2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
39 #include "xfs_trace.h"
41 kmem_zone_t
*xfs_log_ticket_zone
;
43 /* Local miscellaneous function prototypes */
44 STATIC
int xlog_commit_record(struct log
*log
, struct xlog_ticket
*ticket
,
45 xlog_in_core_t
**, xfs_lsn_t
*);
46 STATIC xlog_t
* xlog_alloc_log(xfs_mount_t
*mp
,
47 xfs_buftarg_t
*log_target
,
48 xfs_daddr_t blk_offset
,
50 STATIC
int xlog_space_left(struct log
*log
, atomic64_t
*head
);
51 STATIC
int xlog_sync(xlog_t
*log
, xlog_in_core_t
*iclog
);
52 STATIC
void xlog_dealloc_log(xlog_t
*log
);
54 /* local state machine functions */
55 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
56 STATIC
void xlog_state_do_callback(xlog_t
*log
,int aborted
, xlog_in_core_t
*iclog
);
57 STATIC
int xlog_state_get_iclog_space(xlog_t
*log
,
59 xlog_in_core_t
**iclog
,
60 xlog_ticket_t
*ticket
,
63 STATIC
int xlog_state_release_iclog(xlog_t
*log
,
64 xlog_in_core_t
*iclog
);
65 STATIC
void xlog_state_switch_iclogs(xlog_t
*log
,
66 xlog_in_core_t
*iclog
,
68 STATIC
void xlog_state_want_sync(xlog_t
*log
, xlog_in_core_t
*iclog
);
70 /* local functions to manipulate grant head */
71 STATIC
int xlog_grant_log_space(xlog_t
*log
,
73 STATIC
void xlog_grant_push_ail(struct log
*log
,
75 STATIC
void xlog_regrant_reserve_log_space(xlog_t
*log
,
76 xlog_ticket_t
*ticket
);
77 STATIC
int xlog_regrant_write_log_space(xlog_t
*log
,
78 xlog_ticket_t
*ticket
);
79 STATIC
void xlog_ungrant_log_space(xlog_t
*log
,
80 xlog_ticket_t
*ticket
);
83 STATIC
void xlog_verify_dest_ptr(xlog_t
*log
, char *ptr
);
84 STATIC
void xlog_verify_grant_tail(struct log
*log
);
85 STATIC
void xlog_verify_iclog(xlog_t
*log
, xlog_in_core_t
*iclog
,
86 int count
, boolean_t syncing
);
87 STATIC
void xlog_verify_tail_lsn(xlog_t
*log
, xlog_in_core_t
*iclog
,
90 #define xlog_verify_dest_ptr(a,b)
91 #define xlog_verify_grant_tail(a)
92 #define xlog_verify_iclog(a,b,c,d)
93 #define xlog_verify_tail_lsn(a,b,c)
96 STATIC
int xlog_iclogs_empty(xlog_t
*log
);
104 int64_t head_val
= atomic64_read(head
);
110 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
114 space
+= log
->l_logsize
;
119 new = xlog_assign_grant_head_val(cycle
, space
);
120 head_val
= atomic64_cmpxchg(head
, old
, new);
121 } while (head_val
!= old
);
125 xlog_grant_add_space(
130 int64_t head_val
= atomic64_read(head
);
137 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
139 tmp
= log
->l_logsize
- space
;
148 new = xlog_assign_grant_head_val(cycle
, space
);
149 head_val
= atomic64_cmpxchg(head
, old
, new);
150 } while (head_val
!= old
);
158 struct xlog_ticket
*tic
;
161 list_for_each_entry(tic
, &log
->l_reserveq
, t_queue
) {
162 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
163 need_bytes
= tic
->t_unit_res
* tic
->t_cnt
;
165 need_bytes
= tic
->t_unit_res
;
167 if (*free_bytes
< need_bytes
)
169 *free_bytes
-= need_bytes
;
171 trace_xfs_log_grant_wake_up(log
, tic
);
172 wake_up(&tic
->t_wait
);
183 struct xlog_ticket
*tic
;
186 list_for_each_entry(tic
, &log
->l_writeq
, t_queue
) {
187 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
189 need_bytes
= tic
->t_unit_res
;
191 if (*free_bytes
< need_bytes
)
193 *free_bytes
-= need_bytes
;
195 trace_xfs_log_regrant_write_wake_up(log
, tic
);
196 wake_up(&tic
->t_wait
);
205 struct xlog_ticket
*tic
,
208 list_add_tail(&tic
->t_queue
, &log
->l_reserveq
);
211 if (XLOG_FORCED_SHUTDOWN(log
))
213 xlog_grant_push_ail(log
, need_bytes
);
215 XFS_STATS_INC(xs_sleep_logspace
);
216 trace_xfs_log_grant_sleep(log
, tic
);
218 xlog_wait(&tic
->t_wait
, &log
->l_grant_reserve_lock
);
219 trace_xfs_log_grant_wake(log
, tic
);
221 spin_lock(&log
->l_grant_reserve_lock
);
222 if (XLOG_FORCED_SHUTDOWN(log
))
224 } while (xlog_space_left(log
, &log
->l_grant_reserve_head
) < need_bytes
);
226 list_del_init(&tic
->t_queue
);
229 list_del_init(&tic
->t_queue
);
230 return XFS_ERROR(EIO
);
236 struct xlog_ticket
*tic
,
239 list_add_tail(&tic
->t_queue
, &log
->l_writeq
);
242 if (XLOG_FORCED_SHUTDOWN(log
))
244 xlog_grant_push_ail(log
, need_bytes
);
246 XFS_STATS_INC(xs_sleep_logspace
);
247 trace_xfs_log_regrant_write_sleep(log
, tic
);
249 xlog_wait(&tic
->t_wait
, &log
->l_grant_write_lock
);
250 trace_xfs_log_regrant_write_wake(log
, tic
);
252 spin_lock(&log
->l_grant_write_lock
);
253 if (XLOG_FORCED_SHUTDOWN(log
))
255 } while (xlog_space_left(log
, &log
->l_grant_write_head
) < need_bytes
);
257 list_del_init(&tic
->t_queue
);
260 list_del_init(&tic
->t_queue
);
261 return XFS_ERROR(EIO
);
265 xlog_tic_reset_res(xlog_ticket_t
*tic
)
268 tic
->t_res_arr_sum
= 0;
269 tic
->t_res_num_ophdrs
= 0;
273 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
275 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
276 /* add to overflow and start again */
277 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
279 tic
->t_res_arr_sum
= 0;
282 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
283 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
284 tic
->t_res_arr_sum
+= len
;
291 * 1. currblock field gets updated at startup and after in-core logs
292 * marked as with WANT_SYNC.
296 * This routine is called when a user of a log manager ticket is done with
297 * the reservation. If the ticket was ever used, then a commit record for
298 * the associated transaction is written out as a log operation header with
299 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
300 * a given ticket. If the ticket was one with a permanent reservation, then
301 * a few operations are done differently. Permanent reservation tickets by
302 * default don't release the reservation. They just commit the current
303 * transaction with the belief that the reservation is still needed. A flag
304 * must be passed in before permanent reservations are actually released.
305 * When these type of tickets are not released, they need to be set into
306 * the inited state again. By doing this, a start record will be written
307 * out when the next write occurs.
311 struct xfs_mount
*mp
,
312 struct xlog_ticket
*ticket
,
313 struct xlog_in_core
**iclog
,
316 struct log
*log
= mp
->m_log
;
319 if (XLOG_FORCED_SHUTDOWN(log
) ||
321 * If nothing was ever written, don't write out commit record.
322 * If we get an error, just continue and give back the log ticket.
324 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
325 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
326 lsn
= (xfs_lsn_t
) -1;
327 if (ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) {
328 flags
|= XFS_LOG_REL_PERM_RESERV
;
333 if ((ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) == 0 ||
334 (flags
& XFS_LOG_REL_PERM_RESERV
)) {
335 trace_xfs_log_done_nonperm(log
, ticket
);
338 * Release ticket if not permanent reservation or a specific
339 * request has been made to release a permanent reservation.
341 xlog_ungrant_log_space(log
, ticket
);
342 xfs_log_ticket_put(ticket
);
344 trace_xfs_log_done_perm(log
, ticket
);
346 xlog_regrant_reserve_log_space(log
, ticket
);
347 /* If this ticket was a permanent reservation and we aren't
348 * trying to release it, reset the inited flags; so next time
349 * we write, a start record will be written out.
351 ticket
->t_flags
|= XLOG_TIC_INITED
;
358 * Attaches a new iclog I/O completion callback routine during
359 * transaction commit. If the log is in error state, a non-zero
360 * return code is handed back and the caller is responsible for
361 * executing the callback at an appropriate time.
365 struct xfs_mount
*mp
,
366 struct xlog_in_core
*iclog
,
367 xfs_log_callback_t
*cb
)
371 spin_lock(&iclog
->ic_callback_lock
);
372 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
374 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
375 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
377 *(iclog
->ic_callback_tail
) = cb
;
378 iclog
->ic_callback_tail
= &(cb
->cb_next
);
380 spin_unlock(&iclog
->ic_callback_lock
);
385 xfs_log_release_iclog(
386 struct xfs_mount
*mp
,
387 struct xlog_in_core
*iclog
)
389 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
390 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
398 * 1. Reserve an amount of on-disk log space and return a ticket corresponding
399 * to the reservation.
400 * 2. Potentially, push buffers at tail of log to disk.
402 * Each reservation is going to reserve extra space for a log record header.
403 * When writes happen to the on-disk log, we don't subtract the length of the
404 * log record header from any reservation. By wasting space in each
405 * reservation, we prevent over allocation problems.
409 struct xfs_mount
*mp
,
412 struct xlog_ticket
**ticket
,
417 struct log
*log
= mp
->m_log
;
418 struct xlog_ticket
*internal_ticket
;
421 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
423 if (XLOG_FORCED_SHUTDOWN(log
))
424 return XFS_ERROR(EIO
);
426 XFS_STATS_INC(xs_try_logspace
);
429 if (*ticket
!= NULL
) {
430 ASSERT(flags
& XFS_LOG_PERM_RESERV
);
431 internal_ticket
= *ticket
;
434 * this is a new transaction on the ticket, so we need to
435 * change the transaction ID so that the next transaction has a
436 * different TID in the log. Just add one to the existing tid
437 * so that we can see chains of rolling transactions in the log
440 internal_ticket
->t_tid
++;
442 trace_xfs_log_reserve(log
, internal_ticket
);
444 xlog_grant_push_ail(log
, internal_ticket
->t_unit_res
);
445 retval
= xlog_regrant_write_log_space(log
, internal_ticket
);
447 /* may sleep if need to allocate more tickets */
448 internal_ticket
= xlog_ticket_alloc(log
, unit_bytes
, cnt
,
450 KM_SLEEP
|KM_MAYFAIL
);
451 if (!internal_ticket
)
452 return XFS_ERROR(ENOMEM
);
453 internal_ticket
->t_trans_type
= t_type
;
454 *ticket
= internal_ticket
;
456 trace_xfs_log_reserve(log
, internal_ticket
);
458 xlog_grant_push_ail(log
,
459 (internal_ticket
->t_unit_res
*
460 internal_ticket
->t_cnt
));
461 retval
= xlog_grant_log_space(log
, internal_ticket
);
464 if (unlikely(retval
)) {
466 * If we are failing, make sure the ticket doesn't have any
467 * current reservations. We don't want to add this back
468 * when the ticket/ transaction gets cancelled.
470 internal_ticket
->t_curr_res
= 0;
471 /* ungrant will give back unit_res * t_cnt. */
472 internal_ticket
->t_cnt
= 0;
480 * Mount a log filesystem
482 * mp - ubiquitous xfs mount point structure
483 * log_target - buftarg of on-disk log device
484 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
485 * num_bblocks - Number of BBSIZE blocks in on-disk log
487 * Return error or zero.
