3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/init.h>
34 #include <linux/kernel.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/interrupt.h>
38 #include <linux/module.h>
39 #include <linux/sysdev.h>
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1xxx_dbdma.h>
43 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
46 * The Descriptor Based DMA supports up to 16 channels.
48 * There are 32 devices defined. We keep an internal structure
49 * of devices using these channels, along with additional
52 * We allocate the descriptors and allow access to them through various
53 * functions. The drivers allocate the data buffers and assign them
56 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock
);
58 /* I couldn't find a macro that did this... */
59 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
61 static dbdma_global_t
*dbdma_gptr
= (dbdma_global_t
*)DDMA_GLOBAL_BASE
;
62 static int dbdma_initialized
;
64 static dbdev_tab_t dbdev_tab
[] = {
65 #ifdef CONFIG_SOC_AU1550
67 { DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
68 { DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
69 { DSCR_CMD0_UART3_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11400004, 0, 0 },
70 { DSCR_CMD0_UART3_RX
, DEV_FLAGS_IN
, 0, 8, 0x11400000, 0, 0 },
73 { DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
74 { DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
75 { DSCR_CMD0_DMA_REQ2
, 0, 0, 0, 0x00000000, 0, 0 },
76 { DSCR_CMD0_DMA_REQ3
, 0, 0, 0, 0x00000000, 0, 0 },
79 { DSCR_CMD0_USBDEV_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10200000, 0, 0 },
80 { DSCR_CMD0_USBDEV_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10200004, 0, 0 },
81 { DSCR_CMD0_USBDEV_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10200008, 0, 0 },
82 { DSCR_CMD0_USBDEV_TX2
, DEV_FLAGS_OUT
, 4, 8, 0x1020000c, 0, 0 },
83 { DSCR_CMD0_USBDEV_RX3
, DEV_FLAGS_IN
, 4, 8, 0x10200010, 0, 0 },
84 { DSCR_CMD0_USBDEV_RX4
, DEV_FLAGS_IN
, 4, 8, 0x10200014, 0, 0 },
87 { DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11a0001c, 0, 0 },
88 { DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x11a0001c, 0, 0 },
91 { DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11b0001c, 0, 0 },
92 { DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x11b0001c, 0, 0 },
95 { DSCR_CMD0_PSC2_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10a0001c, 0, 0 },
96 { DSCR_CMD0_PSC2_RX
, DEV_FLAGS_IN
, 0, 0, 0x10a0001c, 0, 0 },
99 { DSCR_CMD0_PSC3_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10b0001c, 0, 0 },
100 { DSCR_CMD0_PSC3_RX
, DEV_FLAGS_IN
, 0, 0, 0x10b0001c, 0, 0 },
102 { DSCR_CMD0_PCI_WRITE
, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
103 { DSCR_CMD0_NAND_FLASH
, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
106 { DSCR_CMD0_MAC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
107 { DSCR_CMD0_MAC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
110 { DSCR_CMD0_MAC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
111 { DSCR_CMD0_MAC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
113 #endif /* CONFIG_SOC_AU1550 */
115 #ifdef CONFIG_SOC_AU1200
116 { DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
117 { DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
118 { DSCR_CMD0_UART1_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11200004, 0, 0 },
119 { DSCR_CMD0_UART1_RX
, DEV_FLAGS_IN
, 0, 8, 0x11200000, 0, 0 },
121 { DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
122 { DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
124 { DSCR_CMD0_MAE_BE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
