4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
73 #define PFX "ipmi_si: "
75 /* Measure times between events in the driver. */
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC 10000
80 #define SI_USEC_PER_JIFFY (1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
90 SI_CLEARING_FLAGS_THEN_SET_IRQ
,
92 SI_ENABLE_INTERRUPTS1
,
93 SI_ENABLE_INTERRUPTS2
,
94 SI_DISABLE_INTERRUPTS1
,
95 SI_DISABLE_INTERRUPTS2
96 /* FIXME - add watchdog stuff. */
99 /* Some BT-specific defines we need here. */
100 #define IPMI_BT_INTMASK_REG 2
101 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
102 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105 SI_KCS
, SI_SMIC
, SI_BT
107 static char *si_to_str
[] = { "kcs", "smic", "bt" };
109 #define DEVICE_NAME "ipmi_si"
111 static struct platform_driver ipmi_driver
= {
114 .bus
= &platform_bus_type
120 * Indexes into stats[] in smi_info below.
122 enum si_stat_indexes
{
124 * Number of times the driver requested a timer while an operation
127 SI_STAT_short_timeouts
= 0,
130 * Number of times the driver requested a timer while nothing was in
133 SI_STAT_long_timeouts
,
135 /* Number of times the interface was idle while being polled. */
138 /* Number of interrupts the driver handled. */
141 /* Number of time the driver got an ATTN from the hardware. */
144 /* Number of times the driver requested flags from the hardware. */
145 SI_STAT_flag_fetches
,
147 /* Number of times the hardware didn't follow the state machine. */
150 /* Number of completed messages. */
151 SI_STAT_complete_transactions
,
153 /* Number of IPMI events received from the hardware. */
156 /* Number of watchdog pretimeouts. */
157 SI_STAT_watchdog_pretimeouts
,
159 /* Number of asyncronous messages received. */
160 SI_STAT_incoming_messages
,
163 /* This *must* remain last, add new values above this. */
170 struct si_sm_data
*si_sm
;
171 struct si_sm_handlers
*handlers
;
172 enum si_type si_type
;
175 struct list_head xmit_msgs
;
176 struct list_head hp_xmit_msgs
;
177 struct ipmi_smi_msg
*curr_msg
;
178 enum si_intf_state si_state
;
181 * Used to handle the various types of I/O that can occur with
185 int (*io_setup
)(struct smi_info
*info
);
186 void (*io_cleanup
)(struct smi_info
*info
);
187 int (*irq_setup
)(struct smi_info
*info
);
188 void (*irq_cleanup
)(struct smi_info
*info
);
189 unsigned int io_size
;
190 char *addr_source
; /* ACPI, PCI, SMBIOS, hardcode, default. */
191 void (*addr_source_cleanup
)(struct smi_info
*info
);
192 void *addr_source_data
;
195 * Per-OEM handler, called from handle_flags(). Returns 1
196 * when handle_flags() needs to be re-run or 0 indicating it
197 * set si_state itself.
199 int (*oem_data_avail_handler
)(struct smi_info
*smi_info
);
202 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
203 * is set to hold the flags until we are done handling everything
206 #define RECEIVE_MSG_AVAIL 0x01
207 #define EVENT_MSG_BUFFER_FULL 0x02
208 #define WDT_PRE_TIMEOUT_INT 0x08
209 #define OEM0_DATA_AVAIL 0x20
210 #define OEM1_DATA_AVAIL 0x40
211 #define OEM2_DATA_AVAIL 0x80
212 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
215 unsigned char msg_flags
;
217 /* Does the BMC have an event buffer? */
218 char has_event_buffer
;
221 * If set to true, this will request events the next time the
222 * state machine is idle.
227 * If true, run the state machine to completion on every send
228 * call. Generally used after a panic to make sure stuff goes
231 int run_to_completion
;
233 /* The I/O port of an SI interface. */
237 * The space between start addresses of the two ports. For
238 * instance, if the first port is 0xca2 and the spacing is 4, then
239 * the second port is 0xca6.
241 unsigned int spacing
;
243 /* zero if no irq; */
246 /* The timer for this si. */
247 struct timer_list si_timer
;
249 /* The time (in jiffies) the last timeout occurred at. */
250 unsigned long last_timeout_jiffies
;
252 /* Used to gracefully stop the timer without race conditions. */
253 atomic_t stop_operation
;
256 * The driver will disable interrupts when it gets into a
257 * situation where it cannot handle messages due to lack of
258 * memory. Once that situation clears up, it will re-enable
261 int interrupt_disabled
;
263 /* From the get device id response... */
264 struct ipmi_device_id device_id
;
266 /* Driver model stuff. */
268 struct platform_device
*pdev
;
271 * True if we allocated the device, false if it came from
272 * someplace else (like PCI).
276 /* Slave address, could be reported from DMI. */
277 unsigned char slave_addr
;
279 /* Counters and things for the proc filesystem. */
280 atomic_t stats
[SI_NUM_STATS
];
282 struct task_struct
*thread
;
284 struct list_head link
;
287 #define smi_inc_stat(smi, stat) \
288 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
289 #define smi_get_stat(smi, stat) \
290 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292 #define SI_MAX_PARMS 4
294 static int force_kipmid
[SI_MAX_PARMS
];
295 static int num_force_kipmid
;
297 static int unload_when_empty
= 1;
299 static int try_smi_init(struct smi_info
*smi
);
300 static void cleanup_one_si(struct smi_info
*to_clean
);
302 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list
);
303 static int register_xaction_notifier(struct notifier_block
*nb
)
305 return atomic_notifier_chain_register(&xaction_notifier_list
, nb
);
308 static void deliver_recv_msg(struct smi_info
*smi_info
,
309 struct ipmi_smi_msg
*msg
)
311 /* Deliver the message to the upper layer with the lock
313 spin_unlock(&(smi_info
->si_lock
));
314 ipmi_smi_msg_received(smi_info
->intf
, msg
);
315 spin_lock(&(smi_info
->si_lock
));
318 static void return_hosed_msg(struct smi_info
*smi_info
, int cCode
)
320 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
322 if (cCode
< 0 || cCode
> IPMI_ERR_UNSPECIFIED
)
323 cCode
= IPMI_ERR_UNSPECIFIED
;
324 /* else use it as is */
326 /* Make it a reponse */
327 msg
->rsp
[0] = msg
->data
[0] | 4;
328 msg
->rsp
[1] = msg
->data
[1];
332 smi_info
->curr_msg
= NULL
;
333 deliver_recv_msg(smi_info
, msg
);
336 static enum si_sm_result
start_next_msg(struct smi_info
*smi_info
)
339 struct list_head
*entry
= NULL
;
345 * No need to save flags, we aleady have interrupts off and we
346 * already hold the SMI lock.
348 if (!smi_info
->run_to_completion
)
349 spin_lock(&(smi_info
->msg_lock
));
351 /* Pick the high priority queue first. */
352 if (!list_empty(&(smi_info
->hp_xmit_msgs
))) {
353 entry
= smi_info
->hp_xmit_msgs
.next
;
354 } else if (!list_empty(&(smi_info
->xmit_msgs
))) {
355 entry
= smi_info
->xmit_msgs
.next
;
359 smi_info
->curr_msg
= NULL
;
365 smi_info
->curr_msg
= list_entry(entry
,
370 printk(KERN_DEBUG
"**Start2: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
372 err
= atomic_notifier_call_chain(&xaction_notifier_list
,
374 if (err
& NOTIFY_STOP_MASK
) {
375 rv
= SI_SM_CALL_WITHOUT_DELAY
;
378 err
= smi_info
->handlers
->start_transaction(
380 smi_info
->curr_msg
->data
,
381 smi_info
->curr_msg
->data_size
);
383 return_hosed_msg(smi_info
, err
);
385 rv
= SI_SM_CALL_WITHOUT_DELAY
;
388 if (!smi_info
->run_to_completion
)
389 spin_unlock(&(smi_info
->msg_lock
));
394 static void start_enable_irq(struct smi_info
*smi_info
)
396 unsigned char msg
[2];
399 * If we are enabling interrupts, we have to tell the
402 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
403 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
405 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
406 smi_info
->si_state
= SI_ENABLE_INTERRUPTS1
;
409 static void start_disable_irq(struct smi_info
*smi_info
)
411 unsigned char msg
[2];
413 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
414 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
416 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
417 smi_info
->si_state
= SI_DISABLE_INTERRUPTS1
;
420 static void start_clear_flags(struct smi_info
*smi_info
)
422 unsigned char msg
[3];
424 /* Make sure the watchdog pre-timeout flag is not set at startup. */
425 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
426 msg
[1] = IPMI_CLEAR_MSG_FLAGS_CMD
;
427 msg
[2] = WDT_PRE_TIMEOUT_INT
;
429 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
430 smi_info
->si_state
= SI_CLEARING_FLAGS
;
434 * When we have a situtaion where we run out of memory and cannot
435 * allocate messages, we just leave them in the BMC and run the system
436 * polled until we can allocate some memory. Once we have some
437 * memory, we will re-enable the interrupt.
439 static inline void disable_si_irq(struct smi_info
*smi_info
)
441 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
442 start_disable_irq(smi_info
);
443 smi_info
->interrupt_disabled
= 1;
447 static inline void enable_si_irq(struct smi_info
*smi_info
)
449 if ((smi_info
->irq
) && (smi_info
->interrupt_disabled
)) {
450 start_enable_irq(smi_info
);
451 smi_info
->interrupt_disabled
= 0;
455 static void handle_flags(struct smi_info
*smi_info
)
458 if (smi_info
->msg_flags
& WDT_PRE_TIMEOUT_INT
) {
459 /* Watchdog pre-timeout */
460 smi_inc_stat(smi_info
, watchdog_pretimeouts
);
462 start_clear_flags(smi_info
);
463 smi_info
->msg_flags
&= ~WDT_PRE_TIMEOUT_INT
;
464 spin_unlock(&(smi_info
->si_lock
));
465 ipmi_smi_watchdog_pretimeout(smi_info
->intf
);
466 spin_lock(&(smi_info
->si_lock
));
467 } else if (smi_info
->msg_flags
& RECEIVE_MSG_AVAIL
) {
468 /* Messages available. */
469 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
470 if (!smi_info
->curr_msg
) {
471 disable_si_irq(smi_info
);
472 smi_info
->si_state
= SI_NORMAL
;
475 enable_si_irq(smi_info
);
477 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
478 smi_info
->curr_msg
->data
[1] = IPMI_GET_MSG_CMD
;
479 smi_info
->curr_msg
->data_size
= 2;
481 smi_info
->handlers
->start_transaction(
483 smi_info
->curr_msg
->data
,
484 smi_info
->curr_msg
->data_size
);
485 smi_info
->si_state
= SI_GETTING_MESSAGES
;
486 } else if (smi_info
->msg_flags
& EVENT_MSG_BUFFER_FULL
) {
487 /* Events available. */
488 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
489 if (!smi_info
->curr_msg
) {
490 disable_si_irq(smi_info
);
491 smi_info
->si_state
= SI_NORMAL
;
494 enable_si_irq(smi_info
);
496 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
497 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
498 smi_info
->curr_msg
->data_size
= 2;
500 smi_info
->handlers
->start_transaction(
502 smi_info
->curr_msg
->data
,
503 smi_info
->curr_msg
->data_size
);
504 smi_info
->si_state
= SI_GETTING_EVENTS
;
505 } else if (smi_info
->msg_flags
& OEM_DATA_AVAIL
&&
506 smi_info
->oem_data_avail_handler
) {
507 if (smi_info
->oem_data_avail_handler(smi_info
))
510 smi_info
->si_state
= SI_NORMAL
;
513 static void handle_transaction_done(struct smi_info
*smi_info
)
515 struct ipmi_smi_msg
*msg
;
520 printk(KERN_DEBUG
"**Done: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
522 switch (smi_info
->si_state
) {
524 if (!smi_info
->curr_msg
)
527 smi_info
->curr_msg
->rsp_size
528 = smi_info
->handlers
->get_result(
530 smi_info
->curr_msg
->rsp
,
531 IPMI_MAX_MSG_LENGTH
);
534 * Do this here becase deliver_recv_msg() releases the
535 * lock, and a new message can be put in during the
536 * time the lock is released.