492 xfs_buftarg_t
*log_target
,
493 xfs_daddr_t blk_offset
,
498 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
))
499 xfs_notice(mp
, "Mounting Filesystem");
502 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
503 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
506 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
507 if (IS_ERR(mp
->m_log
)) {
508 error
= -PTR_ERR(mp
->m_log
);
513 * Initialize the AIL now we have a log.
515 error
= xfs_trans_ail_init(mp
);
517 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
520 mp
->m_log
->l_ailp
= mp
->m_ail
;
523 * skip log recovery on a norecovery mount. pretend it all
526 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
527 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
530 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
532 error
= xlog_recover(mp
->m_log
);
535 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
537 xfs_warn(mp
, "log mount/recovery failed: error %d",
539 goto out_destroy_ail
;
543 /* Normal transactions can now occur */
544 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
547 * Now the log has been fully initialised and we know were our
548 * space grant counters are, we can initialise the permanent ticket
549 * needed for delayed logging to work.
551 xlog_cil_init_post_recovery(mp
->m_log
);
556 xfs_trans_ail_destroy(mp
);
558 xlog_dealloc_log(mp
->m_log
);
564 * Finish the recovery of the file system. This is separate from
565 * the xfs_log_mount() call, because it depends on the code in
566 * xfs_mountfs() to read in the root and real-time bitmap inodes
567 * between calling xfs_log_mount() and here.
569 * mp - ubiquitous xfs mount point structure
572 xfs_log_mount_finish(xfs_mount_t
*mp
)
576 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
))
577 error
= xlog_recover_finish(mp
->m_log
);
580 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
587 * Final log writes as part of unmount.
589 * Mark the filesystem clean as unmount happens. Note that during relocation
590 * this routine needs to be executed as part of source-bag while the
591 * deallocation must not be done until source-end.
595 * Unmount record used to have a string "Unmount filesystem--" in the
596 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
597 * We just write the magic number now since that particular field isn't
598 * currently architecture converted and "nUmount" is a bit foo.
599 * As far as I know, there weren't any dependencies on the old behaviour.
603 xfs_log_unmount_write(xfs_mount_t
*mp
)
605 xlog_t
*log
= mp
->m_log
;
606 xlog_in_core_t
*iclog
;
608 xlog_in_core_t
*first_iclog
;
610 xlog_ticket_t
*tic
= NULL
;
615 * Don't write out unmount record on read-only mounts.
616 * Or, if we are doing a forced umount (typically because of IO errors).
618 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
621 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
622 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
625 first_iclog
= iclog
= log
->l_iclog
;
627 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
628 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
629 ASSERT(iclog
->ic_offset
== 0);
631 iclog
= iclog
->ic_next
;
632 } while (iclog
!= first_iclog
);
634 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
635 error
= xfs_log_reserve(mp
, 600, 1, &tic
,
636 XFS_LOG
, 0, XLOG_UNMOUNT_REC_TYPE
);
638 /* the data section must be 32 bit size aligned */
642 __uint32_t pad2
; /* may as well make it 64 bits */
644 .magic
= XLOG_UNMOUNT_TYPE
,
646 struct xfs_log_iovec reg
= {
648 .i_len
= sizeof(magic
),
649 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
651 struct xfs_log_vec vec
= {
656 /* remove inited flag */
658 error
= xlog_write(log
, &vec
, tic
, &lsn
,
659 NULL
, XLOG_UNMOUNT_TRANS
);
661 * At this point, we're umounting anyway,
662 * so there's no point in transitioning log state
663 * to IOERROR. Just continue...
668 xfs_alert(mp
, "%s: unmount record failed", __func__
);
671 spin_lock(&log
->l_icloglock
);
672 iclog
= log
->l_iclog
;
673 atomic_inc(&iclog
->ic_refcnt
);
674 xlog_state_want_sync(log
, iclog
);
675 spin_unlock(&log
->l_icloglock
);
676 error
= xlog_state_release_iclog(log
, iclog
);
678 spin_lock(&log
->l_icloglock
);
679 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
680 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
681 if (!XLOG_FORCED_SHUTDOWN(log
)) {
682 xlog_wait(&iclog
->ic_force_wait
,
685 spin_unlock(&log
->l_icloglock
);
688 spin_unlock(&log
->l_icloglock
);
691 trace_xfs_log_umount_write(log
, tic
);
692 xlog_ungrant_log_space(log
, tic
);
693 xfs_log_ticket_put(tic
);
697 * We're already in forced_shutdown mode, couldn't
698 * even attempt to write out the unmount transaction.
700 * Go through the motions of sync'ing and releasing
701 * the iclog, even though no I/O will actually happen,
702 * we need to wait for other log I/Os that may already
703 * be in progress. Do this as a separate section of
704 * code so we'll know if we ever get stuck here that
705 * we're in this odd situation of trying to unmount
706 * a file system that went into forced_shutdown as
707 * the result of an unmount..
709 spin_lock(&log
->l_icloglock
);
710 iclog
= log
->l_iclog
;
711 atomic_inc(&iclog
->ic_refcnt
);
713 xlog_state_want_sync(log
, iclog
);
714 spin_unlock(&log
->l_icloglock
);
715 error
= xlog_state_release_iclog(log
, iclog
);
717 spin_lock(&log
->l_icloglock
);
719 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
720 || iclog
->ic_state
== XLOG_STATE_DIRTY
721 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
723 xlog_wait(&iclog
->ic_force_wait
,
726 spin_unlock(&log
->l_icloglock
);
731 } /* xfs_log_unmount_write */
734 * Deallocate log structures for unmount/relocation.
736 * We need to stop the aild from running before we destroy
737 * and deallocate the log as the aild references the log.
740 xfs_log_unmount(xfs_mount_t
*mp
)
742 xfs_trans_ail_destroy(mp
);
743 xlog_dealloc_log(mp
->m_log
);
748 struct xfs_mount
*mp
,
749 struct xfs_log_item
*item
,
751 const struct xfs_item_ops
*ops
)
753 item
->li_mountp
= mp
;
754 item
->li_ailp
= mp
->m_ail
;
755 item
->li_type
= type
;
759 INIT_LIST_HEAD(&item
->li_ail
);
760 INIT_LIST_HEAD(&item
->li_cil
);
764 * Write region vectors to log. The write happens using the space reservation
765 * of the ticket (tic). It is not a requirement that all writes for a given
766 * transaction occur with one call to xfs_log_write(). However, it is important
767 * to note that the transaction reservation code makes an assumption about the
768 * number of log headers a transaction requires that may be violated if you
769 * don't pass all the transaction vectors in one call....
773 struct xfs_mount
*mp
,
774 struct xfs_log_iovec reg
[],
776 struct xlog_ticket
*tic
,
777 xfs_lsn_t
*start_lsn
)
779 struct log
*log
= mp
->m_log
;
781 struct xfs_log_vec vec
= {
782 .lv_niovecs
= nentries
,
786 if (XLOG_FORCED_SHUTDOWN(log
))
787 return XFS_ERROR(EIO
);
789 error
= xlog_write(log
, &vec
, tic
, start_lsn
, NULL
, 0);
791 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
796 xfs_log_move_tail(xfs_mount_t
*mp
,
800 xlog_t
*log
= mp
->m_log
;
801 int need_bytes
, free_bytes
;
803 if (XLOG_FORCED_SHUTDOWN(log
))
807 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
809 /* tail_lsn == 1 implies that we weren't passed a valid value. */
811 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
813 if (!list_empty_careful(&log
->l_writeq
)) {
815 if (log
->l_flags
& XLOG_ACTIVE_RECOVERY
)
816 panic("Recovery problem");
818 spin_lock(&log
->l_grant_write_lock
);
819 free_bytes
= xlog_space_left(log
, &log
->l_grant_write_head
);
820 list_for_each_entry(tic
, &log
->l_writeq
, t_queue
) {
821 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
823 if (free_bytes
< tic
->t_unit_res
&& tail_lsn
!= 1)
826 free_bytes
-= tic
->t_unit_res
;
827 trace_xfs_log_regrant_write_wake_up(log
, tic
);
828 wake_up(&tic
->t_wait
);
830 spin_unlock(&log
->l_grant_write_lock
);
833 if (!list_empty_careful(&log
->l_reserveq
)) {
835 if (log
->l_flags
& XLOG_ACTIVE_RECOVERY
)
836 panic("Recovery problem");
838 spin_lock(&log
->l_grant_reserve_lock
);
839 free_bytes
= xlog_space_left(log
, &log
->l_grant_reserve_head
);
840 list_for_each_entry(tic
, &log
->l_reserveq
, t_queue
) {
841 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
842 need_bytes
= tic
->t_unit_res
*tic
->t_cnt
;
844 need_bytes
= tic
->t_unit_res
;
845 if (free_bytes
< need_bytes
&& tail_lsn
!= 1)
848 free_bytes
-= need_bytes
;
849 trace_xfs_log_grant_wake_up(log
, tic
);
850 wake_up(&tic
->t_wait
);
852 spin_unlock(&log
->l_grant_reserve_lock
);
857 * Determine if we have a transaction that has gone to disk
858 * that needs to be covered. To begin the transition to the idle state
859 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
860 * If we are then in a state where covering is needed, the caller is informed
861 * that dummy transactions are required to move the log into the idle state.
863 * Because this is called as part of the sync process, we should also indicate
864 * that dummy transactions should be issued in anything but the covered or
865 * idle states. This ensures that the log tail is accurately reflected in
866 * the log at the end of the sync, hence if a crash occurrs avoids replay
867 * of transactions where the metadata is already on disk.
870 xfs_log_need_covered(xfs_mount_t
*mp
)
873 xlog_t
*log
= mp
->m_log
;
875 if (!xfs_fs_writable(mp
))
878 spin_lock(&log
->l_icloglock
);
879 switch (log
->l_covered_state
) {
880 case XLOG_STATE_COVER_DONE
:
881 case XLOG_STATE_COVER_DONE2
:
882 case XLOG_STATE_COVER_IDLE
:
884 case XLOG_STATE_COVER_NEED
:
885 case XLOG_STATE_COVER_NEED2
:
886 if (!xfs_ail_min_lsn(log
->l_ailp
) &&
887 xlog_iclogs_empty(log
)) {
888 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
889 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
891 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
898 spin_unlock(&log
->l_icloglock
);
902 /******************************************************************************
906 ******************************************************************************
909 /* xfs_trans_tail_ail returns 0 when there is nothing in the list.
910 * The log manager must keep track of the last LR which was committed
911 * to disk. The lsn of this LR will become the new tail_lsn whenever
912 * xfs_trans_tail_ail returns 0. If we don't do this, we run into
913 * the situation where stuff could be written into the log but nothing
914 * was ever in the AIL when asked. Eventually, we panic since the
915 * tail hits the head.
917 * We may be holding the log iclog lock upon entering this routine.
920 xlog_assign_tail_lsn(
921 struct xfs_mount
*mp
)
924 struct log
*log
= mp
->m_log
;
926 tail_lsn
= xfs_ail_min_lsn(mp
->m_ail
);
928 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
930 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
935 * Return the space in the log between the tail and the head. The head
936 * is passed in the cycle/bytes formal parms. In the special case where
937 * the reserve head has wrapped passed the tail, this calculation is no
938 * longer valid. In this case, just return 0 which means there is no space
939 * in the log. This works for all places where this function is called
940 * with the reserve head. Of course, if the write head were to ever
941 * wrap the tail, we should blow up. Rather than catch this case here,
942 * we depend on other ASSERTions in other parts of the code. XXXmiken
944 * This code also handles the case where the reservation head is behind
945 * the tail. The details of this case are described below, but the end
946 * result is that we return the size of the log as the amount of space left.
