2 * Kernel Debugger Architecture Independent Support Functions
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
10 * 03/02/13 added new 2.5 kallsyms <xavier.bru@bull.net>
14 #include <linux/types.h>
15 #include <linux/sched.h>
17 #include <linux/kallsyms.h>
18 #include <linux/stddef.h>
19 #include <linux/vmalloc.h>
20 #include <linux/ptrace.h>
21 #include <linux/module.h>
22 #include <linux/highmem.h>
23 #include <linux/hardirq.h>
24 #include <linux/delay.h>
25 #include <linux/uaccess.h>
26 #include <linux/kdb.h>
27 #include <linux/slab.h>
28 #include "kdb_private.h"
31 * kdbgetsymval - Return the address of the given symbol.
34 * symname Character string containing symbol name
35 * symtab Structure to receive results
37 * 0 Symbol not found, symtab zero filled
38 * 1 Symbol mapped to module/symbol/section, data in symtab
40 int kdbgetsymval(const char *symname
, kdb_symtab_t
*symtab
)
43 kdb_printf("kdbgetsymval: symname=%s, symtab=%p\n", symname
,
45 memset(symtab
, 0, sizeof(*symtab
));
46 symtab
->sym_start
= kallsyms_lookup_name(symname
);
47 if (symtab
->sym_start
) {
49 kdb_printf("kdbgetsymval: returns 1, "
50 "symtab->sym_start=0x%lx\n",
55 kdb_printf("kdbgetsymval: returns 0\n");
58 EXPORT_SYMBOL(kdbgetsymval
);
60 static char *kdb_name_table
[100]; /* arbitrary size */
63 * kdbnearsym - Return the name of the symbol with the nearest address
67 * addr Address to check for symbol near
68 * symtab Structure to receive results
70 * 0 No sections contain this address, symtab zero filled
71 * 1 Address mapped to module/symbol/section, data in symtab
73 * 2.6 kallsyms has a "feature" where it unpacks the name into a
74 * string. If that string is reused before the caller expects it
75 * then the caller sees its string change without warning. To
76 * avoid cluttering up the main kdb code with lots of kdb_strdup,
77 * tests and kfree calls, kdbnearsym maintains an LRU list of the
78 * last few unique strings. The list is sized large enough to
79 * hold active strings, no kdb caller of kdbnearsym makes more
80 * than ~20 later calls before using a saved value.
82 int kdbnearsym(unsigned long addr
, kdb_symtab_t
*symtab
)
85 unsigned long symbolsize
= 0;
86 unsigned long offset
= 0;
87 #define knt1_size 128 /* must be >= kallsyms table size */
91 kdb_printf("kdbnearsym: addr=0x%lx, symtab=%p\n", addr
, symtab
);
92 memset(symtab
, 0, sizeof(*symtab
));
96 knt1
= debug_kmalloc(knt1_size
, GFP_ATOMIC
);
98 kdb_printf("kdbnearsym: addr=0x%lx cannot kmalloc knt1\n",
102 symtab
->sym_name
= kallsyms_lookup(addr
, &symbolsize
, &offset
,
103 (char **)(&symtab
->mod_name
), knt1
);
104 if (offset
> 8*1024*1024) {
105 symtab
->sym_name
= NULL
;
106 addr
= offset
= symbolsize
= 0;
108 symtab
->sym_start
= addr
- offset
;
109 symtab
->sym_end
= symtab
->sym_start
+ symbolsize
;
110 ret
= symtab
->sym_name
!= NULL
&& *(symtab
->sym_name
) != '\0';
114 /* Another 2.6 kallsyms "feature". Sometimes the sym_name is
115 * set but the buffer passed into kallsyms_lookup is not used,
116 * so it contains garbage. The caller has to work out which
117 * buffer needs to be saved.
119 * What was Rusty smoking when he wrote that code?
