sfc: Don't use enums as a bitmask.
[zen-stable.git] / drivers / media / video / omap / omap_vout.c
blobd4fe7bc92a1d82525f77a43f31e4d9ef856bdbde
1 /*
2 * omap_vout.c
4 * Copyright (C) 2005-2010 Texas Instruments.
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
10 * Leveraged code from the OMAP2 camera driver
11 * Video-for-Linux (Version 2) camera capture driver for
12 * the OMAP24xx camera controller.
14 * Author: Andy Lowe (source@mvista.com)
16 * Copyright (C) 2004 MontaVista Software, Inc.
17 * Copyright (C) 2010 Texas Instruments.
19 * History:
20 * 20-APR-2006 Khasim Modified VRFB based Rotation,
21 * The image data is always read from 0 degree
22 * view and written
23 * to the virtual space of desired rotation angle
24 * 4-DEC-2006 Jian Changed to support better memory management
26 * 17-Nov-2008 Hardik Changed driver to use video_ioctl2
28 * 23-Feb-2010 Vaibhav H Modified to use new DSS2 interface
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/vmalloc.h>
35 #include <linux/sched.h>
36 #include <linux/types.h>
37 #include <linux/platform_device.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/irq.h>
40 #include <linux/videodev2.h>
41 #include <linux/slab.h>
43 #include <media/videobuf-dma-contig.h>
44 #include <media/v4l2-device.h>
45 #include <media/v4l2-ioctl.h>
47 #include <plat/dma.h>
48 #include <plat/vram.h>
49 #include <plat/vrfb.h>
50 #include <plat/display.h>
52 #include "omap_voutlib.h"
53 #include "omap_voutdef.h"
55 MODULE_AUTHOR("Texas Instruments");
56 MODULE_DESCRIPTION("OMAP Video for Linux Video out driver");
57 MODULE_LICENSE("GPL");
60 /* Driver Configuration macros */
61 #define VOUT_NAME "omap_vout"
63 enum omap_vout_channels {
64 OMAP_VIDEO1,
65 OMAP_VIDEO2,
68 enum dma_channel_state {
69 DMA_CHAN_NOT_ALLOTED,
70 DMA_CHAN_ALLOTED,
73 #define QQVGA_WIDTH 160
74 #define QQVGA_HEIGHT 120
76 /* Max Resolution supported by the driver */
77 #define VID_MAX_WIDTH 1280 /* Largest width */
78 #define VID_MAX_HEIGHT 720 /* Largest height */
80 /* Mimimum requirement is 2x2 for DSS */
81 #define VID_MIN_WIDTH 2
82 #define VID_MIN_HEIGHT 2
84 /* 2048 x 2048 is max res supported by OMAP display controller */
85 #define MAX_PIXELS_PER_LINE 2048
87 #define VRFB_TX_TIMEOUT 1000
88 #define VRFB_NUM_BUFS 4
90 /* Max buffer size tobe allocated during init */
91 #define OMAP_VOUT_MAX_BUF_SIZE (VID_MAX_WIDTH*VID_MAX_HEIGHT*4)
93 static struct videobuf_queue_ops video_vbq_ops;
94 /* Variables configurable through module params*/
95 static u32 video1_numbuffers = 3;
96 static u32 video2_numbuffers = 3;
97 static u32 video1_bufsize = OMAP_VOUT_MAX_BUF_SIZE;
98 static u32 video2_bufsize = OMAP_VOUT_MAX_BUF_SIZE;
99 static u32 vid1_static_vrfb_alloc;
100 static u32 vid2_static_vrfb_alloc;
101 static int debug;
103 /* Module parameters */
104 module_param(video1_numbuffers, uint, S_IRUGO);
105 MODULE_PARM_DESC(video1_numbuffers,
106 "Number of buffers to be allocated at init time for Video1 device.");
108 module_param(video2_numbuffers, uint, S_IRUGO);
109 MODULE_PARM_DESC(video2_numbuffers,
110 "Number of buffers to be allocated at init time for Video2 device.");
112 module_param(video1_bufsize, uint, S_IRUGO);
113 MODULE_PARM_DESC(video1_bufsize,
114 "Size of the buffer to be allocated for video1 device");
116 module_param(video2_bufsize, uint, S_IRUGO);
117 MODULE_PARM_DESC(video2_bufsize,
118 "Size of the buffer to be allocated for video2 device");
120 module_param(vid1_static_vrfb_alloc, bool, S_IRUGO);
121 MODULE_PARM_DESC(vid1_static_vrfb_alloc,
122 "Static allocation of the VRFB buffer for video1 device");
124 module_param(vid2_static_vrfb_alloc, bool, S_IRUGO);
125 MODULE_PARM_DESC(vid2_static_vrfb_alloc,
126 "Static allocation of the VRFB buffer for video2 device");
128 module_param(debug, bool, S_IRUGO);
129 MODULE_PARM_DESC(debug, "Debug level (0-1)");
131 /* list of image formats supported by OMAP2 video pipelines */
132 const static struct v4l2_fmtdesc omap_formats[] = {
134 /* Note: V4L2 defines RGB565 as:
136 * Byte 0 Byte 1
137 * g2 g1 g0 r4 r3 r2 r1 r0 b4 b3 b2 b1 b0 g5 g4 g3
139 * We interpret RGB565 as:
141 * Byte 0 Byte 1
142 * g2 g1 g0 b4 b3 b2 b1 b0 r4 r3 r2 r1 r0 g5 g4 g3
144 .description = "RGB565, le",
145 .pixelformat = V4L2_PIX_FMT_RGB565,
148 /* Note: V4L2 defines RGB32 as: RGB-8-8-8-8 we use
149 * this for RGB24 unpack mode, the last 8 bits are ignored
150 * */
151 .description = "RGB32, le",
152 .pixelformat = V4L2_PIX_FMT_RGB32,
155 /* Note: V4L2 defines RGB24 as: RGB-8-8-8 we use