959 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
960 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
961 tail_bytes
= BBTOB(tail_bytes
);
962 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
963 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
964 else if (tail_cycle
+ 1 < head_cycle
)
966 else if (tail_cycle
< head_cycle
) {
967 ASSERT(tail_cycle
== (head_cycle
- 1));
968 free_bytes
= tail_bytes
- head_bytes
;
971 * The reservation head is behind the tail.
972 * In this case we just want to return the size of the
973 * log as the amount of space left.
976 "xlog_space_left: head behind tail\n"
977 " tail_cycle = %d, tail_bytes = %d\n"
978 " GH cycle = %d, GH bytes = %d",
979 tail_cycle
, tail_bytes
, head_cycle
, head_bytes
);
981 free_bytes
= log
->l_logsize
;
988 * Log function which is called when an io completes.
990 * The log manager needs its own routine, in order to control what
991 * happens with the buffer after the write completes.
994 xlog_iodone(xfs_buf_t
*bp
)
996 xlog_in_core_t
*iclog
= bp
->b_fspriv
;
997 xlog_t
*l
= iclog
->ic_log
;
1001 * Race to shutdown the filesystem if we see an error.
1003 if (XFS_TEST_ERROR((xfs_buf_geterror(bp
)), l
->l_mp
,
1004 XFS_ERRTAG_IODONE_IOERR
, XFS_RANDOM_IODONE_IOERR
)) {
1005 xfs_buf_ioerror_alert(bp
, __func__
);
1007 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1009 * This flag will be propagated to the trans-committed
1010 * callback routines to let them know that the log-commit
1013 aborted
= XFS_LI_ABORTED
;
1014 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1015 aborted
= XFS_LI_ABORTED
;
1018 /* log I/O is always issued ASYNC */
1019 ASSERT(XFS_BUF_ISASYNC(bp
));
1020 xlog_state_done_syncing(iclog
, aborted
);
1022 * do not reference the buffer (bp) here as we could race
1023 * with it being freed after writing the unmount record to the
1030 * Return size of each in-core log record buffer.
1032 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1034 * If the filesystem blocksize is too large, we may need to choose a
1035 * larger size since the directory code currently logs entire blocks.
1039 xlog_get_iclog_buffer_size(xfs_mount_t
*mp
,
1045 if (mp
->m_logbufs
<= 0)
1046 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1048 log
->l_iclog_bufs
= mp
->m_logbufs
;
1051 * Buffer size passed in from mount system call.
1053 if (mp
->m_logbsize
> 0) {
1054 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1055 log
->l_iclog_size_log
= 0;
1057 log
->l_iclog_size_log
++;
1061 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1062 /* # headers = size / 32k
1063 * one header holds cycles from 32k of data
1066 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1067 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1069 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1070 log
->l_iclog_heads
= xhdrs
;
1072 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1073 log
->l_iclog_hsize
= BBSIZE
;
1074 log
->l_iclog_heads
= 1;
1079 /* All machines use 32kB buffers by default. */
1080 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1081 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1083 /* the default log size is 16k or 32k which is one header sector */
1084 log
->l_iclog_hsize
= BBSIZE
;
1085 log
->l_iclog_heads
= 1;
1088 /* are we being asked to make the sizes selected above visible? */
1089 if (mp
->m_logbufs
== 0)
1090 mp
->m_logbufs
= log
->l_iclog_bufs
;
1091 if (mp
->m_logbsize
== 0)
1092 mp
->m_logbsize
= log
->l_iclog_size
;
1093 } /* xlog_get_iclog_buffer_size */
1097 * This routine initializes some of the log structure for a given mount point.
1098 * Its primary purpose is to fill in enough, so recovery can occur. However,
1099 * some other stuff may be filled in too.
1102 xlog_alloc_log(xfs_mount_t
*mp
,
1103 xfs_buftarg_t
*log_target
,
1104 xfs_daddr_t blk_offset
,
1108 xlog_rec_header_t
*head
;
1109 xlog_in_core_t
**iclogp
;
1110 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1116 log
= kmem_zalloc(sizeof(xlog_t
), KM_MAYFAIL
);
1118 xfs_warn(mp
, "Log allocation failed: No memory!");
1123 log
->l_targ
= log_target
;
1124 log
->l_logsize
= BBTOB(num_bblks
);
1125 log
->l_logBBstart
= blk_offset
;
1126 log
->l_logBBsize
= num_bblks
;
1127 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1128 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1130 log
->l_prev_block
= -1;
1131 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1132 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1133 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1134 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1135 xlog_assign_grant_head(&log
->l_grant_reserve_head
, 1, 0);
1136 xlog_assign_grant_head(&log
->l_grant_write_head
, 1, 0);
1137 INIT_LIST_HEAD(&log
->l_reserveq
);
1138 INIT_LIST_HEAD(&log
->l_writeq
);
1139 spin_lock_init(&log
->l_grant_reserve_lock
);
1140 spin_lock_init(&log
->l_grant_write_lock
);
1142 error
= EFSCORRUPTED
;
1143 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1144 log2_size
= mp
->m_sb
.sb_logsectlog
;
1145 if (log2_size
< BBSHIFT
) {
1146 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1147 log2_size
, BBSHIFT
);
1151 log2_size
-= BBSHIFT
;
1152 if (log2_size
> mp
->m_sectbb_log
) {
1153 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1154 log2_size
, mp
->m_sectbb_log
);
1158 /* for larger sector sizes, must have v2 or external log */
1159 if (log2_size
&& log
->l_logBBstart
> 0 &&
1160 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1162 "log sector size (0x%x) invalid for configuration.",
1167 log
->l_sectBBsize
= 1 << log2_size
;
1169 xlog_get_iclog_buffer_size(mp
, log
);
1172 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, 0, log
->l_iclog_size
, 0);
1175 bp
->b_iodone
= xlog_iodone
;
1176 ASSERT(xfs_buf_islocked(bp
));
1179 spin_lock_init(&log
->l_icloglock
);
1180 init_waitqueue_head(&log
->l_flush_wait
);
1182 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1183 ASSERT((XFS_BUF_SIZE(bp
) & BBMASK
) == 0);
1185 iclogp
= &log
->l_iclog
;
1187 * The amount of memory to allocate for the iclog structure is
1188 * rather funky due to the way the structure is defined. It is
1189 * done this way so that we can use different sizes for machines
1190 * with different amounts of memory. See the definition of
1191 * xlog_in_core_t in xfs_log_priv.h for details.
1193 ASSERT(log
->l_iclog_size
>= 4096);
1194 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1195 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1197 goto out_free_iclog
;
1200 iclog
->ic_prev
= prev_iclog
;
1203 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1204 log
->l_iclog_size
, 0);
1206 goto out_free_iclog
;
1208 bp
->b_iodone
= xlog_iodone
;
1210 iclog
->ic_data
= bp
->b_addr
;
1212 log
->l_iclog_bak
[i
] = (xfs_caddr_t
)&(iclog
->ic_header
);
1214 head
= &iclog
->ic_header
;
1215 memset(head
, 0, sizeof(xlog_rec_header_t
));
1216 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1217 head
->h_version
= cpu_to_be32(
1218 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1219 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1221 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1222 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1224 iclog
->ic_size
= XFS_BUF_SIZE(bp
) - log
->l_iclog_hsize
;
1225 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1226 iclog
->ic_log
= log
;
1227 atomic_set(&iclog
->ic_refcnt
, 0);
1228 spin_lock_init(&iclog
->ic_callback_lock
);
1229 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1230 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1232 ASSERT(xfs_buf_islocked(iclog
->ic_bp
));
1233 init_waitqueue_head(&iclog
->ic_force_wait
);
1234 init_waitqueue_head(&iclog
->ic_write_wait
);
1236 iclogp
= &iclog
->ic_next
;
1238 *iclogp
= log
->l_iclog
; /* complete ring */
1239 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1241 error
= xlog_cil_init(log
);
1243 goto out_free_iclog
;
1247 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1248 prev_iclog
= iclog
->ic_next
;
1250 xfs_buf_free(iclog
->ic_bp
);
1253 spinlock_destroy(&log
->l_icloglock
);
1254 xfs_buf_free(log
->l_xbuf
);
1258 return ERR_PTR(-error
);
1259 } /* xlog_alloc_log */
1263 * Write out the commit record of a transaction associated with the given
1264 * ticket. Return the lsn of the commit record.
1269 struct xlog_ticket
*ticket
,
1270 struct xlog_in_core
**iclog
,
1271 xfs_lsn_t
*commitlsnp
)
1273 struct xfs_mount
*mp
= log
->l_mp
;
1275 struct xfs_log_iovec reg
= {
1278 .i_type
= XLOG_REG_TYPE_COMMIT
,
1280 struct xfs_log_vec vec
= {
1285 ASSERT_ALWAYS(iclog
);
1286 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1289 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1294 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1295 * log space. This code pushes on the lsn which would supposedly free up
1296 * the 25% which we want to leave free. We may need to adopt a policy which
1297 * pushes on an lsn which is further along in the log once we reach the high
1298 * water mark. In this manner, we would be creating a low water mark.
1301 xlog_grant_push_ail(
1305 xfs_lsn_t threshold_lsn
= 0;
1306 xfs_lsn_t last_sync_lsn
;
1309 int threshold_block
;
1310 int threshold_cycle
;
1313 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1315 free_bytes
= xlog_space_left(log
, &log
->l_grant_reserve_head
);
1316 free_blocks
= BTOBBT(free_bytes
);
1319 * Set the threshold for the minimum number of free blocks in the
1320 * log to the maximum of what the caller needs, one quarter of the
1321 * log, and 256 blocks.
1323 free_threshold
= BTOBB(need_bytes
);
1324 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1325 free_threshold
= MAX(free_threshold
, 256);
1326 if (free_blocks
>= free_threshold
)
1329 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1331 threshold_block
+= free_threshold
;
1332 if (threshold_block
>= log
->l_logBBsize
) {
1333 threshold_block
-= log
->l_logBBsize
;
1334 threshold_cycle
+= 1;
1336 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1339 * Don't pass in an lsn greater than the lsn of the last
1340 * log record known to be on disk. Use a snapshot of the last sync lsn
1341 * so that it doesn't change between the compare and the set.
1343 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1344 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1345 threshold_lsn
= last_sync_lsn
;
1348 * Get the transaction layer to kick the dirty buffers out to
1349 * disk asynchronously. No point in trying to do this if
1350 * the filesystem is shutting down.
1352 if (!XLOG_FORCED_SHUTDOWN(log
))
1353 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1357 * The bdstrat callback function for log bufs. This gives us a central
1358 * place to trap bufs in case we get hit by a log I/O error and need to
1359 * shutdown. Actually, in practice, even when we didn't get a log error,
1360 * we transition the iclogs to IOERROR state *after* flushing all existing
1361 * iclogs to disk. This is because we don't want anymore new transactions to be
1362 * started or completed afterwards.
1368 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1370 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1371 xfs_buf_ioerror(bp
, EIO
);
1373 xfs_buf_ioend(bp
, 0);
1375 * It would seem logical to return EIO here, but we rely on
1376 * the log state machine to propagate I/O errors instead of
1382 xfs_buf_iorequest(bp
);
1387 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1388 * fashion. Previously, we should have moved the current iclog
1389 * ptr in the log to point to the next available iclog. This allows further
1390 * write to continue while this code syncs out an iclog ready to go.
1391 * Before an in-core log can be written out, the data section must be scanned
1392 * to save away the 1st word of each BBSIZE block into the header. We replace
1393 * it with the current cycle count. Each BBSIZE block is tagged with the
1394 * cycle count because there in an implicit assumption that drives will
1395 * guarantee that entire 512 byte blocks get written at once. In other words,
1396 * we can't have part of a 512 byte block written and part not written. By
1397 * tagging each block, we will know which blocks are valid when recovering
1398 * after an unclean shutdown.