121 if (symtab
->sym_name
!= knt1
) {
122 strncpy(knt1
, symtab
->sym_name
, knt1_size
);
123 knt1
[knt1_size
-1] = '\0';
125 for (i
= 0; i
< ARRAY_SIZE(kdb_name_table
); ++i
) {
126 if (kdb_name_table
[i
] &&
127 strcmp(kdb_name_table
[i
], knt1
) == 0)
130 if (i
>= ARRAY_SIZE(kdb_name_table
)) {
131 debug_kfree(kdb_name_table
[0]);
132 memcpy(kdb_name_table
, kdb_name_table
+1,
133 sizeof(kdb_name_table
[0]) *
134 (ARRAY_SIZE(kdb_name_table
)-1));
137 knt1
= kdb_name_table
[i
];
138 memcpy(kdb_name_table
+i
, kdb_name_table
+i
+1,
139 sizeof(kdb_name_table
[0]) *
140 (ARRAY_SIZE(kdb_name_table
)-i
-1));
142 i
= ARRAY_SIZE(kdb_name_table
) - 1;
143 kdb_name_table
[i
] = knt1
;
144 symtab
->sym_name
= kdb_name_table
[i
];
148 if (symtab
->mod_name
== NULL
)
149 symtab
->mod_name
= "kernel";
151 kdb_printf("kdbnearsym: returns %d symtab->sym_start=0x%lx, "
152 "symtab->mod_name=%p, symtab->sym_name=%p (%s)\n", ret
,
153 symtab
->sym_start
, symtab
->mod_name
, symtab
->sym_name
,
161 void kdbnearsym_cleanup(void)
164 for (i
= 0; i
< ARRAY_SIZE(kdb_name_table
); ++i
) {
165 if (kdb_name_table
[i
]) {
166 debug_kfree(kdb_name_table
[i
]);
167 kdb_name_table
[i
] = NULL
;
172 static char ks_namebuf
[KSYM_NAME_LEN
+1], ks_namebuf_prev
[KSYM_NAME_LEN
+1];
175 * kallsyms_symbol_complete
178 * prefix_name prefix of a symbol name to lookup
179 * max_len maximum length that can be returned
181 * Number of symbols which match the given prefix.
183 * prefix_name is changed to contain the longest unique prefix that
184 * starts with this prefix (tab completion).
186 int kallsyms_symbol_complete(char *prefix_name
, int max_len
)
189 int prefix_len
= strlen(prefix_name
), prev_len
= 0;
193 while ((name
= kdb_walk_kallsyms(&pos
))) {
194 if (strncmp(name
, prefix_name
, prefix_len
) == 0) {
195 strcpy(ks_namebuf
, name
);
196 /* Work out the longest name that matches the prefix */
198 prev_len
= min_t(int, max_len
-1,
200 memcpy(ks_namebuf_prev
, ks_namebuf
, prev_len
);
201 ks_namebuf_prev
[prev_len
] = '\0';
204 for (i
= 0; i
< prev_len
; i
++) {
205 if (ks_namebuf
[i
] != ks_namebuf_prev
[i
]) {
207 ks_namebuf_prev
[i
] = '\0';
213 if (prev_len
> prefix_len
)
214 memcpy(prefix_name
, ks_namebuf_prev
, prev_len
+1);
219 * kallsyms_symbol_next
222 * prefix_name prefix of a symbol name to lookup
223 * flag 0 means search from the head, 1 means continue search.
225 * 1 if a symbol matches the given prefix.
226 * 0 if no string found
228 int kallsyms_symbol_next(char *prefix_name
, int flag
)
230 int prefix_len
= strlen(prefix_name
);
237 while ((name
= kdb_walk_kallsyms(&pos
))) {
238 if (strncmp(name
, prefix_name
, prefix_len
) == 0) {
239 strncpy(prefix_name
, name
, strlen(name
)+1);
247 * kdb_symbol_print - Standard method for printing a symbol name and offset.
249 * addr Address to be printed.
250 * symtab Address of symbol data, if NULL this routine does its
252 * punc Punctuation for string, bit field.
254 * The string and its punctuation is only printed if the address
255 * is inside the kernel, except that the value is always printed
258 void kdb_symbol_print(unsigned long addr
, const kdb_symtab_t
*symtab_p
,
261 kdb_symtab_t symtab
, *symtab_p2
;
263 symtab_p2
= (kdb_symtab_t
*)symtab_p
;
266 kdbnearsym(addr
, symtab_p2
);
268 if (!(symtab_p2
->sym_name
|| (punc
& KDB_SP_VALUE
)))
270 if (punc
& KDB_SP_SPACEB
)
272 if (punc
& KDB_SP_VALUE
)
273 kdb_printf(kdb_machreg_fmt0
, addr
);
274 if (symtab_p2
->sym_name
) {
275 if (punc
& KDB_SP_VALUE
)
277 if (punc
& KDB_SP_PAREN
)
279 if (strcmp(symtab_p2
->mod_name
, "kernel"))
280 kdb_printf("[%s]", symtab_p2
->mod_name
);
281 kdb_printf("%s", symtab_p2
->sym_name
);
282 if (addr
!= symtab_p2
->sym_start
)
283 kdb_printf("+0x%lx", addr
- symtab_p2
->sym_start
);
284 if (punc
& KDB_SP_SYMSIZE
)
286 symtab_p2
->sym_end
- symtab_p2
->sym_start
);
287 if (punc
& KDB_SP_PAREN
)
290 if (punc
& KDB_SP_SPACEA
)
292 if (punc
& KDB_SP_NEWLINE
)
297 * kdb_strdup - kdb equivalent of strdup, for disasm code.
