2 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
3 * August 2002: added remote node KVA remap - Martin J. Bligh
5 * Copyright (C) 2002, IBM Corp.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT. See the GNU General Public License for more
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/bootmem.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/highmem.h>
30 #include <linux/initrd.h>
31 #include <linux/nodemask.h>
32 #include <linux/module.h>
33 #include <linux/kexec.h>
34 #include <linux/pfn.h>
35 #include <linux/swap.h>
36 #include <linux/acpi.h>
39 #include <asm/setup.h>
40 #include <asm/mmzone.h>
41 #include <asm/bios_ebda.h>
42 #include <asm/proto.h>
44 struct pglist_data
*node_data
[MAX_NUMNODES
] __read_mostly
;
45 EXPORT_SYMBOL(node_data
);
48 * numa interface - we expect the numa architecture specific code to have
49 * populated the following initialisation.
51 * 1) node_online_map - the map of all nodes configured (online) in the system
52 * 2) node_start_pfn - the starting page frame number for a node
53 * 3) node_end_pfn - the ending page fram number for a node
55 unsigned long node_start_pfn
[MAX_NUMNODES
] __read_mostly
;
56 unsigned long node_end_pfn
[MAX_NUMNODES
] __read_mostly
;
59 #ifdef CONFIG_DISCONTIGMEM
61 * 4) physnode_map - the mapping between a pfn and owning node
62 * physnode_map keeps track of the physical memory layout of a generic
63 * numa node on a 64Mb break (each element of the array will
64 * represent 64Mb of memory and will be marked by the node id. so,
65 * if the first gig is on node 0, and the second gig is on node 1
66 * physnode_map will contain:
68 * physnode_map[0-15] = 0;
69 * physnode_map[16-31] = 1;
70 * physnode_map[32- ] = -1;
72 s8 physnode_map
[MAX_ELEMENTS
] __read_mostly
= { [0 ... (MAX_ELEMENTS
- 1)] = -1};
73 EXPORT_SYMBOL(physnode_map
);
75 void memory_present(int nid
, unsigned long start
, unsigned long end
)
79 printk(KERN_INFO
"Node: %d, start_pfn: %lx, end_pfn: %lx\n",
81 printk(KERN_DEBUG
" Setting physnode_map array to node %d for pfns:\n", nid
);
82 printk(KERN_DEBUG
" ");
83 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_ELEMENT
) {
84 physnode_map
[pfn
/ PAGES_PER_ELEMENT
] = nid
;
85 printk(KERN_CONT
"%lx ", pfn
);
87 printk(KERN_CONT
"\n");
90 unsigned long node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
91 unsigned long end_pfn
)
93 unsigned long nr_pages
= end_pfn
- start_pfn
;
98 return (nr_pages
+ 1) * sizeof(struct page
);
102 extern unsigned long find_max_low_pfn(void);
103 extern unsigned long highend_pfn
, highstart_pfn
;
105 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
107 unsigned long node_remap_size
[MAX_NUMNODES
];
108 static void *node_remap_start_vaddr
[MAX_NUMNODES
];
109 void set_pmd_pfn(unsigned long vaddr
, unsigned long pfn
, pgprot_t flags
);
111 static unsigned long kva_start_pfn
;
112 static unsigned long kva_pages
;
114 int __cpuinit
numa_cpu_node(int cpu
)
116 return apic
->x86_32_numa_cpu_node(cpu
);
120 * FLAT - support for basic PC memory model with discontig enabled, essentially
121 * a single node with all available processors in it with a flat
124 int __init
get_memcfg_numa_flat(void)
126 printk(KERN_DEBUG
"NUMA - single node, flat memory mode\n");
128 node_start_pfn
[0] = 0;
129 node_end_pfn
[0] = max_pfn
;
130 memblock_x86_register_active_regions(0, 0, max_pfn
);
131 memory_present(0, 0, max_pfn
);
132 node_remap_size
[0] = node_memmap_size_bytes(0, 0, max_pfn
);
134 /* Indicate there is one node available. */
135 nodes_clear(node_online_map
);
141 * Find the highest page frame number we have available for the node
143 static void __init
propagate_e820_map_node(int nid
)
145 if (node_end_pfn
[nid
] > max_pfn
)
146 node_end_pfn
[nid
] = max_pfn
;
148 * if a user has given mem=XXXX, then we need to make sure