1400 * This routine is single threaded on the iclog. No other thread can be in
1401 * this routine with the same iclog. Changing contents of iclog can there-
1402 * fore be done without grabbing the state machine lock. Updating the global
1403 * log will require grabbing the lock though.
1405 * The entire log manager uses a logical block numbering scheme. Only
1406 * log_sync (and then only bwrite()) know about the fact that the log may
1407 * not start with block zero on a given device. The log block start offset
1408 * is added immediately before calling bwrite().
1412 xlog_sync(xlog_t
*log
,
1413 xlog_in_core_t
*iclog
)
1415 xfs_caddr_t dptr
; /* pointer to byte sized element */
1418 uint count
; /* byte count of bwrite */
1419 uint count_init
; /* initial count before roundup */
1420 int roundoff
; /* roundoff to BB or stripe */
1421 int split
= 0; /* split write into two regions */
1423 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1425 XFS_STATS_INC(xs_log_writes
);
1426 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1428 /* Add for LR header */
1429 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1431 /* Round out the log write size */
1432 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1433 /* we have a v2 stripe unit to use */
1434 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1436 count
= BBTOB(BTOBB(count_init
));
1438 roundoff
= count
- count_init
;
1439 ASSERT(roundoff
>= 0);
1440 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1441 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1443 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1444 roundoff
< BBTOB(1)));
1446 /* move grant heads by roundoff in sync */
1447 xlog_grant_add_space(log
, &log
->l_grant_reserve_head
, roundoff
);
1448 xlog_grant_add_space(log
, &log
->l_grant_write_head
, roundoff
);
1450 /* put cycle number in every block */
1451 xlog_pack_data(log
, iclog
, roundoff
);
1453 /* real byte length */
1455 iclog
->ic_header
.h_len
=
1456 cpu_to_be32(iclog
->ic_offset
+ roundoff
);
1458 iclog
->ic_header
.h_len
=
1459 cpu_to_be32(iclog
->ic_offset
);
1463 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1465 XFS_STATS_ADD(xs_log_blocks
, BTOBB(count
));
1467 /* Do we need to split this write into 2 parts? */
1468 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1469 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1470 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1471 iclog
->ic_bwritecnt
= 2; /* split into 2 writes */
1473 iclog
->ic_bwritecnt
= 1;
1475 XFS_BUF_SET_COUNT(bp
, count
);
1476 bp
->b_fspriv
= iclog
;
1477 XFS_BUF_ZEROFLAGS(bp
);
1479 bp
->b_flags
|= XBF_SYNCIO
;
1481 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
) {
1482 bp
->b_flags
|= XBF_FUA
;
1485 * Flush the data device before flushing the log to make
1486 * sure all meta data written back from the AIL actually made
1487 * it to disk before stamping the new log tail LSN into the
1488 * log buffer. For an external log we need to issue the
1489 * flush explicitly, and unfortunately synchronously here;
1490 * for an internal log we can simply use the block layer
1491 * state machine for preflushes.
1493 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1494 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1496 bp
->b_flags
|= XBF_FLUSH
;
1499 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1500 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1502 xlog_verify_iclog(log
, iclog
, count
, B_TRUE
);
1504 /* account for log which doesn't start at block #0 */
1505 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1507 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1512 error
= xlog_bdstrat(bp
);
1514 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1518 bp
= iclog
->ic_log
->l_xbuf
;
1519 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1520 xfs_buf_associate_memory(bp
,
1521 (char *)&iclog
->ic_header
+ count
, split
);
1522 bp
->b_fspriv
= iclog
;
1523 XFS_BUF_ZEROFLAGS(bp
);
1525 bp
->b_flags
|= XBF_SYNCIO
;
1526 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
)
1527 bp
->b_flags
|= XBF_FUA
;
1530 * Bump the cycle numbers at the start of each block
1531 * since this part of the buffer is at the start of
1532 * a new cycle. Watch out for the header magic number
1535 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1536 be32_add_cpu((__be32
*)dptr
, 1);
1537 if (be32_to_cpu(*(__be32
*)dptr
) == XLOG_HEADER_MAGIC_NUM
)
1538 be32_add_cpu((__be32
*)dptr
, 1);
1542 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1543 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1545 /* account for internal log which doesn't start at block #0 */
1546 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1548 error
= xlog_bdstrat(bp
);
1550 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1559 * Deallocate a log structure
1562 xlog_dealloc_log(xlog_t
*log
)
1564 xlog_in_core_t
*iclog
, *next_iclog
;
1567 xlog_cil_destroy(log
);
1570 * always need to ensure that the extra buffer does not point to memory
1571 * owned by another log buffer before we free it.
1573 xfs_buf_set_empty(log
->l_xbuf
, log
->l_iclog_size
);
1574 xfs_buf_free(log
->l_xbuf
);
1576 iclog
= log
->l_iclog
;
1577 for (i
=0; i
<log
->l_iclog_bufs
; i
++) {
1578 xfs_buf_free(iclog
->ic_bp
);
1579 next_iclog
= iclog
->ic_next
;
1583 spinlock_destroy(&log
->l_icloglock
);
1585 log
->l_mp
->m_log
= NULL
;
1587 } /* xlog_dealloc_log */
1590 * Update counters atomically now that memcpy is done.
1594 xlog_state_finish_copy(xlog_t
*log
,
1595 xlog_in_core_t
*iclog
,
1599 spin_lock(&log
->l_icloglock
);
1601 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1602 iclog
->ic_offset
+= copy_bytes
;
1604 spin_unlock(&log
->l_icloglock
);
1605 } /* xlog_state_finish_copy */
1611 * print out info relating to regions written which consume
1616 struct xfs_mount
*mp
,
1617 struct xlog_ticket
*ticket
)
1620 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
1622 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1623 static char *res_type_str
[XLOG_REG_TYPE_MAX
] = {
1644 static char *trans_type_str
[XFS_TRANS_TYPE_MAX
] = {
1688 "xfs_log_write: reservation summary:\n"
1689 " trans type = %s (%u)\n"
1690 " unit res = %d bytes\n"
1691 " current res = %d bytes\n"
1692 " total reg = %u bytes (o/flow = %u bytes)\n"
1693 " ophdrs = %u (ophdr space = %u bytes)\n"
1694 " ophdr + reg = %u bytes\n"
1695 " num regions = %u\n",
1696 ((ticket
->t_trans_type
<= 0 ||
1697 ticket
->t_trans_type
> XFS_TRANS_TYPE_MAX
) ?
1698 "bad-trans-type" : trans_type_str
[ticket
->t_trans_type
-1]),
1699 ticket
->t_trans_type
,
1702 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
,
1703 ticket
->t_res_num_ophdrs
, ophdr_spc
,
1704 ticket
->t_res_arr_sum
+
1705 ticket
->t_res_o_flow
+ ophdr_spc
,
1708 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
1709 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
1710 xfs_warn(mp
, "region[%u]: %s - %u bytes\n", i
,
1711 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
1712 "bad-rtype" : res_type_str
[r_type
-1]),
1713 ticket
->t_res_arr
[i
].r_len
);
1716 xfs_alert_tag(mp
, XFS_PTAG_LOGRES
,
1717 "xfs_log_write: reservation ran out. Need to up reservation");
1718 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
1722 * Calculate the potential space needed by the log vector. Each region gets
1723 * its own xlog_op_header_t and may need to be double word aligned.
1726 xlog_write_calc_vec_length(
1727 struct xlog_ticket
*ticket
,
1728 struct xfs_log_vec
*log_vector
)
1730 struct xfs_log_vec
*lv
;
1735 /* acct for start rec of xact */
1736 if (ticket
->t_flags
& XLOG_TIC_INITED
)
1739 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
1740 headers
+= lv
->lv_niovecs
;
1742 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
1743 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
1746 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
1750 ticket
->t_res_num_ophdrs
+= headers
;
1751 len
+= headers
* sizeof(struct xlog_op_header
);
1757 * If first write for transaction, insert start record We can't be trying to
1758 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1761 xlog_write_start_rec(
1762 struct xlog_op_header
*ophdr
,
1763 struct xlog_ticket
*ticket
)
1765 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
1768 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
1769 ophdr
->oh_clientid
= ticket
->t_clientid
;
1771 ophdr
->oh_flags
= XLOG_START_TRANS
;
1774 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
1776 return sizeof(struct xlog_op_header
);
1779 static xlog_op_header_t
*
1780 xlog_write_setup_ophdr(
1782 struct xlog_op_header
*ophdr
,
1783 struct xlog_ticket
*ticket
,
1786 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
1787 ophdr
->oh_clientid
= ticket
->t_clientid
;
1790 /* are we copying a commit or unmount record? */
1791 ophdr
->oh_flags
= flags
;
1794 * We've seen logs corrupted with bad transaction client ids. This
1795 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1796 * and shut down the filesystem.
1798 switch (ophdr
->oh_clientid
) {
1799 case XFS_TRANSACTION
:
1805 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1806 ophdr
->oh_clientid
, ticket
);
1814 * Set up the parameters of the region copy into the log. This has
1815 * to handle region write split across multiple log buffers - this
1816 * state is kept external to this function so that this code can
1817 * can be written in an obvious, self documenting manner.
1820 xlog_write_setup_copy(
1821 struct xlog_ticket
*ticket
,
1822 struct xlog_op_header
*ophdr
,
1823 int space_available
,
1827 int *last_was_partial_copy
,
1828 int *bytes_consumed
)
1832 still_to_copy
= space_required
- *bytes_consumed
;
1833 *copy_off
= *bytes_consumed
;
1835 if (still_to_copy
<= space_available
) {
1836 /* write of region completes here */
1837 *copy_len
= still_to_copy
;
1838 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
1839 if (*last_was_partial_copy
)
1840 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
1841 *last_was_partial_copy
= 0;
1842 *bytes_consumed
= 0;
1846 /* partial write of region, needs extra log op header reservation */
1847 *copy_len
= space_available
;
1848 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
1849 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
1850 if (*last_was_partial_copy
)
1851 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
1852 *bytes_consumed
+= *copy_len
;
1853 (*last_was_partial_copy
)++;
1855 /* account for new log op header */
1856 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
1857 ticket
->t_res_num_ophdrs
++;
1859 return sizeof(struct xlog_op_header
);
1863 xlog_write_copy_finish(
1865 struct xlog_in_core
*iclog
,
1870 int *partial_copy_len
,
1872 struct xlog_in_core
**commit_iclog
)
1874 if (*partial_copy
) {
1876 * This iclog has already been marked WANT_SYNC by
1877 * xlog_state_get_iclog_space.
1879 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
1882 return xlog_state_release_iclog(log
, iclog
);
1886 *partial_copy_len
= 0;
1888 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
1889 /* no more space in this iclog - push it. */
1890 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
1894 spin_lock(&log
->l_icloglock
);
1895 xlog_state_want_sync(log
, iclog
);
1896 spin_unlock(&log
->l_icloglock
);
1899 return xlog_state_release_iclog(log
, iclog
);
1900 ASSERT(flags
& XLOG_COMMIT_TRANS
);
1901 *commit_iclog
= iclog
;
1908 * Write some region out to in-core log
1910 * This will be called when writing externally provided regions or when
1911 * writing out a commit record for a given transaction.
1913 * General algorithm:
1914 * 1. Find total length of this write. This may include adding to the
1915 * lengths passed in.
1916 * 2. Check whether we violate the tickets reservation.
1917 * 3. While writing to this iclog
1918 * A. Reserve as much space in this iclog as can get
1919 * B. If this is first write, save away start lsn
1920 * C. While writing this region:
1921 * 1. If first write of transaction, write start record
1922 * 2. Write log operation header (header per region)
1923 * 3. Find out if we can fit entire region into this iclog
1924 * 4. Potentially, verify destination memcpy ptr
1925 * 5. Memcpy (partial) region
1926 * 6. If partial copy, release iclog; otherwise, continue
1927 * copying more regions into current iclog
1928 * 4. Mark want sync bit (in simulation mode)
1929 * 5. Release iclog for potential flush to on-disk log.
1932 * 1. Panic if reservation is overrun. This should never happen since
1933 * reservation amounts are generated internal to the filesystem.
1935 * 1. Tickets are single threaded data structures.
1936 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1937 * syncing routine. When a single log_write region needs to span
1938 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1939 * on all log operation writes which don't contain the end of the
1940 * region. The XLOG_END_TRANS bit is used for the in-core log
1941 * operation which contains the end of the continued log_write region.
1942 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1943 * we don't really know exactly how much space will be used. As a result,
1944 * we don't update ic_offset until the end when we know exactly how many
1945 * bytes have been written out.
1950 struct xfs_log_vec
*log_vector
,
1951 struct xlog_ticket
*ticket
,
1952 xfs_lsn_t
*start_lsn
,
1953 struct xlog_in_core
**commit_iclog
,
1956 struct xlog_in_core
*iclog
= NULL
;
1957 struct xfs_log_iovec
*vecp
;
1958 struct xfs_log_vec
*lv
;
1961 int partial_copy
= 0;
1962 int partial_copy_len
= 0;
1970 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
1973 * Region headers and bytes are already accounted for.
1974 * We only need to take into account start records and
1975 * split regions in this function.
1977 if (ticket
->t_flags
& XLOG_TIC_INITED
)
1978 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
1981 * Commit record headers need to be accounted for. These
1982 * come in as separate writes so are easy to detect.
1984 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
1985 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
1987 ticket
->t_curr_res
-= len
;
1989 if (ticket
->t_curr_res
< 0)
1990 xlog_print_tic_res(log
->l_mp
, ticket
);
1994 vecp
= lv
->lv_iovecp
;
1995 while (lv
&& index
< lv
->lv_niovecs
) {
1999 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2000 &contwr
, &log_offset
);
2004 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2005 ptr
= iclog
->ic_datap
+ log_offset
;
2007 /* start_lsn is the first lsn written to. That's all we need. */
2009 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2012 * This loop writes out as many regions as can fit in the amount
2013 * of space which was allocated by xlog_state_get_iclog_space().
2015 while (lv
&& index
< lv
->lv_niovecs
) {
2016 struct xfs_log_iovec
*reg
= &vecp
[index
];
2017 struct xlog_op_header
*ophdr
;
2022 ASSERT(reg
->i_len
% sizeof(__int32_t
) == 0);
2023 ASSERT((unsigned long)ptr
% sizeof(__int32_t
) == 0);
2025 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2026 if (start_rec_copy
) {
2028 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2032 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2034 return XFS_ERROR(EIO
);
2036 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2037 sizeof(struct xlog_op_header
));
2039 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2040 iclog
->ic_size
-log_offset
,
2042 ©_off
, ©_len
,
2045 xlog_verify_dest_ptr(log
, ptr
);
2048 ASSERT(copy_len
>= 0);
2049 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2050 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
, copy_len
);
2052 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2054 data_cnt
+= contwr
? copy_len
: 0;
2056 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2057 &record_cnt
, &data_cnt
,
2066 * if we had a partial copy, we need to get more iclog
2067 * space but we don't want to increment the region
2068 * index because there is still more is this region to
2071 * If we completed writing this region, and we flushed
2072 * the iclog (indicated by resetting of the record
2073 * count), then we also need to get more log space. If
2074 * this was the last record, though, we are done and
2080 if (++index
== lv
->lv_niovecs
) {
2084 vecp
= lv
->lv_iovecp
;
2086 if (record_cnt
== 0) {
2096 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2098 return xlog_state_release_iclog(log
, iclog
);
2100 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2101 *commit_iclog
= iclog
;
2106 /*****************************************************************************
2108 * State Machine functions
2110 *****************************************************************************
2113 /* Clean iclogs starting from the head. This ordering must be
2114 * maintained, so an iclog doesn't become ACTIVE beyond one that
2115 * is SYNCING. This is also required to maintain the notion that we use
2116 * a ordered wait queue to hold off would be writers to the log when every
2117 * iclog is trying to sync to disk.
2119 * State Change: DIRTY -> ACTIVE
2122 xlog_state_clean_log(xlog_t
*log
)
2124 xlog_in_core_t
*iclog
;
2127 iclog
= log
->l_iclog
;
2129 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2130 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2131 iclog
->ic_offset
= 0;
2132 ASSERT(iclog
->ic_callback
== NULL
);
2134 * If the number of ops in this iclog indicate it just
2135 * contains the dummy transaction, we can
2136 * change state into IDLE (the second time around).
2137 * Otherwise we should change the state into
2139 * We don't need to cover the dummy.
2142 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2147 * We have two dirty iclogs so start over
2148 * This could also be num of ops indicates
2149 * this is not the dummy going out.
2153 iclog
->ic_header
.h_num_logops
= 0;
2154 memset(iclog
->ic_header
.h_cycle_data
, 0,
2155 sizeof(iclog
->ic_header
.h_cycle_data
));
2156 iclog
->ic_header
.h_lsn
= 0;
2157 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2160 break; /* stop cleaning */
2161 iclog
= iclog
->ic_next
;
2162 } while (iclog
!= log
->l_iclog
);
2164 /* log is locked when we are called */
2166 * Change state for the dummy log recording.
2167 * We usually go to NEED. But we go to NEED2 if the changed indicates
2168 * we are done writing the dummy record.
2169 * If we are done with the second dummy recored (DONE2), then
2173 switch (log
->l_covered_state
) {
2174 case XLOG_STATE_COVER_IDLE
:
2175 case XLOG_STATE_COVER_NEED
:
2176 case XLOG_STATE_COVER_NEED2
:
2177 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2180 case XLOG_STATE_COVER_DONE
:
2182 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2184 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2187 case XLOG_STATE_COVER_DONE2
:
2189 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2191 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2198 } /* xlog_state_clean_log */
2201 xlog_get_lowest_lsn(
2204 xlog_in_core_t
*lsn_log
;
2205 xfs_lsn_t lowest_lsn
, lsn
;
2207 lsn_log
= log
->l_iclog
;
2210 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2211 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2212 if ((lsn
&& !lowest_lsn
) ||
2213 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2217 lsn_log
= lsn_log
->ic_next
;
2218 } while (lsn_log
!= log
->l_iclog
);
2224 xlog_state_do_callback(
2227 xlog_in_core_t
*ciclog
)
2229 xlog_in_core_t
*iclog
;
2230 xlog_in_core_t
*first_iclog
; /* used to know when we've
2231 * processed all iclogs once */
2232 xfs_log_callback_t
*cb
, *cb_next
;
2234 xfs_lsn_t lowest_lsn
;
2235 int ioerrors
; /* counter: iclogs with errors */
2236 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2237 int funcdidcallbacks
; /* flag: function did callbacks */
2238 int repeats
; /* for issuing console warnings if
2239 * looping too many times */
2242 spin_lock(&log
->l_icloglock
);
2243 first_iclog
= iclog
= log
->l_iclog
;
2245 funcdidcallbacks
= 0;
2250 * Scan all iclogs starting with the one pointed to by the
2251 * log. Reset this starting point each time the log is
2252 * unlocked (during callbacks).
2254 * Keep looping through iclogs until one full pass is made
2255 * without running any callbacks.
2257 first_iclog
= log
->l_iclog
;
2258 iclog
= log
->l_iclog
;
2259 loopdidcallbacks
= 0;
2264 /* skip all iclogs in the ACTIVE & DIRTY states */
2265 if (iclog
->ic_state
&
2266 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2267 iclog
= iclog
->ic_next
;
2272 * Between marking a filesystem SHUTDOWN and stopping
2273 * the log, we do flush all iclogs to disk (if there
2274 * wasn't a log I/O error). So, we do want things to
2275 * go smoothly in case of just a SHUTDOWN w/o a
2278 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2280 * Can only perform callbacks in order. Since
2281 * this iclog is not in the DONE_SYNC/
2282 * DO_CALLBACK state, we skip the rest and
2283 * just try to clean up. If we set our iclog
2284 * to DO_CALLBACK, we will not process it when
2285 * we retry since a previous iclog is in the
2286 * CALLBACK and the state cannot change since
2287 * we are holding the l_icloglock.
2289 if (!(iclog
->ic_state
&
2290 (XLOG_STATE_DONE_SYNC
|
2291 XLOG_STATE_DO_CALLBACK
))) {
2292 if (ciclog
&& (ciclog
->ic_state
==
2293 XLOG_STATE_DONE_SYNC
)) {
2294 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2299 * We now have an iclog that is in either the
2300 * DO_CALLBACK or DONE_SYNC states. The other
2301 * states (WANT_SYNC, SYNCING, or CALLBACK were
2302 * caught by the above if and are going to
2303 * clean (i.e. we aren't doing their callbacks)
2308 * We will do one more check here to see if we
2309 * have chased our tail around.
2312 lowest_lsn
= xlog_get_lowest_lsn(log
);
2314 XFS_LSN_CMP(lowest_lsn
,
2315 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2316 iclog
= iclog
->ic_next
;
2317 continue; /* Leave this iclog for
2321 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2325 * update the last_sync_lsn before we drop the
2326 * icloglock to ensure we are the only one that
2329 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2330 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2331 atomic64_set(&log
->l_last_sync_lsn
,
2332 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2337 spin_unlock(&log
->l_icloglock
);
2340 * Keep processing entries in the callback list until
2341 * we come around and it is empty. We need to
2342 * atomically see that the list is empty and change the
2343 * state to DIRTY so that we don't miss any more
2344 * callbacks being added.
2346 spin_lock(&iclog
->ic_callback_lock
);
2347 cb
= iclog
->ic_callback
;
2349 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2350 iclog
->ic_callback
= NULL
;
2351 spin_unlock(&iclog
->ic_callback_lock
);
2353 /* perform callbacks in the order given */
2354 for (; cb
; cb
= cb_next
) {
2355 cb_next
= cb
->cb_next
;
2356 cb
->cb_func(cb
->cb_arg
, aborted
);
2358 spin_lock(&iclog
->ic_callback_lock
);
2359 cb
= iclog
->ic_callback
;
2365 spin_lock(&log
->l_icloglock
);
2366 ASSERT(iclog
->ic_callback
== NULL
);
2367 spin_unlock(&iclog
->ic_callback_lock
);
2368 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2369 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2372 * Transition from DIRTY to ACTIVE if applicable.
2373 * NOP if STATE_IOERROR.
2375 xlog_state_clean_log(log
);
2377 /* wake up threads waiting in xfs_log_force() */
2378 wake_up_all(&iclog
->ic_force_wait
);
2380 iclog
= iclog
->ic_next
;
2381 } while (first_iclog
!= iclog
);
2383 if (repeats
> 5000) {
2384 flushcnt
+= repeats
;
2387 "%s: possible infinite loop (%d iterations)",
2388 __func__
, flushcnt
);
2390 } while (!ioerrors
&& loopdidcallbacks
);
2393 * make one last gasp attempt to see if iclogs are being left in
2397 if (funcdidcallbacks
) {
2398 first_iclog
= iclog
= log
->l_iclog
;
2400 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2402 * Terminate the loop if iclogs are found in states
2403 * which will cause other threads to clean up iclogs.