156 * this for RGB24 packed mode
159 .description = "RGB24, le",
160 .pixelformat = V4L2_PIX_FMT_RGB24,
163 .description = "YUYV (YUV 4:2:2), packed",
164 .pixelformat = V4L2_PIX_FMT_YUYV,
167 .description = "UYVY, packed",
168 .pixelformat = V4L2_PIX_FMT_UYVY,
172 #define NUM_OUTPUT_FORMATS (ARRAY_SIZE(omap_formats))
175 * Allocate buffers
177 static unsigned long omap_vout_alloc_buffer(u32 buf_size, u32 *phys_addr)
179 u32 order, size;
180 unsigned long virt_addr, addr;
182 size = PAGE_ALIGN(buf_size);
183 order = get_order(size);
184 virt_addr = __get_free_pages(GFP_KERNEL | GFP_DMA, order);
185 addr = virt_addr;
187 if (virt_addr) {
188 while (size > 0) {
189 SetPageReserved(virt_to_page(addr));
190 addr += PAGE_SIZE;
191 size -= PAGE_SIZE;
194 *phys_addr = (u32) virt_to_phys((void *) virt_addr);
195 return virt_addr;
199 * Free buffers
201 static void omap_vout_free_buffer(unsigned long virtaddr, u32 buf_size)
203 u32 order, size;
204 unsigned long addr = virtaddr;
206 size = PAGE_ALIGN(buf_size);
207 order = get_order(size);
209 while (size > 0) {
210 ClearPageReserved(virt_to_page(addr));
211 addr += PAGE_SIZE;
212 size -= PAGE_SIZE;
214 free_pages((unsigned long) virtaddr, order);
218 * Function for allocating video buffers
220 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
221 unsigned int *count, int startindex)
223 int i, j;
225 for (i = 0; i < *count; i++) {
226 if (!vout->smsshado_virt_addr[i]) {
227 vout->smsshado_virt_addr[i] =
228 omap_vout_alloc_buffer(vout->smsshado_size,
229 &vout->smsshado_phy_addr[i]);
231 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
232 if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
233 break;
235 if (!vout->smsshado_virt_addr[i]) {
236 for (j = 0; j < i; j++) {
237 omap_vout_free_buffer(
238 vout->smsshado_virt_addr[j],
239 vout->smsshado_size);
240 vout->smsshado_virt_addr[j] = 0;
241 vout->smsshado_phy_addr[j] = 0;
243 *count = 0;
244 return -ENOMEM;
246 memset((void *) vout->smsshado_virt_addr[i], 0,
247 vout->smsshado_size);
249 return 0;
253 * Try format
255 static int omap_vout_try_format(struct v4l2_pix_format *pix)
257 int ifmt, bpp = 0;
259 pix->height = clamp(pix->height, (u32)VID_MIN_HEIGHT,
260 (u32)VID_MAX_HEIGHT);
261 pix->width = clamp(pix->width, (u32)VID_MIN_WIDTH, (u32)VID_MAX_WIDTH);
263 for (ifmt = 0; ifmt < NUM_OUTPUT_FORMATS; ifmt++) {
264 if (pix->pixelformat == omap_formats[ifmt].pixelformat)
265 break;
268 if (ifmt == NUM_OUTPUT_FORMATS)
269 ifmt = 0;
271 pix->pixelformat = omap_formats[ifmt].pixelformat;
272 pix->field = V4L2_FIELD_ANY;
273 pix->priv = 0;
275 switch (pix->pixelformat) {
276 case V4L2_PIX_FMT_YUYV:
277 case V4L2_PIX_FMT_UYVY:
278 default:
279 pix->colorspace = V4L2_COLORSPACE_JPEG;
280 bpp = YUYV_BPP;
281 break;
282 case V4L2_PIX_FMT_RGB565:
283 case V4L2_PIX_FMT_RGB565X:
284 pix->colorspace = V4L2_COLORSPACE_SRGB;
285 bpp = RGB565_BPP;
286 break;
287 case V4L2_PIX_FMT_RGB24:
288 pix->colorspace = V4L2_COLORSPACE_SRGB;
289 bpp = RGB24_BPP;
290 break;
291 case V4L2_PIX_FMT_RGB32:
292 case V4L2_PIX_FMT_BGR32:
293 pix->colorspace = V4L2_COLORSPACE_SRGB;
294 bpp = RGB32_BPP;
295 break;
297 pix->bytesperline = pix->width * bpp;
298 pix->sizeimage = pix->bytesperline * pix->height;
300 return bpp;
304 * omap_vout_uservirt_to_phys: This inline function is used to convert user
305 * space virtual address to physical address.
307 static u32 omap_vout_uservirt_to_phys(u32 virtp)
309 unsigned long physp = 0;
310 struct vm_area_struct *vma;
311 struct mm_struct *mm = current->mm;
313 vma = find_vma(mm, virtp);
314 /* For kernel direct-mapped memory, take the easy way */
315 if (virtp >= PAGE_OFFSET) {
316 physp = virt_to_phys((void *) virtp);
317 } else if (vma && (vma->vm_flags & VM_IO) && vma->vm_pgoff) {
318 /* this will catch, kernel-allocated, mmaped-to-usermode
319 addresses */
320 physp = (vma->vm_pgoff << PAGE_SHIFT) + (virtp - vma->vm_start);
321 } else {
322 /* otherwise, use get_user_pages() for general userland pages */
323 int res, nr_pages = 1;
324 struct page *pages;
325 down_read(&current->mm->mmap_sem);
327 res = get_user_pages(current, current->mm, virtp, nr_pages, 1,
328 0, &pages, NULL);
329 up_read(&current->mm->mmap_sem);
331 if (res == nr_pages) {
332 physp = __pa(page_address(&pages[0]) +
333 (virtp & ~PAGE_MASK));
334 } else {
335 printk(KERN_WARNING VOUT_NAME
336 "get_user_pages failed\n");
337 return 0;
341 return physp;
345 * Wakes up the application once the DMA transfer to VRFB space is completed.