125 { DSCR_CMD0_MAE_FE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
126 { DSCR_CMD0_MAE_BOTH
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
127 { DSCR_CMD0_LCD
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
129 { DSCR_CMD0_SDMS_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10600000, 0, 0 },
130 { DSCR_CMD0_SDMS_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10600004, 0, 0 },
131 { DSCR_CMD0_SDMS_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10680000, 0, 0 },
132 { DSCR_CMD0_SDMS_RX1
, DEV_FLAGS_IN
, 4, 8, 0x10680004, 0, 0 },
134 { DSCR_CMD0_AES_RX
, DEV_FLAGS_IN
, 4, 32, 0x10300008, 0, 0 },
135 { DSCR_CMD0_AES_TX
, DEV_FLAGS_OUT
, 4, 32, 0x10300004, 0, 0 },
137 { DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11a0001c, 0, 0 },
138 { DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 16, 0x11a0001c, 0, 0 },
139 { DSCR_CMD0_PSC0_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
141 { DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11b0001c, 0, 0 },
142 { DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 16, 0x11b0001c, 0, 0 },
143 { DSCR_CMD0_PSC1_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
145 { DSCR_CMD0_CIM_RXA
, DEV_FLAGS_IN
, 0, 32, 0x14004020, 0, 0 },
146 { DSCR_CMD0_CIM_RXB
, DEV_FLAGS_IN
, 0, 32, 0x14004040, 0, 0 },
147 { DSCR_CMD0_CIM_RXC
, DEV_FLAGS_IN
, 0, 32, 0x14004060, 0, 0 },
148 { DSCR_CMD0_CIM_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
150 { DSCR_CMD0_NAND_FLASH
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
152 #endif /* CONFIG_SOC_AU1200 */
154 { DSCR_CMD0_THROTTLE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
155 { DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
157 /* Provide 16 user definable device types */
158 { ~0, 0, 0, 0, 0, 0, 0 },
159 { ~0, 0, 0, 0, 0, 0, 0 },
160 { ~0, 0, 0, 0, 0, 0, 0 },
161 { ~0, 0, 0, 0, 0, 0, 0 },
162 { ~0, 0, 0, 0, 0, 0, 0 },
163 { ~0, 0, 0, 0, 0, 0, 0 },
164 { ~0, 0, 0, 0, 0, 0, 0 },
165 { ~0, 0, 0, 0, 0, 0, 0 },
166 { ~0, 0, 0, 0, 0, 0, 0 },
167 { ~0, 0, 0, 0, 0, 0, 0 },
168 { ~0, 0, 0, 0, 0, 0, 0 },
169 { ~0, 0, 0, 0, 0, 0, 0 },
170 { ~0, 0, 0, 0, 0, 0, 0 },
171 { ~0, 0, 0, 0, 0, 0, 0 },
172 { ~0, 0, 0, 0, 0, 0, 0 },
173 { ~0, 0, 0, 0, 0, 0, 0 },
176 #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
179 static chan_tab_t
*chan_tab_ptr
[NUM_DBDMA_CHANS
];
181 static dbdev_tab_t
*find_dbdev_id(u32 id
)
185 for (i
= 0; i
< DBDEV_TAB_SIZE
; ++i
) {
193 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t
*dp
)
195 return phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
197 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt
);
199 u32
au1xxx_ddma_add_device(dbdev_tab_t
*dev
)
203 static u16 new_id
= 0x1000;
205 p
= find_dbdev_id(~0);
207 memcpy(p
, dev
, sizeof(dbdev_tab_t
));
208 p
->dev_id
= DSCR_DEV2CUSTOM_ID(new_id
, dev
->dev_id
);
212 printk(KERN_DEBUG
"add_device: id:%x flags:%x padd:%x\n",
213 p
->dev_id
, p
->dev_flags
, p
->dev_physaddr
);
219 EXPORT_SYMBOL(au1xxx_ddma_add_device
);
221 void au1xxx_ddma_del_device(u32 devid
)
223 dbdev_tab_t
*p
= find_dbdev_id(devid
);
226 memset(p
, 0, sizeof(dbdev_tab_t
));
230 EXPORT_SYMBOL(au1xxx_ddma_del_device
);
232 /* Allocate a channel and return a non-zero descriptor if successful. */
233 u32
au1xxx_dbdma_chan_alloc(u32 srcid
, u32 destid
,
234 void (*callback
)(int, void *), void *callparam
)
240 dbdev_tab_t
*stp
, *dtp
;
245 * We do the intialization on the first channel allocation.
246 * We have to wait because of the interrupt handler initialization
247 * which can't be done successfully during board set up.
