2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <asm/traps.h> /* dotraplinkage, ... */
17 #include <asm/pgalloc.h> /* pgd_*(), ... */
18 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21 * Page fault error code bits:
23 * bit 0 == 0: no page found 1: protection fault
24 * bit 1 == 0: read access 1: write access
25 * bit 2 == 0: kernel-mode access 1: user-mode access
26 * bit 3 == 1: use of reserved bit detected
27 * bit 4 == 1: fault was an instruction fetch
29 enum x86_pf_error_code
{
39 * Returns 0 if mmiotrace is disabled, or if the fault is not
40 * handled by mmiotrace:
42 static inline int __kprobes
43 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
45 if (unlikely(is_kmmio_active()))
46 if (kmmio_handler(regs
, addr
) == 1)
51 static inline int __kprobes
notify_page_fault(struct pt_regs
*regs
)
55 /* kprobe_running() needs smp_processor_id() */
56 if (kprobes_built_in() && !user_mode_vm(regs
)) {
58 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
71 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
72 * Check that here and ignore it.
76 * Sometimes the CPU reports invalid exceptions on prefetch.
77 * Check that here and ignore it.
79 * Opcode checker based on code by Richard Brunner.
82 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
83 unsigned char opcode
, int *prefetch
)
85 unsigned char instr_hi
= opcode
& 0xf0;
86 unsigned char instr_lo
= opcode
& 0x0f;
92 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
93 * In X86_64 long mode, the CPU will signal invalid
94 * opcode if some of these prefixes are present so
95 * X86_64 will never get here anyway
97 return ((instr_lo
& 7) == 0x6);
101 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
102 * Need to figure out under what instruction mode the
103 * instruction was issued. Could check the LDT for lm,
104 * but for now it's good enough to assume that long
105 * mode only uses well known segments or kernel.
107 return (!user_mode(regs
)) || (regs
->cs
== __USER_CS
);
110 /* 0x64 thru 0x67 are valid prefixes in all modes. */
111 return (instr_lo
& 0xC) == 0x4;
113 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
114 return !instr_lo
|| (instr_lo
>>1) == 1;
116 /* Prefetch instruction is 0x0F0D or 0x0F18 */
117 if (probe_kernel_address(instr
, opcode
))
120 *prefetch
= (instr_lo
== 0xF) &&
121 (opcode
== 0x0D || opcode
== 0x18);
129 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
131 unsigned char *max_instr
;
132 unsigned char *instr
;
136 * If it was a exec (instruction fetch) fault on NX page, then
137 * do not ignore the fault:
139 if (error_code
& PF_INSTR
)
142 instr
= (void *)convert_ip_to_linear(current
, regs
);
143 max_instr
= instr
+ 15;
145 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE
)
148 while (instr
< max_instr
) {
149 unsigned char opcode
;
151 if (probe_kernel_address(instr
, opcode
))
156 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
163 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
164 struct task_struct
*tsk
, int fault
)
169 info
.si_signo
= si_signo
;
171 info
.si_code
= si_code
;
172 info
.si_addr
= (void __user
*)address
;
173 if (fault
& VM_FAULT_HWPOISON_LARGE
)
174 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
175 if (fault
& VM_FAULT_HWPOISON
)
177 info
.si_addr_lsb
= lsb
;
179 force_sig_info(si_signo
, &info
, tsk
);
182 DEFINE_SPINLOCK(pgd_lock
);
186 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
188 unsigned index
= pgd_index(address
);
194 pgd_k
= init_mm
.pgd
+ index
;
196 if (!pgd_present(*pgd_k
))
200 * set_pgd(pgd, *pgd_k); here would be useless on PAE
201 * and redundant with the set_pmd() on non-PAE. As would
204 pud
= pud_offset(pgd
, address
);
205 pud_k
= pud_offset(pgd_k
, address
);
206 if (!pud_present(*pud_k
))
209 pmd
= pmd_offset(pud
, address
);
210 pmd_k
= pmd_offset(pud_k
, address
);
211 if (!pmd_present(*pmd_k
))
214 if (!pmd_present(*pmd
))
215 set_pmd(pmd
, *pmd_k
);
217 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
222 void vmalloc_sync_all(void)
224 unsigned long address
;
226 if (SHARED_KERNEL_PMD
)
229 for (address
= VMALLOC_START
& PMD_MASK
;
230 address
>= TASK_SIZE
&& address
< FIXADDR_TOP
;
231 address
+= PMD_SIZE
) {
234 spin_lock(&pgd_lock
);
235 list_for_each_entry(page
, &pgd_list
, lru
) {
236 spinlock_t
*pgt_lock
;
239 /* the pgt_lock only for Xen */
240 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
243 ret
= vmalloc_sync_one(page_address(page
), address
);
244 spin_unlock(pgt_lock
);
249 spin_unlock(&pgd_lock
);
256 * Handle a fault on the vmalloc or module mapping area
258 static noinline __kprobes
int vmalloc_fault(unsigned long address
)
260 unsigned long pgd_paddr
;
264 /* Make sure we are in vmalloc area: */
265 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
268 WARN_ON_ONCE(in_nmi());
271 * Synchronize this task's top level page-table
272 * with the 'reference' page table.