538 msg
= smi_info
->curr_msg
;
539 smi_info
->curr_msg
= NULL
;
540 deliver_recv_msg(smi_info
, msg
);
543 case SI_GETTING_FLAGS
:
545 unsigned char msg
[4];
548 /* We got the flags from the SMI, now handle them. */
549 len
= smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
551 /* Error fetching flags, just give up for now. */
552 smi_info
->si_state
= SI_NORMAL
;
553 } else if (len
< 4) {
555 * Hmm, no flags. That's technically illegal, but
556 * don't use uninitialized data.
558 smi_info
->si_state
= SI_NORMAL
;
560 smi_info
->msg_flags
= msg
[3];
561 handle_flags(smi_info
);
566 case SI_CLEARING_FLAGS
:
567 case SI_CLEARING_FLAGS_THEN_SET_IRQ
:
569 unsigned char msg
[3];
571 /* We cleared the flags. */
572 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 3);
574 /* Error clearing flags */
576 "ipmi_si: Error clearing flags: %2.2x\n",
579 if (smi_info
->si_state
== SI_CLEARING_FLAGS_THEN_SET_IRQ
)
580 start_enable_irq(smi_info
);
582 smi_info
->si_state
= SI_NORMAL
;
586 case SI_GETTING_EVENTS
:
588 smi_info
->curr_msg
->rsp_size
589 = smi_info
->handlers
->get_result(
591 smi_info
->curr_msg
->rsp
,
592 IPMI_MAX_MSG_LENGTH
);
595 * Do this here becase deliver_recv_msg() releases the
596 * lock, and a new message can be put in during the
597 * time the lock is released.
599 msg
= smi_info
->curr_msg
;
600 smi_info
->curr_msg
= NULL
;
601 if (msg
->rsp
[2] != 0) {
602 /* Error getting event, probably done. */
605 /* Take off the event flag. */
606 smi_info
->msg_flags
&= ~EVENT_MSG_BUFFER_FULL
;
607 handle_flags(smi_info
);
609 smi_inc_stat(smi_info
, events
);
612 * Do this before we deliver the message
613 * because delivering the message releases the
614 * lock and something else can mess with the
617 handle_flags(smi_info
);
619 deliver_recv_msg(smi_info
, msg
);
624 case SI_GETTING_MESSAGES
:
626 smi_info
->curr_msg
->rsp_size
627 = smi_info
->handlers
->get_result(
629 smi_info
->curr_msg
->rsp
,
630 IPMI_MAX_MSG_LENGTH
);
633 * Do this here becase deliver_recv_msg() releases the
634 * lock, and a new message can be put in during the
635 * time the lock is released.
637 msg
= smi_info
->curr_msg
;
638 smi_info
->curr_msg
= NULL
;
639 if (msg
->rsp
[2] != 0) {
640 /* Error getting event, probably done. */
643 /* Take off the msg flag. */
644 smi_info
->msg_flags
&= ~RECEIVE_MSG_AVAIL
;
645 handle_flags(smi_info
);
647 smi_inc_stat(smi_info
, incoming_messages
);
650 * Do this before we deliver the message
651 * because delivering the message releases the
652 * lock and something else can mess with the
655 handle_flags(smi_info
);
657 deliver_recv_msg(smi_info
, msg
);
662 case SI_ENABLE_INTERRUPTS1
:
664 unsigned char msg
[4];
666 /* We got the flags from the SMI, now handle them. */
667 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
670 "ipmi_si: Could not enable interrupts"
671 ", failed get, using polled mode.\n");
672 smi_info
->si_state
= SI_NORMAL
;
674 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
675 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
677 IPMI_BMC_RCV_MSG_INTR
|
678 IPMI_BMC_EVT_MSG_INTR
);
679 smi_info
->handlers
->start_transaction(
680 smi_info
->si_sm
, msg
, 3);
681 smi_info
->si_state
= SI_ENABLE_INTERRUPTS2
;
686 case SI_ENABLE_INTERRUPTS2
:
688 unsigned char msg
[4];
690 /* We got the flags from the SMI, now handle them. */
691 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
694 "ipmi_si: Could not enable interrupts"
695 ", failed set, using polled mode.\n");
697 smi_info
->si_state
= SI_NORMAL
;
701 case SI_DISABLE_INTERRUPTS1
:
703 unsigned char msg
[4];
705 /* We got the flags from the SMI, now handle them. */
706 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
709 "ipmi_si: Could not disable interrupts"
711 smi_info
->si_state
= SI_NORMAL
;
713 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
714 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
716 ~(IPMI_BMC_RCV_MSG_INTR
|
717 IPMI_BMC_EVT_MSG_INTR
));
718 smi_info
->handlers
->start_transaction(
719 smi_info
->si_sm
, msg
, 3);
720 smi_info
->si_state
= SI_DISABLE_INTERRUPTS2
;
725 case SI_DISABLE_INTERRUPTS2
:
727 unsigned char msg
[4];
729 /* We got the flags from the SMI, now handle them. */
730 smi_info
->handlers
->get_result(smi_info
->si_sm
, msg
, 4);
733 "ipmi_si: Could not disable interrupts"
736 smi_info
->si_state
= SI_NORMAL
;
743 * Called on timeouts and events. Timeouts should pass the elapsed
744 * time, interrupts should pass in zero. Must be called with
745 * si_lock held and interrupts disabled.
747 static enum si_sm_result
smi_event_handler(struct smi_info
*smi_info
,
750 enum si_sm_result si_sm_result
;
754 * There used to be a loop here that waited a little while
755 * (around 25us) before giving up. That turned out to be
756 * pointless, the minimum delays I was seeing were in the 300us
757 * range, which is far too long to wait in an interrupt. So
758 * we just run until the state machine tells us something
759 * happened or it needs a delay.
761 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, time
);
763 while (si_sm_result
== SI_SM_CALL_WITHOUT_DELAY
)
764 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
766 if (si_sm_result
== SI_SM_TRANSACTION_COMPLETE
) {
767 smi_inc_stat(smi_info
, complete_transactions
);
769 handle_transaction_done(smi_info
);
770 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
771 } else if (si_sm_result
== SI_SM_HOSED
) {
772 smi_inc_stat(smi_info
, hosed_count
);
775 * Do the before return_hosed_msg, because that
778 smi_info
->si_state
= SI_NORMAL
;
779 if (smi_info
->curr_msg
!= NULL
) {
781 * If we were handling a user message, format
782 * a response to send to the upper layer to
783 * tell it about the error.
785 return_hosed_msg(smi_info
, IPMI_ERR_UNSPECIFIED
);
787 si_sm_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
791 * We prefer handling attn over new messages. But don't do
792 * this if there is not yet an upper layer to handle anything.
794 if (likely(smi_info
->intf
) && si_sm_result
== SI_SM_ATTN
) {
795 unsigned char msg
[2];
797 smi_inc_stat(smi_info
, attentions
);
800 * Got a attn, send down a get message flags to see
801 * what's causing it. It would be better to handle
802 * this in the upper layer, but due to the way
803 * interrupts work with the SMI, that's not really
806 msg
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
807 msg
[1] = IPMI_GET_MSG_FLAGS_CMD
;
809 smi_info
->handlers
->start_transaction(
810 smi_info
->si_sm
, msg
, 2);
811 smi_info
->si_state
= SI_GETTING_FLAGS
;
815 /* If we are currently idle, try to start the next message. */
816 if (si_sm_result
== SI_SM_IDLE
) {
817 smi_inc_stat(smi_info
, idles
);
819 si_sm_result
= start_next_msg(smi_info
);
820 if (si_sm_result
!= SI_SM_IDLE
)
824 if ((si_sm_result
== SI_SM_IDLE
)
825 && (atomic_read(&smi_info
->req_events
))) {
827 * We are idle and the upper layer requested that I fetch
830 atomic_set(&smi_info
->req_events
, 0);
832 smi_info
->curr_msg
= ipmi_alloc_smi_msg();
833 if (!smi_info
->curr_msg
)
836 smi_info
->curr_msg
->data
[0] = (IPMI_NETFN_APP_REQUEST
<< 2);
837 smi_info
->curr_msg
->data
[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD
;
838 smi_info
->curr_msg
->data_size
= 2;
840 smi_info
->handlers
->start_transaction(
842 smi_info
->curr_msg
->data
,
843 smi_info
->curr_msg
->data_size
);
844 smi_info
->si_state
= SI_GETTING_EVENTS
;
851 static void sender(void *send_info
,
852 struct ipmi_smi_msg
*msg
,
855 struct smi_info
*smi_info
= send_info
;
856 enum si_sm_result result
;
862 if (atomic_read(&smi_info
->stop_operation
)) {
863 msg
->rsp
[0] = msg
->data
[0] | 4;
864 msg
->rsp
[1] = msg
->data
[1];
865 msg
->rsp
[2] = IPMI_ERR_UNSPECIFIED
;
867 deliver_recv_msg(smi_info
, msg
);
873 printk("**Enqueue: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
876 if (smi_info
->run_to_completion
) {
878 * If we are running to completion, then throw it in
879 * the list and run transactions until everything is
880 * clear. Priority doesn't matter here.