249 if (!dbdma_initialized
)
252 stp
= find_dbdev_id(srcid
);
255 dtp
= find_dbdev_id(destid
);
261 /* Check to see if we can get both channels. */
262 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
263 if (!(stp
->dev_flags
& DEV_FLAGS_INUSE
) ||
264 (stp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
266 stp
->dev_flags
|= DEV_FLAGS_INUSE
;
267 if (!(dtp
->dev_flags
& DEV_FLAGS_INUSE
) ||
268 (dtp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
269 /* Got destination */
270 dtp
->dev_flags
|= DEV_FLAGS_INUSE
;
272 /* Can't get dest. Release src. */
273 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
278 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
283 /* Let's see if we can allocate a channel for it. */
286 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
287 for (i
= 0; i
< NUM_DBDMA_CHANS
; i
++)
288 if (chan_tab_ptr
[i
] == NULL
) {
290 * If kmalloc fails, it is caught below same
291 * as a channel not available.
293 ctp
= kmalloc(sizeof(chan_tab_t
), GFP_ATOMIC
);
294 chan_tab_ptr
[i
] = ctp
;
297 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
300 memset(ctp
, 0, sizeof(chan_tab_t
));
301 ctp
->chan_index
= chan
= i
;
302 dcp
= DDMA_CHANNEL_BASE
;
303 dcp
+= (0x0100 * chan
);
304 ctp
->chan_ptr
= (au1x_dma_chan_t
*)dcp
;
305 cp
= (au1x_dma_chan_t
*)dcp
;
307 ctp
->chan_dest
= dtp
;
308 ctp
->chan_callback
= callback
;
309 ctp
->chan_callparam
= callparam
;
311 /* Initialize channel configuration. */
313 if (stp
->dev_intlevel
)
315 if (stp
->dev_intpolarity
)
317 if (dtp
->dev_intlevel
)
319 if (dtp
->dev_intpolarity
)
321 if ((stp
->dev_flags
& DEV_FLAGS_SYNC
) ||
322 (dtp
->dev_flags
& DEV_FLAGS_SYNC
))
328 * Return a non-zero value that can be used to find the channel
329 * information in subsequent operations.
331 return (u32
)(&chan_tab_ptr
[chan
]);
334 /* Release devices */
335 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
336 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
340 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc
);
343 * Set the device width if source or destination is a FIFO.
344 * Should be 8, 16, or 32 bits.
346 u32
au1xxx_dbdma_set_devwidth(u32 chanid
, int bits
)
350 dbdev_tab_t
*stp
, *dtp
;
352 ctp
= *((chan_tab_t
**)chanid
);
354 dtp
= ctp
->chan_dest
;
357 if (stp
->dev_flags
& DEV_FLAGS_IN
) { /* Source in fifo */
358 rv
= stp
->dev_devwidth
;
359 stp
->dev_devwidth
= bits
;
361 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) { /* Destination out fifo */
362 rv
= dtp
->dev_devwidth
;
363 dtp
->dev_devwidth
= bits
;
368 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth
);
370 /* Allocate a descriptor ring, initializing as much as possible. */
371 u32
au1xxx_dbdma_ring_alloc(u32 chanid
, int entries
)
374 u32 desc_base
, srcid
, destid
;
375 u32 cmd0
, cmd1
, src1
, dest1
;
378 dbdev_tab_t
*stp
, *dtp
;
379 au1x_ddma_desc_t
*dp
;
382 * I guess we could check this to be within the
383 * range of the table......