274 * Do _not_ use "current" here. We might be inside
275 * an interrupt in the middle of a task switch..
277 pgd_paddr
= read_cr3();
278 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
282 pte_k
= pte_offset_kernel(pmd_k
, address
);
283 if (!pte_present(*pte_k
))
290 * Did it hit the DOS screen memory VA from vm86 mode?
293 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
294 struct task_struct
*tsk
)
298 if (!v8086_mode(regs
))
301 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
303 tsk
->thread
.screen_bitmap
|= 1 << bit
;
306 static bool low_pfn(unsigned long pfn
)
308 return pfn
< max_low_pfn
;
311 static void dump_pagetable(unsigned long address
)
313 pgd_t
*base
= __va(read_cr3());
314 pgd_t
*pgd
= &base
[pgd_index(address
)];
318 #ifdef CONFIG_X86_PAE
319 printk("*pdpt = %016Lx ", pgd_val(*pgd
));
320 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
323 pmd
= pmd_offset(pud_offset(pgd
, address
), address
);
324 printk(KERN_CONT
"*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
327 * We must not directly access the pte in the highpte
328 * case if the page table is located in highmem.
329 * And let's rather not kmap-atomic the pte, just in case
330 * it's allocated already:
332 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
335 pte
= pte_offset_kernel(pmd
, address
);
336 printk("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
341 #else /* CONFIG_X86_64: */
343 void vmalloc_sync_all(void)
345 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
351 * Handle a fault on the vmalloc area
353 * This assumes no large pages in there.
355 static noinline __kprobes
int vmalloc_fault(unsigned long address
)
357 pgd_t
*pgd
, *pgd_ref
;
358 pud_t
*pud
, *pud_ref
;
359 pmd_t
*pmd
, *pmd_ref
;
360 pte_t
*pte
, *pte_ref
;
362 /* Make sure we are in vmalloc area: */
363 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
366 WARN_ON_ONCE(in_nmi());
369 * Copy kernel mappings over when needed. This can also
370 * happen within a race in page table update. In the later
373 pgd
= pgd_offset(current
->active_mm
, address
);
374 pgd_ref
= pgd_offset_k(address
);
375 if (pgd_none(*pgd_ref
))
379 set_pgd(pgd
, *pgd_ref
);
381 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
384 * Below here mismatches are bugs because these lower tables
388 pud
= pud_offset(pgd
, address
);
389 pud_ref
= pud_offset(pgd_ref
, address
);
390 if (pud_none(*pud_ref
))
393 if (pud_none(*pud
) || pud_page_vaddr(*pud
) != pud_page_vaddr(*pud_ref
))
396 pmd
= pmd_offset(pud
, address
);
397 pmd_ref
= pmd_offset(pud_ref
, address
);
398 if (pmd_none(*pmd_ref
))
401 if (pmd_none(*pmd
) || pmd_page(*pmd
) != pmd_page(*pmd_ref
))
404 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
405 if (!pte_present(*pte_ref
))
408 pte
= pte_offset_kernel(pmd
, address
);
411 * Don't use pte_page here, because the mappings can point
412 * outside mem_map, and the NUMA hash lookup cannot handle
415 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
421 static const char errata93_warning
[] =
423 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
424 "******* Working around it, but it may cause SEGVs or burn power.\n"
425 "******* Please consider a BIOS update.\n"
426 "******* Disabling USB legacy in the BIOS may also help.\n";
429 * No vm86 mode in 64-bit mode:
432 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
433 struct task_struct
*tsk
)
437 static int bad_address(void *p
)
441 return probe_kernel_address((unsigned long *)p
, dummy
);
444 static void dump_pagetable(unsigned long address
)
446 pgd_t
*base