884 * Run to completion means we are single-threaded, no
887 list_add_tail(&(msg
->link
), &(smi_info
->xmit_msgs
));
889 result
= smi_event_handler(smi_info
, 0);
890 while (result
!= SI_SM_IDLE
) {
891 udelay(SI_SHORT_TIMEOUT_USEC
);
892 result
= smi_event_handler(smi_info
,
893 SI_SHORT_TIMEOUT_USEC
);
898 spin_lock_irqsave(&smi_info
->msg_lock
, flags
);
900 list_add_tail(&msg
->link
, &smi_info
->hp_xmit_msgs
);
902 list_add_tail(&msg
->link
, &smi_info
->xmit_msgs
);
903 spin_unlock_irqrestore(&smi_info
->msg_lock
, flags
);
905 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
906 if (smi_info
->si_state
== SI_NORMAL
&& smi_info
->curr_msg
== NULL
)
907 start_next_msg(smi_info
);
908 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
911 static void set_run_to_completion(void *send_info
, int i_run_to_completion
)
913 struct smi_info
*smi_info
= send_info
;
914 enum si_sm_result result
;
916 smi_info
->run_to_completion
= i_run_to_completion
;
917 if (i_run_to_completion
) {
918 result
= smi_event_handler(smi_info
, 0);
919 while (result
!= SI_SM_IDLE
) {
920 udelay(SI_SHORT_TIMEOUT_USEC
);
921 result
= smi_event_handler(smi_info
,
922 SI_SHORT_TIMEOUT_USEC
);
927 static int ipmi_thread(void *data
)
929 struct smi_info
*smi_info
= data
;
931 enum si_sm_result smi_result
;
933 set_user_nice(current
, 19);
934 while (!kthread_should_stop()) {
935 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
936 smi_result
= smi_event_handler(smi_info
, 0);
937 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
938 if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
)
940 else if (smi_result
== SI_SM_CALL_WITH_DELAY
)
943 schedule_timeout_interruptible(1);
949 static void poll(void *send_info
)
951 struct smi_info
*smi_info
= send_info
;
955 * Make sure there is some delay in the poll loop so we can
956 * drive time forward and timeout things.
959 spin_lock_irqsave(&smi_info
->si_lock
, flags
);
960 smi_event_handler(smi_info
, 10);
961 spin_unlock_irqrestore(&smi_info
->si_lock
, flags
);
964 static void request_events(void *send_info
)
966 struct smi_info
*smi_info
= send_info
;
968 if (atomic_read(&smi_info
->stop_operation
) ||
969 !smi_info
->has_event_buffer
)
972 atomic_set(&smi_info
->req_events
, 1);
975 static int initialized
;
977 static void smi_timeout(unsigned long data
)
979 struct smi_info
*smi_info
= (struct smi_info
*) data
;
980 enum si_sm_result smi_result
;
982 unsigned long jiffies_now
;
988 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
991 printk(KERN_DEBUG
"**Timer: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
993 jiffies_now
= jiffies
;
994 time_diff
= (((long)jiffies_now
- (long)smi_info
->last_timeout_jiffies
)
995 * SI_USEC_PER_JIFFY
);
996 smi_result
= smi_event_handler(smi_info
, time_diff
);
998 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1000 smi_info
->last_timeout_jiffies
= jiffies_now
;
1002 if ((smi_info
->irq
) && (!smi_info
->interrupt_disabled
)) {
1003 /* Running with interrupts, only do long timeouts. */
1004 smi_info
->si_timer
.expires
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1005 smi_inc_stat(smi_info
, long_timeouts
);
1010 * If the state machine asks for a short delay, then shorten
1011 * the timer timeout.
1013 if (smi_result
== SI_SM_CALL_WITH_DELAY
) {
1014 smi_inc_stat(smi_info
, short_timeouts
);
1015 smi_info
->si_timer
.expires
= jiffies
+ 1;
1017 smi_inc_stat(smi_info
, long_timeouts
);
1018 smi_info
->si_timer
.expires
= jiffies
+ SI_TIMEOUT_JIFFIES
;
1022 add_timer(&(smi_info
->si_timer
));
1025 static irqreturn_t
si_irq_handler(int irq
, void *data
)
1027 struct smi_info
*smi_info
= data
;
1028 unsigned long flags
;
1033 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1035 smi_inc_stat(smi_info
, interrupts
);
1038 do_gettimeofday(&t
);
1039 printk(KERN_DEBUG
"**Interrupt: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1041 smi_event_handler(smi_info
, 0);
1042 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1046 static irqreturn_t
si_bt_irq_handler(int irq
, void *data
)
1048 struct smi_info
*smi_info
= data
;
1049 /* We need to clear the IRQ flag for the BT interface. */
1050 smi_info
->io
.outputb(&smi_info
->io
, IPMI_BT_INTMASK_REG
,
1051 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1052 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1053 return si_irq_handler(irq
, data
);
1056 static int smi_start_processing(void *send_info
,
1059 struct smi_info
*new_smi
= send_info
;
1062 new_smi
->intf
= intf
;
1064 /* Try to claim any interrupts. */
1065 if (new_smi
->irq_setup
)
1066 new_smi
->irq_setup(new_smi
);
1068 /* Set up the timer that drives the interface. */
1069 setup_timer(&new_smi
->si_timer
, smi_timeout
, (long)new_smi
);
1070 new_smi
->last_timeout_jiffies
= jiffies
;
1071 mod_timer(&new_smi
->si_timer
, jiffies
+ SI_TIMEOUT_JIFFIES
);
1074 * Check if the user forcefully enabled the daemon.
1076 if (new_smi
->intf_num
< num_force_kipmid
)
1077 enable
= force_kipmid
[new_smi
->intf_num
];
1079 * The BT interface is efficient enough to not need a thread,
1080 * and there is no need for a thread if we have interrupts.
1082 else if ((new_smi
->si_type
!= SI_BT
) && (!new_smi
->irq
))
1086 new_smi
->thread
= kthread_run(ipmi_thread
, new_smi
,
1087 "kipmi%d", new_smi
->intf_num
);
1088 if (IS_ERR(new_smi
->thread
)) {
1089 printk(KERN_NOTICE
"ipmi_si_intf: Could not start"
1090 " kernel thread due to error %ld, only using"
1091 " timers to drive the interface\n",
1092 PTR_ERR(new_smi
->thread
));
1093 new_smi
->thread
= NULL
;
1100 static void set_maintenance_mode(void *send_info
, int enable
)
1102 struct smi_info
*smi_info
= send_info
;
1105 atomic_set(&smi_info
->req_events
, 0);
1108 static struct ipmi_smi_handlers handlers
= {
1109 .owner
= THIS_MODULE
,
1110 .start_processing
= smi_start_processing
,
1112 .request_events
= request_events
,
1113 .set_maintenance_mode
= set_maintenance_mode
,
1114 .set_run_to_completion
= set_run_to_completion
,
1119 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1120 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1123 static LIST_HEAD(smi_infos
);
1124 static DEFINE_MUTEX(smi_infos_lock
);
1125 static int smi_num
; /* Used to sequence the SMIs */
1127 #define DEFAULT_REGSPACING 1
1128 #define DEFAULT_REGSIZE 1
1130 static int si_trydefaults
= 1;
1131 static char *si_type
[SI_MAX_PARMS
];
1132 #define MAX_SI_TYPE_STR 30
1133 static char si_type_str
[MAX_SI_TYPE_STR
];
1134 static unsigned long addrs
[SI_MAX_PARMS
];
1135 static unsigned int num_addrs
;
1136 static unsigned int ports
[SI_MAX_PARMS
];
1137 static unsigned int num_ports
;
1138 static int irqs
[SI_MAX_PARMS
];
1139 static unsigned int num_irqs
;
1140 static int regspacings
[SI_MAX_PARMS
];
1141 static unsigned int num_regspacings
;
1142 static int regsizes
[SI_MAX_PARMS
];
1143 static unsigned int num_regsizes
;
1144 static int regshifts
[SI_MAX_PARMS
];
1145 static unsigned int num_regshifts
;
1146 static int slave_addrs
[SI_MAX_PARMS
];
1147 static unsigned int num_slave_addrs
;
1149 #define IPMI_IO_ADDR_SPACE 0
1150 #define IPMI_MEM_ADDR_SPACE 1
1151 static char *addr_space_to_str
[] = { "i/o", "mem" };
1153 static int hotmod_handler(const char *val
, struct kernel_param
*kp
);
1155 module_param_call(hotmod
, hotmod_handler
, NULL
, NULL
, 0200);
1156 MODULE_PARM_DESC(hotmod
, "Add and remove interfaces. See"
1157 " Documentation/IPMI.txt in the kernel sources for the"
1160 module_param_named(trydefaults
, si_trydefaults
, bool, 0);
1161 MODULE_PARM_DESC(trydefaults
, "Setting this to 'false' will disable the"
1162 " default scan of the KCS and SMIC interface at the standard"
1164 module_param_string(type
, si_type_str
, MAX_SI_TYPE_STR
, 0);
1165 MODULE_PARM_DESC(type
, "Defines the type of each interface, each"
1166 " interface separated by commas. The types are 'kcs',"
1167 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1168 " the first interface to kcs and the second to bt");
1169 module_param_array(addrs
, ulong
, &num_addrs
, 0);
1170 MODULE_PARM_DESC(addrs
, "Sets the memory address of each interface, the"
1171 " addresses separated by commas. Only use if an interface"
1172 " is in memory. Otherwise, set it to zero or leave"
1174 module_param_array(ports
, uint
, &num_ports
, 0);
1175 MODULE_PARM_DESC(ports
, "Sets the port address of each interface, the"
1176 " addresses separated by commas. Only use if an interface"
1177 " is a port. Otherwise, set it to zero or leave"
1179 module_param_array(irqs
, int, &num_irqs
, 0);
1180 MODULE_PARM_DESC(irqs
, "Sets the interrupt of each interface, the"
1181 " addresses separated by commas. Only use if an interface"
1182 " has an interrupt. Otherwise, set it to zero or leave"
1184 module_param_array(regspacings
, int, &num_regspacings
, 0);
1185 MODULE_PARM_DESC(regspacings
, "The number of bytes between the start address"
1186 " and each successive register used by the interface. For"
1187 " instance, if the start address is 0xca2 and the spacing"
1188 " is 2, then the second address is at 0xca4. Defaults"
1190 module_param_array(regsizes
, int, &num_regsizes
, 0);
1191 MODULE_PARM_DESC(regsizes
, "The size of the specific IPMI register in bytes."