347 static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
349 struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
351 t->tx_status = 1;
352 wake_up_interruptible(&t->wait);
356 * Release the VRFB context once the module exits
358 static void omap_vout_release_vrfb(struct omap_vout_device *vout)
360 int i;
362 for (i = 0; i < VRFB_NUM_BUFS; i++)
363 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
365 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
366 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
367 omap_free_dma(vout->vrfb_dma_tx.dma_ch);
372 * Return true if rotation is 90 or 270
374 static inline int rotate_90_or_270(const struct omap_vout_device *vout)
376 return (vout->rotation == dss_rotation_90_degree ||
377 vout->rotation == dss_rotation_270_degree);
381 * Return true if rotation is enabled
383 static inline int rotation_enabled(const struct omap_vout_device *vout)
385 return vout->rotation || vout->mirror;
389 * Reverse the rotation degree if mirroring is enabled
391 static inline int calc_rotation(const struct omap_vout_device *vout)
393 if (!vout->mirror)
394 return vout->rotation;
396 switch (vout->rotation) {
397 case dss_rotation_90_degree:
398 return dss_rotation_270_degree;
399 case dss_rotation_270_degree:
400 return dss_rotation_90_degree;
401 case dss_rotation_180_degree:
402 return dss_rotation_0_degree;
403 default:
404 return dss_rotation_180_degree;
409 * Free the V4L2 buffers
411 static void omap_vout_free_buffers(struct omap_vout_device *vout)
413 int i, numbuffers;
415 /* Allocate memory for the buffers */
416 numbuffers = (vout->vid) ? video2_numbuffers : video1_numbuffers;
417 vout->buffer_size = (vout->vid) ? video2_bufsize : video1_bufsize;
419 for (i = 0; i < numbuffers; i++) {
420 omap_vout_free_buffer(vout->buf_virt_addr[i],
421 vout->buffer_size);
422 vout->buf_phy_addr[i] = 0;
423 vout->buf_virt_addr[i] = 0;
428 * Free VRFB buffers
430 static void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
432 int j;
434 for (j = 0; j < VRFB_NUM_BUFS; j++) {
435 omap_vout_free_buffer(vout->smsshado_virt_addr[j],
436 vout->smsshado_size);
437 vout->smsshado_virt_addr[j] = 0;
438 vout->smsshado_phy_addr[j] = 0;
443 * Allocate the buffers for the VRFB space. Data is copied from V4L2
444 * buffers to the VRFB buffers using the DMA engine.
446 static int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
447 unsigned int *count, unsigned int startindex)
449 int i;
450 bool yuv_mode;
452 /* Allocate the VRFB buffers only if the buffers are not
453 * allocated during init time.
455 if ((rotation_enabled(vout)) && !vout->vrfb_static_allocation)
456 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
457 return -ENOMEM;
459 if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
460 vout->dss_mode == OMAP_DSS_COLOR_UYVY)
461 yuv_mode = true;
462 else
463 yuv_mode = false;
465 for (i = 0; i < *count; i++)
466 omap_vrfb_setup(&vout->vrfb_context[i],
467 vout->smsshado_phy_addr[i], vout->pix.width,
468 vout->pix.height, vout->bpp, yuv_mode);
470 return 0;
474 * Convert V4L2 rotation to DSS rotation
475 * V4L2 understand 0, 90, 180, 270.
476 * Convert to 0, 1, 2 and 3 respectively for DSS
478 static int v4l2_rot_to_dss_rot(int v4l2_rotation,
479 enum dss_rotation *rotation, bool mirror)
481 int ret = 0;
483 switch (v4l2_rotation) {
484 case 90:
485 *rotation = dss_rotation_90_degree;
486 break;
487 case 180:
488 *rotation = dss_rotation_180_degree;
489 break;
490 case 270:
491 *rotation = dss_rotation_270_degree;
492 break;
493 case 0:
494 *rotation = dss_rotation_0_degree;
495 break;
496 default:
497 ret = -EINVAL;
499 return ret;
503 * Calculate the buffer offsets from which the streaming should
504 * start. This offset calculation is mainly required because of
505 * the VRFB 32 pixels alignment with rotation.
