS_ERROR(EIO);
3098 do {
3099 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3100 iclog = iclog->ic_next;
3101 continue;
3104 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3105 spin_unlock(&log->l_icloglock);
3106 return 0;
3109 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3111 * We sleep here if we haven't already slept (e.g.
3112 * this is the first time we've looked at the correct
3113 * iclog buf) and the buffer before us is going to
3114 * be sync'ed. The reason for this is that if we
3115 * are doing sync transactions here, by waiting for
3116 * the previous I/O to complete, we can allow a few
3117 * more transactions into this iclog before we close
3118 * it down.
3120 * Otherwise, we mark the buffer WANT_SYNC, and bump
3121 * up the refcnt so we can release the log (which
3122 * drops the ref count). The state switch keeps new
3123 * transaction commits from using this buffer. When
3124 * the current commits finish writing into the buffer,
3125 * the refcount will drop to zero and the buffer will
3126 * go out then.
3128 if (!already_slept &&
3129 (iclog->ic_prev->ic_state &
3130 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3131 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3133 XFS_STATS_INC(xs_log_force_sleep);
3135 xlog_wait(&iclog->ic_prev->ic_write_wait,
3136 &log->l_icloglock);
3137 if (log_flushed)
3138 *log_flushed = 1;
3139 already_slept = 1;
3140 goto try_again;
3142 atomic_inc(&iclog->ic_refcnt);
3143 xlog_state_switch_iclogs(log, iclog, 0);
3144 spin_unlock(&log->l_icloglock);
3145 if (xlog_state_release_iclog(log, iclog))
3146 return XFS_ERROR(EIO);
3147 if (log_flushed)
3148 *log_flushed = 1;
3149 spin_lock(&log->l_icloglock);
3152 if ((flags & XFS_LOG_SYNC) && /* sleep */
3153 !(iclog->ic_state &
3154 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3156 * Don't wait on completion if we know that we've
3157 * gotten a log write error.
3159 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3160 spin_unlock(&log->l_icloglock);
3161 return XFS_ERROR(EIO);
3163 XFS_STATS_INC(xs_log_force_sleep);
3164 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3166 * No need to grab the log lock here since we're
3167 * only deciding whether or not to return EIO
3168 * and the memory read should be atomic.
3170 if (iclog->ic_state & XLOG_STATE_IOERROR)
3171 return XFS_ERROR(EIO);
3173 if (log_flushed)
3174 *log_flushed = 1;
3175 } else { /* just return */
3176 spin_unlock(&log->l_icloglock);
3179 return 0;
3180 } while (iclog != log->l_iclog);
3182 spin_unlock(&log->l_icloglock);
3183 return 0;
3187 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3188 * about errors or whether the log was flushed or not. This is the normal
3189 * interface to use when trying to unpin items or move the log forward.
3191 void
3192 xfs_log_force_lsn(
3193 xfs_mount_t *mp,
3194 xfs_lsn_t lsn,
3195 uint flags)
3197 int error;
3199 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3200 if (error)
3201 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3205 * Called when we want to mark the current iclog as being ready to sync to
3206 * disk.
3208 STATIC void
3209 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3211 assert_spin_locked(&log->l_icloglock);
3213 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3214 xlog_state_switch_iclogs(log, iclog, 0);
3215 } else {
3216 ASSERT(iclog->ic_state &
3217 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3222 /*****************************************************************************
3224 * TICKET functions
3226 *****************************************************************************
3230 * Free a used ticket when its refcount falls to zero.
3232 void
3233 xfs_log_ticket_put(
3234 xlog_ticket_t *ticket)
3236 ASSERT(atomic_read(&ticket->t_ref) > 0);
3237 if (atomic_dec_and_test(&ticket->t_ref))
3238 kmem_zone_free(xfs_log_ticket_zone, ticket);
3241 xlog_ticket_t *
3242 xfs_log_ticket_get(
3243 xlog_ticket_t *ticket)
3245 ASSERT(atomic_read(&ticket->t_ref) > 0);
3246 atomic_inc(&ticket->t_ref);
3247 return ticket;
3251 * Allocate and initialise a new log ticket.
3253 xlog_ticket_t *
3254 xlog_ticket_alloc(
3255 struct log *log,
3256 int unit_bytes,
3257 int cnt,
3258 char client,
3259 uint xflags,
3260 int alloc_flags)
3262 struct xlog_ticket *tic;
3263 uint num_headers;
3264 int iclog_space;
3266 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3267 if (!tic)
3268 return NULL;
3271 * Permanent reservations have up to 'cnt'-1 active log operations
3272 * in the log. A unit in this case is the amount of space for one
3273 * of these log operations. Normal reservations have a cnt of 1
3274 * and their unit amount is the total amount of space required.