299 * str The string to duplicate.
300 * type Flags to kmalloc for the new string.
302 * Address of the new string, NULL if storage could not be allocated.
304 * This is not in lib/string.c because it uses kmalloc which is not
305 * available when string.o is used in boot loaders.
307 char *kdb_strdup(const char *str
, gfp_t type
)
309 int n
= strlen(str
)+1;
310 char *s
= kmalloc(n
, type
);
313 return strcpy(s
, str
);
317 * kdb_getarea_size - Read an area of data. The kdb equivalent of
318 * copy_from_user, with kdb messages for invalid addresses.
320 * res Pointer to the area to receive the result.
321 * addr Address of the area to copy.
322 * size Size of the area.
324 * 0 for success, < 0 for error.
326 int kdb_getarea_size(void *res
, unsigned long addr
, size_t size
)
328 int ret
= probe_kernel_read((char *)res
, (char *)addr
, size
);
330 if (!KDB_STATE(SUPPRESS
)) {
331 kdb_printf("kdb_getarea: Bad address 0x%lx\n", addr
);
332 KDB_STATE_SET(SUPPRESS
);
336 KDB_STATE_CLEAR(SUPPRESS
);
342 * kdb_putarea_size - Write an area of data. The kdb equivalent of
343 * copy_to_user, with kdb messages for invalid addresses.
345 * addr Address of the area to write to.
346 * res Pointer to the area holding the data.
347 * size Size of the area.
349 * 0 for success, < 0 for error.
351 int kdb_putarea_size(unsigned long addr
, void *res
, size_t size
)
353 int ret
= probe_kernel_read((char *)addr
, (char *)res
, size
);
355 if (!KDB_STATE(SUPPRESS
)) {
356 kdb_printf("kdb_putarea: Bad address 0x%lx\n", addr
);
357 KDB_STATE_SET(SUPPRESS
);
361 KDB_STATE_CLEAR(SUPPRESS
);
367 * kdb_getphys - Read data from a physical address. Validate the
368 * address is in range, use kmap_atomic() to get data
369 * similar to kdb_getarea() - but for phys addresses
371 * res Pointer to the word to receive the result
372 * addr Physical address of the area to copy
373 * size Size of the area
375 * 0 for success, < 0 for error.
377 static int kdb_getphys(void *res
, unsigned long addr
, size_t size
)
383 pfn
= (addr
>> PAGE_SHIFT
);
386 page
= pfn_to_page(pfn
);
387 vaddr
= kmap_atomic(page
, KM_KDB
);
388 memcpy(res
, vaddr
+ (addr
& (PAGE_SIZE
- 1)), size
);
389 kunmap_atomic(vaddr
, KM_KDB
);
397 * word Pointer to the word to receive the result.
398 * addr Address of the area to copy.
399 * size Size of the area.
401 * 0 for success, < 0 for error.
403 int kdb_getphysword(unsigned long *word
, unsigned long addr
, size_t size
)
410 *word
= 0; /* Default value if addr or size is invalid */
414 diag
= kdb_getphys(&w1
, addr
, sizeof(w1
));
419 diag
= kdb_getphys(&w2
, addr
, sizeof(w2
));
424 diag
= kdb_getphys(&w4
, addr
, sizeof(w4
));
429 if (size
<= sizeof(*word
)) {
430 diag
= kdb_getphys(&w8
, addr
, sizeof(w8
));
438 kdb_printf("kdb_getphysword: bad width %ld\n", (long) size
);
444 * kdb_getword - Read a binary value. Unlike kdb_getarea, this treats
447 * word Pointer to the word to receive the result.
448 * addr Address of the area to copy.
449 * size Size of the area.
451 * 0 for success, < 0 for error.