1192 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1193 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1194 " the 8-bit IPMI register has to be read from a larger"
1196 module_param_array(regshifts
, int, &num_regshifts
, 0);
1197 MODULE_PARM_DESC(regshifts
, "The amount to shift the data read from the."
1198 " IPMI register, in bits. For instance, if the data"
1199 " is read from a 32-bit word and the IPMI data is in"
1200 " bit 8-15, then the shift would be 8");
1201 module_param_array(slave_addrs
, int, &num_slave_addrs
, 0);
1202 MODULE_PARM_DESC(slave_addrs
, "Set the default IPMB slave address for"
1203 " the controller. Normally this is 0x20, but can be"
1204 " overridden by this parm. This is an array indexed"
1205 " by interface number.");
1206 module_param_array(force_kipmid
, int, &num_force_kipmid
, 0);
1207 MODULE_PARM_DESC(force_kipmid
, "Force the kipmi daemon to be enabled (1) or"
1208 " disabled(0). Normally the IPMI driver auto-detects"
1209 " this, but the value may be overridden by this parm.");
1210 module_param(unload_when_empty
, int, 0);
1211 MODULE_PARM_DESC(unload_when_empty
, "Unload the module if no interfaces are"
1212 " specified or found, default is 1. Setting to 0"
1213 " is useful for hot add of devices using hotmod.");
1216 static void std_irq_cleanup(struct smi_info
*info
)
1218 if (info
->si_type
== SI_BT
)
1219 /* Disable the interrupt in the BT interface. */
1220 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
, 0);
1221 free_irq(info
->irq
, info
);
1224 static int std_irq_setup(struct smi_info
*info
)
1231 if (info
->si_type
== SI_BT
) {
1232 rv
= request_irq(info
->irq
,
1234 IRQF_SHARED
| IRQF_DISABLED
,
1238 /* Enable the interrupt in the BT interface. */
1239 info
->io
.outputb(&info
->io
, IPMI_BT_INTMASK_REG
,
1240 IPMI_BT_INTMASK_ENABLE_IRQ_BIT
);
1242 rv
= request_irq(info
->irq
,
1244 IRQF_SHARED
| IRQF_DISABLED
,
1249 "ipmi_si: %s unable to claim interrupt %d,"
1250 " running polled\n",
1251 DEVICE_NAME
, info
->irq
);
1254 info
->irq_cleanup
= std_irq_cleanup
;
1255 printk(" Using irq %d\n", info
->irq
);
1261 static unsigned char port_inb(struct si_sm_io
*io
, unsigned int offset
)
1263 unsigned int addr
= io
->addr_data
;
1265 return inb(addr
+ (offset
* io
->regspacing
));
1268 static void port_outb(struct si_sm_io
*io
, unsigned int offset
,
1271 unsigned int addr
= io
->addr_data
;
1273 outb(b
, addr
+ (offset
* io
->regspacing
));
1276 static unsigned char port_inw(struct si_sm_io
*io
, unsigned int offset
)
1278 unsigned int addr
= io
->addr_data
;
1280 return (inw(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1283 static void port_outw(struct si_sm_io
*io
, unsigned int offset
,
1286 unsigned int addr
= io
->addr_data
;
1288 outw(b
<< io
->regshift
, addr
+ (offset
* io
->regspacing
));
1291 static unsigned char port_inl(struct si_sm_io
*io
, unsigned int offset
)
1293 unsigned int addr
= io
->addr_data
;
1295 return (inl(addr
+ (offset
* io
->regspacing
)) >> io
->regshift
) & 0xff;
1298 static void port_outl(struct si_sm_io
*io
, unsigned int offset
,
1301 unsigned int addr
= io
->addr_data
;
1303 outl(b
<< io
->regshift
, addr
+(offset
* io
->regspacing
));
1306 static void port_cleanup(struct smi_info
*info
)
1308 unsigned int addr
= info
->io
.addr_data
;
1312 for (idx
= 0; idx
< info
->io_size
; idx
++)
1313 release_region(addr
+ idx
* info
->io
.regspacing
,
1318 static int port_setup(struct smi_info
*info
)
1320 unsigned int addr
= info
->io
.addr_data
;
1326 info
->io_cleanup
= port_cleanup
;
1329 * Figure out the actual inb/inw/inl/etc routine to use based
1330 * upon the register size.
1332 switch (info
->io
.regsize
) {
1334 info
->io
.inputb
= port_inb
;
1335 info
->io
.outputb
= port_outb
;
1338 info
->io
.inputb
= port_inw
;
1339 info
->io
.outputb
= port_outw
;
1342 info
->io
.inputb
= port_inl
;
1343 info
->io
.outputb
= port_outl
;
1346 printk(KERN_WARNING
"ipmi_si: Invalid register size: %d\n",
1352 * Some BIOSes reserve disjoint I/O regions in their ACPI
1353 * tables. This causes problems when trying to register the
1354 * entire I/O region. Therefore we must register each I/O
1357 for (idx
= 0; idx
< info
->io_size
; idx
++) {
1358 if (request_region(addr
+ idx
* info
->io
.regspacing
,
1359 info
->io
.regsize
, DEVICE_NAME
) == NULL
) {
1360 /* Undo allocations */
1362 release_region(addr
+ idx
* info
->io
.regspacing
,
1371 static unsigned char intf_mem_inb(struct si_sm_io
*io
, unsigned int offset
)
1373 return readb((io
->addr
)+(offset
* io
->regspacing
));
1376 static void intf_mem_outb(struct si_sm_io
*io
, unsigned int offset
,
1379 writeb(b
, (io
->addr
)+(offset
* io
->regspacing
));
1382 static unsigned char intf_mem_inw(struct si_sm_io
*io
, unsigned int offset
)
1384 return (readw((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1388 static void intf_mem_outw(struct si_sm_io
*io
, unsigned int offset
,
1391 writeb(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1394 static unsigned char intf_mem_inl(struct si_sm_io
*io
, unsigned int offset
)
1396 return (readl((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1400 static void intf_mem_outl(struct si_sm_io
*io
, unsigned int offset
,
1403 writel(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1407 static unsigned char mem_inq(struct si_sm_io
*io
, unsigned int offset
)
1409 return (readq((io
->addr
)+(offset
* io
->regspacing
)) >> io
->regshift
)
1413 static void mem_outq(struct si_sm_io
*io
, unsigned int offset
,
1416 writeq(b
<< io
->regshift
, (io
->addr
)+(offset
* io
->regspacing
));
1420 static void mem_cleanup(struct smi_info
*info
)
1422 unsigned long addr
= info
->io
.addr_data
;
1425 if (info
->io
.addr
) {
1426 iounmap(info
->io
.addr
);
1428 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1429 - (info
->io
.regspacing
- info
->io
.regsize
));
1431 release_mem_region(addr
, mapsize
);
1435 static int mem_setup(struct smi_info
*info
)
1437 unsigned long addr
= info
->io
.addr_data
;
1443 info
->io_cleanup
= mem_cleanup
;
1446 * Figure out the actual readb/readw/readl/etc routine to use based
1447 * upon the register size.
1449 switch (info
->io
.regsize
) {
1451 info
->io
.inputb
= intf_mem_inb
;
1452 info
->io
.outputb
= intf_mem_outb
;
1455 info
->io
.inputb
= intf_mem_inw
;
1456 info
->io
.outputb
= intf_mem_outw
;
1459 info
->io
.inputb
= intf_mem_inl
;
1460 info
->io
.outputb
= intf_mem_outl
;
1464 info
->io
.inputb
= mem_inq
;
1465 info
->io
.outputb
= mem_outq
;
1469 printk(KERN_WARNING
"ipmi_si: Invalid register size: %d\n",
1475 * Calculate the total amount of memory to claim. This is an
1476 * unusual looking calculation, but it avoids claiming any
1477 * more memory than it has to. It will claim everything
1478 * between the first address to the end of the last full
1481 mapsize
= ((info
->io_size
* info
->io
.regspacing
)
1482 - (info
->io
.regspacing
- info
->io
.regsize
));
1484 if (request_mem_region(addr
, mapsize
, DEVICE_NAME
) == NULL
)
1487 info
->io
.addr
= ioremap(addr
, mapsize
);
1488 if (info
->io
.addr
== NULL
) {
1489 release_mem_region(addr
, mapsize
);
1496 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1497 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1505 enum hotmod_op
{ HM_ADD
, HM_REMOVE
};
1506 struct hotmod_vals
{
1510 static struct hotmod_vals hotmod_ops
[] = {
1512 { "remove", HM_REMOVE
},
1515 static struct hotmod_vals hotmod_si
[] = {
1517 { "smic", SI_SMIC
},
1521 static struct hotmod_vals hotmod_as
[] = {
1522 { "mem", IPMI_MEM_ADDR_SPACE
},
1523 { "i/o", IPMI_IO_ADDR_SPACE
},
1527 static int parse_str(struct hotmod_vals
*v
, int *val
, char *name
, char **curr
)
1532 s
= strchr(*curr
, ',');
1534 printk(KERN_WARNING PFX
"No hotmod %s given.\n", name
);
1539 for (i
= 0; hotmod_ops
[i
].name
; i
++) {
1540 if (strcmp(*curr
, v
[i
].name
) == 0) {
1547 printk(KERN_WARNING PFX
"Invalid hotmod %s '%s'\n", name
, *curr
);
1551 static int check_hotmod_int_op(const char *curr
, const char *option
,
1552 const char *name
, int *val
)
1556 if (strcmp(curr
, name
) == 0) {
1558 printk(KERN_WARNING PFX
1559 "No option given for '%s'\n",
1563 *val
= simple_strtoul(option
, &n
, 0);
1564 if ((*n
!= '\0') || (*option
== '\0')) {
1565 printk(KERN_WARNING PFX
1566 "Bad option given for '%s'\n",
1575 static int hotmod_handler(const char *val
, struct kernel_param
*kp
)
1577 char *str
= kstrdup(val
, GFP_KERNEL
);
1579 char *next
, *curr
, *s
, *n
, *o
;
1581 enum si_type si_type
;
1591 struct smi_info
*info
;
1596 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1599 while ((ival
>= 0) && isspace(str
