sfc: Don't use enums as a bitmask.
[zen-stable.git] / arch / powerpc / kernel / time.c
blob375480c56eb9fd6699c90e385dd1877affb3d052
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <asm/trace.h>
59 #include <asm/io.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
65 #include <asm/time.h>
66 #include <asm/prom.h>
67 #include <asm/irq.h>
68 #include <asm/div64.h>
69 #include <asm/smp.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
76 #endif
78 /* powerpc clocksource/clockevent code */
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
83 static cycle_t rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .shift = 22,
90 .mult = 0, /* To be filled in */
91 .read = rtc_read,
94 static cycle_t timebase_read(struct clocksource *);
95 static struct clocksource clocksource_timebase = {
96 .name = "timebase",
97 .rating = 400,
98 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 .mask = CLOCKSOURCE_MASK(64),
100 .shift = 22,
101 .mult = 0, /* To be filled in */
102 .read = timebase_read,
105 #define DECREMENTER_MAX 0x7fffffff
107 static int decrementer_set_next_event(unsigned long evt,
108 struct clock_event_device *dev);
109 static void decrementer_set_mode(enum clock_event_mode mode,
110 struct clock_event_device *dev);
112 static struct clock_event_device decrementer_clockevent = {
113 .name = "decrementer",
114 .rating = 200,
115 .shift = 0, /* To be filled in */
116 .mult = 0, /* To be filled in */
117 .irq = 0,
118 .set_next_event = decrementer_set_next_event,
119 .set_mode = decrementer_set_mode,
120 .features = CLOCK_EVT_FEAT_ONESHOT,
123 struct decrementer_clock {
124 struct clock_event_device event;
125 u64 next_tb;
128 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
130 #ifdef CONFIG_PPC_ISERIES
131 static unsigned long __initdata iSeries_recal_titan;
132 static signed long __initdata iSeries_recal_tb;
134 /* Forward declaration is only needed for iSereis compiles */
135 static void __init clocksource_init(void);
136 #endif
138 #define XSEC_PER_SEC (1024*1024)
140 #ifdef CONFIG_PPC64
141 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
142 #else
143 /* compute ((xsec << 12) * max) >> 32 */
144 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
145 #endif
147 unsigned long tb_ticks_per_jiffy;
148 unsigned long tb_ticks_per_usec = 100; /* sane default */
149 EXPORT_SYMBOL(tb_ticks_per_usec);
150 unsigned long tb_ticks_per_sec;
151 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
153 DEFINE_SPINLOCK(rtc_lock);
154 EXPORT_SYMBOL_GPL(rtc_lock);
156 static u64 tb_to_ns_scale __read_mostly;
157 static unsigned tb_to_ns_shift __read_mostly;
158 static u64 boot_tb __read_mostly;
160 extern struct timezone sys_tz;
161 static long timezone_offset;
163 unsigned long ppc_proc_freq;
164 EXPORT_SYMBOL_GPL(ppc_proc_freq);
165 unsigned long ppc_tb_freq;
166 EXPORT_SYMBOL_GPL(ppc_tb_freq);
168 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
170 * Factors for converting from cputime_t (timebase ticks) to
171 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
172 * These are all stored as 0.64 fixed-point binary fractions.
174 u64 __cputime_jiffies_factor;
175 EXPORT_SYMBOL(__cputime_jiffies_factor);
176 u64 __cputime_msec_factor;
177 EXPORT_SYMBOL(__cputime_msec_factor);
178 u64 __cputime_sec_factor;
179 EXPORT_SYMBOL(__cputime_sec_factor);
180 u64 __cputime_clockt_factor;
181 EXPORT_SYMBOL(__cputime_clockt_factor);
182 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
183 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
185 cputime_t cputime_one_jiffy;
187 void (*dtl_consumer)(struct dtl_entry *, u64);
189 static void calc_cputime_factors(void)
191 struct div_result res;
193 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
194 __cputime_jiffies_factor = res.result_low;
195 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
196 __cputime_msec_factor = res.result_low;
197 div128_by_32(1, 0, tb_ticks_per_sec, &res);
198 __cputime_sec_factor = res.result_low;
199 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
200 __cputime_clockt_factor = res.result_low;
204 * Read the SPURR on systems that have it, otherwise the PURR,
205 * or if that doesn't exist return the timebase value passed in.
207 static u64 read_spurr(u64 tb)
209 if (cpu_has_feature(CPU_FTR_SPURR))
210 return mfspr(SPRN_SPURR);
211 if (cpu_has_feature(CPU_FTR_PURR))
212 return mfspr(SPRN_PURR);
213 return tb;
216 #ifdef CONFIG_PPC_SPLPAR
219 * Scan the dispatch trace log and count up the stolen time.
220 * Should be called with interrupts disabled.
222 static u64 scan_dispatch_log(u64 stop_tb)
224 u64 i = local_paca->dtl_ridx;
225 struct dtl_entry *dtl = local_paca->dtl_curr;
226 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
227 struct lppaca *vpa = local_paca->lppaca_ptr;
228 u64 tb_delta;
229 u64 stolen = 0;
230 u64 dtb;
232 if (i == vpa->dtl_idx)
233 return 0;
234 while (i < vpa->dtl_idx) {
235 if (dtl_consumer)
236 dtl_consumer(dtl, i);
237 dtb = dtl->timebase;
238 tb_delta = dtl->enqueue_to_dispatch_time +
239 dtl->ready_to_enqueue_time;
240 barrier();
241 if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
242 /* buffer has overflowed */
243 i = vpa->dtl_idx - N_DISPATCH_LOG;
244 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
245 continue;
247 if (dtb > stop_tb)
248 break;
249 stolen += tb_delta;
250 ++i;
251 ++dtl;
252 if (dtl == dtl_end)
253 dtl = local_paca->dispatch_log;
255 local_paca->dtl_ridx = i;
256 local_paca->dtl_curr = dtl;
257 return stolen;
261 * Accumulate stolen time by scanning the dispatch trace log.
262 * Called on entry from user mode.
264 void accumulate_stolen_time(void)
266 u64 sst, ust;
268 u8 save_soft_enabled = local_paca->soft_enabled;
269 u8 save_hard_enabled = local_paca->hard_enabled;
271 /* We are called early in the exception entry, before
272 * soft/hard_enabled are sync'ed to the expected state
273 * for the exception. We are hard disabled but the PACA
274 * needs to reflect that so various debug stuff doesn't
275 * complain
277 local_paca->soft_enabled = 0;
278 local_paca->hard_enabled = 0;
280 sst = scan_dispatch_log(local_paca->starttime_user);
281 ust = scan_dispatch_log(local_paca->starttime);
282 local_paca->system_time -= sst;
283 local_paca->user_time -= ust;
284 local_paca->stolen_time += ust + sst;
286 local_paca->soft_enabled = save_soft_enabled;
287 local_paca->hard_enabled = save_hard_enabled;
290 static inline u64 calculate_stolen_time(u64 stop_tb)
292 u64 stolen = 0;
294 if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
295 stolen = scan_dispatch_log(stop_tb);
296 get_paca()->system_time -= stolen;
299 stolen += get_paca()->stolen_time;
300 get_paca()->stolen_time = 0;
301 return stolen;
304 #else /* CONFIG_PPC_SPLPAR */
305 static inline u64 calculate_stolen_time(u64 stop_tb)
307 return 0;
310 #endif /* CONFIG_PPC_SPLPAR */
313 * Account time for a transition between system, hard irq
314 * or soft irq state.
316 void account_system_vtime(struct task_struct *tsk)
318 u64 now, nowscaled, delta, deltascaled;
319 unsigned long flags;
320 u64 stolen, udelta, sys_scaled, user_scaled;
322 local_irq_save(flags);
323 now = mftb();
324 nowscaled = read_spurr(now);
325 get_paca()->system_time += now - get_paca()->starttime;
326 get_paca()->starttime = now;
327 deltascaled = nowscaled - get_paca()->startspurr;
328 get_paca()->startspurr = nowscaled;
330 stolen = calculate_stolen_time(now);
332 delta = get_paca()->system_time;
333 get_paca()->system_time = 0;
334 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
335 get_paca()->utime_sspurr = get_paca()->user_time;
338 * Because we don't read the SPURR on every kernel entry/exit,
339 * deltascaled includes both user and system SPURR ticks.
340 * Apportion these ticks to system SPURR ticks and user
341 * SPURR ticks in the same ratio as the system time (delta)
342 * and user time (udelta) values obtained from the timebase
343 * over the same interval. The system ticks get accounted here;
344 * the user ticks get saved up in paca->user_time_scaled to be
345 * used by account_process_tick.
347 sys_scaled = delta;
348 user_scaled = udelta;
349 if (deltascaled != delta + udelta) {
350 if (udelta) {
351 sys_scaled = deltascaled * delta / (delta + udelta);
352 user_scaled = deltascaled - sys_scaled;
353 } else {
354 sys_scaled = deltascaled;
357 get_paca()->user_time_scaled += user_scaled;
359 if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
360 account_system_time(tsk, 0, delta, sys_scaled);
361 if (stolen)
362 account_steal_time(stolen);
363 } else {
364 account_idle_time(delta + stolen);
366 local_irq_restore(flags);
368 EXPORT_SYMBOL_GPL(account_system_vtime);
371 * Transfer the user and system times accumulated in the paca
372 * by the exception entry and exit code to the generic process
373 * user and system time records.
374 * Must be called with interrupts disabled.
375 * Assumes that account_system_vtime() has been called recently
376 * (i.e. since the last entry from usermode) so that
377 * get_paca()->user_time_scaled is up to date.
379 void account_process_tick(struct task_struct *tsk, int user_tick)
381 cputime_t utime, utimescaled;
383 utime = get_paca()->user_time;
384 utimescaled = get_paca()->user_time_scaled;
385 get_paca()->user_time = 0;
386 get_paca()->user_time_scaled = 0;
387 get_paca()->utime_sspurr = 0;
388 account_user_time(tsk, utime, utimescaled);
391 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
392 #define calc_cputime_factors()
393 #endif
395 void __delay(unsigned long loops)
397 unsigned long start;
398 int diff;
400 if (__USE_RTC()) {
401 start = get_rtcl();
402 do {
403 /* the RTCL register wraps at 1000000000 */
404 diff = get_rtcl() - start;
405 if (diff < 0)
406 diff += 1000000000;
407 } while (diff < loops);
408 } else {
409 start = get_tbl();
410 while (get_tbl() - start < loops)
411 HMT_low();
412 HMT_medium();
415 EXPORT_SYMBOL(__delay);
417 void udelay(unsigned long usecs)
419 __delay(tb_ticks_per_usec * usecs);
421 EXPORT_SYMBOL(udelay);
423 #ifdef CONFIG_SMP
424 unsigned long profile_pc(struct pt_regs *regs)
426 unsigned long pc = instruction_pointer(regs);
428 if (in_lock_functions(pc))
429 return regs->link;
431 return pc;
433 EXPORT_SYMBOL(profile_pc);
434 #endif
436 #ifdef CONFIG_PPC_ISERIES
439 * This function recalibrates the timebase based on the 49-bit time-of-day
440 * value in the Titan chip. The Titan is much more accurate than the value
441 * returned by the service processor for the timebase frequency.
444 static int __init iSeries_tb_recal(void)
446 unsigned long titan, tb;
448 /* Make sure we only run on iSeries */
449 if (!firmware_has_feature(FW_FEATURE_ISERIES))
450 return -ENODEV;
452 tb = get_tb();
453 titan = HvCallXm_loadTod();
454 if ( iSeries_recal_titan ) {
455 unsigned long tb_ticks = tb - iSeries_recal_tb;
456 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
457 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
458 unsigned long new_tb_ticks_per_jiffy =
459 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
460 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
461 char sign = '+';
462 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
463 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
465 if ( tick_diff < 0 ) {
466 tick_diff = -tick_diff;
467 sign = '-';
469 if ( tick_diff ) {
470 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
471 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
472 new_tb_ticks_per_jiffy, sign, tick_diff );
473 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
474 tb_ticks_per_sec = new_tb_ticks_per_sec;
475 calc_cputime_factors();
476 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
477 setup_cputime_one_jiffy();
479 else {
480 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
481 " new tb_ticks_per_jiffy = %lu\n"
482 " old tb_ticks_per_jiffy = %lu\n",
483 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
487 iSeries_recal_titan = titan;
488 iSeries_recal_tb = tb;
490 /* Called here as now we know accurate values for the timebase */
491 clocksource_init();
492 return 0;
494 late_initcall(iSeries_tb_recal);
496 /* Called from platform early init */
497 void __init iSeries_time_init_early(void)
499 iSeries_recal_tb = get_tb();
500 iSeries_recal_titan = HvCallXm_loadTod();
502 #endif /* CONFIG_PPC_ISERIES */
504 #ifdef CONFIG_IRQ_WORK
507 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
509 #ifdef CONFIG_PPC64
510 static inline unsigned long test_irq_work_pending(void)
512 unsigned long x;
514 asm volatile("lbz %0,%1(13)"
515 : "=r" (x)
516 : "i" (offsetof(struct paca_struct, irq_work_pending)));
517 return x;
520 static inline void set_irq_work_pending_flag(void)
522 asm volatile("stb %0,%1(13)" : :
523 "r" (1),
524 "i" (offsetof(struct paca_struct, irq_work_pending)));
527 static inline void clear_irq_work_pending(void)
529 asm volatile("stb %0,%1(13)" : :
530 "r" (0),
531 "i" (offsetof(struct paca_struct, irq_work_pending)));
534 #else /* 32-bit */
536 DEFINE_PER_CPU(u8, irq_work_pending);
538 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
539 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
540 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
542 #endif /* 32 vs 64 bit */
544 void set_irq_work_pending(void)
546 preempt_disable();
547 set_irq_work_pending_flag();
548 set_dec(1);
549 preempt_enable();
552 #else /* CONFIG_IRQ_WORK */
554 #define test_irq_work_pending() 0
555 #define clear_irq_work_pending()
557 #endif /* CONFIG_IRQ_WORK */
560 * For iSeries shared processors, we have to let the hypervisor
561 * set the hardware decrementer. We set a virtual decrementer
562 * in the lppaca and call the hypervisor if the virtual
563 * decrementer is less than the current value in the hardware
564 * decrementer. (almost always the new decrementer value will
565 * be greater than the current hardware decementer so the hypervisor
566 * call will not be needed)
570 * timer_interrupt - gets called when the decrementer overflows,
571 * with interrupts disabled.
573 void timer_interrupt(struct pt_regs * regs)
575 struct pt_regs *old_regs;
576 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
577 struct clock_event_device *evt = &decrementer->event;
578 u64 now;
580 /* Ensure a positive value is written to the decrementer, or else
581 * some CPUs will continue to take decrementer exceptions.
583 set_dec(DECREMENTER_MAX);
585 /* Some implementations of hotplug will get timer interrupts while
586 * offline, just ignore these
588 if (!cpu_online(smp_processor_id()))
589 return;
591 trace_timer_interrupt_entry(regs);
593 __get_cpu_var(irq_stat).timer_irqs++;
595 #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
596 if (atomic_read(&ppc_n_lost_interrupts) != 0)
597 do_IRQ(regs);
598 #endif
600 old_regs = set_irq_regs(regs);
601 irq_enter();
603 if (test_irq_work_pending()) {
604 clear_irq_work_pending();
605 irq_work_run();
608 #ifdef CONFIG_PPC_ISERIES
609 if (firmware_has_feature(FW_FEATURE_ISERIES))
610 get_lppaca()->int_dword.fields.decr_int = 0;
611 #endif
613 now = get_tb_or_rtc();
614 if (now >= decrementer->next_tb) {
615 decrementer->next_tb = ~(u64)0;
616 if (evt->event_handler)
617 evt->event_handler(evt);
618 } else {
619 now = decrementer->next_tb - now;
620 if (now <= DECREMENTER_MAX)
621 set_dec((int)now);
624 #ifdef CONFIG_PPC_ISERIES
625 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
626 process_hvlpevents();
627 #endif
629 #ifdef CONFIG_PPC64
630 /* collect purr register values often, for accurate calculations */
631 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
632 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
633 cu->current_tb = mfspr(SPRN_PURR);
635 #endif
637 irq_exit();
638 set_irq_regs(old_regs);
640 trace_timer_interrupt_exit(regs);
643 #ifdef CONFIG_SUSPEND
644 static void generic_suspend_disable_irqs(void)
646 /* Disable the decrementer, so that it doesn't interfere
647 * with suspending.
650 set_dec(0x7fffffff);
651 local_irq_disable();
652 set_dec(0x7fffffff);
655 static void generic_suspend_enable_irqs(void)
657 local_irq_enable();
660 /* Overrides the weak version in kernel/power/main.c */
661 void arch_suspend_disable_irqs(void)
663 if (ppc_md.suspend_disable_irqs)
664 ppc_md.suspend_disable_irqs();
665 generic_suspend_disable_irqs();
668 /* Overrides the weak version in kernel/power/main.c */
669 void arch_suspend_enable_irqs(void)
671 generic_suspend_enable_irqs();
672 if (ppc_md.suspend_enable_irqs)
673 ppc_md.suspend_enable_irqs();
675 #endif
678 * Scheduler clock - returns current time in nanosec units.
680 * Note: mulhdu(a, b) (multiply high double unsigned) returns
681 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
682 * are 64-bit unsigned numbers.
684 unsigned long long sched_clock(void)
686 if (__USE_RTC())
687 return get_rtc();
688 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
691 static int __init get_freq(char *name, int cells, unsigned long *val)
693 struct device_node *cpu;
694 const unsigned int *fp;
695 int found = 0;
697 /* The cpu node should have timebase and clock frequency properties */
698 cpu = of_find_node_by_type(NULL, "cpu");
700 if (cpu) {
701 fp = of_get_property(cpu, name, NULL);
702 if (fp) {
703 found = 1;
704 *val = of_read_ulong(fp, cells);
707 of_node_put(cpu);
710 return found;
713 /* should become __cpuinit when secondary_cpu_time_init also is */
714 void start_cpu_decrementer(void)
716 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
717 /* Clear any pending timer interrupts */
718 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
720 /* Enable decrementer interrupt */
721 mtspr(SPRN_TCR, TCR_DIE);
722 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
725 void __init generic_calibrate_decr(void)
727 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
729 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
730 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
732 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
733 "(not found)\n");
736 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
738 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
739 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
741 printk(KERN_ERR "WARNING: Estimating processor frequency "
742 "(not found)\n");
746 int update_persistent_clock(struct timespec now)
748 struct rtc_time tm;
750 if (!ppc_md.set_rtc_time)
751 return 0;
753 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
754 tm.tm_year -= 1900;
755 tm.tm_mon -= 1;
757 return ppc_md.set_rtc_time(&tm);
760 static void __read_persistent_clock(struct timespec *ts)
762 struct rtc_time tm;
763 static int first = 1;
765 ts->tv_nsec = 0;
766 /* XXX this is a litle fragile but will work okay in the short term */
767 if (first) {
768 first = 0;
769 if (ppc_md.time_init)
770 timezone_offset = ppc_md.time_init();
772 /* get_boot_time() isn't guaranteed to be safe to call late */
773 if (ppc_md.get_boot_time) {
774 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
775 return;
778 if (!ppc_md.get_rtc_time) {
779 ts->tv_sec = 0;
780 return;
782 ppc_md.get_rtc_time(&tm);
784 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
785 tm.tm_hour, tm.tm_min, tm.tm_sec);
788 void read_persistent_clock(struct timespec *ts)
790 __read_persistent_clock(ts);
792 /* Sanitize it in case real time clock is set below EPOCH */
793 if (ts->tv_sec < 0) {
794 ts->tv_sec = 0;
795 ts->tv_nsec = 0;
800 /* clocksource code */
801 static cycle_t rtc_read(struct clocksource *cs)
803 return (cycle_t)get_rtc();
806 static cycle_t timebase_read(struct clocksource *cs)
808 return (cycle_t)get_tb();
811 void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
812 struct clocksource *clock, u32 mult)
814 u64 new_tb_to_xs, new_stamp_xsec;
815 u32 frac_sec;
817 if (clock != &clocksource_timebase)
818 return;
820 /* Make userspace gettimeofday spin until we're done. */
821 ++vdso_data->tb_update_count;
822 smp_mb();
824 /* XXX this assumes clock->shift == 22 */
825 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
826 new_tb_to_xs = (u64) mult * 4611686018ULL;
827 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
828 do_div(new_stamp_xsec, 1000000000);
829 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
831 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
832 /* this is tv_nsec / 1e9 as a 0.32 fraction */
833 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
836 * tb_update_count is used to allow the userspace gettimeofday code
837 * to assure itself that it sees a consistent view of the tb_to_xs and
838 * stamp_xsec variables. It reads the tb_update_count, then reads
839 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
840 * the two values of tb_update_count match and are even then the
841 * tb_to_xs and stamp_xsec values are consistent. If not, then it
842 * loops back and reads them again until this criteria is met.
843 * We expect the caller to have done the first increment of
844 * vdso_data->tb_update_count already.
846 vdso_data->tb_orig_stamp = clock->cycle_last;
847 vdso_data->stamp_xsec = new_stamp_xsec;
848 vdso_data->tb_to_xs = new_tb_to_xs;
849 vdso_data->wtom_clock_sec = wtm->tv_sec;
850 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
851 vdso_data->stamp_xtime = *wall_time;
852 vdso_data->stamp_sec_fraction = frac_sec;
853 smp_wmb();
854 ++(vdso_data->tb_update_count);
857 void update_vsyscall_tz(void)
859 /* Make userspace gettimeofday spin until we're done. */
860 ++vdso_data->tb_update_count;
861 smp_mb();
862 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
863 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
864 smp_mb();
865 ++vdso_data->tb_update_count;
868 static void __init clocksource_init(void)
870 struct clocksource *clock;
872 if (__USE_RTC())
873 clock = &clocksource_rtc;
874 else
875 clock = &clocksource_timebase;
877 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
879 if (clocksource_register(clock)) {
880 printk(KERN_ERR "clocksource: %s is already registered\n",
881 clock->name);
882 return;
885 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
886 clock->name, clock->mult, clock->shift);
889 static int decrementer_set_next_event(unsigned long evt,
890 struct clock_event_device *dev)
892 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
893 set_dec(evt);
894 return 0;
897 static void decrementer_set_mode(enum clock_event_mode mode,
898 struct clock_event_device *dev)
900 if (mode != CLOCK_EVT_MODE_ONESHOT)
901 decrementer_set_next_event(DECREMENTER_MAX, dev);
904 static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
905 int shift)
907 uint64_t tmp = ((uint64_t)ticks) << shift;
909 do_div(tmp, nsec);
910 return tmp;
913 static void __init setup_clockevent_multiplier(unsigned long hz)
915 u64 mult, shift = 32;
917 while (1) {
918 mult = div_sc64(hz, NSEC_PER_SEC, shift);
919 if (mult && (mult >> 32UL) == 0UL)
920 break;
922 shift--;
925 decrementer_clockevent.shift = shift;
926 decrementer_clockevent.mult = mult;
929 static void register_decrementer_clockevent(int cpu)
931 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
933 *dec = decrementer_clockevent;
934 dec->cpumask = cpumask_of(cpu);
936 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
937 dec->name, dec->mult, dec->shift, cpu);
939 clockevents_register_device(dec);
942 static void __init init_decrementer_clockevent(void)
944 int cpu = smp_processor_id();
946 setup_clockevent_multiplier(ppc_tb_freq);
947 decrementer_clockevent.max_delta_ns =
948 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
949 decrementer_clockevent.min_delta_ns =
950 clockevent_delta2ns(2, &decrementer_clockevent);
952 register_decrementer_clockevent(cpu);
955 void secondary_cpu_time_init(void)
957 /* Start the decrementer on CPUs that have manual control
958 * such as BookE
960 start_cpu_decrementer();
962 /* FIME: Should make unrelatred change to move snapshot_timebase
963 * call here ! */
964 register_decrementer_clockevent(smp_processor_id());
967 /* This function is only called on the boot processor */
968 void __init time_init(void)
970 struct div_result res;
971 u64 scale;
972 unsigned shift;
974 if (__USE_RTC()) {
975 /* 601 processor: dec counts down by 128 every 128ns */
976 ppc_tb_freq = 1000000000;
977 } else {
978 /* Normal PowerPC with timebase register */
979 ppc_md.calibrate_decr();
980 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
981 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
982 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
983 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
986 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
987 tb_ticks_per_sec = ppc_tb_freq;
988 tb_ticks_per_usec = ppc_tb_freq / 1000000;
989 calc_cputime_factors();
990 setup_cputime_one_jiffy();
993 * Compute scale factor for sched_clock.
994 * The calibrate_decr() function has set tb_ticks_per_sec,
995 * which is the timebase frequency.
996 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
997 * the 128-bit result as a 64.64 fixed-point number.
998 * We then shift that number right until it is less than 1.0,
999 * giving us the scale factor and shift count to use in
1000 * sched_clock().
1002 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1003 scale = res.result_low;
1004 for (shift = 0; res.result_high != 0; ++shift) {
1005 scale = (scale >> 1) | (res.result_high << 63);
1006 res.result_high >>= 1;
1008 tb_to_ns_scale = scale;
1009 tb_to_ns_shift = shift;
1010 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1011 boot_tb = get_tb_or_rtc();
1013 /* If platform provided a timezone (pmac), we correct the time */
1014 if (timezone_offset) {
1015 sys_tz.tz_minuteswest = -timezone_offset / 60;
1016 sys_tz.tz_dsttime = 0;
1019 vdso_data->tb_update_count = 0;
1020 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1022 /* Start the decrementer on CPUs that have manual control
1023 * such as BookE
1025 start_cpu_decrementer();
1027 /* Register the clocksource, if we're not running on iSeries */
1028 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1029 clocksource_init();
1031 init_decrementer_clockevent();
1035 #define FEBRUARY 2
1036 #define STARTOFTIME 1970
1037 #define SECDAY 86400L
1038 #define SECYR (SECDAY * 365)
1039 #define leapyear(year) ((year) % 4 == 0 && \
1040 ((year) % 100 != 0 || (year) % 400 == 0))
1041 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1042 #define days_in_month(a) (month_days[(a) - 1])
1044 static int month_days[12] = {
1045 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1049 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1051 void GregorianDay(struct rtc_time * tm)
1053 int leapsToDate;
1054 int lastYear;
1055 int day;
1056 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1058 lastYear = tm->tm_year - 1;
1061 * Number of leap corrections to apply up to end of last year
1063 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1066 * This year is a leap year if it is divisible by 4 except when it is
1067 * divisible by 100 unless it is divisible by 400
1069 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1071 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1073 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1074 tm->tm_mday;
1076 tm->tm_wday = day % 7;
1079 void to_tm(int tim, struct rtc_time * tm)
1081 register int i;
1082 register long hms, day;
1084 day = tim / SECDAY;
1085 hms = tim % SECDAY;
1087 /* Hours, minutes, seconds are easy */
1088 tm->tm_hour = hms / 3600;
1089 tm->tm_min = (hms % 3600) / 60;
1090 tm->tm_sec = (hms % 3600) % 60;
1092 /* Number of years in days */
1093 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1094 day -= days_in_year(i);
1095 tm->tm_year = i;
1097 /* Number of months in days left */
1098 if (leapyear(tm->tm_year))
1099 days_in_month(FEBRUARY) = 29;
1100 for (i = 1; day >= days_in_month(i); i++)
1101 day -= days_in_month(i);
1102 days_in_month(FEBRUARY) = 28;
1103 tm->tm_mon = i;
1105 /* Days are what is left over (+1) from all that. */
1106 tm->tm_mday = day + 1;
1109 * Determine the day of week
1111 GregorianDay(tm);
1115 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1116 * result.
1118 void div128_by_32(u64 dividend_high, u64 dividend_low,
1119 unsigned divisor, struct div_result *dr)
1121 unsigned long a, b, c, d;
1122 unsigned long w, x, y, z;
1123 u64 ra, rb, rc;
1125 a = dividend_high >> 32;
1126 b = dividend_high & 0xffffffff;
1127 c = dividend_low >> 32;
1128 d = dividend_low & 0xffffffff;
1130 w = a / divisor;
1131 ra = ((u64)(a - (w * divisor)) << 32) + b;
1133 rb = ((u64) do_div(ra, divisor) << 32) + c;
1134 x = ra;
1136 rc = ((u64) do_div(rb, divisor) << 32) + d;
1137 y = rb;
1139 do_div(rc, divisor);
1140 z = rc;
1142 dr->result_high = ((u64)w << 32) + x;
1143 dr->result_low = ((u64)y << 32) + z;
1147 /* We don't need to calibrate delay, we use the CPU timebase for that */
1148 void calibrate_delay(void)
1150 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1151 * as the number of __delay(1) in a jiffy, so make it so
1153 loops_per_jiffy = tb_ticks_per_jiffy;
1156 static int __init rtc_init(void)
1158 struct platform_device *pdev;
1160 if (!ppc_md.get_rtc_time)
1161 return -ENODEV;
1163 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1164 if (IS_ERR(pdev))
1165 return PTR_ERR(pdev);
1167 return 0;
1170 module_init(rtc_init);