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
447 pgd_t
*pgd
= base
+ pgd_index(address
);
452 if (bad_address(pgd
))
455 printk("PGD %lx ", pgd_val(*pgd
));
457 if (!pgd_present(*pgd
))
460 pud
= pud_offset(pgd
, address
);
461 if (bad_address(pud
))
464 printk("PUD %lx ", pud_val(*pud
));
465 if (!pud_present(*pud
) || pud_large(*pud
))
468 pmd
= pmd_offset(pud
, address
);
469 if (bad_address(pmd
))
472 printk("PMD %lx ", pmd_val(*pmd
));
473 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
476 pte
= pte_offset_kernel(pmd
, address
);
477 if (bad_address(pte
))
480 printk("PTE %lx", pte_val(*pte
));
488 #endif /* CONFIG_X86_64 */
491 * Workaround for K8 erratum #93 & buggy BIOS.
493 * BIOS SMM functions are required to use a specific workaround
494 * to avoid corruption of the 64bit RIP register on C stepping K8.
496 * A lot of BIOS that didn't get tested properly miss this.
498 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
499 * Try to work around it here.
501 * Note we only handle faults in kernel here.
502 * Does nothing on 32-bit.
504 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
507 if (address
!= regs
->ip
)
510 if ((address
>> 32) != 0)
513 address
|= 0xffffffffUL
<< 32;
514 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
515 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
516 printk_once(errata93_warning
);
525 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
526 * to illegal addresses >4GB.
528 * We catch this in the page fault handler because these addresses
529 * are not reachable. Just detect this case and return. Any code
530 * segment in LDT is compatibility mode.
532 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
535 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
541 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
543 #ifdef CONFIG_X86_F00F_BUG
547 * Pentium F0 0F C7 C8 bug workaround:
549 if (boot_cpu_data
.f00f_bug
) {
550 nr
= (address
- idt_descr
.address
) >> 3;
553 do_invalid_op(regs
, 0);
561 static const char nx_warning
[] = KERN_CRIT
562 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
565 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
566 unsigned long address
)
568 if (!oops_may_print())
571 if (error_code
& PF_INSTR
) {
574 pte_t
*pte
= lookup_address(address
, &level
);
576 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
577 printk(nx_warning
, current_uid());
580 printk(KERN_ALERT
"BUG: unable to handle kernel ");
581 if (address
< PAGE_SIZE
)
582 printk(KERN_CONT
"NULL pointer dereference");
584 printk(KERN_CONT
"paging request");
586 printk(KERN_CONT
" at %p\n", (void *) address
);
587 printk(KERN_ALERT
"IP:");
588 printk_address(regs
->ip
, 1);
590 dump_pagetable(address
);
594 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
595 unsigned long address
)
597 struct task_struct
*tsk
;
601 flags
= oops_begin();
605 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
607 dump_pagetable(address
);
609 tsk
->thread
.cr2
= address
;
610 tsk
->thread
.trap_no
= 14;
611 tsk
->thread
.error_code
= error_code
;
613 if (__die("Bad pagetable", regs
, error_code
))
616 oops_end(flags
, regs
, sig
);
620 no_context(struct pt_regs
*regs
, unsigned long error_code
,
621 unsigned long address
)
623 struct task_struct
*tsk
= current
;
624 unsigned long *stackend
;
628 /* Are we prepared to handle this kernel fault? */
629 if (fixup_exception(regs
))
635 * Valid to do another page fault here, because if this fault
636 * had been triggered by is_prefetch fixup_exception would have
641 * Hall of shame of CPU/BIOS bugs.