385 ctp
= *((chan_tab_t
**)chanid
);
387 dtp
= ctp
->chan_dest
;
390 * The descriptors must be 32-byte aligned. There is a
391 * possibility the allocation will give us such an address,
392 * and if we try that first we are likely to not waste larger
395 desc_base
= (u32
)kmalloc(entries
* sizeof(au1x_ddma_desc_t
),
400 if (desc_base
& 0x1f) {
402 * Lost....do it again, allocate extra, and round
405 kfree((const void *)desc_base
);
406 i
= entries
* sizeof(au1x_ddma_desc_t
);
407 i
+= (sizeof(au1x_ddma_desc_t
) - 1);
408 desc_base
= (u32
)kmalloc(i
, GFP_KERNEL
|GFP_DMA
);
412 ctp
->cdb_membase
= desc_base
;
413 desc_base
= ALIGN_ADDR(desc_base
, sizeof(au1x_ddma_desc_t
));
415 ctp
->cdb_membase
= desc_base
;
417 dp
= (au1x_ddma_desc_t
*)desc_base
;
419 /* Keep track of the base descriptor. */
420 ctp
->chan_desc_base
= dp
;
422 /* Initialize the rings with as much information as we know. */
424 destid
= dtp
->dev_id
;
426 cmd0
= cmd1
= src1
= dest1
= 0;
429 cmd0
|= DSCR_CMD0_SID(srcid
);
430 cmd0
|= DSCR_CMD0_DID(destid
);
431 cmd0
|= DSCR_CMD0_IE
| DSCR_CMD0_CV
;
432 cmd0
|= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE
);
434 /* Is it mem to mem transfer? */
435 if (((DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_THROTTLE
) ||
436 (DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_ALWAYS
)) &&
437 ((DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_THROTTLE
) ||
438 (DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_ALWAYS
)))
439 cmd0
|= DSCR_CMD0_MEM
;
441 switch (stp
->dev_devwidth
) {
443 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_BYTE
);
446 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD
);
450 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_WORD
);
454 switch (dtp
->dev_devwidth
) {
456 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_BYTE
);
459 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD
);
463 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_WORD
);
468 * If the device is marked as an in/out FIFO, ensure it is
471 if (stp
->dev_flags
& DEV_FLAGS_IN
)
472 cmd0
|= DSCR_CMD0_SN
; /* Source in FIFO */
473 if (dtp
->dev_flags
& DEV_FLAGS_OUT
)
474 cmd0
|= DSCR_CMD0_DN
; /* Destination out FIFO */
477 * Set up source1. For now, assume no stride and increment.
478 * A channel attribute update can change this later.
480 switch (stp
->dev_tsize
) {
482 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE1
);
485 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE2
);
488 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE4
);
492 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE8
);
496 /* If source input is FIFO, set static address. */
497 if (stp
->dev_flags
& DEV_FLAGS_IN
) {
498 if (stp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
499 src1
|= DSCR_SRC1_SAM(DSCR_xAM_BURST
);
501 src1
|= DSCR_SRC1_SAM(DSCR_xAM_STATIC
);
504 if (stp
->dev_physaddr
)
505 src0
= stp
->dev_physaddr
;
508 * Set up dest1. For now, assume no stride and increment.
509 * A channel attribute update can change this later.
511 switch (dtp
->dev_tsize
) {
513 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE1
);
516 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE2
);
519 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE4
);
523 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE8
);
527 /* If destination output is FIFO, set static address. */
528 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) {
529 if (dtp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
530 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_BURST
);
532 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_STATIC
);
535 if (dtp
->dev_physaddr
)
536 dest0
= dtp
->dev_physaddr
;
539 printk(KERN_DEBUG
"did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
540 "source1:%x dest0:%x dest1:%x\n",
541 dtp
->dev_id
, stp
->dev_id
, cmd0
, cmd1
, src0
,
544 for (i
= 0; i
< entries
; i
++) {
545 dp
->dscr_cmd0
= cmd0
;
546 dp
->dscr_cmd1
= cmd1
;
547 dp
->dscr_source0
= src0
;
548 dp
->dscr_source1
= src1
;
549 dp
->dscr_dest0
= dest0
;
550 dp
->dscr_dest1
= dest1
;
554 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(dp
+ 1));
558 /* Make last descrptor point to the first. */
560 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(ctp
->chan_desc_base
));
561 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
563 return (u32
)ctp
->chan_desc_base
;
565 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc
);
568 * Put a source buffer into the DMA ring.
569 * This updates the source pointer and byte count. Normally used
570 * for memory to fifo transfers.
572 u32
au1xxx_dbdma_put_source(u32 chanid
, dma_addr_t buf
, int nbytes
, u32 flags
)
575 au1x_ddma_desc_t
*dp
;
578 * I guess we could check this to be within the
579 * range of the table......