453 int kdb_getword(unsigned long *word
, unsigned long addr
, size_t size
)
460 *word
= 0; /* Default value if addr or size is invalid */
463 diag
= kdb_getarea(w1
, addr
);
468 diag
= kdb_getarea(w2
, addr
);
473 diag
= kdb_getarea(w4
, addr
);
478 if (size
<= sizeof(*word
)) {
479 diag
= kdb_getarea(w8
, addr
);
487 kdb_printf("kdb_getword: bad width %ld\n", (long) size
);
493 * kdb_putword - Write a binary value. Unlike kdb_putarea, this
494 * treats data as numbers.
496 * addr Address of the area to write to..
497 * word The value to set.
498 * size Size of the area.
500 * 0 for success, < 0 for error.
502 int kdb_putword(unsigned long addr
, unsigned long word
, size_t size
)
512 diag
= kdb_putarea(addr
, w1
);
516 diag
= kdb_putarea(addr
, w2
);
520 diag
= kdb_putarea(addr
, w4
);
523 if (size
<= sizeof(word
)) {
525 diag
= kdb_putarea(addr
, w8
);
531 kdb_printf("kdb_putword: bad width %ld\n", (long) size
);
537 * kdb_task_state_string - Convert a string containing any of the
538 * letters DRSTCZEUIMA to a mask for the process state field and
539 * return the value. If no argument is supplied, return the mask
540 * that corresponds to environment variable PS, DRSTCZEU by
543 * s String to convert
545 * Mask for process state.
547 * The mask folds data from several sources into a single long value, so
548 * be careful not to overlap the bits. TASK_* bits are in the LSB,
549 * special cases like UNRUNNABLE are in the MSB. As of 2.6.10-rc1 there
550 * is no overlap between TASK_* and EXIT_* but that may not always be
551 * true, so EXIT_* bits are shifted left 16 bits before being stored in
555 /* unrunnable is < 0 */
556 #define UNRUNNABLE (1UL << (8*sizeof(unsigned long) - 1))
557 #define RUNNING (1UL << (8*sizeof(unsigned long) - 2))
558 #define IDLE (1UL << (8*sizeof(unsigned long) - 3))
559 #define DAEMON (1UL << (8*sizeof(unsigned long) - 4))
561 unsigned long kdb_task_state_string(const char *s
)
567 s
= "DRSTCZEU"; /* default value for ps */
572 res
|= TASK_UNINTERRUPTIBLE
;
578 res
|= TASK_INTERRUPTIBLE
;
587 res
|= EXIT_ZOMBIE
<< 16;
590 res
|= EXIT_DEAD
<< 16;
605 kdb_printf("%s: unknown flag '%c' ignored\n",
615 * kdb_task_state_char - Return the character that represents the task state.
617 * p struct task for the process
619 * One character to represent the task state.
621 char kdb_task_state_char (const struct task_struct
*p
)
627 if (!p
|| probe_kernel_read(&tmp
, (char *)p
, sizeof(unsigned long)))
630 cpu
= kdb_process_cpu(p
);
631 state
= (p
->state
== 0) ? 'R' :
632 (p
->state
< 0) ? 'U' :
633 (p
->state
& TASK_UNINTERRUPTIBLE
) ? 'D' :
634 (p
->state
& TASK_STOPPED
) ? 'T' :
635 (p
->state
& TASK_TRACED
) ? 'C' :
636 (p
->exit_state
& EXIT_ZOMBIE
) ? 'Z' :
637 (p
->exit_state
& EXIT_DEAD
) ? 'E' :
638 (p
->state
& TASK_INTERRUPTIBLE
) ? 'S' : '?';
639 if (is_idle_task(p
)) {
640 /* Idle task. Is it really idle, apart from the kdb
642 if (!kdb_task_has_cpu(p
) || kgdb_info
[cpu
].irq_depth
== 1) {
643 if (cpu
!= kdb_initial_cpu
)
644 state
= 'I'; /* idle task */
646 } else if (!p
->mm
&& state
== 'S') {
647 state
= 'M'; /* sleeping system daemon */
653 * kdb_task_state - Return true if a process has the desired state
656 * p struct task for the process
657 * mask mask from kdb_task_state_string to select processes
659 * True if the process matches at least one criteria defined by the mask.
661 unsigned long kdb_task_state(const struct task_struct
*p
, unsigned long mask
)
663 char state
[] = { kdb_task_state_char(p
), '\0' };
664 return (mask
& kdb_task_state_string(state
)) != 0;
668 * kdb_print_nameval - Print a name and its value, converting the
669 * value to a symbol lookup if possible.