149 * that the node _starts_ before that, too, not just ends
151 if (node_start_pfn
[nid
] > max_pfn
)
152 node_start_pfn
[nid
] = max_pfn
;
153 BUG_ON(node_start_pfn
[nid
] > node_end_pfn
[nid
]);
157 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
158 * method. For node zero take this from the bottom of memory, for
159 * subsequent nodes place them at node_remap_start_vaddr which contains
160 * node local data in physically node local memory. See setup_memory()
163 static void __init
allocate_pgdat(int nid
)
167 if (node_has_online_mem(nid
) && node_remap_start_vaddr
[nid
])
168 NODE_DATA(nid
) = (pg_data_t
*)node_remap_start_vaddr
[nid
];
170 unsigned long pgdat_phys
;
171 pgdat_phys
= memblock_find_in_range(min_low_pfn
<<PAGE_SHIFT
,
172 max_pfn_mapped
<<PAGE_SHIFT
,
175 NODE_DATA(nid
) = (pg_data_t
*)(pfn_to_kaddr(pgdat_phys
>>PAGE_SHIFT
));
176 memset(buf
, 0, sizeof(buf
));
177 sprintf(buf
, "NODE_DATA %d", nid
);
178 memblock_x86_reserve_range(pgdat_phys
, pgdat_phys
+ sizeof(pg_data_t
), buf
);
180 printk(KERN_DEBUG
"allocate_pgdat: node %d NODE_DATA %08lx\n",
181 nid
, (unsigned long)NODE_DATA(nid
));
185 * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel
186 * virtual address space (KVA) is reserved and portions of nodes are mapped
187 * using it. This is to allow node-local memory to be allocated for
188 * structures that would normally require ZONE_NORMAL. The memory is
189 * allocated with alloc_remap() and callers should be prepared to allocate
190 * from the bootmem allocator instead.
192 static unsigned long node_remap_start_pfn
[MAX_NUMNODES
];
193 static void *node_remap_end_vaddr
[MAX_NUMNODES
];
194 static void *node_remap_alloc_vaddr
[MAX_NUMNODES
];
195 static unsigned long node_remap_offset
[MAX_NUMNODES
];
197 void *alloc_remap(int nid
, unsigned long size
)
199 void *allocation
= node_remap_alloc_vaddr
[nid
];
201 size
= ALIGN(size
, L1_CACHE_BYTES
);
203 if (!allocation
|| (allocation
+ size
) >= node_remap_end_vaddr
[nid
])
206 node_remap_alloc_vaddr
[nid
] += size
;
207 memset(allocation
, 0, size
);
212 static void __init
remap_numa_kva(void)
218 for_each_online_node(node
) {
219 printk(KERN_DEBUG
"remap_numa_kva: node %d\n", node
);
220 for (pfn
=0; pfn
< node_remap_size
[node
]; pfn
+= PTRS_PER_PTE
) {
221 vaddr
= node_remap_start_vaddr
[node
]+(pfn
<<PAGE_SHIFT
);
222 printk(KERN_DEBUG
"remap_numa_kva: %08lx to pfn %08lx\n",
223 (unsigned long)vaddr
,
224 node_remap_start_pfn
[node
] + pfn
);
225 set_pmd_pfn((ulong
) vaddr
,
226 node_remap_start_pfn
[node
] + pfn
,
232 #ifdef CONFIG_HIBERNATION
234 * resume_map_numa_kva - add KVA mapping to the temporary page tables created
235 * during resume from hibernation
236 * @pgd_base - temporary resume page directory
238 void resume_map_numa_kva(pgd_t
*pgd_base
)
242 for_each_online_node(node
) {
243 unsigned long start_va
, start_pfn
, size
, pfn
;
245 start_va
= (unsigned long)node_remap_start_vaddr
[node
];
246 start_pfn
= node_remap_start_pfn
[node
];
247 size
= node_remap_size
[node
];
249 printk(KERN_DEBUG
"%s: node %d\n", __func__
, node
);
251 for (pfn
= 0; pfn
< size
; pfn
+= PTRS_PER_PTE
) {
252 unsigned long vaddr
= start_va
+ (pfn
<< PAGE_SHIFT
);
253 pgd_t
*pgd
= pgd_base
+ pgd_index(vaddr
);
254 pud_t
*pud
= pud_offset(pgd
, vaddr
);
255 pmd_t
*pmd
= pmd_offset(pud
, vaddr
);
257 set_pmd(pmd
, pfn_pmd(start_pfn
+ pfn
,
258 PAGE_KERNEL_LARGE_EXEC
));
260 printk(KERN_DEBUG
"%s: %08lx -> pfn %08lx\n",
261 __func__
, vaddr
, start_pfn
+ pfn
);
267 static __init
unsigned long calculate_numa_remap_pages(void)
270 unsigned long size
, reserve_pages
= 0;
272 for_each_online_node(nid
) {
277 * The acpi/srat node info can show hot-add memroy zones
278 * where memory could be added but not currently present.