581 ctp
= *(chan_tab_t
**)chanid
;
584 * We should have multiple callers for a particular channel,
585 * an interrupt doesn't affect this pointer nor the descriptor,
586 * so no locking should be needed.
591 * If the descriptor is valid, we are way ahead of the DMA
592 * engine, so just return an error condition.
594 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
597 /* Load up buffer address and byte count. */
598 dp
->dscr_source0
= buf
& ~0UL;
599 dp
->dscr_cmd1
= nbytes
;
601 if (flags
& DDMA_FLAGS_IE
)
602 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
603 if (flags
& DDMA_FLAGS_NOIE
)
604 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
607 * There is an errata on the Au1200/Au1550 parts that could result
608 * in "stale" data being DMA'ed. It has to do with the snoop logic on
609 * the cache eviction buffer. DMA_NONCOHERENT is on by default for
610 * these parts. If it is fixed in the future, these dma_cache_inv will
611 * just be nothing more than empty macros. See io.h.
613 dma_cache_wback_inv((unsigned long)buf
, nbytes
);
614 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
616 dma_cache_wback_inv((unsigned long)dp
, sizeof(*dp
));
617 ctp
->chan_ptr
->ddma_dbell
= 0;
619 /* Get next descriptor pointer. */
620 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
622 /* Return something non-zero. */
625 EXPORT_SYMBOL(au1xxx_dbdma_put_source
);
627 /* Put a destination buffer into the DMA ring.
628 * This updates the destination pointer and byte count. Normally used
629 * to place an empty buffer into the ring for fifo to memory transfers.
631 u32
au1xxx_dbdma_put_dest(u32 chanid
, dma_addr_t buf
, int nbytes
, u32 flags
)
634 au1x_ddma_desc_t
*dp
;
636 /* I guess we could check this to be within the
637 * range of the table......
639 ctp
= *((chan_tab_t
**)chanid
);
641 /* We should have multiple callers for a particular channel,
642 * an interrupt doesn't affect this pointer nor the descriptor,
643 * so no locking should be needed.
647 /* If the descriptor is valid, we are way ahead of the DMA
648 * engine, so just return an error condition.
650 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
653 /* Load up buffer address and byte count */
656 if (flags
& DDMA_FLAGS_IE
)
657 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
658 if (flags
& DDMA_FLAGS_NOIE
)
659 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
661 dp
->dscr_dest0
= buf
& ~0UL;
662 dp
->dscr_cmd1
= nbytes
;
664 printk(KERN_DEBUG
"cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
665 dp
->dscr_cmd0
, dp
->dscr_cmd1
, dp
->dscr_source0
,
666 dp
->dscr_source1
, dp
->dscr_dest0
, dp
->dscr_dest1
);
669 * There is an errata on the Au1200/Au1550 parts that could result in
670 * "stale" data being DMA'ed. It has to do with the snoop logic on the
671 * cache eviction buffer. DMA_NONCOHERENT is on by default for these
672 * parts. If it is fixed in the future, these dma_cache_inv will just
673 * be nothing more than empty macros. See io.h.
675 dma_cache_inv((unsigned long)buf
, nbytes
);
676 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
678 dma_cache_wback_inv((unsigned long)dp
, sizeof(*dp
));
679 ctp
->chan_ptr
->ddma_dbell
= 0;
681 /* Get next descriptor pointer. */
682 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
684 /* Return something non-zero. */
687 EXPORT_SYMBOL(au1xxx_dbdma_put_dest
);
690 * Get a destination buffer into the DMA ring.
691 * Normally used to get a full buffer from the ring during fifo
692 * to memory transfers. This does not set the valid bit, you will
693 * have to put another destination buffer to keep the DMA going.
695 u32
au1xxx_dbdma_get_dest(u32 chanid
, void **buf
, int *nbytes
)
698 au1x_ddma_desc_t
*dp
;
702 * I guess we could check this to be within the
703 * range of the table......
705 ctp
= *((chan_tab_t
**)chanid
);
708 * We should have multiple callers for a particular channel,
709 * an interrupt doesn't affect this pointer nor the descriptor,
710 * so no locking should be needed.
715 * If the descriptor is valid, we are way ahead of the DMA
716 * engine, so just return an error condition.