643 if (is_prefetch(regs
, error_code
, address
))
646 if (is_errata93(regs
, address
))
650 * Oops. The kernel tried to access some bad page. We'll have to
651 * terminate things with extreme prejudice:
653 flags
= oops_begin();
655 show_fault_oops(regs
, error_code
, address
);
657 stackend
= end_of_stack(tsk
);
658 if (tsk
!= &init_task
&& *stackend
!= STACK_END_MAGIC
)
659 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
661 tsk
->thread
.cr2
= address
;
662 tsk
->thread
.trap_no
= 14;
663 tsk
->thread
.error_code
= error_code
;
666 if (__die("Oops", regs
, error_code
))
669 /* Executive summary in case the body of the oops scrolled away */
670 printk(KERN_EMERG
"CR2: %016lx\n", address
);
672 oops_end(flags
, regs
, sig
);
676 * Print out info about fatal segfaults, if the show_unhandled_signals
680 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
681 unsigned long address
, struct task_struct
*tsk
)
683 if (!unhandled_signal(tsk
, SIGSEGV
))
686 if (!printk_ratelimit())
689 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
690 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
691 tsk
->comm
, task_pid_nr(tsk
), address
,
692 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
694 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
696 printk(KERN_CONT
"\n");
700 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
701 unsigned long address
, int si_code
)
703 struct task_struct
*tsk
= current
;
705 /* User mode accesses just cause a SIGSEGV */
706 if (error_code
& PF_USER
) {
708 * It's possible to have interrupts off here:
713 * Valid to do another page fault here because this one came
716 if (is_prefetch(regs
, error_code
, address
))
719 if (is_errata100(regs
, address
))
722 if (unlikely(show_unhandled_signals
))
723 show_signal_msg(regs
, error_code
, address
, tsk
);
725 /* Kernel addresses are always protection faults: */
726 tsk
->thread
.cr2
= address
;
727 tsk
->thread
.error_code
= error_code
| (address
>= TASK_SIZE
);
728 tsk
->thread
.trap_no
= 14;
730 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
, 0);
735 if (is_f00f_bug(regs
, address
))
738 no_context(regs
, error_code
, address
);
742 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
743 unsigned long address
)
745 __bad_area_nosemaphore(regs
, error_code
, address
, SEGV_MAPERR
);
749 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
750 unsigned long address
, int si_code
)
752 struct mm_struct
*mm
= current
->mm
;
755 * Something tried to access memory that isn't in our memory map..
756 * Fix it, but check if it's kernel or user first..
758 up_read(&mm
->mmap_sem
);
760 __bad_area_nosemaphore(regs
, error_code
, address
, si_code
);
764 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
766 __bad_area(regs
, error_code
, address
, SEGV_MAPERR
);
770 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
771 unsigned long address
)
773 __bad_area(regs
, error_code
, address
, SEGV_ACCERR
);
776 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
778 out_of_memory(struct pt_regs
*regs
, unsigned long error_code
,
779 unsigned long address
)
782 * We ran out of memory, call the OOM killer, and return the userspace
783 * (which will retry the fault, or kill us if we got oom-killed):
785 up_read(¤t
->mm
->mmap_sem
);
787 pagefault_out_of_memory();
791 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
794 struct task_struct
*tsk
= current
;
795 struct mm_struct
*mm
= tsk
->mm
;
796 int code
= BUS_ADRERR
;
798 up_read(&mm
->mmap_sem
);
800 /* Kernel mode? Handle exceptions or die: */
801 if (!(error_code
& PF_USER
)) {
802 no_context(regs
, error_code
, address
);
806 /* User-space => ok to do another page fault: */
807 if (is_prefetch(regs
, error_code
, address
))
810 tsk
->thread
.cr2
= address
;
811 tsk
->thread
.error_code
= error_code
;
812 tsk
->thread
.trap_no
= 14;
814 #ifdef CONFIG_MEMORY_FAILURE
815 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
817 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
818 tsk
->comm
, tsk
->pid
, address
);
819 code
= BUS_MCEERR_AR
;
822 force_sig_info_fault(SIGBUS
, code
, address
, tsk
, fault
);
826 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
827 unsigned long address
, unsigned int fault
)
829 if (fault
& VM_FAULT_OOM
) {
830 /* Kernel mode? Handle exceptions or die: */
831 if (!(error_code
& PF_USER
)) {
832 up_read(¤t
->mm
->mmap_sem
);
833 no_context(regs
, error_code
, address
);
837 out_of_memory(regs
, error_code
, address
);
839 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
840 VM_FAULT_HWPOISON_LARGE
))
841 do_sigbus(regs
, error_code
, address
, fault
);
847 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
849 if ((error_code
& PF_WRITE
) && !pte_write(*pte
))
852 if ((error_code
& PF_INSTR
) && !pte_exec(*pte
))
859 * Handle a spurious fault caused by a stale TLB entry.