671 * name field name to print
674 void kdb_print_nameval(const char *name
, unsigned long val
)
677 kdb_printf(" %-11.11s ", name
);
678 if (kdbnearsym(val
, &symtab
))
679 kdb_symbol_print(val
, &symtab
,
680 KDB_SP_VALUE
|KDB_SP_SYMSIZE
|KDB_SP_NEWLINE
);
682 kdb_printf("0x%lx\n", val
);
685 /* Last ditch allocator for debugging, so we can still debug even when
686 * the GFP_ATOMIC pool has been exhausted. The algorithms are tuned
687 * for space usage, not for speed. One smallish memory pool, the free
688 * chain is always in ascending address order to allow coalescing,
689 * allocations are done in brute force best fit.
692 struct debug_alloc_header
{
693 u32 next
; /* offset of next header from start of pool */
698 /* The memory returned by this allocator must be aligned, which means
699 * so must the header size. Do not assume that sizeof(struct
700 * debug_alloc_header) is a multiple of the alignment, explicitly
701 * calculate the overhead of this header, including the alignment.
702 * The rest of this code must not use sizeof() on any header or
703 * pointer to a header.
706 #define dah_overhead ALIGN(sizeof(struct debug_alloc_header), dah_align)
708 static u64 debug_alloc_pool_aligned
[256*1024/dah_align
]; /* 256K pool */
709 static char *debug_alloc_pool
= (char *)debug_alloc_pool_aligned
;
710 static u32 dah_first
, dah_first_call
= 1, dah_used
, dah_used_max
;
712 /* Locking is awkward. The debug code is called from all contexts,
713 * including non maskable interrupts. A normal spinlock is not safe
714 * in NMI context. Try to get the debug allocator lock, if it cannot
715 * be obtained after a second then give up. If the lock could not be
716 * previously obtained on this cpu then only try once.
718 * sparse has no annotation for "this function _sometimes_ acquires a
719 * lock", so fudge the acquire/release notation.
721 static DEFINE_SPINLOCK(dap_lock
);
722 static int get_dap_lock(void)
725 static int dap_locked
= -1;
727 if (dap_locked
== smp_processor_id())
732 if (spin_trylock(&dap_lock
)) {
740 dap_locked
= smp_processor_id();
745 void *debug_kmalloc(size_t size
, gfp_t flags
)
747 unsigned int rem
, h_offset
;
748 struct debug_alloc_header
*best
, *bestprev
, *prev
, *h
;
750 if (!get_dap_lock()) {
751 __release(dap_lock
); /* we never actually got it */
754 h
= (struct debug_alloc_header
*)(debug_alloc_pool
+ dah_first
);
755 if (dah_first_call
) {
756 h
->size
= sizeof(debug_alloc_pool_aligned
) - dah_overhead
;
759 size
= ALIGN(size
, dah_align
);
760 prev
= best
= bestprev
= NULL
;
762 if (h
->size
>= size
&& (!best
|| h
->size
< best
->size
)) {
771 h
= (struct debug_alloc_header
*)(debug_alloc_pool
+ h
->next
);
775 rem
= best
->size
- size
;
776 /* The pool must always contain at least one header */
777 if (best
->next
== 0 && bestprev
== NULL
&& rem
< dah_overhead
)
779 if (rem
>= dah_overhead
) {
781 h_offset
= ((char *)best
- debug_alloc_pool
) +
782 dah_overhead
+ best
->size
;
783 h
= (struct debug_alloc_header
*)(debug_alloc_pool
+ h_offset
);
784 h
->size
= rem
- dah_overhead
;
785 h
->next
= best
->next
;
787 h_offset
= best
->next
;
788 best
->caller
= __builtin_return_address(0);
789 dah_used
+= best
->size
;
790 dah_used_max
= max(dah_used
, dah_used_max
);
792 bestprev
->next
= h_offset
;
794 dah_first
= h_offset
;
795 p
= (char *)best
+ dah_overhead
;
796 memset(p
, POISON_INUSE
, best
->size
- 1);
797 *((char *)p
+ best
->size
- 1) = POISON_END
;
799 spin_unlock(&dap_lock
);