718 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
721 /* Return buffer address and byte count. */
722 *buf
= (void *)(phys_to_virt(dp
->dscr_dest0
));
723 *nbytes
= dp
->dscr_cmd1
;
726 /* Get next descriptor pointer. */
727 ctp
->get_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
729 /* Return something non-zero. */
732 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest
);
734 void au1xxx_dbdma_stop(u32 chanid
)
738 int halt_timeout
= 0;
740 ctp
= *((chan_tab_t
**)chanid
);
743 cp
->ddma_cfg
&= ~DDMA_CFG_EN
; /* Disable channel */
745 while (!(cp
->ddma_stat
& DDMA_STAT_H
)) {
748 if (halt_timeout
> 100) {
749 printk(KERN_WARNING
"warning: DMA channel won't halt\n");
753 /* clear current desc valid and doorbell */
754 cp
->ddma_stat
|= (DDMA_STAT_DB
| DDMA_STAT_V
);
757 EXPORT_SYMBOL(au1xxx_dbdma_stop
);
760 * Start using the current descriptor pointer. If the DBDMA encounters
761 * a non-valid descriptor, it will stop. In this case, we can just
762 * continue by adding a buffer to the list and starting again.
764 void au1xxx_dbdma_start(u32 chanid
)
769 ctp
= *((chan_tab_t
**)chanid
);
771 cp
->ddma_desptr
= virt_to_phys(ctp
->cur_ptr
);
772 cp
->ddma_cfg
|= DDMA_CFG_EN
; /* Enable channel */
777 EXPORT_SYMBOL(au1xxx_dbdma_start
);
779 void au1xxx_dbdma_reset(u32 chanid
)
782 au1x_ddma_desc_t
*dp
;
784 au1xxx_dbdma_stop(chanid
);
786 ctp
= *((chan_tab_t
**)chanid
);
787 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
789 /* Run through the descriptors and reset the valid indicator. */
790 dp
= ctp
->chan_desc_base
;
793 dp
->dscr_cmd0
&= ~DSCR_CMD0_V
;
795 * Reset our software status -- this is used to determine
796 * if a descriptor is in use by upper level software. Since
797 * posting can reset 'V' bit.
800 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
801 } while (dp
!= ctp
->chan_desc_base
);
803 EXPORT_SYMBOL(au1xxx_dbdma_reset
);
805 u32
au1xxx_get_dma_residue(u32 chanid
)
811 ctp
= *((chan_tab_t
**)chanid
);
814 /* This is only valid if the channel is stopped. */
815 rv
= cp
->ddma_bytecnt
;
820 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue
);
822 void au1xxx_dbdma_chan_free(u32 chanid
)
825 dbdev_tab_t
*stp
, *dtp
;
827 ctp
= *((chan_tab_t
**)chanid
);
829 dtp
= ctp
->chan_dest
;
831 au1xxx_dbdma_stop(chanid
);
833 kfree((void *)ctp
->cdb_membase
);
835 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
836 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
837 chan_tab_ptr
[ctp
->chan_index
] = NULL
;
841 EXPORT_SYMBOL(au1xxx_dbdma_chan_free
);
843 static irqreturn_t
dbdma_interrupt(int irq
, void *dev_id
)
848 au1x_ddma_desc_t
*dp
;
851 intstat
= dbdma_gptr
->ddma_intstat
;
853 chan_index
= __ffs(intstat
);
855 ctp
= chan_tab_ptr
[chan_index
];
859 /* Reset interrupt. */
863 if (ctp
->chan_callback
)
864 ctp
->chan_callback(irq
, ctp
->chan_callparam
);
866 ctp
->cur_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
867 return IRQ_RETVAL(1);