861 * This allows us to lazily refresh the TLB when increasing the
862 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
863 * eagerly is very expensive since that implies doing a full
864 * cross-processor TLB flush, even if no stale TLB entries exist
865 * on other processors.
867 * There are no security implications to leaving a stale TLB when
868 * increasing the permissions on a page.
870 static noinline __kprobes
int
871 spurious_fault(unsigned long error_code
, unsigned long address
)
879 /* Reserved-bit violation or user access to kernel space? */
880 if (error_code
& (PF_USER
| PF_RSVD
))
883 pgd
= init_mm
.pgd
+ pgd_index(address
);
884 if (!pgd_present(*pgd
))
887 pud
= pud_offset(pgd
, address
);
888 if (!pud_present(*pud
))
892 return spurious_fault_check(error_code
, (pte_t
*) pud
);
894 pmd
= pmd_offset(pud
, address
);
895 if (!pmd_present(*pmd
))
899 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
902 * Note: don't use pte_present() here, since it returns true
903 * if the _PAGE_PROTNONE bit is set. However, this aliases the
904 * _PAGE_GLOBAL bit, which for kernel pages give false positives
905 * when CONFIG_DEBUG_PAGEALLOC is used.
907 pte
= pte_offset_kernel(pmd
, address
);
908 if (!(pte_flags(*pte
) & _PAGE_PRESENT
))
911 ret
= spurious_fault_check(error_code
, pte
);
916 * Make sure we have permissions in PMD.
917 * If not, then there's a bug in the page tables:
919 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
920 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
925 int show_unhandled_signals
= 1;
928 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
930 if (error_code
& PF_WRITE
) {
931 /* write, present and write, not present: */
932 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
938 if (unlikely(error_code
& PF_PROT
))
941 /* read, not present: */
942 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
948 static int fault_in_kernel_space(unsigned long address
)
950 return address
>= TASK_SIZE_MAX
;
954 * This routine handles page faults. It determines the address,
955 * and the problem, and then passes it off to one of the appropriate
958 dotraplinkage
void __kprobes
959 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
961 struct vm_area_struct
*vma
;
962 struct task_struct
*tsk
;
963 unsigned long address
;
964 struct mm_struct
*mm
;
966 int write
= error_code
& PF_WRITE
;
967 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
|
968 (write
? FAULT_FLAG_WRITE
: 0);
973 /* Get the faulting address: */
974 address
= read_cr2();
977 * Detect and handle instructions that would cause a page fault for
978 * both a tracked kernel page and a userspace page.
980 if (kmemcheck_active(regs
))
981 kmemcheck_hide(regs
);
982 prefetchw(&mm
->mmap_sem
);
984 if (unlikely(kmmio_fault(regs
, address
)))
988 * We fault-in kernel-space virtual memory on-demand. The
989 * 'reference' page table is init_mm.pgd.
991 * NOTE! We MUST NOT take any locks for this case. We may
992 * be in an interrupt or a critical region, and should
993 * only copy the information from the master page table,
996 * This verifies that the fault happens in kernel space
997 * (error_code & 4) == 0, and that the fault was not a
998 * protection error (error_code & 9) == 0.