2405 * SYNCING - i/o completion will go through logs
2406 * DONE_SYNC - interrupt thread should be waiting for
2408 * IOERROR - give up hope all ye who enter here
2410 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2411 iclog
->ic_state
== XLOG_STATE_SYNCING
||
2412 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2413 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2415 iclog
= iclog
->ic_next
;
2416 } while (first_iclog
!= iclog
);
2420 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2422 spin_unlock(&log
->l_icloglock
);
2425 wake_up_all(&log
->l_flush_wait
);
2430 * Finish transitioning this iclog to the dirty state.
2432 * Make sure that we completely execute this routine only when this is
2433 * the last call to the iclog. There is a good chance that iclog flushes,
2434 * when we reach the end of the physical log, get turned into 2 separate
2435 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2436 * routine. By using the reference count bwritecnt, we guarantee that only
2437 * the second completion goes through.
2439 * Callbacks could take time, so they are done outside the scope of the
2440 * global state machine log lock.
2443 xlog_state_done_syncing(
2444 xlog_in_core_t
*iclog
,
2447 xlog_t
*log
= iclog
->ic_log
;
2449 spin_lock(&log
->l_icloglock
);
2451 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2452 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2453 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2454 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2458 * If we got an error, either on the first buffer, or in the case of
2459 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2460 * and none should ever be attempted to be written to disk
2463 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2464 if (--iclog
->ic_bwritecnt
== 1) {
2465 spin_unlock(&log
->l_icloglock
);
2468 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2472 * Someone could be sleeping prior to writing out the next
2473 * iclog buffer, we wake them all, one will get to do the
2474 * I/O, the others get to wait for the result.
2476 wake_up_all(&iclog
->ic_write_wait
);
2477 spin_unlock(&log
->l_icloglock
);
2478 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2479 } /* xlog_state_done_syncing */
2483 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2484 * sleep. We wait on the flush queue on the head iclog as that should be
2485 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2486 * we will wait here and all new writes will sleep until a sync completes.
2488 * The in-core logs are used in a circular fashion. They are not used
2489 * out-of-order even when an iclog past the head is free.
2492 * * log_offset where xlog_write() can start writing into the in-core
2494 * * in-core log pointer to which xlog_write() should write.
2495 * * boolean indicating this is a continued write to an in-core log.
2496 * If this is the last write, then the in-core log's offset field
2497 * needs to be incremented, depending on the amount of data which
2501 xlog_state_get_iclog_space(xlog_t
*log
,
2503 xlog_in_core_t
**iclogp
,
2504 xlog_ticket_t
*ticket
,
2505 int *continued_write
,
2509 xlog_rec_header_t
*head
;
2510 xlog_in_core_t
*iclog
;
2514 spin_lock(&log
->l_icloglock
);
2515 if (XLOG_FORCED_SHUTDOWN(log
)) {
2516 spin_unlock(&log
->l_icloglock
);
2517 return XFS_ERROR(EIO
);
2520 iclog
= log
->l_iclog
;
2521 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2522 XFS_STATS_INC(xs_log_noiclogs
);
2524 /* Wait for log writes to have flushed */
2525 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2529 head
= &iclog
->ic_header
;
2531 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2532 log_offset
= iclog
->ic_offset
;
2534 /* On the 1st write to an iclog, figure out lsn. This works
2535 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2536 * committing to. If the offset is set, that's how many blocks
2539 if (log_offset
== 0) {
2540 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2541 xlog_tic_add_region(ticket
,
2543 XLOG_REG_TYPE_LRHEADER
);
2544 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2545 head
->h_lsn
= cpu_to_be64(
2546 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2547 ASSERT(log
->l_curr_block
>= 0);
2550 /* If there is enough room to write everything, then do it. Otherwise,
2551 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2552 * bit is on, so this will get flushed out. Don't update ic_offset
2553 * until you know exactly how many bytes get copied. Therefore, wait
2554 * until later to update ic_offset.
2556 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2557 * can fit into remaining data section.
2559 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2560 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2563 * If I'm the only one writing to this iclog, sync it to disk.
2564 * We need to do an atomic compare and decrement here to avoid
2565 * racing with concurrent atomic_dec_and_lock() calls in
2566 * xlog_state_release_iclog() when there is more than one
2567 * reference to the iclog.
2569 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
2570 /* we are the only one */
2571 spin_unlock(&log
->l_icloglock
);
2572 error
= xlog_state_release_iclog(log
, iclog
);
2576 spin_unlock(&log
->l_icloglock
);
2581 /* Do we have enough room to write the full amount in the remainder
2582 * of this iclog? Or must we continue a write on the next iclog and
2583 * mark this iclog as completely taken? In the case where we switch
2584 * iclogs (to mark it taken), this particular iclog will release/sync
2585 * to disk in xlog_write().
2587 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
2588 *continued_write
= 0;
2589 iclog
->ic_offset
+= len
;
2591 *continued_write
= 1;
2592 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2596 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
2597 spin_unlock(&log
->l_icloglock
);
2599 *logoffsetp
= log_offset
;
2601 } /* xlog_state_get_iclog_space */
2604 * Atomically get the log space required for a log ticket.
2606 * Once a ticket gets put onto the reserveq, it will only return after the
2607 * needed reservation is satisfied.
2609 * This function is structured so that it has a lock free fast path. This is
2610 * necessary because every new transaction reservation will come through this
2611 * path. Hence any lock will be globally hot if we take it unconditionally on
2614 * As tickets are only ever moved on and off the reserveq under the
2615 * l_grant_reserve_lock, we only need to take that lock if we are going to add
2616 * the ticket to the queue and sleep. We can avoid taking the lock if the ticket
2617 * was never added to the reserveq because the t_queue list head will be empty
2618 * and we hold the only reference to it so it can safely be checked unlocked.
2621 xlog_grant_log_space(
2623 struct xlog_ticket
*tic
)
2625 int free_bytes
, need_bytes
;
2628 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
2630 trace_xfs_log_grant_enter(log
, tic
);
2633 * If there are other waiters on the queue then give them a chance at
2634 * logspace before us. Wake up the first waiters, if we do not wake
2635 * up all the waiters then go to sleep waiting for more free space,
2636 * otherwise try to get some space for this transaction.
2638 need_bytes
= tic
->t_unit_res
;
2639 if (tic
->t_flags
& XFS_LOG_PERM_RESERV
)
2640 need_bytes
*= tic
->t_ocnt
;
2641 free_bytes
= xlog_space_left(log
, &log
->l_grant_reserve_head
);
2642 if (!list_empty_careful(&log
->l_reserveq
)) {
2643 spin_lock(&log
->l_grant_reserve_lock
);
2644 if (!xlog_reserveq_wake(log
, &free_bytes
) ||
2645 free_bytes
< need_bytes
)
2646 error
= xlog_reserveq_wait(log
, tic
, need_bytes
);
2647 spin_unlock(&log
->l_grant_reserve_lock
);
2648 } else if (free_bytes
< need_bytes
) {
2649 spin_lock(&log
->l_grant_reserve_lock
);
2650 error
= xlog_reserveq_wait(log
, tic
, need_bytes
);
2651 spin_unlock(&log
->l_grant_reserve_lock
);
2656 xlog_grant_add_space(log
, &log
->l_grant_reserve_head
, need_bytes
);
2657 xlog_grant_add_space(log
, &log
->l_grant_write_head
, need_bytes
);
2658 trace_xfs_log_grant_exit(log
, tic
);
2659 xlog_verify_grant_tail(log
);
2664 * Replenish the byte reservation required by moving the grant write head.
2666 * Similar to xlog_grant_log_space, the function is structured to have a lock
2670 xlog_regrant_write_log_space(
2672 struct xlog_ticket
*tic
)
2674 int free_bytes
, need_bytes
;
2677 tic
->t_curr_res
= tic
->t_unit_res
;
2678 xlog_tic_reset_res(tic
);
2683 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
2685 trace_xfs_log_regrant_write_enter(log
, tic
);
2688 * If there are other waiters on the queue then give them a chance at
2689 * logspace before us. Wake up the first waiters, if we do not wake
2690 * up all the waiters then go to sleep waiting for more free space,
2691 * otherwise try to get some space for this transaction.
2693 need_bytes
= tic
->t_unit_res
;
2694 free_bytes
= xlog_space_left(log
, &log
->l_grant_write_head
);
2695 if (!list_empty_careful(&log
->l_writeq
)) {
2696 spin_lock(&log
->l_grant_write_lock
);
2697 if (!xlog_writeq_wake(log
, &free_bytes
) ||
2698 free_bytes
< need_bytes
)
2699 error
= xlog_writeq_wait(log
, tic
, need_bytes
);
2700 spin_unlock(&log
->l_grant_write_lock
);
2701 } else if (free_bytes
< need_bytes
) {
2702 spin_lock(&log
->l_grant_write_lock
);
2703 error
= xlog_writeq_wait(log
, tic
, need_bytes
);
2704 spin_unlock(&log
->l_grant_write_lock
);
2710 xlog_grant_add_space(log
, &log
->l_grant_write_head
, need_bytes
);
2711 trace_xfs_log_regrant_write_exit(log
, tic
);
2712 xlog_verify_grant_tail(log
);
2716 /* The first cnt-1 times through here we don't need to
2717 * move the grant write head because the permanent
2718 * reservation has reserved cnt times the unit amount.
2719 * Release part of current permanent unit reservation and
2720 * reset current reservation to be one units worth. Also
2721 * move grant reservation head forward.
2724 xlog_regrant_reserve_log_space(xlog_t
*log
,
2725 xlog_ticket_t
*ticket
)
2727 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
2729 if (ticket
->t_cnt
> 0)
2732 xlog_grant_sub_space(log
, &log
->l_grant_reserve_head
,
2733 ticket
->t_curr_res
);
2734 xlog_grant_sub_space(log
, &log
->l_grant_write_head
,
2735 ticket
->t_curr_res
);
2736 ticket
->t_curr_res
= ticket
->t_unit_res
;
2737 xlog_tic_reset_res(ticket
);
2739 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
2741 /* just return if we still have some of the pre-reserved space */
2742 if (ticket
->t_cnt
> 0)
2745 xlog_grant_add_space(log
, &log
->l_grant_reserve_head
,
2746 ticket
->t_unit_res
);
2748 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
2750 ticket
->t_curr_res
= ticket
->t_unit_res
;
2751 xlog_tic_reset_res(ticket
);
2752 } /* xlog_regrant_reserve_log_space */
2756 * Give back the space left from a reservation.
2758 * All the information we need to make a correct determination of space left
2759 * is present. For non-permanent reservations, things are quite easy. The
2760 * count should have been decremented to zero. We only need to deal with the
2761 * space remaining in the current reservation part of the ticket. If the
2762 * ticket contains a permanent reservation, there may be left over space which
2763 * needs to be released. A count of N means that N-1 refills of the current
2764 * reservation can be done before we need to ask for more space. The first
2765 * one goes to fill up the first current reservation. Once we run out of
2766 * space, the count will stay at zero and the only space remaining will be
2767 * in the current reservation field.
2770 xlog_ungrant_log_space(xlog_t
*log
,
2771 xlog_ticket_t
*ticket
)
2775 if (ticket
->t_cnt
> 0)
2778 trace_xfs_log_ungrant_enter(log
, ticket
);
2779 trace_xfs_log_ungrant_sub(log
, ticket
);
2782 * If this is a permanent reservation ticket, we may be able to free
2783 * up more space based on the remaining count.
2785 bytes
= ticket
->t_curr_res
;
2786 if (ticket
->t_cnt
> 0) {
2787 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
2788 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
2791 xlog_grant_sub_space(log
, &log
->l_grant_reserve_head
, bytes
);
2792 xlog_grant_sub_space(log
, &log
->l_grant_write_head
, bytes
);
2794 trace_xfs_log_ungrant_exit(log
, ticket
);
2796 xfs_log_move_tail(log
->l_mp
, 1);
2797 } /* xlog_ungrant_log_space */
2801 * Flush iclog to disk if this is the last reference to the given iclog and
2802 * the WANT_SYNC bit is set.