870 void au1xxx_dbdma_dump(u32 chanid
)
873 au1x_ddma_desc_t
*dp
;
874 dbdev_tab_t
*stp
, *dtp
;
878 ctp
= *((chan_tab_t
**)chanid
);
880 dtp
= ctp
->chan_dest
;
883 printk(KERN_DEBUG
"Chan %x, stp %x (dev %d) dtp %x (dev %d)\n",
884 (u32
)ctp
, (u32
)stp
, stp
- dbdev_tab
, (u32
)dtp
,
886 printk(KERN_DEBUG
"desc base %x, get %x, put %x, cur %x\n",
887 (u32
)(ctp
->chan_desc_base
), (u32
)(ctp
->get_ptr
),
888 (u32
)(ctp
->put_ptr
), (u32
)(ctp
->cur_ptr
));
890 printk(KERN_DEBUG
"dbdma chan %x\n", (u32
)cp
);
891 printk(KERN_DEBUG
"cfg %08x, desptr %08x, statptr %08x\n",
892 cp
->ddma_cfg
, cp
->ddma_desptr
, cp
->ddma_statptr
);
893 printk(KERN_DEBUG
"dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
894 cp
->ddma_dbell
, cp
->ddma_irq
, cp
->ddma_stat
,
897 /* Run through the descriptors */
898 dp
= ctp
->chan_desc_base
;
901 printk(KERN_DEBUG
"Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
902 i
++, (u32
)dp
, dp
->dscr_cmd0
, dp
->dscr_cmd1
);
903 printk(KERN_DEBUG
"src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
904 dp
->dscr_source0
, dp
->dscr_source1
,
905 dp
->dscr_dest0
, dp
->dscr_dest1
);
906 printk(KERN_DEBUG
"stat %08x, nxtptr %08x\n",
907 dp
->dscr_stat
, dp
->dscr_nxtptr
);
908 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
909 } while (dp
!= ctp
->chan_desc_base
);
912 /* Put a descriptor into the DMA ring.
913 * This updates the source/destination pointers and byte count.
915 u32
au1xxx_dbdma_put_dscr(u32 chanid
, au1x_ddma_desc_t
*dscr
)
918 au1x_ddma_desc_t
*dp
;
922 * I guess we could check this to be within the
923 * range of the table......
925 ctp
= *((chan_tab_t
**)chanid
);
928 * We should have multiple callers for a particular channel,
929 * an interrupt doesn't affect this pointer nor the descriptor,
930 * so no locking should be needed.
935 * If the descriptor is valid, we are way ahead of the DMA
936 * engine, so just return an error condition.
938 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
941 /* Load up buffer addresses and byte count. */
942 dp
->dscr_dest0
= dscr
->dscr_dest0
;
943 dp
->dscr_source0
= dscr
->dscr_source0
;
944 dp
->dscr_dest1
= dscr
->dscr_dest1
;
945 dp
->dscr_source1
= dscr
->dscr_source1
;
946 dp
->dscr_cmd1
= dscr
->dscr_cmd1
;
947 nbytes
= dscr
->dscr_cmd1
;
948 /* Allow the caller to specifiy if an interrupt is generated */
949 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
950 dp
->dscr_cmd0
|= dscr
->dscr_cmd0
| DSCR_CMD0_V
;
951 ctp
->chan_ptr
->ddma_dbell
= 0;
953 /* Get next descriptor pointer. */
954 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
956 /* Return something non-zero. */
961 struct alchemy_dbdma_sysdev
{
962 struct sys_device sysdev
;
963 u32 pm_regs
[NUM_DBDMA_CHANS
+ 1][6];
966 static int alchemy_dbdma_suspend(struct sys_device
*dev
,
969 struct alchemy_dbdma_sysdev
*sdev
=
970 container_of(dev
, struct alchemy_dbdma_sysdev
, sysdev
);
974 addr
= DDMA_GLOBAL_BASE
;
975 sdev
->pm_regs