3276 * The following lines of code account for non-transaction data
3277 * which occupy space in the on-disk log.
3279 * Normal form of a transaction is:
3280 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3281 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3283 * We need to account for all the leadup data and trailer data
3284 * around the transaction data.
3285 * And then we need to account for the worst case in terms of using
3286 * more space.
3287 * The worst case will happen if:
3288 * - the placement of the transaction happens to be such that the
3289 * roundoff is at its maximum
3290 * - the transaction data is synced before the commit record is synced
3291 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3292 * Therefore the commit record is in its own Log Record.
3293 * This can happen as the commit record is called with its
3294 * own region to xlog_write().
3295 * This then means that in the worst case, roundoff can happen for
3296 * the commit-rec as well.
3297 * The commit-rec is smaller than padding in this scenario and so it is
3298 * not added separately.
3301 /* for trans header */
3302 unit_bytes += sizeof(xlog_op_header_t);
3303 unit_bytes += sizeof(xfs_trans_header_t);
3305 /* for start-rec */
3306 unit_bytes += sizeof(xlog_op_header_t);
3309 * for LR headers - the space for data in an iclog is the size minus
3310 * the space used for the headers. If we use the iclog size, then we
3311 * undercalculate the number of headers required.
3313 * Furthermore - the addition of op headers for split-recs might
3314 * increase the space required enough to require more log and op
3315 * headers, so take that into account too.
3317 * IMPORTANT: This reservation makes the assumption that if this
3318 * transaction is the first in an iclog and hence has the LR headers
3319 * accounted to it, then the remaining space in the iclog is
3320 * exclusively for this transaction. i.e. if the transaction is larger
3321 * than the iclog, it will be the only thing in that iclog.
3322 * Fundamentally, this means we must pass the entire log vector to
3323 * xlog_write to guarantee this.
3325 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3326 num_headers = howmany(unit_bytes, iclog_space);
3328 /* for split-recs - ophdrs added when data split over LRs */
3329 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3331 /* add extra header reservations if we overrun */
3332 while (!num_headers ||
3333 howmany(unit_bytes, iclog_space) > num_headers) {
3334 unit_bytes += sizeof(xlog_op_header_t);
3335 num_headers++;
3337 unit_bytes += log->l_iclog_hsize * num_headers;
3339 /* for commit-rec LR header - note: padding will subsume the ophdr */
3340 unit_bytes += log->l_iclog_hsize;
3342 /* for roundoff padding for transaction data and one for commit record */
3343 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3344 log->l_mp->m_sb.sb_logsunit > 1) {
3345 /* log su roundoff */
3346 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3347 } else {
3348 /* BB roundoff */
3349 unit_bytes += 2*BBSIZE;
3352 atomic_set(&tic->t_ref, 1);
3353 INIT_LIST_HEAD(&tic->t_queue);
3354 tic->t_unit_res = unit_bytes;
3355 tic->t_curr_res = unit_bytes;
3356 tic->t_cnt = cnt;
3357 tic->t_ocnt = cnt;
3358 tic->t_tid = random32();
3359 tic->t_clientid = client;
3360 tic->t_flags = XLOG_TIC_INITED;
3361 tic->t_trans_type = 0;
3362 if (xflags & XFS_LOG_PERM_RESERV)
3363 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3364 init_waitqueue_head(&tic->t_wait);
3366 xlog_tic_reset_res(tic);
3368 return tic;
3372 /******************************************************************************
3374 * Log debug routines
3376 ******************************************************************************
3378 #if defined(DEBUG)
3380 * Make sure that the destination ptr is within the valid data region of
3381 * one of the iclogs. This uses backup pointers stored in a different
3382 * part of the log in case we trash the log structure.
3384 void
3385 xlog_verify_dest_ptr(
3386 struct log *log,
3387 char *ptr)
3389 int i;
3390 int good_ptr = 0;
3392 for (i = 0; i < log->l_iclog_bufs; i++) {
3393 if (ptr >= log->l_iclog_bak[i] &&
3394 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3395 good_ptr++;
3398 if (!good_ptr)
3399 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3403 * Check to make sure the grant write head didn't just over lap the tail. If
3404 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3405 * the cycles differ by exactly one and check the byte count.
3407 * This check is run unlocked, so can give false positives. Rather than assert
3408 * on failures, use a warn-once flag and a panic tag to allow the admin to
3409 * determine if they want to panic the machine when such an error occurs. For
3410 * debug kernels this will have the same effect as using an assert but, unlinke
3411 * an assert, it can be turned off at runtime.