1000 if (unlikely(fault_in_kernel_space(address
))) {
1001 if (!(error_code
& (PF_RSVD
| PF_USER
| PF_PROT
))) {
1002 if (vmalloc_fault(address
) >= 0)
1005 if (kmemcheck_fault(regs
, address
, error_code
))
1009 /* Can handle a stale RO->RW TLB: */
1010 if (spurious_fault(error_code
, address
))
1013 /* kprobes don't want to hook the spurious faults: */
1014 if (notify_page_fault(regs
))
1017 * Don't take the mm semaphore here. If we fixup a prefetch
1018 * fault we could otherwise deadlock:
1020 bad_area_nosemaphore(regs
, error_code
, address
);
1025 /* kprobes don't want to hook the spurious faults: */
1026 if (unlikely(notify_page_fault(regs
)))
1029 * It's safe to allow irq's after cr2 has been saved and the
1030 * vmalloc fault has been handled.
1032 * User-mode registers count as a user access even for any
1033 * potential system fault or CPU buglet:
1035 if (user_mode_vm(regs
)) {
1037 error_code
|= PF_USER
;
1039 if (regs
->flags
& X86_EFLAGS_IF
)
1043 if (unlikely(error_code
& PF_RSVD
))
1044 pgtable_bad(regs
, error_code
, address
);
1046 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, 0, regs
, address
);
1049 * If we're in an interrupt, have no user context or are running
1050 * in an atomic region then we must not take the fault:
1052 if (unlikely(in_atomic() || !mm
)) {
1053 bad_area_nosemaphore(regs
, error_code
, address
);
1058 * When running in the kernel we expect faults to occur only to
1059 * addresses in user space. All other faults represent errors in
1060 * the kernel and should generate an OOPS. Unfortunately, in the
1061 * case of an erroneous fault occurring in a code path which already
1062 * holds mmap_sem we will deadlock attempting to validate the fault
1063 * against the address space. Luckily the kernel only validly
1064 * references user space from well defined areas of code, which are
1065 * listed in the exceptions table.
1067 * As the vast majority of faults will be valid we will only perform
1068 * the source reference check when there is a possibility of a
1069 * deadlock. Attempt to lock the address space, if we cannot we then
1070 * validate the source. If this is invalid we can skip the address
1071 * space check, thus avoiding the deadlock:
1073 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1074 if ((error_code
& PF_USER
) == 0 &&
1075 !search_exception_tables(regs
->ip
)) {
1076 bad_area_nosemaphore(regs
, error_code
, address
);
1080 down_read(&mm
->mmap_sem
);
1083 * The above down_read_trylock() might have succeeded in
1084 * which case we'll have missed the might_sleep() from
1090 vma
= find_vma(mm
, address
);
1091 if (unlikely(!vma
)) {
1092 bad_area(regs
, error_code
, address
);
1095 if (likely(vma
->vm_start
<= address
))
1097 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1098 bad_area(regs
, error_code
, address
);
1101 if (error_code
& PF_USER
) {
1103 * Accessing the stack below %sp is always a bug.
1104 * The large cushion allows instructions like enter
1105 * and pusha to work. ("enter $65535, $31" pushes
1106 * 32 pointers and then decrements %sp by 65535.)
1108 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1109 bad_area(regs
, error_code
, address
);
1113 if (unlikely(expand_stack(vma
, address
))) {
1114 bad_area(regs
, error_code
, address
);
1119 * Ok, we have a good vm_area for this memory access, so
1120 * we can handle it..
1123 if (unlikely(access_error(error_code
, vma
))) {
1124 bad_area_access_error(regs
, error_code
, address
);
1129 * If for any reason at all we couldn't handle the fault,
1130 * make sure we exit gracefully rather than endlessly redo
1133 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
1135 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1136 mm_fault_error(regs
, error_code
, address
, fault
);
1141 * Major/minor page fault accounting is only done on the
1142 * initial attempt. If we go through a retry, it is extremely
1143 * likely that the page will be found in page cache at that point.
1145 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1146 if (fault
& VM_FAULT_MAJOR
) {
1148 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, 0,
1152 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, 0,
1155 if (fault
& VM_FAULT_RETRY
) {
1156 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1158 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1163 check_v8086_mode(regs
, address
, tsk
);
1165 up_read(&mm
->mmap_sem
);