803 void debug_kfree(void *p
)
805 struct debug_alloc_header
*h
;
806 unsigned int h_offset
;
809 if ((char *)p
< debug_alloc_pool
||
810 (char *)p
>= debug_alloc_pool
+ sizeof(debug_alloc_pool_aligned
)) {
814 if (!get_dap_lock()) {
815 __release(dap_lock
); /* we never actually got it */
816 return; /* memory leak, cannot be helped */
818 h
= (struct debug_alloc_header
*)((char *)p
- dah_overhead
);
819 memset(p
, POISON_FREE
, h
->size
- 1);
820 *((char *)p
+ h
->size
- 1) = POISON_END
;
823 h_offset
= (char *)h
- debug_alloc_pool
;
824 if (h_offset
< dah_first
) {
826 dah_first
= h_offset
;
828 struct debug_alloc_header
*prev
;
829 unsigned int prev_offset
;
830 prev
= (struct debug_alloc_header
*)(debug_alloc_pool
+
833 if (!prev
->next
|| prev
->next
> h_offset
)
835 prev
= (struct debug_alloc_header
*)
836 (debug_alloc_pool
+ prev
->next
);
838 prev_offset
= (char *)prev
- debug_alloc_pool
;
839 if (prev_offset
+ dah_overhead
+ prev
->size
== h_offset
) {
840 prev
->size
+= dah_overhead
+ h
->size
;
841 memset(h
, POISON_FREE
, dah_overhead
- 1);
842 *((char *)h
+ dah_overhead
- 1) = POISON_END
;
844 h_offset
= prev_offset
;
846 h
->next
= prev
->next
;
847 prev
->next
= h_offset
;
850 if (h_offset
+ dah_overhead
+ h
->size
== h
->next
) {
851 struct debug_alloc_header
*next
;
852 next
= (struct debug_alloc_header
*)
853 (debug_alloc_pool
+ h
->next
);
854 h
->size
+= dah_overhead
+ next
->size
;
855 h
->next
= next
->next
;
856 memset(next
, POISON_FREE
, dah_overhead
- 1);
857 *((char *)next
+ dah_overhead
- 1) = POISON_END
;
859 spin_unlock(&dap_lock
);
862 void debug_kusage(void)
864 struct debug_alloc_header
*h_free
, *h_used
;
866 /* FIXME: using dah for ia64 unwind always results in a memory leak.
867 * Fix that memory leak first, then set debug_kusage_one_time = 1 for
870 static int debug_kusage_one_time
;
872 static int debug_kusage_one_time
= 1;
874 if (!get_dap_lock()) {
875 __release(dap_lock
); /* we never actually got it */
878 h_free
= (struct debug_alloc_header
*)(debug_alloc_pool
+ dah_first
);
879 if (dah_first
== 0 &&
880 (h_free
->size
== sizeof(debug_alloc_pool_aligned
) - dah_overhead
||
883 if (!debug_kusage_one_time
)
885 debug_kusage_one_time
= 0;
886 kdb_printf("%s: debug_kmalloc memory leak dah_first %d\n",
887 __func__
, dah_first
);
889 h_used
= (struct debug_alloc_header
*)debug_alloc_pool
;
890 kdb_printf("%s: h_used %p size %d\n", __func__
, h_used
,
894 h_used
= (struct debug_alloc_header
*)
895 ((char *)h_free
+ dah_overhead
+ h_free
->size
);
896 kdb_printf("%s: h_used %p size %d caller %p\n",
897 __func__
, h_used
, h_used
->size
, h_used
->caller
);
898 h_free
= (struct debug_alloc_header
*)
899 (debug_alloc_pool
+ h_free
->next
);
900 } while (h_free
->next
);
901 h_used
= (struct debug_alloc_header
*)
902 ((char *)h_free
+ dah_overhead
+ h_free
->size
);
903 if ((char *)h_used
- debug_alloc_pool
!=
904 sizeof(debug_alloc_pool_aligned
))
905 kdb_printf("%s: h_used %p size %d caller %p\n",
906 __func__
, h_used
, h_used
->size
, h_used
->caller
);
908 spin_unlock(&dap_lock
);
911 /* Maintain a small stack of kdb_flags to allow recursion without disturbing
912 * the global kdb state.
915 static int kdb_flags_stack
[4], kdb_flags_index
;
917 void kdb_save_flags(void)
919 BUG_ON(kdb_flags_index
>= ARRAY_SIZE(kdb_flags_stack
));
920 kdb_flags_stack
[kdb_flags_index
++] = kdb_flags
;
923 void kdb_restore_flags(void)
925 BUG_ON(kdb_flags_index
<= 0);
926 kdb_flags
= kdb_flags_stack
[--kdb_flags_index
];