3413 STATIC void
3414 xlog_verify_grant_tail(
3415 struct log *log)
3417 int tail_cycle, tail_blocks;
3418 int cycle, space;
3420 xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space);
3421 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3422 if (tail_cycle != cycle) {
3423 if (cycle - 1 != tail_cycle &&
3424 !(log->l_flags & XLOG_TAIL_WARN)) {
3425 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3426 "%s: cycle - 1 != tail_cycle", __func__);
3427 log->l_flags |= XLOG_TAIL_WARN;
3430 if (space > BBTOB(tail_blocks) &&
3431 !(log->l_flags & XLOG_TAIL_WARN)) {
3432 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3433 "%s: space > BBTOB(tail_blocks)", __func__);
3434 log->l_flags |= XLOG_TAIL_WARN;
3439 /* check if it will fit */
3440 STATIC void
3441 xlog_verify_tail_lsn(xlog_t *log,
3442 xlog_in_core_t *iclog,
3443 xfs_lsn_t tail_lsn)
3445 int blocks;
3447 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3448 blocks =
3449 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3450 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3451 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3452 } else {
3453 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3455 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3456 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3458 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3459 if (blocks < BTOBB(iclog->ic_offset) + 1)
3460 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3462 } /* xlog_verify_tail_lsn */
3465 * Perform a number of checks on the iclog before writing to disk.
3467 * 1. Make sure the iclogs are still circular
3468 * 2. Make sure we have a good magic number
3469 * 3. Make sure we don't have magic numbers in the data
3470 * 4. Check fields of each log operation header for:
3471 * A. Valid client identifier
3472 * B. tid ptr value falls in valid ptr space (user space code)
3473 * C. Length in log record header is correct according to the
3474 * individual operation headers within record.
3475 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3476 * log, check the preceding blocks of the physical log to make sure all
3477 * the cycle numbers agree with the current cycle number.
3479 STATIC void
3480 xlog_verify_iclog(xlog_t *log,
3481 xlog_in_core_t *iclog,
3482 int count,
3483 boolean_t syncing)
3485 xlog_op_header_t *ophead;
3486 xlog_in_core_t *icptr;
3487 xlog_in_core_2_t *xhdr;
3488 xfs_caddr_t ptr;
3489 xfs_caddr_t base_ptr;
3490 __psint_t field_offset;
3491 __uint8_t clientid;
3492 int len, i, j, k, op_len;
3493 int idx;
3495 /* check validity of iclog pointers */
3496 spin_lock(&log->l_icloglock);
3497 icptr = log->l_iclog;
3498 for (i=0; i < log->l_iclog_bufs; i++) {
3499 if (icptr == NULL)
3500 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3501 icptr = icptr->ic_next;
3503 if (icptr != log->l_iclog)
3504 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3505 spin_unlock(&log->l_icloglock);
3507 /* check log magic numbers */
3508 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3509 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3511 ptr = (xfs_caddr_t) &iclog->ic_header;
3512 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3513 ptr += BBSIZE) {
3514 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3515 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3516 __func__);
3519 /* check fields */
3520 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3521 ptr = iclog->ic_datap;
3522 base_ptr = ptr;
3523 ophead = (xlog_op_header_t *)ptr;
3524 xhdr = iclog->ic_data;
3525 for (i = 0; i < len; i++) {
3526 ophead = (xlog_op_header_t *)ptr;
3528 /* clientid is only 1 byte */
3529 field_offset = (__psint_t)
3530 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3531 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3532 clientid = ophead->oh_clientid;
3533 } else {
3534 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3535 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3536 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3537 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3538 clientid = xlog_get_client_id(
3539 xhdr[j].hic_xheader.xh_cycle_data[k]);
3540 } else {
3541 clientid = xlog_get_client_id(
3542 iclog->ic_header.h_cycle_data[idx]);
3545 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3546 xfs_warn(log->l_mp,
3547 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3548 __func__, clientid, ophead,
3549 (unsigned long)field_offset);
3551 /* check length */
3552 field_offset = (__psint_t)
3553 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3554 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3555 op_len = be32_to_cpu(ophead->oh_len);
3556 } else {
3557 idx = BTOBBT((__psint_t)&ophead->oh_len -
3558 (__psint_t)iclog->ic_datap);
3559 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3560 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3561 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3562 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3563 } else {
3564 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3567 ptr += sizeof(xlog_op_header_t) + op_len;
3569 } /* xlog_verify_iclog */
3570 #endif
3573 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3575 STATIC int
3576 xlog_state_ioerror(
3577 xlog_t *log)
3579 xlog_in_core_t *iclog, *ic;
3581 iclog = log->l_iclog;
3582 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3584 * Mark all the incore logs IOERROR.
3585 * From now on, no log flushes will result.
3587 ic = iclog;
3588 do {
3589 ic->ic_state = XLOG_STATE_IOERROR;
3590 ic = ic->ic_next;
3591 } while (ic != iclog);
3592 return 0;
3595 * Return non-zero, if state transition has already happened.
3597 return 1;
3601 * This is called from xfs_force_shutdown, when we're forcibly
3602 * shutting down the filesystem, typically because of an IO error.
3603 * Our main objectives here are to make sure that:
3604 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3605 * parties to find out, 'atomically'.
3606 * b. those who're sleeping on log reservations, pinned objects and
3607 * other resources get woken up, and be told the bad news.
3608 * c. nothing new gets queued up after (a) and (b) are done.
3609 * d. if !logerror, flush the iclogs to disk, then seal them off
3610 * for business.
3612 * Note: for delayed logging the !logerror case needs to flush the regions
3613 * held in memory out to the iclogs before flushing them to disk. This needs
3614 * to be done before the log is marked as shutdown, otherwise the flush to the
3615 * iclogs will fail.
3618 xfs_log_force_umount(
3619 struct xfs_mount *mp,
3620 int logerror)
3622 xlog_ticket_t *tic;
3623 xlog_t *log;
3624 int retval;
3626 log = mp->m_log;
3629 * If this happens during log recovery, don't worry about
3630 * locking; the log isn't open for business yet.
3632 if (!log ||
3633 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3634 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3635 if (mp->m_sb_bp)
3636 XFS_BUF_DONE(mp->m_sb_bp);
3637 return 0;
3641 * Somebody could've already done the hard work for us.
3642 * No need to get locks for this.
3644 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3645 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3646 return 1;
3648 retval = 0;
3651 * Flush the in memory commit item list before marking the log as
3652 * being shut down. We need to do it in this order to ensure all the
3653 * completed transactions are flushed to disk with the xfs_log_force()
3654 * call below.
3656 if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG))
3657 xlog_cil_force(log);
3660 * mark the filesystem and the as in a shutdown state and wake
3661 * everybody up to tell them the bad news.
3663 spin_lock(&log->l_icloglock);
3664 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3665 if (mp->m_sb_bp)
3666 XFS_BUF_DONE(mp->m_sb_bp);
3669 * This flag is sort of redundant because of the mount flag, but
3670 * it's good to maintain the separation between the log and the rest
3671 * of XFS.
3673 log->l_flags |= XLOG_IO_ERROR;
3676 * If we hit a log error, we want to mark all the iclogs IOERROR
3677 * while we're still holding the loglock.
3679 if (logerror)
3680 retval = xlog_state_ioerror(log);
3681 spin_unlock(&log->l_icloglock);
3684 * We don't want anybody waiting for log reservations after this. That
3685 * means we have to wake up everybody queued up on reserveq as well as
3686 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3687 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3688 * action is protected by the grant locks.
3690 spin_lock(&log->l_grant_reserve_lock);
3691 list_for_each_entry(tic, &log->l_reserveq, t_queue)
3692 wake_up(&tic->t_wait);
3693 spin_unlock(&log->l_grant_reserve_lock);
3695 spin_lock(&log->l_grant_write_lock);
3696 list_for_each_entry(tic, &log->l_writeq, t_queue)
3697 wake_up(&tic->t_wait);
3698 spin_unlock(&log->l_grant_write_lock);
3700 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3701 ASSERT(!logerror);
3703 * Force the incore logs to disk before shutting the
3704 * log down completely.
3706 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3708 spin_lock(&log->l_icloglock);
3709 retval = xlog_state_ioerror(log);
3710 spin_unlock(&log->l_icloglock);
3713 * Wake up everybody waiting on xfs_log_force.
3714 * Callback all log item committed functions as if the
3715 * log writes were completed.
3717 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3719 #ifdef XFSERRORDEBUG
3721 xlog_in_core_t *iclog;
3723 spin_lock(&log->l_icloglock);
3724 iclog = log->l_iclog;
3725 do {
3726 ASSERT(iclog->ic_callback == 0);
3727 iclog = iclog->ic_next;
3728 } while (iclog != log->l_iclog);
3729 spin_unlock(&log->l_icloglock);
3731 #endif
3732 /* return non-zero if log IOERROR transition had already happened */
3733 return retval;
3736 STATIC int
3737 xlog_iclogs_empty(xlog_t *log)
3739 xlog_in_core_t *iclog;
3741 iclog = log->l_iclog;
3742 do {
3743 /* endianness does not matter here, zero is zero in
3744 * any language.
3746 if (iclog->ic_header.h_num_logops)
3747 return 0;
3748 iclog = iclog->ic_next;
3749 } while (iclog != log->l_iclog);
3750 return 1;