[0][0] = au_readl(addr
+ 0x00);
976 sdev
->pm_regs
[0][1] = au_readl(addr
+ 0x04);
977 sdev
->pm_regs
[0][2] = au_readl(addr
+ 0x08);
978 sdev
->pm_regs
[0][3] = au_readl(addr
+ 0x0c);
980 /* save channel configurations */
981 for (i
= 1, addr
= DDMA_CHANNEL_BASE
; i
<= NUM_DBDMA_CHANS
; i
++) {
982 sdev
->pm_regs
[i
][0] = au_readl(addr
+ 0x00);
983 sdev
->pm_regs
[i
][1] = au_readl(addr
+ 0x04);
984 sdev
->pm_regs
[i
][2] = au_readl(addr
+ 0x08);
985 sdev
->pm_regs
[i
][3] = au_readl(addr
+ 0x0c);
986 sdev
->pm_regs
[i
][4] = au_readl(addr
+ 0x10);
987 sdev
->pm_regs
[i
][5] = au_readl(addr
+ 0x14);
990 au_writel(sdev
->pm_regs
[i
][0] & ~1, addr
+ 0x00);
992 while (!(au_readl(addr
+ 0x14) & 1))
995 addr
+= 0x100; /* next channel base */
997 /* disable channel interrupts */
998 au_writel(0, DDMA_GLOBAL_BASE
+ 0x0c);
1004 static int alchemy_dbdma_resume(struct sys_device
*dev
)
1006 struct alchemy_dbdma_sysdev
*sdev
=
1007 container_of(dev
, struct alchemy_dbdma_sysdev
, sysdev
);
1011 addr
= DDMA_GLOBAL_BASE
;
1012 au_writel(sdev
->pm_regs
[0][0], addr
+ 0x00);
1013 au_writel(sdev
->pm_regs
[0][1], addr
+ 0x04);
1014 au_writel(sdev
->pm_regs
[0][2], addr
+ 0x08);
1015 au_writel(sdev
->pm_regs
[0][3], addr
+ 0x0c);
1017 /* restore channel configurations */
1018 for (i
= 1, addr
= DDMA_CHANNEL_BASE
; i
<= NUM_DBDMA_CHANS
; i
++) {
1019 au_writel(sdev
->pm_regs
[i
][0], addr
+ 0x00);
1020 au_writel(sdev
->pm_regs
[i
][1], addr
+ 0x04);
1021 au_writel(sdev
->pm_regs
[i
][2], addr
+ 0x08);
1022 au_writel(sdev
->pm_regs
[i
][3], addr
+ 0x0c);
1023 au_writel(sdev
->pm_regs
[i
][4], addr
+ 0x10);
1024 au_writel(sdev
->pm_regs
[i
][5], addr
+ 0x14);
1026 addr
+= 0x100; /* next channel base */
1032 static struct sysdev_class alchemy_dbdma_sysdev_class
= {
1034 .suspend
= alchemy_dbdma_suspend
,
1035 .resume
= alchemy_dbdma_resume
,
1038 static int __init
alchemy_dbdma_sysdev_init(void)
1040 struct alchemy_dbdma_sysdev
*sdev
;
1043 ret
= sysdev_class_register(&alchemy_dbdma_sysdev_class
);
1047 sdev
= kzalloc(sizeof(struct alchemy_dbdma_sysdev
), GFP_KERNEL
);
1051 sdev
->sysdev
.id
= -1;
1052 sdev
->sysdev
.cls
= &alchemy_dbdma_sysdev_class
;
1053 ret
= sysdev_register(&sdev
->sysdev
);
1060 static int __init
au1xxx_dbdma_init(void)
1064 dbdma_gptr
->ddma_config
= 0;
1065 dbdma_gptr
->ddma_throttle
= 0;
1066 dbdma_gptr
->ddma_inten
= 0xffff;
1069 switch (alchemy_get_cputype()) {
1070 case ALCHEMY_CPU_AU1550
:
1071 irq_nr
= AU1550_DDMA_INT
;
1073 case ALCHEMY_CPU_AU1200
:
1074 irq_nr
= AU1200_DDMA_INT
;
1080 ret
= request_irq(irq_nr
, dbdma_interrupt
, IRQF_DISABLED
,
1081 "Au1xxx dbdma", (void *)dbdma_gptr
);
1083 printk(KERN_ERR
"Cannot grab DBDMA interrupt!\n");
1085 dbdma_initialized
= 1;
1086 printk(KERN_INFO
"Alchemy DBDMA initialized\n");
1087 ret
= alchemy_dbdma_sysdev_init();
1089 printk(KERN_ERR
"DBDMA PM init failed\n");
1096 subsys_initcall(au1xxx_dbdma_init
);
1098 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */