sfc: Don't use enums as a bitmask.
[zen-stable.git] / arch / x86 / mm / fault.c
blob20e3f8702d1e5701b130d2891e23bf39fbe81663
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <asm/traps.h> /* dotraplinkage, ... */
17 #include <asm/pgalloc.h> /* pgd_*(), ... */
18 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21 * Page fault error code bits:
23 * bit 0 == 0: no page found 1: protection fault
24 * bit 1 == 0: read access 1: write access
25 * bit 2 == 0: kernel-mode access 1: user-mode access
26 * bit 3 == 1: use of reserved bit detected
27 * bit 4 == 1: fault was an instruction fetch
29 enum x86_pf_error_code {
31 PF_PROT = 1 << 0,
32 PF_WRITE = 1 << 1,
33 PF_USER = 1 << 2,
34 PF_RSVD = 1 << 3,
35 PF_INSTR = 1 << 4,
39 * Returns 0 if mmiotrace is disabled, or if the fault is not
40 * handled by mmiotrace:
42 static inline int __kprobes
43 kmmio_fault(struct pt_regs *regs, unsigned long addr)
45 if (unlikely(is_kmmio_active()))
46 if (kmmio_handler(regs, addr) == 1)
47 return -1;
48 return 0;
51 static inline int __kprobes notify_page_fault(struct pt_regs *regs)
53 int ret = 0;
55 /* kprobe_running() needs smp_processor_id() */
56 if (kprobes_built_in() && !user_mode_vm(regs)) {
57 preempt_disable();
58 if (kprobe_running() && kprobe_fault_handler(regs, 14))
59 ret = 1;
60 preempt_enable();
63 return ret;
67 * Prefetch quirks:
69 * 32-bit mode:
71 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
72 * Check that here and ignore it.
74 * 64-bit mode:
76 * Sometimes the CPU reports invalid exceptions on prefetch.
77 * Check that here and ignore it.
79 * Opcode checker based on code by Richard Brunner.
81 static inline int
82 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
83 unsigned char opcode, int *prefetch)
85 unsigned char instr_hi = opcode & 0xf0;
86 unsigned char instr_lo = opcode & 0x0f;
88 switch (instr_hi) {
89 case 0x20:
90 case 0x30:
92 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
93 * In X86_64 long mode, the CPU will signal invalid
94 * opcode if some of these prefixes are present so
95 * X86_64 will never get here anyway
97 return ((instr_lo & 7) == 0x6);
98 #ifdef CONFIG_X86_64
99 case 0x40:
101 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
102 * Need to figure out under what instruction mode the
103 * instruction was issued. Could check the LDT for lm,
104 * but for now it's good enough to assume that long
105 * mode only uses well known segments or kernel.
107 return (!user_mode(regs)) || (regs->cs == __USER_CS);
108 #endif
109 case 0x60:
110 /* 0x64 thru 0x67 are valid prefixes in all modes. */
111 return (instr_lo & 0xC) == 0x4;
112 case 0xF0:
113 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
114 return !instr_lo || (instr_lo>>1) == 1;
115 case 0x00:
116 /* Prefetch instruction is 0x0F0D or 0x0F18 */
117 if (probe_kernel_address(instr, opcode))
118 return 0;
120 *prefetch = (instr_lo == 0xF) &&
121 (opcode == 0x0D || opcode == 0x18);
122 return 0;
123 default:
124 return 0;
128 static int
129 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
131 unsigned char *max_instr;
132 unsigned char *instr;
133 int prefetch = 0;
136 * If it was a exec (instruction fetch) fault on NX page, then
137 * do not ignore the fault:
139 if (error_code & PF_INSTR)
140 return 0;
142 instr = (void *)convert_ip_to_linear(current, regs);
143 max_instr = instr + 15;
145 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
146 return 0;
148 while (instr < max_instr) {
149 unsigned char opcode;
151 if (probe_kernel_address(instr, opcode))
152 break;
154 instr++;
156 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
157 break;
159 return prefetch;
162 static void
163 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
164 struct task_struct *tsk, int fault)
166 unsigned lsb = 0;
167 siginfo_t info;
169 info.si_signo = si_signo;
170 info.si_errno = 0;
171 info.si_code = si_code;
172 info.si_addr = (void __user *)address;
173 if (fault & VM_FAULT_HWPOISON_LARGE)
174 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
175 if (fault & VM_FAULT_HWPOISON)
176 lsb = PAGE_SHIFT;
177 info.si_addr_lsb = lsb;
179 force_sig_info(si_signo, &info, tsk);
182 DEFINE_SPINLOCK(pgd_lock);
183 LIST_HEAD(pgd_list);
185 #ifdef CONFIG_X86_32
186 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
188 unsigned index = pgd_index(address);
189 pgd_t *pgd_k;
190 pud_t *pud, *pud_k;
191 pmd_t *pmd, *pmd_k;
193 pgd += index;
194 pgd_k = init_mm.pgd + index;
196 if (!pgd_present(*pgd_k))
197 return NULL;
200 * set_pgd(pgd, *pgd_k); here would be useless on PAE
201 * and redundant with the set_pmd() on non-PAE. As would
202 * set_pud.
204 pud = pud_offset(pgd, address);
205 pud_k = pud_offset(pgd_k, address);
206 if (!pud_present(*pud_k))
207 return NULL;
209 pmd = pmd_offset(pud, address);
210 pmd_k = pmd_offset(pud_k, address);
211 if (!pmd_present(*pmd_k))
212 return NULL;
214 if (!pmd_present(*pmd))
215 set_pmd(pmd, *pmd_k);
216 else
217 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
219 return pmd_k;
222 void vmalloc_sync_all(void)
224 unsigned long address;
226 if (SHARED_KERNEL_PMD)
227 return;
229 for (address = VMALLOC_START & PMD_MASK;
230 address >= TASK_SIZE && address < FIXADDR_TOP;
231 address += PMD_SIZE) {
232 struct page *page;
234 spin_lock(&pgd_lock);
235 list_for_each_entry(page, &pgd_list, lru) {
236 spinlock_t *pgt_lock;
237 pmd_t *ret;
239 /* the pgt_lock only for Xen */
240 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
242 spin_lock(pgt_lock);
243 ret = vmalloc_sync_one(page_address(page), address);
244 spin_unlock(pgt_lock);
246 if (!ret)
247 break;
249 spin_unlock(&pgd_lock);
254 * 32-bit:
256 * Handle a fault on the vmalloc or module mapping area
258 static noinline __kprobes int vmalloc_fault(unsigned long address)
260 unsigned long pgd_paddr;
261 pmd_t *pmd_k;
262 pte_t *pte_k;
264 /* Make sure we are in vmalloc area: */
265 if (!(address >= VMALLOC_START && address < VMALLOC_END))
266 return -1;
268 WARN_ON_ONCE(in_nmi());
271 * Synchronize this task's top level page-table
272 * with the 'reference' page table.
274 * Do _not_ use "current" here. We might be inside
275 * an interrupt in the middle of a task switch..
277 pgd_paddr = read_cr3();
278 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
279 if (!pmd_k)
280 return -1;
282 pte_k = pte_offset_kernel(pmd_k, address);
283 if (!pte_present(*pte_k))
284 return -1;
286 return 0;
290 * Did it hit the DOS screen memory VA from vm86 mode?
292 static inline void
293 check_v8086_mode(struct pt_regs *regs, unsigned long address,
294 struct task_struct *tsk)
296 unsigned long bit;
298 if (!v8086_mode(regs))
299 return;
301 bit = (address - 0xA0000) >> PAGE_SHIFT;
302 if (bit < 32)
303 tsk->thread.screen_bitmap |= 1 << bit;
306 static bool low_pfn(unsigned long pfn)
308 return pfn < max_low_pfn;
311 static void dump_pagetable(unsigned long address)
313 pgd_t *base = __va(read_cr3());
314 pgd_t *pgd = &base[pgd_index(address)];
315 pmd_t *pmd;
316 pte_t *pte;
318 #ifdef CONFIG_X86_PAE
319 printk("*pdpt = %016Lx ", pgd_val(*pgd));
320 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
321 goto out;
322 #endif
323 pmd = pmd_offset(pud_offset(pgd, address), address);
324 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
327 * We must not directly access the pte in the highpte
328 * case if the page table is located in highmem.
329 * And let's rather not kmap-atomic the pte, just in case
330 * it's allocated already:
332 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
333 goto out;
335 pte = pte_offset_kernel(pmd, address);
336 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
337 out:
338 printk("\n");
341 #else /* CONFIG_X86_64: */
343 void vmalloc_sync_all(void)
345 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
349 * 64-bit:
351 * Handle a fault on the vmalloc area
353 * This assumes no large pages in there.
355 static noinline __kprobes int vmalloc_fault(unsigned long address)
357 pgd_t *pgd, *pgd_ref;
358 pud_t *pud, *pud_ref;
359 pmd_t *pmd, *pmd_ref;
360 pte_t *pte, *pte_ref;
362 /* Make sure we are in vmalloc area: */
363 if (!(address >= VMALLOC_START && address < VMALLOC_END))
364 return -1;
366 WARN_ON_ONCE(in_nmi());
369 * Copy kernel mappings over when needed. This can also
370 * happen within a race in page table update. In the later
371 * case just flush:
373 pgd = pgd_offset(current->active_mm, address);
374 pgd_ref = pgd_offset_k(address);
375 if (pgd_none(*pgd_ref))
376 return -1;
378 if (pgd_none(*pgd))
379 set_pgd(pgd, *pgd_ref);
380 else
381 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
384 * Below here mismatches are bugs because these lower tables
385 * are shared:
388 pud = pud_offset(pgd, address);
389 pud_ref = pud_offset(pgd_ref, address);
390 if (pud_none(*pud_ref))
391 return -1;
393 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
394 BUG();
396 pmd = pmd_offset(pud, address);
397 pmd_ref = pmd_offset(pud_ref, address);
398 if (pmd_none(*pmd_ref))
399 return -1;
401 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
402 BUG();
404 pte_ref = pte_offset_kernel(pmd_ref, address);
405 if (!pte_present(*pte_ref))
406 return -1;
408 pte = pte_offset_kernel(pmd, address);
411 * Don't use pte_page here, because the mappings can point
412 * outside mem_map, and the NUMA hash lookup cannot handle
413 * that:
415 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
416 BUG();
418 return 0;
421 static const char errata93_warning[] =
422 KERN_ERR
423 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
424 "******* Working around it, but it may cause SEGVs or burn power.\n"
425 "******* Please consider a BIOS update.\n"
426 "******* Disabling USB legacy in the BIOS may also help.\n";
429 * No vm86 mode in 64-bit mode:
431 static inline void
432 check_v8086_mode(struct pt_regs *regs, unsigned long address,
433 struct task_struct *tsk)
437 static int bad_address(void *p)
439 unsigned long dummy;
441 return probe_kernel_address((unsigned long *)p, dummy);
444 static void dump_pagetable(unsigned long address)
446 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
447 pgd_t *pgd = base + pgd_index(address);
448 pud_t *pud;
449 pmd_t *pmd;
450 pte_t *pte;
452 if (bad_address(pgd))
453 goto bad;
455 printk("PGD %lx ", pgd_val(*pgd));
457 if (!pgd_present(*pgd))
458 goto out;
460 pud = pud_offset(pgd, address);
461 if (bad_address(pud))
462 goto bad;
464 printk("PUD %lx ", pud_val(*pud));
465 if (!pud_present(*pud) || pud_large(*pud))
466 goto out;
468 pmd = pmd_offset(pud, address);
469 if (bad_address(pmd))
470 goto bad;
472 printk("PMD %lx ", pmd_val(*pmd));
473 if (!pmd_present(*pmd) || pmd_large(*pmd))
474 goto out;
476 pte = pte_offset_kernel(pmd, address);
477 if (bad_address(pte))
478 goto bad;
480 printk("PTE %lx", pte_val(*pte));
481 out:
482 printk("\n");
483 return;
484 bad:
485 printk("BAD\n");
488 #endif /* CONFIG_X86_64 */
491 * Workaround for K8 erratum #93 & buggy BIOS.
493 * BIOS SMM functions are required to use a specific workaround
494 * to avoid corruption of the 64bit RIP register on C stepping K8.
496 * A lot of BIOS that didn't get tested properly miss this.
498 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
499 * Try to work around it here.
501 * Note we only handle faults in kernel here.
502 * Does nothing on 32-bit.
504 static int is_errata93(struct pt_regs *regs, unsigned long address)
506 #ifdef CONFIG_X86_64
507 if (address != regs->ip)
508 return 0;
510 if ((address >> 32) != 0)
511 return 0;
513 address |= 0xffffffffUL << 32;
514 if ((address >= (u64)_stext && address <= (u64)_etext) ||
515 (address >= MODULES_VADDR && address <= MODULES_END)) {
516 printk_once(errata93_warning);
517 regs->ip = address;
518 return 1;
520 #endif
521 return 0;
525 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
526 * to illegal addresses >4GB.
528 * We catch this in the page fault handler because these addresses
529 * are not reachable. Just detect this case and return. Any code
530 * segment in LDT is compatibility mode.
532 static int is_errata100(struct pt_regs *regs, unsigned long address)
534 #ifdef CONFIG_X86_64
535 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
536 return 1;
537 #endif
538 return 0;
541 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
543 #ifdef CONFIG_X86_F00F_BUG
544 unsigned long nr;
547 * Pentium F0 0F C7 C8 bug workaround:
549 if (boot_cpu_data.f00f_bug) {
550 nr = (address - idt_descr.address) >> 3;
552 if (nr == 6) {
553 do_invalid_op(regs, 0);
554 return 1;
557 #endif
558 return 0;
561 static const char nx_warning[] = KERN_CRIT
562 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
564 static void
565 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
566 unsigned long address)
568 if (!oops_may_print())
569 return;
571 if (error_code & PF_INSTR) {
572 unsigned int level;
574 pte_t *pte = lookup_address(address, &level);
576 if (pte && pte_present(*pte) && !pte_exec(*pte))
577 printk(nx_warning, current_uid());
580 printk(KERN_ALERT "BUG: unable to handle kernel ");
581 if (address < PAGE_SIZE)
582 printk(KERN_CONT "NULL pointer dereference");
583 else
584 printk(KERN_CONT "paging request");
586 printk(KERN_CONT " at %p\n", (void *) address);
587 printk(KERN_ALERT "IP:");
588 printk_address(regs->ip, 1);
590 dump_pagetable(address);
593 static noinline void
594 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
595 unsigned long address)
597 struct task_struct *tsk;
598 unsigned long flags;
599 int sig;
601 flags = oops_begin();
602 tsk = current;
603 sig = SIGKILL;
605 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
606 tsk->comm, address);
607 dump_pagetable(address);
609 tsk->thread.cr2 = address;
610 tsk->thread.trap_no = 14;
611 tsk->thread.error_code = error_code;
613 if (__die("Bad pagetable", regs, error_code))
614 sig = 0;
616 oops_end(flags, regs, sig);
619 static noinline void
620 no_context(struct pt_regs *regs, unsigned long error_code,
621 unsigned long address)
623 struct task_struct *tsk = current;
624 unsigned long *stackend;
625 unsigned long flags;
626 int sig;
628 /* Are we prepared to handle this kernel fault? */
629 if (fixup_exception(regs))
630 return;
633 * 32-bit:
635 * Valid to do another page fault here, because if this fault
636 * had been triggered by is_prefetch fixup_exception would have
637 * handled it.
639 * 64-bit:
641 * Hall of shame of CPU/BIOS bugs.
643 if (is_prefetch(regs, error_code, address))
644 return;
646 if (is_errata93(regs, address))
647 return;
650 * Oops. The kernel tried to access some bad page. We'll have to
651 * terminate things with extreme prejudice:
653 flags = oops_begin();
655 show_fault_oops(regs, error_code, address);
657 stackend = end_of_stack(tsk);
658 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
659 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
661 tsk->thread.cr2 = address;
662 tsk->thread.trap_no = 14;
663 tsk->thread.error_code = error_code;
665 sig = SIGKILL;
666 if (__die("Oops", regs, error_code))
667 sig = 0;
669 /* Executive summary in case the body of the oops scrolled away */
670 printk(KERN_EMERG "CR2: %016lx\n", address);
672 oops_end(flags, regs, sig);
676 * Print out info about fatal segfaults, if the show_unhandled_signals
677 * sysctl is set:
679 static inline void
680 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
681 unsigned long address, struct task_struct *tsk)
683 if (!unhandled_signal(tsk, SIGSEGV))
684 return;
686 if (!printk_ratelimit())
687 return;
689 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
690 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
691 tsk->comm, task_pid_nr(tsk), address,
692 (void *)regs->ip, (void *)regs->sp, error_code);
694 print_vma_addr(KERN_CONT " in ", regs->ip);
696 printk(KERN_CONT "\n");
699 static void
700 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
701 unsigned long address, int si_code)
703 struct task_struct *tsk = current;
705 /* User mode accesses just cause a SIGSEGV */
706 if (error_code & PF_USER) {
708 * It's possible to have interrupts off here:
710 local_irq_enable();
713 * Valid to do another page fault here because this one came
714 * from user space:
716 if (is_prefetch(regs, error_code, address))
717 return;
719 if (is_errata100(regs, address))
720 return;
722 if (unlikely(show_unhandled_signals))
723 show_signal_msg(regs, error_code, address, tsk);
725 /* Kernel addresses are always protection faults: */
726 tsk->thread.cr2 = address;
727 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
728 tsk->thread.trap_no = 14;
730 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
732 return;
735 if (is_f00f_bug(regs, address))
736 return;
738 no_context(regs, error_code, address);
741 static noinline void
742 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
743 unsigned long address)
745 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
748 static void
749 __bad_area(struct pt_regs *regs, unsigned long error_code,
750 unsigned long address, int si_code)
752 struct mm_struct *mm = current->mm;
755 * Something tried to access memory that isn't in our memory map..
756 * Fix it, but check if it's kernel or user first..
758 up_read(&mm->mmap_sem);
760 __bad_area_nosemaphore(regs, error_code, address, si_code);
763 static noinline void
764 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
766 __bad_area(regs, error_code, address, SEGV_MAPERR);
769 static noinline void
770 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
771 unsigned long address)
773 __bad_area(regs, error_code, address, SEGV_ACCERR);
776 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
777 static void
778 out_of_memory(struct pt_regs *regs, unsigned long error_code,
779 unsigned long address)
782 * We ran out of memory, call the OOM killer, and return the userspace
783 * (which will retry the fault, or kill us if we got oom-killed):
785 up_read(&current->mm->mmap_sem);
787 pagefault_out_of_memory();
790 static void
791 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
792 unsigned int fault)
794 struct task_struct *tsk = current;
795 struct mm_struct *mm = tsk->mm;
796 int code = BUS_ADRERR;
798 up_read(&mm->mmap_sem);
800 /* Kernel mode? Handle exceptions or die: */
801 if (!(error_code & PF_USER)) {
802 no_context(regs, error_code, address);
803 return;
806 /* User-space => ok to do another page fault: */
807 if (is_prefetch(regs, error_code, address))
808 return;
810 tsk->thread.cr2 = address;
811 tsk->thread.error_code = error_code;
812 tsk->thread.trap_no = 14;
814 #ifdef CONFIG_MEMORY_FAILURE
815 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
816 printk(KERN_ERR
817 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
818 tsk->comm, tsk->pid, address);
819 code = BUS_MCEERR_AR;
821 #endif
822 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
825 static noinline void
826 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
827 unsigned long address, unsigned int fault)
829 if (fault & VM_FAULT_OOM) {
830 /* Kernel mode? Handle exceptions or die: */
831 if (!(error_code & PF_USER)) {
832 up_read(&current->mm->mmap_sem);
833 no_context(regs, error_code, address);
834 return;
837 out_of_memory(regs, error_code, address);
838 } else {
839 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
840 VM_FAULT_HWPOISON_LARGE))
841 do_sigbus(regs, error_code, address, fault);
842 else
843 BUG();
847 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
849 if ((error_code & PF_WRITE) && !pte_write(*pte))
850 return 0;
852 if ((error_code & PF_INSTR) && !pte_exec(*pte))
853 return 0;
855 return 1;
859 * Handle a spurious fault caused by a stale TLB entry.
861 * This allows us to lazily refresh the TLB when increasing the
862 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
863 * eagerly is very expensive since that implies doing a full
864 * cross-processor TLB flush, even if no stale TLB entries exist
865 * on other processors.
867 * There are no security implications to leaving a stale TLB when
868 * increasing the permissions on a page.
870 static noinline __kprobes int
871 spurious_fault(unsigned long error_code, unsigned long address)
873 pgd_t *pgd;
874 pud_t *pud;
875 pmd_t *pmd;
876 pte_t *pte;
877 int ret;
879 /* Reserved-bit violation or user access to kernel space? */
880 if (error_code & (PF_USER | PF_RSVD))
881 return 0;
883 pgd = init_mm.pgd + pgd_index(address);
884 if (!pgd_present(*pgd))
885 return 0;
887 pud = pud_offset(pgd, address);
888 if (!pud_present(*pud))
889 return 0;
891 if (pud_large(*pud))
892 return spurious_fault_check(error_code, (pte_t *) pud);
894 pmd = pmd_offset(pud, address);
895 if (!pmd_present(*pmd))
896 return 0;
898 if (pmd_large(*pmd))
899 return spurious_fault_check(error_code, (pte_t *) pmd);
902 * Note: don't use pte_present() here, since it returns true
903 * if the _PAGE_PROTNONE bit is set. However, this aliases the
904 * _PAGE_GLOBAL bit, which for kernel pages give false positives
905 * when CONFIG_DEBUG_PAGEALLOC is used.
907 pte = pte_offset_kernel(pmd, address);
908 if (!(pte_flags(*pte) & _PAGE_PRESENT))
909 return 0;
911 ret = spurious_fault_check(error_code, pte);
912 if (!ret)
913 return 0;
916 * Make sure we have permissions in PMD.
917 * If not, then there's a bug in the page tables:
919 ret = spurious_fault_check(error_code, (pte_t *) pmd);
920 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
922 return ret;
925 int show_unhandled_signals = 1;
927 static inline int
928 access_error(unsigned long error_code, struct vm_area_struct *vma)
930 if (error_code & PF_WRITE) {
931 /* write, present and write, not present: */
932 if (unlikely(!(vma->vm_flags & VM_WRITE)))
933 return 1;
934 return 0;
937 /* read, present: */
938 if (unlikely(error_code & PF_PROT))
939 return 1;
941 /* read, not present: */
942 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
943 return 1;
945 return 0;
948 static int fault_in_kernel_space(unsigned long address)
950 return address >= TASK_SIZE_MAX;
954 * This routine handles page faults. It determines the address,
955 * and the problem, and then passes it off to one of the appropriate
956 * routines.
958 dotraplinkage void __kprobes
959 do_page_fault(struct pt_regs *regs, unsigned long error_code)
961 struct vm_area_struct *vma;
962 struct task_struct *tsk;
963 unsigned long address;
964 struct mm_struct *mm;
965 int fault;
966 int write = error_code & PF_WRITE;
967 unsigned int flags = FAULT_FLAG_ALLOW_RETRY |
968 (write ? FAULT_FLAG_WRITE : 0);
970 tsk = current;
971 mm = tsk->mm;
973 /* Get the faulting address: */
974 address = read_cr2();
977 * Detect and handle instructions that would cause a page fault for
978 * both a tracked kernel page and a userspace page.
980 if (kmemcheck_active(regs))
981 kmemcheck_hide(regs);
982 prefetchw(&mm->mmap_sem);
984 if (unlikely(kmmio_fault(regs, address)))
985 return;
988 * We fault-in kernel-space virtual memory on-demand. The
989 * 'reference' page table is init_mm.pgd.
991 * NOTE! We MUST NOT take any locks for this case. We may
992 * be in an interrupt or a critical region, and should
993 * only copy the information from the master page table,
994 * nothing more.
996 * This verifies that the fault happens in kernel space
997 * (error_code & 4) == 0, and that the fault was not a
998 * protection error (error_code & 9) == 0.
1000 if (unlikely(fault_in_kernel_space(address))) {
1001 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1002 if (vmalloc_fault(address) >= 0)
1003 return;
1005 if (kmemcheck_fault(regs, address, error_code))
1006 return;
1009 /* Can handle a stale RO->RW TLB: */
1010 if (spurious_fault(error_code, address))
1011 return;
1013 /* kprobes don't want to hook the spurious faults: */
1014 if (notify_page_fault(regs))
1015 return;
1017 * Don't take the mm semaphore here. If we fixup a prefetch
1018 * fault we could otherwise deadlock:
1020 bad_area_nosemaphore(regs, error_code, address);
1022 return;
1025 /* kprobes don't want to hook the spurious faults: */
1026 if (unlikely(notify_page_fault(regs)))
1027 return;
1029 * It's safe to allow irq's after cr2 has been saved and the
1030 * vmalloc fault has been handled.
