Staging: tm6000: silence Sparse warning "dubious: !x | !y"
[zen-stable.git] / fs / file.c
blob0be344755c020e8de53d26ff89f60d8a4778cf91
1 /*
2 * linux/fs/file.c
4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6 * Manage the dynamic fd arrays in the process files_struct.
7 */
9 #include <linux/module.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/file.h>
17 #include <linux/fdtable.h>
18 #include <linux/bitops.h>
19 #include <linux/interrupt.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/workqueue.h>
24 struct fdtable_defer {
25 spinlock_t lock;
26 struct work_struct wq;
27 struct fdtable *next;
30 int sysctl_nr_open __read_mostly = 1024*1024;
31 int sysctl_nr_open_min = BITS_PER_LONG;
32 int sysctl_nr_open_max = 1024 * 1024; /* raised later */
35 * We use this list to defer free fdtables that have vmalloced
36 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
37 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
38 * this per-task structure.
40 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
42 static inline void *alloc_fdmem(unsigned int size)
44 void *data;
46 data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN);
47 if (data != NULL)
48 return data;
50 return vmalloc(size);
53 static void free_fdmem(void *ptr)
55 is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
58 static void __free_fdtable(struct fdtable *fdt)
60 free_fdmem(fdt->fd);
61 free_fdmem(fdt->open_fds);
62 kfree(fdt);
65 static void free_fdtable_work(struct work_struct *work)
67 struct fdtable_defer *f =
68 container_of(work, struct fdtable_defer, wq);
69 struct fdtable *fdt;
71 spin_lock_bh(&f->lock);
72 fdt = f->next;
73 f->next = NULL;
74 spin_unlock_bh(&f->lock);
75 while(fdt) {
76 struct fdtable *next = fdt->next;
78 __free_fdtable(fdt);
79 fdt = next;
83 void free_fdtable_rcu(struct rcu_head *rcu)
85 struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
86 struct fdtable_defer *fddef;
88 BUG_ON(!fdt);
90 if (fdt->max_fds <= NR_OPEN_DEFAULT) {
92 * This fdtable is embedded in the files structure and that
93 * structure itself is getting destroyed.
95 kmem_cache_free(files_cachep,
96 container_of(fdt, struct files_struct, fdtab));
97 return;
99 if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) {
100 kfree(fdt->fd);
101 kfree(fdt->open_fds);
102 kfree(fdt);
103 } else {
104 fddef = &get_cpu_var(fdtable_defer_list);
105 spin_lock(&fddef->lock);
106 fdt->next = fddef->next;
107 fddef->next = fdt;
108 /* vmallocs are handled from the workqueue context */
109 schedule_work(&fddef->wq);
110 spin_unlock(&fddef->lock);
111 put_cpu_var(fdtable_defer_list);
116 * Expand the fdset in the files_struct. Called with the files spinlock
117 * held for write.
119 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
121 unsigned int cpy, set;
123 BUG_ON(nfdt->max_fds < ofdt->max_fds);
125 cpy = ofdt->max_fds * sizeof(struct file *);
126 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
127 memcpy(nfdt->fd, ofdt->fd, cpy);
128 memset((char *)(nfdt->fd) + cpy, 0, set);
130 cpy = ofdt->max_fds / BITS_PER_BYTE;
131 set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
132 memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
133 memset((char *)(nfdt->open_fds) + cpy, 0, set);
134 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
135 memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
138 static struct fdtable * alloc_fdtable(unsigned int nr)
140 struct fdtable *fdt;
141 char *data;
144 * Figure out how many fds we actually want to support in this fdtable.
145 * Allocation steps are keyed to the size of the fdarray, since it
146 * grows far faster than any of the other dynamic data. We try to fit
147 * the fdarray into comfortable page-tuned chunks: starting at 1024B
148 * and growing in powers of two from there on.
150 nr /= (1024 / sizeof(struct file *));
151 nr = roundup_pow_of_two(nr + 1);
152 nr *= (1024 / sizeof(struct file *));
154 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
155 * had been set lower between the check in expand_files() and here. Deal
156 * with that in caller, it's cheaper that way.
158 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
159 * bitmaps handling below becomes unpleasant, to put it mildly...