[ival
])) {
1604 for (curr
= str
; curr
; curr
= next
) {
1611 next
= strchr(curr
, ':');
1617 rv
= parse_str(hotmod_ops
, &ival
, "operation", &curr
);
1622 rv
= parse_str(hotmod_si
, &ival
, "interface type", &curr
);
1627 rv
= parse_str(hotmod_as
, &addr_space
, "address space", &curr
);
1631 s
= strchr(curr
, ',');
1636 addr
= simple_strtoul(curr
, &n
, 0);
1637 if ((*n
!= '\0') || (*curr
== '\0')) {
1638 printk(KERN_WARNING PFX
"Invalid hotmod address"
1645 s
= strchr(curr
, ',');
1650 o
= strchr(curr
, '=');
1655 rv
= check_hotmod_int_op(curr
, o
, "rsp", ®spacing
);
1660 rv
= check_hotmod_int_op(curr
, o
, "rsi", ®size
);
1665 rv
= check_hotmod_int_op(curr
, o
, "rsh", ®shift
);
1670 rv
= check_hotmod_int_op(curr
, o
, "irq", &irq
);
1675 rv
= check_hotmod_int_op(curr
, o
, "ipmb", &ipmb
);
1682 printk(KERN_WARNING PFX
1683 "Invalid hotmod option '%s'\n",
1689 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1695 info
->addr_source
= "hotmod";
1696 info
->si_type
= si_type
;
1697 info
->io
.addr_data
= addr
;
1698 info
->io
.addr_type
= addr_space
;
1699 if (addr_space
== IPMI_MEM_ADDR_SPACE
)
1700 info
->io_setup
= mem_setup
;
1702 info
->io_setup
= port_setup
;
1704 info
->io
.addr
= NULL
;
1705 info
->io
.regspacing
= regspacing
;
1706 if (!info
->io
.regspacing
)
1707 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1708 info
->io
.regsize
= regsize
;
1709 if (!info
->io
.regsize
)
1710 info
->io
.regsize
= DEFAULT_REGSPACING
;
1711 info
->io
.regshift
= regshift
;
1714 info
->irq_setup
= std_irq_setup
;
1715 info
->slave_addr
= ipmb
;
1720 struct smi_info
*e
, *tmp_e
;
1722 mutex_lock(&smi_infos_lock
);
1723 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
) {
1724 if (e
->io
.addr_type
!= addr_space
)
1726 if (e
->si_type
!= si_type
)
1728 if (e
->io
.addr_data
== addr
)
1731 mutex_unlock(&smi_infos_lock
);
1740 static __devinit
void hardcode_find_bmc(void)
1743 struct smi_info
*info
;
1745 for (i
= 0; i
< SI_MAX_PARMS
; i
++) {
1746 if (!ports
[i
] && !addrs
[i
])
1749 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1753 info
->addr_source
= "hardcoded";
1755 if (!si_type
[i
] || strcmp(si_type
[i
], "kcs") == 0) {
1756 info
->si_type
= SI_KCS
;
1757 } else if (strcmp(si_type
[i
], "smic") == 0) {
1758 info
->si_type
= SI_SMIC
;
1759 } else if (strcmp(si_type
[i
], "bt") == 0) {
1760 info
->si_type
= SI_BT
;
1763 "ipmi_si: Interface type specified "
1764 "for interface %d, was invalid: %s\n",
1772 info
->io_setup
= port_setup
;
1773 info
->io
.addr_data
= ports
[i
];
1774 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
1775 } else if (addrs
[i
]) {
1777 info
->io_setup
= mem_setup
;
1778 info
->io
.addr_data
= addrs
[i
];
1779 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
1782 "ipmi_si: Interface type specified "
1783 "for interface %d, "
1784 "but port and address were not set or "
1785 "set to zero.\n", i
);
1790 info
->io
.addr
= NULL
;
1791 info
->io
.regspacing
= regspacings
[i
];
1792 if (!info
->io
.regspacing
)
1793 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1794 info
->io
.regsize
= regsizes
[i
];
1795 if (!info
->io
.regsize
)
1796 info
->io
.regsize
= DEFAULT_REGSPACING
;
1797 info
->io
.regshift
= regshifts
[i
];
1798 info
->irq
= irqs
[i
];
1800 info
->irq_setup
= std_irq_setup
;
1808 #include <linux/acpi.h>
1811 * Once we get an ACPI failure, we don't try any more, because we go
1812 * through the tables sequentially. Once we don't find a table, there
1815 static int acpi_failure
;
1817 /* For GPE-type interrupts. */
1818 static u32
ipmi_acpi_gpe(void *context
)
1820 struct smi_info
*smi_info
= context
;
1821 unsigned long flags
;
1826 spin_lock_irqsave(&(smi_info
->si_lock
), flags
);
1828 smi_inc_stat(smi_info
, interrupts
);
1831 do_gettimeofday(&t
);
1832 printk("**ACPI_GPE: %d.%9.9d\n", t
.tv_sec
, t
.tv_usec
);
1834 smi_event_handler(smi_info
, 0);
1835 spin_unlock_irqrestore(&(smi_info
->si_lock
), flags
);
1837 return ACPI_INTERRUPT_HANDLED
;
1840 static void acpi_gpe_irq_cleanup(struct smi_info
*info
)
1845 acpi_remove_gpe_handler(NULL
, info
->irq
, &ipmi_acpi_gpe
);
1848 static int acpi_gpe_irq_setup(struct smi_info
*info
)
1855 /* FIXME - is level triggered right? */
1856 status
= acpi_install_gpe_handler(NULL
,
1858 ACPI_GPE_LEVEL_TRIGGERED
,
1861 if (status
!= AE_OK
) {
1863 "ipmi_si: %s unable to claim ACPI GPE %d,"
1864 " running polled\n",
1865 DEVICE_NAME
, info
->irq
);
1869 info
->irq_cleanup
= acpi_gpe_irq_cleanup
;
1870 printk(" Using ACPI GPE %d\n", info
->irq
);
1877 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1878 * Docs/TechPapers/IA64/hpspmi.pdf
1889 s8 CreatorRevision
[4];
1892 s16 SpecificationRevision
;
1895 * Bit 0 - SCI interrupt supported
1896 * Bit 1 - I/O APIC/SAPIC
1901 * If bit 0 of InterruptType is set, then this is the SCI
1902 * interrupt in the GPEx_STS register.
1909 * If bit 1 of InterruptType is set, then this is the I/O
1910 * APIC/SAPIC interrupt.
1912 u32 GlobalSystemInterrupt
;
1914 /* The actual register address. */
1915 struct acpi_generic_address addr
;
1919 s8 spmi_id
[1]; /* A '\0' terminated array starts here. */
1922 static __devinit
int try_init_acpi(struct SPMITable
*spmi
)
1924 struct smi_info
*info
;
1927 if (spmi
->IPMIlegacy
!= 1) {
1928 printk(KERN_INFO
"IPMI: Bad SPMI legacy %d\n", spmi
->IPMIlegacy
);
1932 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
)
1933 addr_space
= IPMI_MEM_ADDR_SPACE
;
1935 addr_space
= IPMI_IO_ADDR_SPACE
;
1937 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
1939 printk(KERN_ERR
"ipmi_si: Could not allocate SI data (3)\n");
1943 info
->addr_source
= "ACPI";
1945 /* Figure out the interface type. */
1946 switch (spmi
->InterfaceType
) {
1948 info
->si_type
= SI_KCS
;
1951 info
->si_type
= SI_SMIC
;
1954 info
->si_type
= SI_BT
;
1957 printk(KERN_INFO
"ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1958 spmi
->InterfaceType
);
1963 if (spmi
->InterruptType
& 1) {
1964 /* We've got a GPE interrupt. */
1965 info
->irq
= spmi
->GPE
;
1966 info
->irq_setup
= acpi_gpe_irq_setup
;
1967 } else if (spmi
->InterruptType
& 2) {
1968 /* We've got an APIC/SAPIC interrupt. */
1969 info
->irq
= spmi
->GlobalSystemInterrupt
;
1970 info
->irq_setup
= std_irq_setup
;
1972 /* Use the default interrupt setting. */
1974 info
->irq_setup
= NULL
;
1977 if (spmi
->addr
.bit_width
) {
1978 /* A (hopefully) properly formed register bit width. */
1979 info
->io
.regspacing
= spmi
->addr
.bit_width
/ 8;
1981 info
->io
.regspacing
= DEFAULT_REGSPACING
;
1983 info
->io
.regsize
= info
->io
.regspacing
;
1984 info
->io
.regshift
= spmi
->addr
.bit_offset
;
1986 if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_MEMORY
) {
1987 info
->io_setup
= mem_setup
;
1988 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
1989 } else if (spmi
->addr
.space_id
== ACPI_ADR_SPACE_SYSTEM_IO
) {
1990 info
->io_setup
= port_setup
;
1991 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
1995 "ipmi_si: Unknown ACPI I/O Address type\n");
1998 info
->io
.addr_data
= spmi
->addr
.address
;
2005 static __devinit
void acpi_find_bmc(void)
2008 struct SPMITable
*spmi
;
2017 for (i
= 0; ; i
++) {
2018 status
= acpi_get_table(ACPI_SIG_SPMI
, i
+1,
2019 (struct acpi_table_header
**)&spmi
);
2020 if (status
!= AE_OK
)
2023 try_init_acpi(spmi
);
2029 struct dmi_ipmi_data
{
2032 unsigned long base_addr
;
2038 static int __devinit
decode_dmi(const struct dmi_header
*dm
,
2039 struct dmi_ipmi_data
*dmi
)
2041 const u8
*data
= (const u8
*)dm
;
2042 unsigned long base_addr
;
2044 u8 len
= dm
->length
;
2046 dmi
->type
= data
[4];
2048 memcpy(&base_addr
, data
+8, sizeof(unsigned long));
2050 if (base_addr
& 1) {
2052 base_addr
&= 0xFFFE;
2053 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2056 dmi
->addr_space
= IPMI_MEM_ADDR_SPACE
;
2058 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2060 dmi
->base_addr
= base_addr
| ((data
[0x10] & 0x10) >> 4);
2062 dmi
->irq
= data
[0x11];
2064 /* The top two bits of byte 0x10 hold the register spacing. */
2065 reg_spacing
= (data
[0x10] & 0xC0) >> 6;
2066 switch (reg_spacing
) {
2067 case 0x00: /* Byte boundaries */
2070 case 0x01: /* 32-bit boundaries */
2073 case 0x02: /* 16-byte boundaries */
2077 /* Some other interface, just ignore it. */
2083 * Note that technically, the lower bit of the base
2084 * address should be 1 if the address is I/O and 0 if
2085 * the address is in memory. So many systems get that
2086 * wrong (and all that I have seen are I/O) so we just
2087 * ignore that bit and assume I/O. Systems that use
2088 * memory should use the newer spec, anyway.