280 printk(KERN_DEBUG
"node %d pfn: [%lx - %lx]\n",
281 nid
, node_start_pfn
[nid
], node_end_pfn
[nid
]);
282 if (node_start_pfn
[nid
] > max_pfn
)
284 if (!node_end_pfn
[nid
])
286 if (node_end_pfn
[nid
] > max_pfn
)
287 node_end_pfn
[nid
] = max_pfn
;
289 /* ensure the remap includes space for the pgdat. */
290 size
= node_remap_size
[nid
] + sizeof(pg_data_t
);
292 /* convert size to large (pmd size) pages, rounding up */
293 size
= (size
+ LARGE_PAGE_BYTES
- 1) / LARGE_PAGE_BYTES
;
294 /* now the roundup is correct, convert to PAGE_SIZE pages */
295 size
= size
* PTRS_PER_PTE
;
297 node_kva_target
= round_down(node_end_pfn
[nid
] - size
,
299 node_kva_target
<<= PAGE_SHIFT
;
301 node_kva_final
= memblock_find_in_range(node_kva_target
,
302 ((u64
)node_end_pfn
[nid
])<<PAGE_SHIFT
,
303 ((u64
)size
)<<PAGE_SHIFT
,
305 node_kva_target
-= LARGE_PAGE_BYTES
;
306 } while (node_kva_final
== MEMBLOCK_ERROR
&&
307 (node_kva_target
>>PAGE_SHIFT
) > (node_start_pfn
[nid
]));
309 if (node_kva_final
== MEMBLOCK_ERROR
)
310 panic("Can not get kva ram\n");
312 node_remap_size
[nid
] = size
;
313 node_remap_offset
[nid
] = reserve_pages
;
314 reserve_pages
+= size
;
315 printk(KERN_DEBUG
"Reserving %ld pages of KVA for lmem_map of"
316 " node %d at %llx\n",
317 size
, nid
, node_kva_final
>>PAGE_SHIFT
);
320 * prevent kva address below max_low_pfn want it on system
321 * with less memory later.