161 if (unlikely(nr > sysctl_nr_open))
162 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
164 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
165 if (!fdt)
166 goto out;
167 fdt->max_fds = nr;
168 data = alloc_fdmem(nr * sizeof(struct file *));
169 if (!data)
170 goto out_fdt;
171 fdt->fd = (struct file **)data;
172 data = alloc_fdmem(max_t(unsigned int,
173 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
174 if (!data)
175 goto out_arr;
176 fdt->open_fds = (fd_set *)data;
177 data += nr / BITS_PER_BYTE;
178 fdt->close_on_exec = (fd_set *)data;
179 fdt->next = NULL;
181 return fdt;
183 out_arr:
184 free_fdmem(fdt->fd);
185 out_fdt:
186 kfree(fdt);
187 out:
188 return NULL;
192 * Expand the file descriptor table.
193 * This function will allocate a new fdtable and both fd array and fdset, of
194 * the given size.
195 * Return <0 error code on error; 1 on successful completion.
196 * The files->file_lock should be held on entry, and will be held on exit.
198 static int expand_fdtable(struct files_struct *files, int nr)
199 __releases(files->file_lock)
200 __acquires(files->file_lock)
202 struct fdtable *new_fdt, *cur_fdt;
204 spin_unlock(&files->file_lock);
205 new_fdt = alloc_fdtable(nr);
206 spin_lock(&files->file_lock);
207 if (!new_fdt)
208 return -ENOMEM;
210 * extremely unlikely race - sysctl_nr_open decreased between the check in
211 * caller and alloc_fdtable(). Cheaper to catch it here...
213 if (unlikely(new_fdt->max_fds <= nr)) {
214 __free_fdtable(new_fdt);
215 return -EMFILE;
218 * Check again since another task may have expanded the fd table while
219 * we dropped the lock
221 cur_fdt = files_fdtable(files);
222 if (nr >= cur_fdt->max_fds) {
223 /* Continue as planned */
224 copy_fdtable(new_fdt, cur_fdt);
225 rcu_assign_pointer(files->fdt, new_fdt);
226 if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
227 free_fdtable(cur_fdt);
228 } else {
229 /* Somebody else expanded, so undo our attempt */
230 __free_fdtable(new_fdt);
232 return 1;
236 * Expand files.
237 * This function will expand the file structures, if the requested size exceeds
238 * the current capacity and there is room for expansion.
239 * Return <0 error code on error; 0 when nothing done; 1 when files were
240 * expanded and execution may have blocked.
241 * The files->file_lock should be held on entry, and will be held on exit.
243 int expand_files(struct files_struct *files, int nr)
245 struct fdtable *fdt;
247 fdt = files_fdtable(files);
250 * N.B. For clone tasks sharing a files structure, this test
251 * will limit the total number of files that can be opened.
253 if (nr >= rlimit(RLIMIT_NOFILE))
254 return -EMFILE;
256 /* Do we need to expand? */
257 if (nr < fdt->max_fds)
258 return 0;
260 /* Can we expand? */
261 if (nr >= sysctl_nr_open)
262 return -EMFILE;
264 /* All good, so we try */
265 return expand_fdtable(files, nr);
268 static int count_open_files(struct fdtable *fdt)
270 int size = fdt->max_fds;
271 int i;
273 /* Find the last open fd */
274 for (i = size/(8*sizeof(long)); i > 0; ) {
275 if (fdt->open_fds->fds_bits[--i])
276 break;
278 i = (i+1) * 8 * sizeof(long);
279 return i;
283 * Allocate a new files structure and copy contents from the
284 * passed in files structure.
285 * errorp will be valid only when the returned files_struct is NULL.
287 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
289 struct files_struct *newf;
290 struct file **old_fds, **new_fds;
291 int open_files, size, i;
292 struct fdtable *old_fdt, *new_fdt;
294 *errorp = -ENOMEM;
295 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
296 if (!newf)
297 goto out;
299 atomic_set(&newf->count, 1);
301 spin_lock_init(&newf->file_lock);
302 newf->next_fd = 0;
303 new_fdt = &newf->fdtab;
304 new_fdt->max_fds = NR_OPEN_DEFAULT;
305 new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
306 new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
307 new_fdt->fd = &newf->fd_array[0];
308 new_fdt->next = NULL;
310 spin_lock(&oldf->file_lock);
311 old_fdt = files_fdtable(oldf);
312 open_files = count_open_files(old_fdt);
315 * Check whether we need to allocate a larger fd array and fd set.
317 while (unlikely(open_files > new_fdt->max_fds)) {
318 spin_unlock(&oldf->file_lock);
320 if (new_fdt != &newf->fdtab)
321 __free_fdtable(new_fdt);
323 new_fdt = alloc_fdtable(open_files - 1);
324 if (!new_fdt) {
325 *errorp = -ENOMEM;
326 goto out_release;
329 /* beyond sysctl_nr_open; nothing to do */
330 if (unlikely(new_fdt->max_fds < open_files)) {
331 __free_fdtable(new_fdt);
332 *errorp = -EMFILE;
333 goto out_release;
337 * Reacquire the oldf lock and a pointer to its fd table
338 * who knows it may have a new bigger fd table. We need
339 * the latest pointer.
341 spin_lock(&oldf->file_lock);
342 old_fdt = files_fdtable(oldf);
343 open_files = count_open_files(old_fdt);
346 old_fds = old_fdt->fd;
347 new_fds = new_fdt->fd;
349 memcpy(new_fdt->open_fds->fds_bits,
350 old_fdt->open_fds->fds_bits, open_files/8);
351 memcpy(new_fdt->close_on_exec->fds_bits,
352 old_fdt->close_on_exec->fds_bits, open_files/8);
354 for (i = open_files; i != 0; i--) {
355 struct file *f = *old_fds++;
356 if (f) {
357 get_file(f);
358 } else {
360 * The fd may be claimed in the fd bitmap but not yet
361 * instantiated in the files array if a sibling thread
362 * is partway through open(). So make sure that this
363 * fd is available to the new process.
365 FD_CLR(open_files - i, new_fdt->open_fds);
367 rcu_assign_pointer(*new_fds++, f);
369 spin_unlock(&oldf->file_lock);
371 /* compute the remainder to be cleared */
372 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
374 /* This is long word aligned thus could use a optimized version */
375 memset(new_fds, 0, size);
377 if (new_fdt->max_fds > open_files) {
378 int left = (new_fdt->max_fds-open_files)/8;
379 int start = open_files / (8 * sizeof(unsigned long));
381 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
382 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
385 rcu_assign_pointer(newf->fdt, new_fdt);
387 return newf;
389 out_release:
390 kmem_cache_free(files_cachep, newf);
391 out:
392 return NULL;
395 static void __devinit fdtable_defer_list_init(int cpu)
397 struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
398 spin_lock_init(&fddef->lock);
399 INIT_WORK(&fddef->wq, free_fdtable_work);
400 fddef->next = NULL;
403 void __init files_defer_init(void)
405 int i;
406 for_each_possible_cpu(i)
407 fdtable_defer_list_init(i);
408 sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
409 -BITS_PER_LONG;
412 struct files_struct init_files = {
413 .count = ATOMIC_INIT(1),
414 .fdt = &init_files.fdtab,
415 .fdtab = {
416 .max_fds = NR_OPEN_DEFAULT,
417 .fd = &init_files.fd_array[0],
418 .close_on_exec = (fd_set *)&init_files.close_on_exec_init,
419 .open_fds = (fd_set *)&init_files.open_fds_init,
421 .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock),
425 * allocate a file descriptor, mark it busy.
427 int alloc_fd(unsigned start, unsigned flags)
429 struct files_struct *files = current->files;
430 unsigned int fd;
431 int error;
432 struct fdtable *fdt;
434 spin_lock(&files->file_lock);
435 repeat:
436 fdt = files_fdtable(files);
437 fd = start;
438 if (fd < files->next_fd)
439 fd = files->next_fd;
441 if (fd < fdt->max_fds)
442 fd = find_next_zero_bit(fdt->open_fds->fds_bits,
443 fdt->max_fds, fd);
445 error = expand_files(files, fd);
446 if (error < 0)
447 goto out;
450 * If we needed to expand the fs array we
451 * might have blocked - try again.
453 if (error)
454 goto repeat;
456 if (start <= files->next_fd)
457 files->next_fd = fd + 1;
459 FD_SET(fd, fdt->open_fds);
460 if (flags & O_CLOEXEC)
461 FD_SET(fd, fdt->close_on_exec);
462 else
463 FD_CLR(fd, fdt->close_on_exec);
464 error = fd;
465 #if 1
466 /* Sanity check */
467 if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
468 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
469 rcu_assign_pointer(fdt->fd[fd], NULL);
471 #endif
473 out:
474 spin_unlock(&files->file_lock);
475 return error;
478 int get_unused_fd(void)
480 return alloc_fd(0, 0);
482 EXPORT_SYMBOL(get_unused_fd);