2090 dmi
->base_addr
= base_addr
& 0xfffe;
2091 dmi
->addr_space
= IPMI_IO_ADDR_SPACE
;
2095 dmi
->slave_addr
= data
[6];
2100 static __devinit
void try_init_dmi(struct dmi_ipmi_data
*ipmi_data
)
2102 struct smi_info
*info
;
2104 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2107 "ipmi_si: Could not allocate SI data\n");
2111 info
->addr_source
= "SMBIOS";
2113 switch (ipmi_data
->type
) {
2114 case 0x01: /* KCS */
2115 info
->si_type
= SI_KCS
;
2117 case 0x02: /* SMIC */
2118 info
->si_type
= SI_SMIC
;
2121 info
->si_type
= SI_BT
;
2128 switch (ipmi_data
->addr_space
) {
2129 case IPMI_MEM_ADDR_SPACE
:
2130 info
->io_setup
= mem_setup
;
2131 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2134 case IPMI_IO_ADDR_SPACE
:
2135 info
->io_setup
= port_setup
;
2136 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2142 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2143 ipmi_data
->addr_space
);
2146 info
->io
.addr_data
= ipmi_data
->base_addr
;
2148 info
->io
.regspacing
= ipmi_data
->offset
;
2149 if (!info
->io
.regspacing
)
2150 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2151 info
->io
.regsize
= DEFAULT_REGSPACING
;
2152 info
->io
.regshift
= 0;
2154 info
->slave_addr
= ipmi_data
->slave_addr
;
2156 info
->irq
= ipmi_data
->irq
;
2158 info
->irq_setup
= std_irq_setup
;
2163 static void __devinit
dmi_find_bmc(void)
2165 const struct dmi_device
*dev
= NULL
;
2166 struct dmi_ipmi_data data
;
2169 while ((dev
= dmi_find_device(DMI_DEV_TYPE_IPMI
, NULL
, dev
))) {
2170 memset(&data
, 0, sizeof(data
));
2171 rv
= decode_dmi((const struct dmi_header
*) dev
->device_data
,
2174 try_init_dmi(&data
);
2177 #endif /* CONFIG_DMI */
2181 #define PCI_ERMC_CLASSCODE 0x0C0700
2182 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2183 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2184 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2185 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2186 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2188 #define PCI_HP_VENDOR_ID 0x103C
2189 #define PCI_MMC_DEVICE_ID 0x121A
2190 #define PCI_MMC_ADDR_CW 0x10
2192 static void ipmi_pci_cleanup(struct smi_info
*info
)
2194 struct pci_dev
*pdev
= info
->addr_source_data
;
2196 pci_disable_device(pdev
);
2199 static int __devinit
ipmi_pci_probe(struct pci_dev
*pdev
,
2200 const struct pci_device_id
*ent
)
2203 int class_type
= pdev
->class & PCI_ERMC_CLASSCODE_TYPE_MASK
;
2204 struct smi_info
*info
;
2206 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2210 info
->addr_source
= "PCI";
2212 switch (class_type
) {
2213 case PCI_ERMC_CLASSCODE_TYPE_SMIC
:
2214 info
->si_type
= SI_SMIC
;
2217 case PCI_ERMC_CLASSCODE_TYPE_KCS
:
2218 info
->si_type
= SI_KCS
;
2221 case PCI_ERMC_CLASSCODE_TYPE_BT
:
2222 info
->si_type
= SI_BT
;
2227 printk(KERN_INFO
"ipmi_si: %s: Unknown IPMI type: %d\n",
2228 pci_name(pdev
), class_type
);
2232 rv
= pci_enable_device(pdev
);
2234 printk(KERN_ERR
"ipmi_si: %s: couldn't enable PCI device\n",
2240 info
->addr_source_cleanup
= ipmi_pci_cleanup
;
2241 info
->addr_source_data
= pdev
;
2243 if (pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) {
2244 info
->io_setup
= port_setup
;
2245 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2247 info
->io_setup
= mem_setup
;
2248 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2250 info
->io
.addr_data
= pci_resource_start(pdev
, 0);
2252 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2253 info
->io
.regsize
= DEFAULT_REGSPACING
;
2254 info
->io
.regshift
= 0;
2256 info
->irq
= pdev
->irq
;
2258 info
->irq_setup
= std_irq_setup
;
2260 info
->dev
= &pdev
->dev
;
2261 pci_set_drvdata(pdev
, info
);
2263 return try_smi_init(info
);
2266 static void __devexit
ipmi_pci_remove(struct pci_dev
*pdev
)
2268 struct smi_info
*info
= pci_get_drvdata(pdev
);
2269 cleanup_one_si(info
);
2273 static int ipmi_pci_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2278 static int ipmi_pci_resume(struct pci_dev
*pdev
)
2284 static struct pci_device_id ipmi_pci_devices
[] = {
2285 { PCI_DEVICE(PCI_HP_VENDOR_ID
, PCI_MMC_DEVICE_ID
) },
2286 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE
, PCI_ERMC_CLASSCODE_MASK
) },
2289 MODULE_DEVICE_TABLE(pci
, ipmi_pci_devices
);
2291 static struct pci_driver ipmi_pci_driver
= {
2292 .name
= DEVICE_NAME
,
2293 .id_table
= ipmi_pci_devices
,
2294 .probe
= ipmi_pci_probe
,
2295 .remove
= __devexit_p(ipmi_pci_remove
),
2297 .suspend
= ipmi_pci_suspend
,
2298 .resume
= ipmi_pci_resume
,
2301 #endif /* CONFIG_PCI */
2304 #ifdef CONFIG_PPC_OF
2305 static int __devinit
ipmi_of_probe(struct of_device
*dev
,
2306 const struct of_device_id
*match
)
2308 struct smi_info
*info
;
2309 struct resource resource
;
2310 const int *regsize
, *regspacing
, *regshift
;
2311 struct device_node
*np
= dev
->node
;
2315 dev_info(&dev
->dev
, PFX
"probing via device tree\n");
2317 ret
= of_address_to_resource(np
, 0, &resource
);
2319 dev_warn(&dev
->dev
, PFX
"invalid address from OF\n");
2323 regsize
= of_get_property(np
, "reg-size", &proplen
);
2324 if (regsize
&& proplen
!= 4) {
2325 dev_warn(&dev
->dev
, PFX
"invalid regsize from OF\n");
2329 regspacing
= of_get_property(np
, "reg-spacing", &proplen
);
2330 if (regspacing
&& proplen
!= 4) {
2331 dev_warn(&dev
->dev
, PFX
"invalid regspacing from OF\n");
2335 regshift
= of_get_property(np
, "reg-shift", &proplen
);
2336 if (regshift
&& proplen
!= 4) {
2337 dev_warn(&dev
->dev
, PFX
"invalid regshift from OF\n");
2341 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2345 PFX
"could not allocate memory for OF probe\n");
2349 info
->si_type
= (enum si_type
) match
->data
;
2350 info
->addr_source
= "device-tree";
2351 info
->irq_setup
= std_irq_setup
;
2353 if (resource
.flags
& IORESOURCE_IO
) {
2354 info
->io_setup
= port_setup
;
2355 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2357 info
->io_setup
= mem_setup
;
2358 info
->io
.addr_type
= IPMI_MEM_ADDR_SPACE
;
2361 info
->io
.addr_data
= resource
.start
;
2363 info
->io
.regsize
= regsize
? *regsize
: DEFAULT_REGSIZE
;
2364 info
->io
.regspacing
= regspacing
? *regspacing
: DEFAULT_REGSPACING
;
2365 info
->io
.regshift
= regshift
? *regshift
: 0;
2367 info
->irq
= irq_of_parse_and_map(dev
->node
, 0);
2368 info
->dev
= &dev
->dev
;
2370 dev_dbg(&dev
->dev
, "addr 0x%lx regsize %d spacing %d irq %x\n",
2371 info
->io
.addr_data
, info
->io
.regsize
, info
->io
.regspacing
,
2374 dev_set_drvdata(&dev
->dev
, info
);
2376 return try_smi_init(info
);
2379 static int __devexit
ipmi_of_remove(struct of_device
*dev
)
2381 cleanup_one_si(dev_get_drvdata(&dev
->dev
));
2385 static struct of_device_id ipmi_match
[] =
2387 { .type
= "ipmi", .compatible
= "ipmi-kcs",
2388 .data
= (void *)(unsigned long) SI_KCS
},
2389 { .type
= "ipmi", .compatible
= "ipmi-smic",
2390 .data
= (void *)(unsigned long) SI_SMIC
},
2391 { .type
= "ipmi", .compatible
= "ipmi-bt",
2392 .data
= (void *)(unsigned long) SI_BT
},
2396 static struct of_platform_driver ipmi_of_platform_driver
= {
2398 .match_table
= ipmi_match
,
2399 .probe
= ipmi_of_probe
,
2400 .remove
= __devexit_p(ipmi_of_remove
),
2402 #endif /* CONFIG_PPC_OF */
2404 static int wait_for_msg_done(struct smi_info
*smi_info
)
2406 enum si_sm_result smi_result
;
2408 smi_result
= smi_info
->handlers
->event(smi_info
->si_sm
, 0);
2410 if (smi_result
== SI_SM_CALL_WITH_DELAY
||
2411 smi_result
== SI_SM_CALL_WITH_TICK_DELAY
) {
2412 schedule_timeout_uninterruptible(1);
2413 smi_result
= smi_info
->handlers
->event(
2414 smi_info
->si_sm
, 100);
2415 } else if (smi_result
== SI_SM_CALL_WITHOUT_DELAY
) {
2416 smi_result
= smi_info
->handlers
->event(
2417 smi_info
->si_sm
, 0);
2421 if (smi_result
== SI_SM_HOSED
)
2423 * We couldn't get the state machine to run, so whatever's at
2424 * the port is probably not an IPMI SMI interface.
2431 static int try_get_dev_id(struct smi_info
*smi_info
)
2433 unsigned char msg
[2];
2434 unsigned char *resp
;
2435 unsigned long resp_len
;
2438 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2443 * Do a Get Device ID command, since it comes back with some
2446 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2447 msg
[1] = IPMI_GET_DEVICE_ID_CMD
;
2448 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2450 rv
= wait_for_msg_done(smi_info
);
2454 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2455 resp
, IPMI_MAX_MSG_LENGTH
);
2457 /* Check and record info from the get device id, in case we need it. */
2458 rv
= ipmi_demangle_device_id(resp
, resp_len
, &smi_info
->device_id
);
2465 static int try_enable_event_buffer(struct smi_info
*smi_info
)
2467 unsigned char msg
[3];
2468 unsigned char *resp
;
2469 unsigned long resp_len
;
2472 resp
= kmalloc(IPMI_MAX_MSG_LENGTH
, GFP_KERNEL
);
2476 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2477 msg
[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD
;
2478 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 2);
2480 rv
= wait_for_msg_done(smi_info
);
2483 "ipmi_si: Error getting response from get global,"
2484 " enables command, the event buffer is not"
2489 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2490 resp
, IPMI_MAX_MSG_LENGTH
);
2493 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2494 resp
[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD
||
2497 "ipmi_si: Invalid return from get global"
2498 " enables command, cannot enable the event"
2504 if (resp
[3] & IPMI_BMC_EVT_MSG_BUFF
)
2505 /* buffer is already enabled, nothing to do. */
2508 msg
[0] = IPMI_NETFN_APP_REQUEST
<< 2;
2509 msg
[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD
;
2510 msg
[2] = resp
[3] | IPMI_BMC_EVT_MSG_BUFF
;
2511 smi_info
->handlers
->start_transaction(smi_info
->si_sm
, msg
, 3);
2513 rv
= wait_for_msg_done(smi_info
);
2516 "ipmi_si: Error getting response from set global,"
2517 " enables command, the event buffer is not"
2522 resp_len
= smi_info
->handlers
->get_result(smi_info
->si_sm
,
2523 resp
, IPMI_MAX_MSG_LENGTH
);
2526 resp
[0] != (IPMI_NETFN_APP_REQUEST
| 1) << 2 ||
2527 resp
[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD
) {
2529 "ipmi_si: Invalid return from get global,"
2530 "enables command, not enable the event"
2538 * An error when setting the event buffer bit means
2539 * that the event buffer is not supported.