322 * layout will be: KVA address , KVA RAM
324 * we are supposed to only record the one less then max_low_pfn
325 * but we could have some hole in high memory, and it will only
326 * check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide
328 * So memblock_x86_reserve_range here, hope we don't run out of that array
330 memblock_x86_reserve_range(node_kva_final
,
331 node_kva_final
+(((u64
)size
)<<PAGE_SHIFT
),
334 node_remap_start_pfn
[nid
] = node_kva_final
>>PAGE_SHIFT
;
336 printk(KERN_INFO
"Reserving total of %lx pages for numa KVA remap\n",
338 return reserve_pages
;
341 static void init_remap_allocator(int nid
)
343 node_remap_start_vaddr
[nid
] = pfn_to_kaddr(
344 kva_start_pfn
+ node_remap_offset
[nid
]);
345 node_remap_end_vaddr
[nid
] = node_remap_start_vaddr
[nid
] +
346 (node_remap_size
[nid
] * PAGE_SIZE
);
347 node_remap_alloc_vaddr
[nid
] = node_remap_start_vaddr
[nid
] +
348 ALIGN(sizeof(pg_data_t
), PAGE_SIZE
);
350 printk(KERN_DEBUG
"node %d will remap to vaddr %08lx - %08lx\n", nid
,
351 (ulong
) node_remap_start_vaddr
[nid
],
352 (ulong
) node_remap_end_vaddr
[nid
]);
355 void __init
initmem_init(void)
361 * When mapping a NUMA machine we allocate the node_mem_map arrays
362 * from node local memory. They are then mapped directly into KVA
363 * between zone normal and vmalloc space. Calculate the size of
364 * this space and use it to adjust the boundary between ZONE_NORMAL
371 kva_pages
= roundup(calculate_numa_remap_pages(), PTRS_PER_PTE
);
373 kva_target_pfn
= round_down(max_low_pfn
- kva_pages
, PTRS_PER_PTE
);
375 kva_start_pfn
= memblock_find_in_range(kva_target_pfn
<<PAGE_SHIFT
,
376 max_low_pfn
<<PAGE_SHIFT
,
377 kva_pages
<<PAGE_SHIFT
,
378 PTRS_PER_PTE
<<PAGE_SHIFT
) >> PAGE_SHIFT
;
379 kva_target_pfn
-= PTRS_PER_PTE
;
380 } while (kva_start_pfn
== MEMBLOCK_ERROR
&& kva_target_pfn
> min_low_pfn
);
382 if (kva_start_pfn
== MEMBLOCK_ERROR
)
383 panic("Can not get kva space\n");
385 printk(KERN_INFO
"kva_start_pfn ~ %lx max_low_pfn ~ %lx\n",
386 kva_start_pfn
, max_low_pfn
);
387 printk(KERN_INFO
"max_pfn = %lx\n", max_pfn
);
389 /* avoid clash with initrd */
390 memblock_x86_reserve_range(kva_start_pfn
<<PAGE_SHIFT
,
391 (kva_start_pfn
+ kva_pages
)<<PAGE_SHIFT
,
393 #ifdef CONFIG_HIGHMEM
394 highstart_pfn
= highend_pfn
= max_pfn
;
395 if (max_pfn
> max_low_pfn
)
396 highstart_pfn
= max_low_pfn
;
397 printk(KERN_NOTICE
"%ldMB HIGHMEM available.\n",
398 pages_to_mb(highend_pfn
- highstart_pfn
));
399 num_physpages
= highend_pfn
;
400 high_memory
= (void *) __va(highstart_pfn
* PAGE_SIZE
- 1) + 1;
402 num_physpages
= max_low_pfn
;
403 high_memory
= (void *) __va(max_low_pfn
* PAGE_SIZE
- 1) + 1;
405 printk(KERN_NOTICE
"%ldMB LOWMEM available.\n",
406 pages_to_mb(max_low_pfn
));
407 printk(KERN_DEBUG
"max_low_pfn = %lx, highstart_pfn = %lx\n",
408 max_low_pfn
, highstart_pfn
);
410 printk(KERN_DEBUG
"Low memory ends at vaddr %08lx\n",
411 (ulong
) pfn_to_kaddr(max_low_pfn
));
412 for_each_online_node(nid
) {
413 init_remap_allocator(nid
);
419 printk(KERN_DEBUG
"High memory starts at vaddr %08lx\n",
420 (ulong
) pfn_to_kaddr(highstart_pfn
));
421 for_each_online_node(nid
)
422 propagate_e820_map_node(nid
);
424 for_each_online_node(nid
) {
425 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
426 NODE_DATA(nid
)->node_id
= nid
;
429 setup_bootmem_allocator();
432 #ifdef CONFIG_MEMORY_HOTPLUG
433 static int paddr_to_nid(u64 addr
)
436 unsigned long pfn
= PFN_DOWN(addr
);
439 if (node_start_pfn
[nid
] <= pfn
&&
440 pfn
< node_end_pfn
[nid
])
447 * This function is used to ask node id BEFORE memmap and mem_section's
448 * initialization (pfn_to_nid() can't be used yet).
449 * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
451 int memory_add_physaddr_to_nid(u64 addr
)
453 int nid
= paddr_to_nid(addr
);
454 return (nid
>= 0) ? nid
: 0;
457 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid
);