1032 * User-mode registers count as a user access even for any
1033 * potential system fault or CPU buglet:
1035 if (user_mode_vm(regs)) {
1036 local_irq_enable();
1037 error_code |= PF_USER;
1038 } else {
1039 if (regs->flags & X86_EFLAGS_IF)
1040 local_irq_enable();
1043 if (unlikely(error_code & PF_RSVD))
1044 pgtable_bad(regs, error_code, address);
1046 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1049 * If we're in an interrupt, have no user context or are running
1050 * in an atomic region then we must not take the fault:
1052 if (unlikely(in_atomic() || !mm)) {
1053 bad_area_nosemaphore(regs, error_code, address);
1054 return;
1058 * When running in the kernel we expect faults to occur only to
1059 * addresses in user space. All other faults represent errors in
1060 * the kernel and should generate an OOPS. Unfortunately, in the
1061 * case of an erroneous fault occurring in a code path which already
1062 * holds mmap_sem we will deadlock attempting to validate the fault
1063 * against the address space. Luckily the kernel only validly
1064 * references user space from well defined areas of code, which are
1065 * listed in the exceptions table.
1067 * As the vast majority of faults will be valid we will only perform
1068 * the source reference check when there is a possibility of a
1069 * deadlock. Attempt to lock the address space, if we cannot we then
1070 * validate the source. If this is invalid we can skip the address
1071 * space check, thus avoiding the deadlock:
1073 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1074 if ((error_code & PF_USER) == 0 &&
1075 !search_exception_tables(regs->ip)) {
1076 bad_area_nosemaphore(regs, error_code, address);
1077 return;
1079 retry:
1080 down_read(&mm->mmap_sem);
1081 } else {
1083 * The above down_read_trylock() might have succeeded in
1084 * which case we'll have missed the might_sleep() from
1085 * down_read():
1087 might_sleep();
1090 vma = find_vma(mm, address);
1091 if (unlikely(!vma)) {
1092 bad_area(regs, error_code, address);
1093 return;
1095 if (likely(vma->vm_start <= address))
1096 goto good_area;
1097 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1098 bad_area(regs, error_code, address);
1099 return;
1101 if (error_code & PF_USER) {
1103 * Accessing the stack below %sp is always a bug.
1104 * The large cushion allows instructions like enter
1105 * and pusha to work. ("enter $65535, $31" pushes
1106 * 32 pointers and then decrements %sp by 65535.)
1108 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1109 bad_area(regs, error_code, address);
1110 return;
1113 if (unlikely(expand_stack(vma, address))) {
1114 bad_area(regs, error_code, address);
1115 return;
1119 * Ok, we have a good vm_area for this memory access, so
1120 * we can handle it..
1122 good_area:
1123 if (unlikely(access_error(error_code, vma))) {
1124 bad_area_access_error(regs, error_code, address);
1125 return;
1129 * If for any reason at all we couldn't handle the fault,
1130 * make sure we exit gracefully rather than endlessly redo
1131 * the fault:
1133 fault = handle_mm_fault(mm, vma, address, flags);
1135 if (unlikely(fault & VM_FAULT_ERROR)) {
1136 mm_fault_error(regs, error_code, address, fault);
1137 return;
1141 * Major/minor page fault accounting is only done on the
1142 * initial attempt. If we go through a retry, it is extremely
1143 * likely that the page will be found in page cache at that point.
1145 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1146 if (fault & VM_FAULT_MAJOR) {
1147 tsk->maj_flt++;
1148 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1149 regs, address);
1150 } else {
1151 tsk->min_flt++;
1152 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1153 regs, address);
1155 if (fault & VM_FAULT_RETRY) {
1156 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1157 * of starvation. */
1158 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1159 goto retry;
1163 check_v8086_mode(regs, address, tsk);
1165 up_read(&mm->mmap_sem);