2804 * When this function is entered, the iclog is not necessarily in the
2805 * WANT_SYNC state. It may be sitting around waiting to get filled.
2810 xlog_state_release_iclog(
2812 xlog_in_core_t
*iclog
)
2814 int sync
= 0; /* do we sync? */
2816 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
2817 return XFS_ERROR(EIO
);
2819 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
2820 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
2823 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
2824 spin_unlock(&log
->l_icloglock
);
2825 return XFS_ERROR(EIO
);
2827 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2828 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
2830 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
2831 /* update tail before writing to iclog */
2832 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
2834 iclog
->ic_state
= XLOG_STATE_SYNCING
;
2835 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
2836 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
2837 /* cycle incremented when incrementing curr_block */
2839 spin_unlock(&log
->l_icloglock
);
2842 * We let the log lock go, so it's possible that we hit a log I/O
2843 * error or some other SHUTDOWN condition that marks the iclog
2844 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2845 * this iclog has consistent data, so we ignore IOERROR
2846 * flags after this point.
2849 return xlog_sync(log
, iclog
);
2851 } /* xlog_state_release_iclog */
2855 * This routine will mark the current iclog in the ring as WANT_SYNC
2856 * and move the current iclog pointer to the next iclog in the ring.
2857 * When this routine is called from xlog_state_get_iclog_space(), the
2858 * exact size of the iclog has not yet been determined. All we know is
2859 * that every data block. We have run out of space in this log record.
2862 xlog_state_switch_iclogs(xlog_t
*log
,
2863 xlog_in_core_t
*iclog
,
2866 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
2868 eventual_size
= iclog
->ic_offset
;
2869 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
2870 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
2871 log
->l_prev_block
= log
->l_curr_block
;
2872 log
->l_prev_cycle
= log
->l_curr_cycle
;
2874 /* roll log?: ic_offset changed later */
2875 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
2877 /* Round up to next log-sunit */
2878 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
2879 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
2880 __uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
2881 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
2884 if (log
->l_curr_block
>= log
->l_logBBsize
) {
2885 log
->l_curr_cycle
++;
2886 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
2887 log
->l_curr_cycle
++;
2888 log
->l_curr_block
-= log
->l_logBBsize
;
2889 ASSERT(log
->l_curr_block
>= 0);
2891 ASSERT(iclog
== log
->l_iclog
);
2892 log
->l_iclog
= iclog
->ic_next
;
2893 } /* xlog_state_switch_iclogs */
2896 * Write out all data in the in-core log as of this exact moment in time.
2898 * Data may be written to the in-core log during this call. However,
2899 * we don't guarantee this data will be written out. A change from past
2900 * implementation means this routine will *not* write out zero length LRs.
2902 * Basically, we try and perform an intelligent scan of the in-core logs.
2903 * If we determine there is no flushable data, we just return. There is no
2904 * flushable data if:
2906 * 1. the current iclog is active and has no data; the previous iclog
2907 * is in the active or dirty state.
2908 * 2. the current iclog is drity, and the previous iclog is in the
2909 * active or dirty state.
2913 * 1. the current iclog is not in the active nor dirty state.
2914 * 2. the current iclog dirty, and the previous iclog is not in the
2915 * active nor dirty state.
2916 * 3. the current iclog is active, and there is another thread writing
2917 * to this particular iclog.
2918 * 4. a) the current iclog is active and has no other writers
2919 * b) when we return from flushing out this iclog, it is still
2920 * not in the active nor dirty state.
2924 struct xfs_mount
*mp
,
2928 struct log
*log
= mp
->m_log
;
2929 struct xlog_in_core
*iclog
;
2932 XFS_STATS_INC(xs_log_force
);
2935 xlog_cil_force(log
);
2937 spin_lock(&log
->l_icloglock
);
2939 iclog
= log
->l_iclog
;
2940 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
2941 spin_unlock(&log
->l_icloglock
);
2942 return XFS_ERROR(EIO
);
2945 /* If the head iclog is not active nor dirty, we just attach
2946 * ourselves to the head and go to sleep.
2948 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2949 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2951 * If the head is dirty or (active and empty), then
2952 * we need to look at the previous iclog. If the previous
2953 * iclog is active or dirty we are done. There is nothing
2954 * to sync out. Otherwise, we attach ourselves to the
2955 * previous iclog and go to sleep.
2957 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
2958 (atomic_read(&iclog
->ic_refcnt
) == 0
2959 && iclog
->ic_offset
== 0)) {
2960 iclog
= iclog
->ic_prev
;
2961 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
2962 iclog
->ic_state
== XLOG_STATE_DIRTY
)
2967 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
2968 /* We are the only one with access to this
2969 * iclog. Flush it out now. There should
2970 * be a roundoff of zero to show that someone
2971 * has already taken care of the roundoff from
2972 * the previous sync.
2974 atomic_inc(&iclog
->ic_refcnt
);
2975 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2976 xlog_state_switch_iclogs(log
, iclog
, 0);
2977 spin_unlock(&log
->l_icloglock
);
2979 if (xlog_state_release_iclog(log
, iclog
))
2980 return XFS_ERROR(EIO
);
2984 spin_lock(&log
->l_icloglock
);
2985 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
2986 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
2991 /* Someone else is writing to this iclog.
2992 * Use its call to flush out the data. However,
2993 * the other thread may not force out this LR,
2994 * so we mark it WANT_SYNC.
2996 xlog_state_switch_iclogs(log
, iclog
, 0);
3002 /* By the time we come around again, the iclog could've been filled
3003 * which would give it another lsn. If we have a new lsn, just
3004 * return because the relevant data has been flushed.
3007 if (flags
& XFS_LOG_SYNC
) {
3009 * We must check if we're shutting down here, before
3010 * we wait, while we're holding the l_icloglock.
3011 * Then we check again after waking up, in case our
3012 * sleep was disturbed by a bad news.
3014 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3015 spin_unlock(&log
->l_icloglock
);
3016 return XFS_ERROR(EIO
);
3018 XFS_STATS_INC(xs_log_force_sleep
);
3019 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3021 * No need to grab the log lock here since we're
3022 * only deciding whether or not to return EIO
3023 * and the memory read should be atomic.
3025 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3026 return XFS_ERROR(EIO
);
3032 spin_unlock(&log
->l_icloglock
);
3038 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3039 * about errors or whether the log was flushed or not. This is the normal
3040 * interface to use when trying to unpin items or move the log forward.
3049 error
= _xfs_log_force(mp
, flags
, NULL
);
3051 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3055 * Force the in-core log to disk for a specific LSN.
3057 * Find in-core log with lsn.
3058 * If it is in the DIRTY state, just return.
3059 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3060 * state and go to sleep or return.
3061 * If it is in any other state, go to sleep or return.
3063 * Synchronous forces are implemented with a signal variable. All callers
3064 * to force a given lsn to disk will wait on a the sv attached to the
3065 * specific in-core log. When given in-core log finally completes its
3066 * write to disk, that thread will wake up all threads waiting on the
3071 struct xfs_mount
*mp
,
3076 struct log
*log
= mp
->m_log
;
3077 struct xlog_in_core
*iclog
;
3078 int already_slept
= 0;
3082 XFS_STATS_INC(xs_log_force
);
3085 lsn
= xlog_cil_force_lsn(log
, lsn
);
3086 if (lsn
== NULLCOMMITLSN
)
3091 spin_lock(&log
->l_icloglock
);
3092 iclog
= log
->l_iclog
;
3093 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3094 spin_unlock(&log
->l_icloglock
);
3095 return XFS_ERROR(EIO
);
3099 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3100 iclog
= iclog
->ic_next
;
3104 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3105 spin_unlock(&log
->l_icloglock
);
3109 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3111 * We sleep here if we haven't already slept (e.g.
3112 * this is the first time we've looked at the correct
3113 * iclog buf) and the buffer before us is going to
3114 * be sync'ed. The reason for this is that if we
3115 * are doing sync transactions here, by waiting for
3116 * the previous I/O to complete, we can allow a few
3117 * more transactions into this iclog before we close
3120 * Otherwise, we mark the buffer WANT_SYNC, and bump
3121 * up the refcnt so we can release the log (which
3122 * drops the ref count). The state switch keeps new
3123 * transaction commits from using this buffer. When
3124 * the current commits finish writing into the buffer,
3125 * the refcount will drop to zero and the buffer will
3128 if (!already_slept
&&
3129 (iclog
->ic_prev
->ic_state
&
3130 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3131 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3133 XFS_STATS_INC(xs_log_force_sleep
);
3135 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3142 atomic_inc(&iclog
->ic_refcnt
);
3143 xlog_state_switch_iclogs(log
, iclog
, 0);
3144 spin_unlock(&log
->l_icloglock
);
3145 if (xlog_state_release_iclog(log
, iclog
))
3146 return XFS_ERROR(EIO
);
3149 spin_lock(&log
->l_icloglock
);
3152 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3154 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3156 * Don't wait on completion if we know that we've
3157 * gotten a log write error.
3159 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3160 spin_unlock(&log
->l_icloglock
);
3161 return XFS_ERROR(EIO
);
3163 XFS_STATS_INC(xs_log_force_sleep
);
3164 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3166 * No need to grab the log lock here since we're
3167 * only deciding whether or not to return EIO
3168 * and the memory read should be atomic.
3170 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3171 return XFS_ERROR(EIO
);
3175 } else { /* just return */
3176 spin_unlock(&log
->l_icloglock
);
3180 } while (iclog
!= log
->l_iclog
);
3182 spin_unlock(&log
->l_icloglock
);
3187 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3188 * about errors or whether the log was flushed or not. This is the normal
3189 * interface to use when trying to unpin items or move the log forward.
3199 error
= _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3201 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3205 * Called when we want to mark the current iclog as being ready to sync to
3209 xlog_state_want_sync(xlog_t
*log
, xlog_in_core_t
*iclog
)
3211 assert_spin_locked(&log
->l_icloglock
);
3213 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3214 xlog_state_switch_iclogs(log
, iclog
, 0);
3216 ASSERT(iclog
->ic_state
&
3217 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3222 /*****************************************************************************
3226 *****************************************************************************
3230 * Free a used ticket when its refcount falls to zero.
3234 xlog_ticket_t
*ticket
)
3236 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3237 if (atomic_dec_and_test(&ticket
->t_ref
))
3238 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3243 xlog_ticket_t
*ticket
)
3245 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3246 atomic_inc(&ticket
->t_ref
);
3251 * Allocate and initialise a new log ticket.
3262 struct xlog_ticket
*tic
;
3266 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3271 * Permanent reservations have up to 'cnt'-1 active log operations
3272 * in the log. A unit in this case is the amount of space for one
3273 * of these log operations. Normal reservations have a cnt of 1
3274 * and their unit amount is the total amount of space required.
3276 * The following lines of code account for non-transaction data
3277 * which occupy space in the on-disk log.
3279 * Normal form of a transaction is:
3280 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3281 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3283 * We need to account for all the leadup data and trailer data
3284 * around the transaction data.
3285 * And then we need to account for the worst case in terms of using
3287 * The worst case will happen if:
3288 * - the placement of the transaction happens to be such that the
3289 * roundoff is at its maximum
3290 * - the transaction data is synced before the commit record is synced
3291 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3292 * Therefore the commit record is in its own Log Record.
3293 * This can happen as the commit record is called with its
3294 * own region to xlog_write().
3295 * This then means that in the worst case, roundoff can happen for
3296 * the commit-rec as well.
3297 * The commit-rec is smaller than padding in this scenario and so it is
3298 * not added separately.
3301 /* for trans header */
3302 unit_bytes
+= sizeof(xlog_op_header_t
);
3303 unit_bytes
+= sizeof(xfs_trans_header_t
);
3306 unit_bytes
+= sizeof(xlog_op_header_t
);
3309 * for LR headers - the space for data in an iclog is the size minus
3310 * the space used for the headers. If we use the iclog size, then we
3311 * undercalculate the number of headers required.
3313 * Furthermore - the addition of op headers for split-recs might
3314 * increase the space required enough to require more log and op
3315 * headers, so take that into account too.
3317 * IMPORTANT: This reservation makes the assumption that if this
3318 * transaction is the first in an iclog and hence has the LR headers
3319 * accounted to it, then the remaining space in the iclog is
3320 * exclusively for this transaction. i.e. if the transaction is larger
3321 * than the iclog, it will be the only thing in that iclog.
3322 * Fundamentally, this means we must pass the entire log vector to
3323 * xlog_write to guarantee this.
3325 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3326 num_headers
= howmany(unit_bytes
, iclog_space
);
3328 /* for split-recs - ophdrs added when data split over LRs */
3329 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3331 /* add extra header reservations if we overrun */
3332 while (!num_headers
||
3333 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3334 unit_bytes
+= sizeof(xlog_op_header_t
);
3337 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3339 /* for commit-rec LR header - note: padding will subsume the ophdr */
3340 unit_bytes
+= log
->l_iclog_hsize
;
3342 /* for roundoff padding for transaction data and one for commit record */
3343 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3344 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3345 /* log su roundoff */
3346 unit_bytes
+= 2*log
->l_mp
->m_sb
.sb_logsunit
;
3349 unit_bytes
+= 2*BBSIZE
;
3352 atomic_set(&tic
->t_ref
, 1);
3353 INIT_LIST_HEAD(&tic
->t_queue
);
3354 tic
->t_unit_res
= unit_bytes
;
3355 tic
->t_curr_res
= unit_bytes
;
3358 tic
->t_tid
= random32();
3359 tic
->t_clientid
= client
;
3360 tic
->t_flags
= XLOG_TIC_INITED
;
3361 tic
->t_trans_type
= 0;
3362 if (xflags
& XFS_LOG_PERM_RESERV
)
3363 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3364 init_waitqueue_head(&tic
->t_wait
);
3366 xlog_tic_reset_res(tic
);
3372 /******************************************************************************
3374 * Log debug routines
3376 ******************************************************************************
3380 * Make sure that the destination ptr is within the valid data region of
3381 * one of the iclogs. This uses backup pointers stored in a different
3382 * part of the log in case we trash the log structure.
3385 xlog_verify_dest_ptr(
3392 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3393 if (ptr
>= log
->l_iclog_bak
[i
] &&
3394 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3399 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3403 * Check to make sure the grant write head didn't just over lap the tail. If
3404 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3405 * the cycles differ by exactly one and check the byte count.
3407 * This check is run unlocked, so can give false positives. Rather than assert
3408 * on failures, use a warn-once flag and a panic tag to allow the admin to
3409 * determine if they want to panic the machine when such an error occurs. For
3410 * debug kernels this will have the same effect as using an assert but, unlinke
3411 * an assert, it can be turned off at runtime.
3414 xlog_verify_grant_tail(
3417 int tail_cycle
, tail_blocks
;
3420 xlog_crack_grant_head(&log
->l_grant_write_head
, &cycle
, &space
);
3421 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3422 if (tail_cycle
!= cycle
) {
3423 if (cycle
- 1 != tail_cycle
&&
3424 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3425 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3426 "%s: cycle - 1 != tail_cycle", __func__
);
3427 log
->l_flags
|= XLOG_TAIL_WARN
;
3430 if (space
> BBTOB(tail_blocks
) &&
3431 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3432 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3433 "%s: space > BBTOB(tail_blocks)", __func__
);
3434 log
->l_flags
|= XLOG_TAIL_WARN
;
3439 /* check if it will fit */
3441 xlog_verify_tail_lsn(xlog_t
*log
,
3442 xlog_in_core_t
*iclog
,
3447 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3449 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3450 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3451 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3453 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3455 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3456 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3458 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3459 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3460 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3462 } /* xlog_verify_tail_lsn */
3465 * Perform a number of checks on the iclog before writing to disk.
3467 * 1. Make sure the iclogs are still circular
3468 * 2. Make sure we have a good magic number
3469 * 3. Make sure we don't have magic numbers in the data
3470 * 4. Check fields of each log operation header for:
3471 * A. Valid client identifier
3472 * B. tid ptr value falls in valid ptr space (user space code)
3473 * C. Length in log record header is correct according to the
3474 * individual operation headers within record.
3475 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3476 * log, check the preceding blocks of the physical log to make sure all
3477 * the cycle numbers agree with the current cycle number.
3480 xlog_verify_iclog(xlog_t
*log
,
3481 xlog_in_core_t
*iclog
,
3485 xlog_op_header_t
*ophead
;
3486 xlog_in_core_t
*icptr
;
3487 xlog_in_core_2_t
*xhdr
;
3489 xfs_caddr_t base_ptr
;
3490 __psint_t field_offset
;
3492 int len
, i
, j
, k
, op_len
;
3495 /* check validity of iclog pointers */
3496 spin_lock(&log
->l_icloglock
);
3497 icptr
= log
->l_iclog
;
3498 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
3500 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3501 icptr
= icptr
->ic_next
;
3503 if (icptr
!= log
->l_iclog
)
3504 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3505 spin_unlock(&log
->l_icloglock
);
3507 /* check log magic numbers */
3508 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3509 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3511 ptr
= (xfs_caddr_t
) &iclog
->ic_header
;
3512 for (ptr
+= BBSIZE
; ptr
< ((xfs_caddr_t
)&iclog
->ic_header
) + count
;
3514 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3515 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3520 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3521 ptr
= iclog
->ic_datap
;
3523 ophead
= (xlog_op_header_t
*)ptr
;
3524 xhdr
= iclog
->ic_data
;
3525 for (i
= 0; i
< len
; i
++) {
3526 ophead
= (xlog_op_header_t
*)ptr
;
3528 /* clientid is only 1 byte */
3529 field_offset
= (__psint_t
)
3530 ((xfs_caddr_t
)&(ophead
->oh_clientid
) - base_ptr
);
3531 if (syncing
== B_FALSE
|| (field_offset
& 0x1ff)) {
3532 clientid
= ophead
->oh_clientid
;
3534 idx
= BTOBBT((xfs_caddr_t
)&(ophead
->oh_clientid
) - iclog
->ic_datap
);
3535 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3536 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3537 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3538 clientid
= xlog_get_client_id(
3539 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3541 clientid
= xlog_get_client_id(
3542 iclog
->ic_header
.h_cycle_data
[idx
]);
3545 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3547 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3548 __func__
, clientid
, ophead
,
3549 (unsigned long)field_offset
);
3552 field_offset
= (__psint_t
)
3553 ((xfs_caddr_t
)&(ophead
->oh_len
) - base_ptr
);
3554 if (syncing
== B_FALSE
|| (field_offset
& 0x1ff)) {
3555 op_len
= be32_to_cpu(ophead
->oh_len
);
3557 idx
= BTOBBT((__psint_t
)&ophead
->oh_len
-
3558 (__psint_t
)iclog
->ic_datap
);
3559 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3560 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3561 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3562 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3564 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3567 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3569 } /* xlog_verify_iclog */
3573 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3579 xlog_in_core_t
*iclog
, *ic
;
3581 iclog
= log
->l_iclog
;
3582 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3584 * Mark all the incore logs IOERROR.
3585 * From now on, no log flushes will result.
3589 ic
->ic_state
= XLOG_STATE_IOERROR
;
3591 } while (ic
!= iclog
);
3595 * Return non-zero, if state transition has already happened.
3601 * This is called from xfs_force_shutdown, when we're forcibly
3602 * shutting down the filesystem, typically because of an IO error.
3603 * Our main objectives here are to make sure that:
3604 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3605 * parties to find out, 'atomically'.
3606 * b. those who're sleeping on log reservations, pinned objects and
3607 * other resources get woken up, and be told the bad news.
3608 * c. nothing new gets queued up after (a) and (b) are done.
3609 * d. if !logerror, flush the iclogs to disk, then seal them off
3612 * Note: for delayed logging the !logerror case needs to flush the regions
3613 * held in memory out to the iclogs before flushing them to disk. This needs
3614 * to be done before the log is marked as shutdown, otherwise the flush to the
3618 xfs_log_force_umount(
3619 struct xfs_mount
*mp
,
3629 * If this happens during log recovery, don't worry about
3630 * locking; the log isn't open for business yet.
3633 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3634 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3636 XFS_BUF_DONE(mp
->m_sb_bp
);
3641 * Somebody could've already done the hard work for us.
3642 * No need to get locks for this.
3644 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3645 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3651 * Flush the in memory commit item list before marking the log as
3652 * being shut down. We need to do it in this order to ensure all the
3653 * completed transactions are flushed to disk with the xfs_log_force()
3656 if (!logerror
&& (mp
->m_flags
& XFS_MOUNT_DELAYLOG
))
3657 xlog_cil_force(log
);
3660 * mark the filesystem and the as in a shutdown state and wake
3661 * everybody up to tell them the bad news.
3663 spin_lock(&log
->l_icloglock
);
3664 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3666 XFS_BUF_DONE(mp
->m_sb_bp
);
3669 * This flag is sort of redundant because of the mount flag, but
3670 * it's good to maintain the separation between the log and the rest
3673 log
->l_flags
|= XLOG_IO_ERROR
;
3676 * If we hit a log error, we want to mark all the iclogs IOERROR
3677 * while we're still holding the loglock.
3680 retval
= xlog_state_ioerror(log
);
3681 spin_unlock(&log
->l_icloglock
);
3684 * We don't want anybody waiting for log reservations after this. That
3685 * means we have to wake up everybody queued up on reserveq as well as
3686 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3687 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3688 * action is protected by the grant locks.
3690 spin_lock(&log
->l_grant_reserve_lock
);
3691 list_for_each_entry(tic
, &log
->l_reserveq
, t_queue
)
3692 wake_up(&tic
->t_wait
);
3693 spin_unlock(&log
->l_grant_reserve_lock
);
3695 spin_lock(&log
->l_grant_write_lock
);
3696 list_for_each_entry(tic
, &log
->l_writeq
, t_queue
)
3697 wake_up(&tic
->t_wait
);
3698 spin_unlock(&log
->l_grant_write_lock
);
3700 if (!(log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3703 * Force the incore logs to disk before shutting the
3704 * log down completely.
3706 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
3708 spin_lock(&log
->l_icloglock
);
3709 retval
= xlog_state_ioerror(log
);
3710 spin_unlock(&log
->l_icloglock
);
3713 * Wake up everybody waiting on xfs_log_force.
3714 * Callback all log item committed functions as if the
3715 * log writes were completed.
3717 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
3719 #ifdef XFSERRORDEBUG
3721 xlog_in_core_t
*iclog
;
3723 spin_lock(&log
->l_icloglock
);
3724 iclog
= log
->l_iclog
;
3726 ASSERT(iclog
->ic_callback
== 0);
3727 iclog
= iclog
->ic_next
;
3728 } while (iclog
!= log
->l_iclog
);
3729 spin_unlock(&log
->l_icloglock
);
3732 /* return non-zero if log IOERROR transition had already happened */
3737 xlog_iclogs_empty(xlog_t
*log
)
3739 xlog_in_core_t
*iclog
;
3741 iclog
= log
->l_iclog
;
3743 /* endianness does not matter here, zero is zero in
3746 if (iclog
->ic_header
.h_num_logops
)
3748 iclog
= iclog
->ic_next
;
3749 } while (iclog
!= log
->l_iclog
);