2547 static int type_file_read_proc(char *page
, char **start
, off_t off
,
2548 int count
, int *eof
, void *data
)
2550 struct smi_info
*smi
= data
;
2552 return sprintf(page
, "%s\n", si_to_str
[smi
->si_type
]);
2555 static int stat_file_read_proc(char *page
, char **start
, off_t off
,
2556 int count
, int *eof
, void *data
)
2558 char *out
= (char *) page
;
2559 struct smi_info
*smi
= data
;
2561 out
+= sprintf(out
, "interrupts_enabled: %d\n",
2562 smi
->irq
&& !smi
->interrupt_disabled
);
2563 out
+= sprintf(out
, "short_timeouts: %u\n",
2564 smi_get_stat(smi
, short_timeouts
));
2565 out
+= sprintf(out
, "long_timeouts: %u\n",
2566 smi_get_stat(smi
, long_timeouts
));
2567 out
+= sprintf(out
, "idles: %u\n",
2568 smi_get_stat(smi
, idles
));
2569 out
+= sprintf(out
, "interrupts: %u\n",
2570 smi_get_stat(smi
, interrupts
));
2571 out
+= sprintf(out
, "attentions: %u\n",
2572 smi_get_stat(smi
, attentions
));
2573 out
+= sprintf(out
, "flag_fetches: %u\n",
2574 smi_get_stat(smi
, flag_fetches
));
2575 out
+= sprintf(out
, "hosed_count: %u\n",
2576 smi_get_stat(smi
, hosed_count
));
2577 out
+= sprintf(out
, "complete_transactions: %u\n",
2578 smi_get_stat(smi
, complete_transactions
));
2579 out
+= sprintf(out
, "events: %u\n",
2580 smi_get_stat(smi
, events
));
2581 out
+= sprintf(out
, "watchdog_pretimeouts: %u\n",
2582 smi_get_stat(smi
, watchdog_pretimeouts
));
2583 out
+= sprintf(out
, "incoming_messages: %u\n",
2584 smi_get_stat(smi
, incoming_messages
));
2589 static int param_read_proc(char *page
, char **start
, off_t off
,
2590 int count
, int *eof
, void *data
)
2592 struct smi_info
*smi
= data
;
2594 return sprintf(page
,
2595 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2596 si_to_str
[smi
->si_type
],
2597 addr_space_to_str
[smi
->io
.addr_type
],
2607 * oem_data_avail_to_receive_msg_avail
2608 * @info - smi_info structure with msg_flags set
2610 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2611 * Returns 1 indicating need to re-run handle_flags().
2613 static int oem_data_avail_to_receive_msg_avail(struct smi_info
*smi_info
)
2615 smi_info
->msg_flags
= ((smi_info
->msg_flags
& ~OEM_DATA_AVAIL
) |
2621 * setup_dell_poweredge_oem_data_handler
2622 * @info - smi_info.device_id must be populated
2624 * Systems that match, but have firmware version < 1.40 may assert
2625 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2626 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2627 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2628 * as RECEIVE_MSG_AVAIL instead.
2630 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2631 * assert the OEM[012] bits, and if it did, the driver would have to
2632 * change to handle that properly, we don't actually check for the
2634 * Device ID = 0x20 BMC on PowerEdge 8G servers
2635 * Device Revision = 0x80
2636 * Firmware Revision1 = 0x01 BMC version 1.40
2637 * Firmware Revision2 = 0x40 BCD encoded
2638 * IPMI Version = 0x51 IPMI 1.5
2639 * Manufacturer ID = A2 02 00 Dell IANA
2641 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2642 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2645 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2646 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2647 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2648 #define DELL_IANA_MFR_ID 0x0002a2
2649 static void setup_dell_poweredge_oem_data_handler(struct smi_info
*smi_info
)
2651 struct ipmi_device_id
*id
= &smi_info
->device_id
;
2652 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
) {
2653 if (id
->device_id
== DELL_POWEREDGE_8G_BMC_DEVICE_ID
&&
2654 id
->device_revision
== DELL_POWEREDGE_8G_BMC_DEVICE_REV
&&
2655 id
->ipmi_version
== DELL_POWEREDGE_8G_BMC_IPMI_VERSION
) {
2656 smi_info
->oem_data_avail_handler
=
2657 oem_data_avail_to_receive_msg_avail
;
2658 } else if (ipmi_version_major(id
) < 1 ||
2659 (ipmi_version_major(id
) == 1 &&
2660 ipmi_version_minor(id
) < 5)) {
2661 smi_info
->oem_data_avail_handler
=
2662 oem_data_avail_to_receive_msg_avail
;
2667 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2668 static void return_hosed_msg_badsize(struct smi_info
*smi_info
)
2670 struct ipmi_smi_msg
*msg
= smi_info
->curr_msg
;
2672 /* Make it a reponse */
2673 msg
->rsp
[0] = msg
->data
[0] | 4;
2674 msg
->rsp
[1] = msg
->data
[1];
2675 msg
->rsp
[2] = CANNOT_RETURN_REQUESTED_LENGTH
;
2677 smi_info
->curr_msg
= NULL
;
2678 deliver_recv_msg(smi_info
, msg
);
2682 * dell_poweredge_bt_xaction_handler
2683 * @info - smi_info.device_id must be populated
2685 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2686 * not respond to a Get SDR command if the length of the data
2687 * requested is exactly 0x3A, which leads to command timeouts and no
2688 * data returned. This intercepts such commands, and causes userspace
2689 * callers to try again with a different-sized buffer, which succeeds.
2692 #define STORAGE_NETFN 0x0A
2693 #define STORAGE_CMD_GET_SDR 0x23
2694 static int dell_poweredge_bt_xaction_handler(struct notifier_block
*self
,
2695 unsigned long unused
,
2698 struct smi_info
*smi_info
= in
;
2699 unsigned char *data
= smi_info
->curr_msg
->data
;
2700 unsigned int size
= smi_info
->curr_msg
->data_size
;
2702 (data
[0]>>2) == STORAGE_NETFN
&&
2703 data
[1] == STORAGE_CMD_GET_SDR
&&
2705 return_hosed_msg_badsize(smi_info
);
2711 static struct notifier_block dell_poweredge_bt_xaction_notifier
= {
2712 .notifier_call
= dell_poweredge_bt_xaction_handler
,
2716 * setup_dell_poweredge_bt_xaction_handler
2717 * @info - smi_info.device_id must be filled in already
2719 * Fills in smi_info.device_id.start_transaction_pre_hook
2720 * when we know what function to use there.
2723 setup_dell_poweredge_bt_xaction_handler(struct smi_info
*smi_info
)
2725 struct ipmi_device_id
*id
= &smi_info
->device_id
;
2726 if (id
->manufacturer_id
== DELL_IANA_MFR_ID
&&
2727 smi_info
->si_type
== SI_BT
)
2728 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier
);
2732 * setup_oem_data_handler
2733 * @info - smi_info.device_id must be filled in already
2735 * Fills in smi_info.device_id.oem_data_available_handler
2736 * when we know what function to use there.
2739 static void setup_oem_data_handler(struct smi_info
*smi_info
)
2741 setup_dell_poweredge_oem_data_handler(smi_info
);
2744 static void setup_xaction_handlers(struct smi_info
*smi_info
)
2746 setup_dell_poweredge_bt_xaction_handler(smi_info
);
2749 static inline void wait_for_timer_and_thread(struct smi_info
*smi_info
)
2751 if (smi_info
->intf
) {
2753 * The timer and thread are only running if the
2754 * interface has been started up and registered.
2756 if (smi_info
->thread
!= NULL
)
2757 kthread_stop(smi_info
->thread
);
2758 del_timer_sync(&smi_info
->si_timer
);
2762 static __devinitdata
struct ipmi_default_vals
2768 { .type
= SI_KCS
, .port
= 0xca2 },
2769 { .type
= SI_SMIC
, .port
= 0xca9 },
2770 { .type
= SI_BT
, .port
= 0xe4 },
2774 static __devinit
void default_find_bmc(void)
2776 struct smi_info
*info
;
2779 for (i
= 0; ; i
++) {
2780 if (!ipmi_defaults
[i
].port
)
2783 if (check_legacy_ioport(ipmi_defaults
[i
].port
))
2786 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2790 info
->addr_source
= NULL
;
2792 info
->si_type
= ipmi_defaults
[i
].type
;
2793 info
->io_setup
= port_setup
;
2794 info
->io
.addr_data
= ipmi_defaults
[i
].port
;
2795 info
->io
.addr_type
= IPMI_IO_ADDR_SPACE
;
2797 info
->io
.addr
= NULL
;
2798 info
->io
.regspacing
= DEFAULT_REGSPACING
;
2799 info
->io
.regsize
= DEFAULT_REGSPACING
;
2800 info
->io
.regshift
= 0;
2802 if (try_smi_init(info
) == 0) {
2804 printk(KERN_INFO
"ipmi_si: Found default %s state"
2805 " machine at %s address 0x%lx\n",
2806 si_to_str
[info
->si_type
],
2807 addr_space_to_str
[info
->io
.addr_type
],
2808 info
->io
.addr_data
);
2814 static int is_new_interface(struct smi_info
*info
)
2818 list_for_each_entry(e
, &smi_infos
, link
) {
2819 if (e
->io
.addr_type
!= info
->io
.addr_type
)
2821 if (e
->io
.addr_data
== info
->io
.addr_data
)
2828 static int try_smi_init(struct smi_info
*new_smi
)
2833 if (new_smi
->addr_source
) {
2834 printk(KERN_INFO
"ipmi_si: Trying %s-specified %s state"
2835 " machine at %s address 0x%lx, slave address 0x%x,"
2837 new_smi
->addr_source
,
2838 si_to_str
[new_smi
->si_type
],
2839 addr_space_to_str
[new_smi
->io
.addr_type
],
2840 new_smi
->io
.addr_data
,
2841 new_smi
->slave_addr
, new_smi
->irq
);
2844 mutex_lock(&smi_infos_lock
);
2845 if (!is_new_interface(new_smi
)) {
2846 printk(KERN_WARNING
"ipmi_si: duplicate interface\n");
2851 /* So we know not to free it unless we have allocated one. */
2852 new_smi
->intf
= NULL
;
2853 new_smi
->si_sm
= NULL
;
2854 new_smi
->handlers
= NULL
;
2856 switch (new_smi
->si_type
) {
2858 new_smi
->handlers
= &kcs_smi_handlers
;
2862 new_smi
->handlers
= &smic_smi_handlers
;
2866 new_smi
->handlers
= &bt_smi_handlers
;
2870 /* No support for anything else yet. */
2875 /* Allocate the state machine's data and initialize it. */
2876 new_smi
->si_sm
= kmalloc(new_smi
->handlers
->size(), GFP_KERNEL
);
2877 if (!new_smi
->si_sm
) {
2878 printk(KERN_ERR
"Could not allocate state machine memory\n");
2882 new_smi
->io_size
= new_smi
->handlers
->init_data(new_smi
->si_sm
,
2885 /* Now that we know the I/O size, we can set up the I/O. */
2886 rv
= new_smi
->io_setup(new_smi
);
2888 printk(KERN_ERR
"Could not set up I/O space\n");
2892 spin_lock_init(&(new_smi
->si_lock
));
2893 spin_lock_init(&(new_smi
->msg_lock
));
2895 /* Do low-level detection first. */
2896 if (new_smi
->handlers
->detect(new_smi
->si_sm
)) {
2897 if (new_smi
->addr_source
)
2898 printk(KERN_INFO
"ipmi_si: Interface detection"
2905 * Attempt a get device id command. If it fails, we probably
2906 * don't have a BMC here.
2908 rv
= try_get_dev_id(new_smi
);
2910 if (new_smi
->addr_source
)
2911 printk(KERN_INFO
"ipmi_si: There appears to be no BMC"
2912 " at this location\n");
2916 setup_oem_data_handler(new_smi
);
2917 setup_xaction_handlers(new_smi
);
2919 INIT_LIST_HEAD(&(new_smi
->xmit_msgs
));
2920 INIT_LIST_HEAD(&(new_smi
->hp_xmit_msgs
));
2921 new_smi
->curr_msg
= NULL
;
2922 atomic_set(&new_smi
->req_events
, 0);
2923 new_smi
->run_to_completion
= 0;
2924 for (i
= 0; i
< SI_NUM_STATS
; i
++)
2925 atomic_set(&new_smi
->stats
[i
], 0);
2927 new_smi
->interrupt_disabled
= 0;
2928 atomic_set(&new_smi
->stop_operation
, 0);
2929 new_smi
->intf_num
= smi_num
;
2932 rv
= try_enable_event_buffer(new_smi
);
2934 new_smi
->has_event_buffer
= 1;
2937 * Start clearing the flags before we enable interrupts or the
2938 * timer to avoid racing with the timer.
2940 start_clear_flags(new_smi
);
2941 /* IRQ is defined to be set when non-zero. */
2943 new_smi
->si_state
= SI_CLEARING_FLAGS_THEN_SET_IRQ
;
2945 if (!new_smi
->dev
) {
2947 * If we don't already have a device from something
2948 * else (like PCI), then register a new one.
2950 new_smi
->pdev
= platform_device_alloc("ipmi_si",
2952 if (!new_smi
->pdev
) {
2955 " Unable to allocate platform device\n");
2958 new_smi
->dev
= &new_smi
->pdev
->dev
;
2959 new_smi
->dev
->driver
= &ipmi_driver
.driver
;
2961 rv
= platform_device_add(new_smi
->pdev
);
2965 " Unable to register system interface device:"
2970 new_smi
->dev_registered
= 1;
2973 rv
= ipmi_register_smi(&handlers
,
2975 &new_smi
->device_id
,
2978 new_smi
->slave_addr
);
2981 "ipmi_si: Unable to register device: error %d\n",
2983 goto out_err_stop_timer
;
2986 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "type",
2987 type_file_read_proc
,
2991 "ipmi_si: Unable to create proc entry: %d\n",
2993 goto out_err_stop_timer
;
2996 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "si_stats",
2997 stat_file_read_proc
,
3001 "ipmi_si: Unable to create proc entry: %d\n",
3003 goto out_err_stop_timer
;
3006 rv
= ipmi_smi_add_proc_entry(new_smi
->intf
, "params",
3011 "ipmi_si: Unable to create proc entry: %d\n",
3013 goto out_err_stop_timer
;
3016 list_add_tail(&new_smi
->link
, &smi_infos
);
3018 mutex_unlock(&smi_infos_lock
);
3020 printk(KERN_INFO
"IPMI %s interface initialized\n",
3021 si_to_str
[new_smi
->si_type
]);
3026 atomic_inc(&new_smi
->stop_operation
);
3027 wait_for_timer_and_thread(new_smi
);
3031 ipmi_unregister_smi(new_smi
->intf
);
3033 if (new_smi
->irq_cleanup
)
3034 new_smi
->irq_cleanup(new_smi
);
3037 * Wait until we know that we are out of any interrupt
3038 * handlers might have been running before we freed the
3041 synchronize_sched();
3043 if (new_smi
->si_sm
) {
3044 if (new_smi
->handlers
)
3045 new_smi
->handlers
->cleanup(new_smi
->si_sm
);
3046 kfree(new_smi
->si_sm
);
3048 if (new_smi
->addr_source_cleanup
)
3049 new_smi
->addr_source_cleanup(new_smi
);
3050 if (new_smi
->io_cleanup
)
3051 new_smi
->io_cleanup(new_smi
);
3053 if (new_smi
->dev_registered
)
3054 platform_device_unregister(new_smi
->pdev
);
3058 mutex_unlock(&smi_infos_lock
);
3063 static __devinit
int init_ipmi_si(void)
3073 /* Register the device drivers. */
3074 rv
= driver_register(&ipmi_driver
.driver
);
3077 "init_ipmi_si: Unable to register driver: %d\n",
3083 /* Parse out the si_type string into its components. */
3086 for (i
= 0; (i
< SI_MAX_PARMS
) && (*str
!= '\0'); i
++) {
3088 str
= strchr(str
, ',');
3098 printk(KERN_INFO
"IPMI System Interface driver.\n");
3100 hardcode_find_bmc();
3111 rv
= pci_register_driver(&ipmi_pci_driver
);
3114 "init_ipmi_si: Unable to register PCI driver: %d\n",
3118 #ifdef CONFIG_PPC_OF
3119 of_register_platform_driver(&ipmi_of_platform_driver
);
3122 if (si_trydefaults
) {
3123 mutex_lock(&smi_infos_lock
);
3124 if (list_empty(&smi_infos
)) {
3125 /* No BMC was found, try defaults. */
3126 mutex_unlock(&smi_infos_lock
);
3129 mutex_unlock(&smi_infos_lock
);
3133 mutex_lock(&smi_infos_lock
);
3134 if (unload_when_empty
&& list_empty(&smi_infos
)) {
3135 mutex_unlock(&smi_infos_lock
);
3137 pci_unregister_driver(&ipmi_pci_driver
);
3140 #ifdef CONFIG_PPC_OF
3141 of_unregister_platform_driver(&ipmi_of_platform_driver
);
3143 driver_unregister(&ipmi_driver
.driver
);
3145 "ipmi_si: Unable to find any System Interface(s)\n");
3148 mutex_unlock(&smi_infos_lock
);
3152 module_init(init_ipmi_si
);
3154 static void cleanup_one_si(struct smi_info
*to_clean
)
3157 unsigned long flags
;
3162 list_del(&to_clean
->link
);
3164 /* Tell the driver that we are shutting down. */
3165 atomic_inc(&to_clean
->stop_operation
);
3168 * Make sure the timer and thread are stopped and will not run
3171 wait_for_timer_and_thread(to_clean
);
3174 * Timeouts are stopped, now make sure the interrupts are off
3175 * for the device. A little tricky with locks to make sure
3176 * there are no races.
3178 spin_lock_irqsave(&to_clean
->si_lock
, flags
);
3179 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3180 spin_unlock_irqrestore(&to_clean
->si_lock
, flags
);
3182 schedule_timeout_uninterruptible(1);
3183 spin_lock_irqsave(&to_clean
->si_lock
, flags
);
3185 disable_si_irq(to_clean
);
3186 spin_unlock_irqrestore(&to_clean
->si_lock
, flags
);
3187 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3189 schedule_timeout_uninterruptible(1);
3192 /* Clean up interrupts and make sure that everything is done. */
3193 if (to_clean
->irq_cleanup
)
3194 to_clean
->irq_cleanup(to_clean
);
3195 while (to_clean
->curr_msg
|| (to_clean
->si_state
!= SI_NORMAL
)) {
3197 schedule_timeout_uninterruptible(1);
3200 rv
= ipmi_unregister_smi(to_clean
->intf
);
3203 "ipmi_si: Unable to unregister device: errno=%d\n",
3207 to_clean
->handlers
->cleanup(to_clean
->si_sm
);
3209 kfree(to_clean
->si_sm
);
3211 if (to_clean
->addr_source_cleanup
)
3212 to_clean
->addr_source_cleanup(to_clean
);
3213 if (to_clean
->io_cleanup
)
3214 to_clean
->io_cleanup(to_clean
);
3216 if (to_clean
->dev_registered
)
3217 platform_device_unregister(to_clean
->pdev
);
3222 static __exit
void cleanup_ipmi_si(void)
3224 struct smi_info
*e
, *tmp_e
;
3230 pci_unregister_driver(&ipmi_pci_driver
);
3233 #ifdef CONFIG_PPC_OF
3234 of_unregister_platform_driver(&ipmi_of_platform_driver
);
3237 mutex_lock(&smi_infos_lock
);
3238 list_for_each_entry_safe(e
, tmp_e
, &smi_infos
, link
)
3240 mutex_unlock(&smi_infos_lock
);
3242 driver_unregister(&ipmi_driver
.driver
);
3244 module_exit(cleanup_ipmi_si
);
3246 MODULE_LICENSE("GPL");
3247 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3248 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3249 " system interfaces.");