507 static int omap_vout_calculate_offset(struct omap_vout_device *vout)
509 struct omap_overlay *ovl;
510 enum dss_rotation rotation;
511 struct omapvideo_info *ovid;
512 bool mirroring = vout->mirror;
513 struct omap_dss_device *cur_display;
514 struct v4l2_rect *crop = &vout->crop;
515 struct v4l2_pix_format *pix = &vout->pix;
516 int *cropped_offset = &vout->cropped_offset;
517 int vr_ps = 1, ps = 2, temp_ps = 2;
518 int offset = 0, ctop = 0, cleft = 0, line_length = 0;
520 ovid = &vout->vid_info;
521 ovl = ovid->overlays[0];
522 /* get the display device attached to the overlay */
523 if (!ovl->manager || !ovl->manager->device)
524 return -1;
526 cur_display = ovl->manager->device;
527 rotation = calc_rotation(vout);
529 if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
530 V4L2_PIX_FMT_UYVY == pix->pixelformat) {
531 if (rotation_enabled(vout)) {
533 * ps - Actual pixel size for YUYV/UYVY for
534 * VRFB/Mirroring is 4 bytes
535 * vr_ps - Virtually pixel size for YUYV/UYVY is
536 * 2 bytes
538 ps = 4;
539 vr_ps = 2;
540 } else {
541 ps = 2; /* otherwise the pixel size is 2 byte */
543 } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
544 ps = 4;
545 } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
546 ps = 3;
548 vout->ps = ps;
549 vout->vr_ps = vr_ps;
551 if (rotation_enabled(vout)) {
552 line_length = MAX_PIXELS_PER_LINE;
553 ctop = (pix->height - crop->height) - crop->top;
554 cleft = (pix->width - crop->width) - crop->left;
555 } else {
556 line_length = pix->width;
558 vout->line_length = line_length;
559 switch (rotation) {
560 case dss_rotation_90_degree:
561 offset = vout->vrfb_context[0].yoffset *
562 vout->vrfb_context[0].bytespp;
563 temp_ps = ps / vr_ps;
564 if (mirroring == 0) {
565 *cropped_offset = offset + line_length *
566 temp_ps * cleft + crop->top * temp_ps;
567 } else {
568 *cropped_offset = offset + line_length * temp_ps *
569 cleft + crop->top * temp_ps + (line_length *
570 ((crop->width / (vr_ps)) - 1) * ps);
572 break;
573 case dss_rotation_180_degree:
574 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
575 vout->vrfb_context[0].bytespp) +
576 (vout->vrfb_context[0].xoffset *
577 vout->vrfb_context[0].bytespp));
578 if (mirroring == 0) {
579 *cropped_offset = offset + (line_length * ps * ctop) +
580 (cleft / vr_ps) * ps;
582 } else {
583 *cropped_offset = offset + (line_length * ps * ctop) +
584 (cleft / vr_ps) * ps + (line_length *
585 (crop->height - 1) * ps);
587 break;
588 case dss_rotation_270_degree:
589 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
590 vout->vrfb_context[0].bytespp;
591 temp_ps = ps / vr_ps;
592 if (mirroring == 0) {
593 *cropped_offset = offset + line_length *
594 temp_ps * crop->left + ctop * ps;
595 } else {
596 *cropped_offset = offset + line_length *
597 temp_ps * crop->left + ctop * ps +
598 (line_length * ((crop->width / vr_ps) - 1) *
599 ps);
601 break;
602 case dss_rotation_0_degree:
603 if (mirroring == 0) {
604 *cropped_offset = (line_length * ps) *
605 crop->top + (crop->left / vr_ps) * ps;
606 } else {
607 *cropped_offset = (line_length * ps) *
608 crop->top + (crop->left / vr_ps) * ps +
609 (line_length * (crop->height - 1) * ps);
611 break;
612 default:
613 *cropped_offset = (line_length * ps * crop->top) /
614 vr_ps + (crop->left * ps) / vr_ps +
615 ((crop->width / vr_ps) - 1) * ps;
616 break;
618 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "%s Offset:%x\n",
619 __func__, *cropped_offset);
620 return 0;
624 * Convert V4L2 pixel format to DSS pixel format
626 static int video_mode_to_dss_mode(struct omap_vout_device *vout)
628 struct omap_overlay *ovl;
629 struct omapvideo_info *ovid;
630 struct v4l2_pix_format *pix = &vout->pix;
631 enum omap_color_mode mode;
633 ovid = &vout->vid_info;
634 ovl = ovid->overlays[0];
636 switch (pix->pixelformat) {
637 case 0:
638 break;
639 case V4L2_PIX_FMT_YUYV:
640 mode = OMAP_DSS_COLOR_YUV2;
641 break;
642 case V4L2_PIX_FMT_UYVY:
643 mode = OMAP_DSS_COLOR_UYVY;
644 break;
645 case V4L2_PIX_FMT_RGB565:
646 mode = OMAP_DSS_COLOR_RGB16;
647 break;
648 case V4L2_PIX_FMT_RGB24:
649 mode = OMAP_DSS_COLOR_RGB24P;
650 break;
651 case V4L2_PIX_FMT_RGB32:
652 mode = (ovl->id == OMAP_DSS_VIDEO1) ?
653 OMAP_DSS_COLOR_RGB24U : OMAP_DSS_COLOR_ARGB32;
654 break;
655 case V4L2_PIX_FMT_BGR32:
656 mode = OMAP_DSS_COLOR_RGBX32;
657 break;
658 default:
659 mode = -EINVAL;
661 return mode;
665 * Setup the overlay
667 int omapvid_setup_overlay(struct omap_vout_device *vout,
668 struct omap_overlay *ovl, int posx, int posy, int outw,
669 int outh, u32 addr)
671 int ret = 0;
672 struct omap_overlay_info info;
673 int cropheight, cropwidth, pixheight, pixwidth;
675 if ((ovl->caps & OMAP_DSS_OVL_CAP_SCALE) == 0 &&
676 (outw != vout->pix.width || outh != vout->pix.height)) {
677 ret = -EINVAL;
678 goto setup_ovl_err;
681 vout->dss_mode = video_mode_to_dss_mode(vout);
682 if (vout->dss_mode == -EINVAL) {
683 ret = -EINVAL;
684 goto setup_ovl_err;
687 /* Setup the input plane parameters according to
688 * rotation value selected.
690 if (rotate_90_or_270(vout)) {
691 cropheight = vout->crop.width;
692 cropwidth = vout->crop.height;
693 pixheight = vout->pix.width;
694 pixwidth = vout->pix.height;
695 } else {
696 cropheight = vout->crop.height;
697 cropwidth = vout->crop.width;
698 pixheight = vout->pix.height;
699 pixwidth = vout->pix.width;
702 ovl->get_overlay_info(ovl, &info);
703 info.paddr = addr;
704 info.vaddr = NULL;
705 info.width = cropwidth;
706 info.height = cropheight;
707 info.color_mode = vout->dss_mode;
708 info.mirror = vout->mirror;
709 info.pos_x = posx;
710 info.pos_y = posy;
711 info.out_width = outw;
712 info.out_height = outh;
713 info.global_alpha = vout->win.global_alpha;
714 if (!rotation_enabled(vout)) {
715 info.rotation = 0;
716 info.rotation_type = OMAP_DSS_ROT_DMA;
717 info.screen_width = pixwidth;
718 } else {
719 info.rotation = vout->rotation;
720 info.rotation_type = OMAP_DSS_ROT_VRFB;
721 info.screen_width = 2048;
724 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
725 "%s enable=%d addr=%x width=%d\n height=%d color_mode=%d\n"
726 "rotation=%d mirror=%d posx=%d posy=%d out_width = %d \n"
727 "out_height=%d rotation_type=%d screen_width=%d\n",
728 __func__, info.enabled, info.paddr, info.width, info.height,
729 info.color_mode, info.rotation, info.mirror, info.pos_x,
730 info.pos_y, info.out_width, info.out_height, info.rotation_type,
731 info.screen_width);
733 ret = ovl->set_overlay_info(ovl, &info);
734 if (ret)
735 goto setup_ovl_err;
737 return 0;
739 setup_ovl_err:
740 v4l2_warn(&vout->vid_dev->v4l2_dev, "setup_overlay failed\n");
741 return ret;
745 * Initialize the overlay structure
747 int omapvid_init(struct omap_vout_device *vout, u32 addr)
749 int ret = 0, i;
750 struct v4l2_window *win;
751 struct omap_overlay *ovl;
752 int posx, posy, outw, outh, temp;
753 struct omap_video_timings *timing;
754 struct omapvideo_info *ovid = &vout->vid_info;
756 win = &vout->win;
757 for (i = 0; i < ovid->num_overlays; i++) {
758 ovl = ovid->overlays[i];
759 if (!ovl->manager || !ovl->manager->device)
760 return -EINVAL;
762 timing = &ovl->manager->device->panel.timings;
764 outw = win->w.width;
765 outh = win->w.height;
766 switch (vout->rotation) {
767 case dss_rotation_90_degree:
768 /* Invert the height and width for 90
769 * and 270 degree rotation
771 temp = outw;
772 outw = outh;
773 outh = temp;
774 posy = (timing->y_res - win->w.width) - win->w.left;
775 posx = win->w.top;
776 break;
778 case dss_rotation_180_degree:
779 posx = (timing->x_res - win->w.width) - win->w.left;
780 posy = (timing->y_res - win->w.height) - win->w.top;
781 break;
783 case dss_rotation_270_degree:
784 temp = outw;
785 outw = outh;
786 outh = temp;
787 posy = win->w.left;
788 posx = (timing->x_res - win->w.height) - win->w.top;
789 break;
791 default:
792 posx = win->w.left;
793 posy = win->w.top;
794 break;
797 ret = omapvid_setup_overlay(vout, ovl, posx, posy,
798 outw, outh, addr);
799 if (ret)
800 goto omapvid_init_err;
802 return 0;
804 omapvid_init_err:
805 v4l2_warn(&vout->vid_dev->v4l2_dev, "apply_changes failed\n");
806 return ret;
810 * Apply the changes set the go bit of DSS
812 int omapvid_apply_changes(struct omap_vout_device *vout)
814 int i;
815 struct omap_overlay *ovl;
816 struct omapvideo_info *ovid = &vout->vid_info;
818 for (i = 0; i < ovid->num_overlays; i++) {
819 ovl = ovid->overlays[i];
820 if (!ovl->manager || !ovl->manager->device)
821 return -EINVAL;
822 ovl->manager->apply(ovl->manager);
825 return 0;
828 void omap_vout_isr(void *arg, unsigned int irqstatus)
830 int ret;
831 u32 addr, fid;
832 struct omap_overlay *ovl;
833 struct timeval timevalue;
834 struct omapvideo_info *ovid;
835 struct omap_dss_device *cur_display;
836 struct omap_vout_device *vout = (struct omap_vout_device *)arg;
838 if (!vout->streaming)
839 return;
841 ovid = &vout->vid_info;
842 ovl = ovid->overlays[0];
843 /* get the display device attached to the overlay */
844 if (!ovl->manager || !ovl->manager->device)
845 return;
847 cur_display = ovl->manager->device;
849 spin_lock(&vout->vbq_lock);
850 do_gettimeofday(&timevalue);
851 if (cur_display->type == OMAP_DISPLAY_TYPE_DPI) {
852 if (!(irqstatus & DISPC_IRQ_VSYNC))
853 goto vout_isr_err;
855 if (!vout->first_int && (vout->cur_frm != vout->next_frm)) {
856 vout->cur_frm->ts = timevalue;
857 vout->cur_frm->state = VIDEOBUF_DONE;
858 wake_up_interruptible(&vout->cur_frm->done);
859 vout->cur_frm = vout->next_frm;
861 vout->first_int = 0;
862 if (list_empty(&vout->dma_queue))
863 goto vout_isr_err;
865 vout->next_frm = list_entry(vout->dma_queue.next,
866 struct videobuf_buffer, queue);
867 list_del(&vout->next_frm->queue);
869 vout->next_frm->state = VIDEOBUF_ACTIVE;
871 addr = (unsigned long) vout->queued_buf_addr[vout->next_frm->i]
872 + vout->cropped_offset;
874 /* First save the configuration in ovelray structure */
875 ret = omapvid_init(vout, addr);
876 if (ret)
877 printk(KERN_ERR VOUT_NAME
878 "failed to set overlay info\n");
879 /* Enable the pipeline and set the Go bit */
880 ret = omapvid_apply_changes(vout);
881 if (ret)
882 printk(KERN_ERR VOUT_NAME "failed to change mode\n");
883 } else {
885 if (vout->first_int) {
886 vout->first_int = 0;
887 goto vout_isr_err;
889 if (irqstatus & DISPC_IRQ_EVSYNC_ODD)
890 fid = 1;
891 else if (irqstatus & DISPC_IRQ_EVSYNC_EVEN)
892 fid = 0;
893 else
894 goto vout_isr_err;
896 vout->field_id ^= 1;
897 if (fid != vout->field_id) {
898 if (0 == fid)
899 vout->field_id = fid;
901 goto vout_isr_err;
903 if (0 == fid) {
904 if (vout->cur_frm == vout->next_frm)
905 goto vout_isr_err;
907 vout->cur_frm->ts = timevalue;
908 vout->cur_frm->state = VIDEOBUF_DONE;
909 wake_up_interruptible(&vout->cur_frm->done);
910 vout->cur_frm = vout->next_frm;
911 } else if (1 == fid) {
912 if (list_empty(&vout->dma_queue) ||
913 (vout->cur_frm != vout->next_frm))
914 goto vout_isr_err;
916 vout->next_frm = list_entry(vout->dma_queue.next,
917 struct videobuf_buffer, queue);
918 list_del(&vout->next_frm->queue);
920 vout->next_frm->state = VIDEOBUF_ACTIVE;
921 addr = (unsigned long)
922 vout->queued_buf_addr[vout->next_frm->i] +
923 vout->cropped_offset;
924 /* First save the configuration in ovelray structure */
925 ret = omapvid_init(vout, addr);
926 if (ret)
927 printk(KERN_ERR VOUT_NAME
928 "failed to set overlay info\n");
929 /* Enable the pipeline and set the Go bit */
930 ret = omapvid_apply_changes(vout);
931 if (ret)
932 printk(KERN_ERR VOUT_NAME
933 "failed to change mode\n");
938 vout_isr_err:
939 spin_unlock(&vout->vbq_lock);
943 /* Video buffer call backs */
946 * Buffer setup function is called by videobuf layer when REQBUF ioctl is
947 * called. This is used to setup buffers and return size and count of
948 * buffers allocated. After the call to this buffer, videobuf layer will
949 * setup buffer queue depending on the size and count of buffers
951 static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count,
952 unsigned int *size)
954 int startindex = 0, i, j;
955 u32 phy_addr = 0, virt_addr = 0;
956 struct omap_vout_device *vout = q->priv_data;
958 if (!vout)
959 return -EINVAL;
961 if (V4L2_BUF_TYPE_VIDEO_OUTPUT != q->type)
962 return -EINVAL;
964 startindex = (vout->vid == OMAP_VIDEO1) ?
965 video1_numbuffers : video2_numbuffers;
966 if (V4L2_MEMORY_MMAP == vout->memory && *count < startindex)
967 *count = startindex;
969 if ((rotation_enabled(vout)) && *count > VRFB_NUM_BUFS)
970 *count = VRFB_NUM_BUFS;
972 /* If rotation is enabled, allocate memory for VRFB space also */
973 if (rotation_enabled(vout))
974 if (omap_vout_vrfb_buffer_setup(vout, count, startindex))
975 return -ENOMEM;
977 if (V4L2_MEMORY_MMAP != vout->memory)
978 return 0;
980 /* Now allocated the V4L2 buffers */
981 *size = PAGE_ALIGN(vout->pix.width * vout->pix.height * vout->bpp);
982 startindex = (vout->vid == OMAP_VIDEO1) ?
983 video1_numbuffers : video2_numbuffers;
985 for (i = startindex; i < *count; i++) {
986 vout->buffer_size = *size;
988 virt_addr = omap_vout_alloc_buffer(vout->buffer_size,
989 &phy_addr);
990 if (!virt_addr) {
991 if (!rotation_enabled(vout))
992 break;
993 /* Free the VRFB buffers if no space for V4L2 buffers */
994 for (j = i; j < *count; j++) {
995 omap_vout_free_buffer(
996 vout->smsshado_virt_addr[j],
997 vout->smsshado_size);
998 vout->smsshado_virt_addr[j] = 0;
999 vout->smsshado_phy_addr[j] = 0;
1002 vout->buf_virt_addr[i] = virt_addr;
1003 vout->buf_phy_addr[i] = phy_addr;
1005 *count = vout->buffer_allocated = i;
1007 return 0;
1011 * Free the V4L2 buffers additionally allocated than default
1012 * number of buffers and free all the VRFB buffers
1014 static void omap_vout_free_allbuffers(struct omap_vout_device *vout)
1016 int num_buffers = 0, i;
1018 num_buffers = (vout->vid == OMAP_VIDEO1) ?
1019 video1_numbuffers : video2_numbuffers;
1021 for (i = num_buffers; i < vout->buffer_allocated; i++) {
1022 if (vout->buf_virt_addr[i])
1023 omap_vout_free_buffer(vout->buf_virt_addr[i],
1024 vout->buffer_size);
1026 vout->buf_virt_addr[i] = 0;
1027 vout->buf_phy_addr[i] = 0;
1029 /* Free the VRFB buffers only if they are allocated
1030 * during reqbufs. Don't free if init time allocated
1032 if (!vout->vrfb_static_allocation) {
1033 for (i = 0; i < VRFB_NUM_BUFS; i++) {
1034 if (vout->smsshado_virt_addr[i]) {
1035 omap_vout_free_buffer(
1036 vout->smsshado_virt_addr[i],
1037 vout->smsshado_size);
1038 vout->smsshado_virt_addr[i] = 0;
1039 vout->smsshado_phy_addr[i] = 0;
1043 vout->buffer_allocated = num_buffers;
1047 * This function will be called when VIDIOC_QBUF ioctl is called.
1048 * It prepare buffers before give out for the display. This function
1049 * converts user space virtual address into physical address if userptr memory
1050 * exchange mechanism is used. If rotation is enabled, it copies entire
1051 * buffer into VRFB memory space before giving it to the DSS.
1053 static int omap_vout_buffer_prepare(struct videobuf_queue *q,
1054 struct videobuf_buffer *vb,
1055 enum v4l2_field field)
1057 dma_addr_t dmabuf;
1058 struct vid_vrfb_dma *tx;
1059 enum dss_rotation rotation;
1060 struct omap_vout_device *vout = q->priv_data;
1061 u32 dest_frame_index = 0, src_element_index = 0;
1062 u32 dest_element_index = 0, src_frame_index = 0;
1063 u32 elem_count = 0, frame_count = 0, pixsize = 2;
1065 if (VIDEOBUF_NEEDS_INIT == vb->state) {
1066 vb->width = vout->pix.width;
1067 vb->height = vout->pix.height;
1068 vb->size = vb->width * vb->height * vout->bpp;
1069 vb->field = field;
1071 vb->state = VIDEOBUF_PREPARED;
1072 /* if user pointer memory mechanism is used, get the physical
1073 * address of the buffer
1075 if (V4L2_MEMORY_USERPTR == vb->memory) {
1076 if (0 == vb->baddr)
1077 return -EINVAL;
1078 /* Physical address */
1079 vout->queued_buf_addr[vb->i] = (u8 *)
1080 omap_vout_uservirt_to_phys(vb->baddr);
1081 } else {
1082 vout->queued_buf_addr[vb->i] = (u8 *)vout->buf_phy_addr[vb->i];
1085 if (!rotation_enabled(vout))
1086 return 0;
1088 dmabuf = vout->buf_phy_addr[vb->i];
1089 /* If rotation is enabled, copy input buffer into VRFB
1090 * memory space using DMA. We are copying input buffer
1091 * into VRFB memory space of desired angle and DSS will
1092 * read image VRFB memory for 0 degree angle
1094 pixsize = vout->bpp * vout->vrfb_bpp;
1096 * DMA transfer in double index mode
1099 /* Frame index */
1100 dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
1101 (vout->pix.width * vout->bpp)) + 1;
1103 /* Source and destination parameters */
1104 src_element_index = 0;
1105 src_frame_index = 0;
1106 dest_element_index = 1;
1107 /* Number of elements per frame */
1108 elem_count = vout->pix.width * vout->bpp;
1109 frame_count = vout->pix.height;
1110 tx = &vout->vrfb_dma_tx;
1111 tx->tx_status = 0;
1112 omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
1113 (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
1114 tx->dev_id, 0x0);
1115 /* src_port required only for OMAP1 */
1116 omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
1117 dmabuf, src_element_index, src_frame_index);
1118 /*set dma source burst mode for VRFB */
1119 omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
1120 rotation = calc_rotation(vout);
1122 /* dest_port required only for OMAP1 */
1123 omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
1124 vout->vrfb_context[vb->i].paddr[0], dest_element_index,
1125 dest_frame_index);
1126 /*set dma dest burst mode for VRFB */
1127 omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
1128 omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
1130 omap_start_dma(tx->dma_ch);
1131 interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
1133 if (tx->tx_status == 0) {
1134 omap_stop_dma(tx->dma_ch);
1135 return -EINVAL;
1137 /* Store buffers physical address into an array. Addresses
1138 * from this array will be used to configure DSS */
1139 vout->queued_buf_addr[vb->i] = (u8 *)
1140 vout->vrfb_context[vb->i].paddr[rotation];
1141 return 0;
1145 * Buffer queue function will be called from the videobuf layer when _QBUF
1146 * ioctl is called. It is used to enqueue buffer, which is ready to be
1147 * displayed.
1149 static void omap_vout_buffer_queue(struct videobuf_queue *q,
1150 struct videobuf_buffer *vb)
1152 struct omap_vout_device *vout = q->priv_data;
1154 /* Driver is also maintainig a queue. So enqueue buffer in the driver
1155 * queue */
1156 list_add_tail(&vb->queue, &vout->dma_queue);
1158 vb->state = VIDEOBUF_QUEUED;
1162 * Buffer release function is called from videobuf layer to release buffer
1163 * which are already allocated
1165 static void omap_vout_buffer_release(struct videobuf_queue *q,
1166 struct videobuf_buffer *vb)
1168 struct omap_vout_device *vout = q->priv_data;
1170 vb->state = VIDEOBUF_NEEDS_INIT;
1172 if (V4L2_MEMORY_MMAP != vout->memory)
1173 return;
1177 * File operations
1179 static void omap_vout_vm_open(struct vm_area_struct *vma)
1181 struct omap_vout_device *vout = vma->vm_private_data;
1183 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1184 "vm_open [vma=%08lx-%08lx]\n", vma->vm_start, vma->vm_end);
1185 vout->mmap_count++;
1188 static void omap_vout_vm_close(struct vm_area_struct *vma)
1190 struct omap_vout_device *vout = vma->vm_private_data;
1192 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1193 "vm_close [vma=%08lx-%08lx]\n", vma->vm_start, vma->vm_end);
1194 vout->mmap_count--;
1197 static struct vm_operations_struct omap_vout_vm_ops = {
1198 .open = omap_vout_vm_open,
1199 .close = omap_vout_vm_close,
1202 static int omap_vout_mmap(struct file *file, struct vm_area_struct *vma)
1204 int i;
1205 void *pos;
1206 unsigned long start = vma->vm_start;
1207 unsigned long size = (vma->vm_end - vma->vm_start);
1208 struct omap_vout_device *vout = file->private_data;
1209 struct videobuf_queue *q = &vout->vbq;
1211 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1212 " %s pgoff=0x%lx, start=0x%lx, end=0x%lx\n", __func__,
1213 vma->vm_pgoff, vma->vm_start, vma->vm_end);
1215 /* look for the buffer to map */
1216 for (i = 0; i < VIDEO_MAX_FRAME; i++) {
1217 if (NULL == q->bufs[i])
1218 continue;
1219 if (V4L2_MEMORY_MMAP != q->bufs[i]->memory)
1220 continue;
1221 if (q->bufs[i]->boff == (vma->vm_pgoff << PAGE_SHIFT))
1222 break;
1225 if (VIDEO_MAX_FRAME == i) {
1226 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1227 "offset invalid [offset=0x%lx]\n",
1228 (vma->vm_pgoff << PAGE_SHIFT));
1229 return -EINVAL;
1231 q->bufs[i]->baddr = vma->vm_start;
1233 vma->vm_flags |= VM_RESERVED;
1234 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
1235 vma->vm_ops = &omap_vout_vm_ops;
1236 vma->vm_private_data = (void *) vout;
1237 pos = (void *)vout->buf_virt_addr[i];
1238 vma->vm_pgoff = virt_to_phys((void *)pos) >> PAGE_SHIFT;
1239 while (size > 0) {
1240 unsigned long pfn;
1241 pfn = virt_to_phys((void *) pos) >> PAGE_SHIFT;
1242 if (remap_pfn_range(vma, start, pfn, PAGE_SIZE, PAGE_SHARED))
1243 return -EAGAIN;
1244 start += PAGE_SIZE;
1245 pos += PAGE_SIZE;
1246 size -= PAGE_SIZE;
1248 vout->mmap_count++;
1249 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__);
1251 return 0;
1254 static int omap_vout_release(struct file *file)
1256 unsigned int ret, i;
1257 struct videobuf_queue *q;
1258 struct omapvideo_info *ovid;
1259 struct omap_vout_device *vout = file->private_data;
1261 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Entering %s\n", __func__);
1262 ovid = &vout->vid_info;
1264 if (!vout)
1265 return 0;
1267 q = &vout->vbq;
1268 /* Disable all the overlay managers connected with this interface */
1269 for (i = 0; i < ovid->num_overlays; i++) {
1270 struct omap_overlay *ovl = ovid->overlays[i];
1271 if (ovl->manager && ovl->manager->device) {
1272 struct omap_overlay_info info;
1273 ovl->get_overlay_info(ovl, &info);
1274 info.enabled = 0;
1275 ovl->set_overlay_info(ovl, &info);
1278 /* Turn off the pipeline */
1279 ret = omapvid_apply_changes(vout);
1280 if (ret)
1281 v4l2_warn(&vout->vid_dev->v4l2_dev,
1282 "Unable to apply changes\n");
1284 /* Free all buffers */
1285 omap_vout_free_allbuffers(vout);
1286 videobuf_mmap_free(q);
1288 /* Even if apply changes fails we should continue
1289 freeing allocated memory */
1290 if (vout->streaming) {
1291 u32 mask = 0;
1293 mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN |
1294 DISPC_IRQ_EVSYNC_ODD;
1295 omap_dispc_unregister_isr(omap_vout_isr, vout, mask);
1296 vout->streaming = 0;
1298 videobuf_streamoff(q);
1299 videobuf_queue_cancel(q);
1302 if (vout->mmap_count != 0)
1303 vout->mmap_count = 0;
1305 vout->opened -= 1;
1306 file->private_data = NULL;
1308 if (vout->buffer_allocated)
1309 videobuf_mmap_free(q);
1311 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__);
1312 return ret;
1315 static int omap_vout_open(struct file *file)
1317 struct videobuf_queue *q;
1318 struct omap_vout_device *vout = NULL;
1320 vout = video_drvdata(file);
1321 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Entering %s\n", __func__);
1323 if (vout == NULL)
1324 return -ENODEV;
1326 /* for now, we only support single open */
1327 if (vout->opened)
1328 return -EBUSY;
1330 vout->opened += 1;
1332 file->private_data = vout;
1333 vout->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
1335 q = &vout->vbq;
1336 video_vbq_ops.buf_setup = omap_vout_buffer_setup;
1337 video_vbq_ops.buf_prepare = omap_vout_buffer_prepare;
1338 video_vbq_ops.buf_release = omap_vout_buffer_release;
1339 video_vbq_ops.buf_queue = omap_vout_buffer_queue;
1340 spin_lock_init(&vout->vbq_lock);
1342 videobuf_queue_dma_contig_init(q, &video_vbq_ops, q->dev,
1343 &vout->vbq_lock, vout->type, V4L2_FIELD_NONE,
1344 sizeof(struct videobuf_buffer), vout, NULL);
1346 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__);
1347 return 0;
1351 * V4L2 ioctls
1353 static int vidioc_querycap(struct file *file, void *fh,
1354 struct v4l2_capability *cap)
1356 struct omap_vout_device *vout = fh;
1358 strlcpy(cap->driver, VOUT_NAME, sizeof(cap->driver));
1359 strlcpy(cap->card, vout->vfd->name, sizeof(cap->card));
1360 cap->bus_info[0] = '\0';
1361 cap->capabilities = V4L2_CAP_STREAMING | V4L2_CAP_VIDEO_OUTPUT;
1363 return 0;
1366 static int vidioc_enum_fmt_vid_out(struct file *file, void *fh,
1367 struct v4l2_fmtdesc *fmt)
1369 int index = fmt->index;
1370 enum v4l2_buf_type type = fmt->type;
1372 fmt->index = index;
1373 fmt->type = type;
1374 if (index >= NUM_OUTPUT_FORMATS)
1375 return -EINVAL;
1377 fmt->flags = omap_formats[index].flags;
1378 strlcpy(fmt->description, omap_formats[index].description,
1379 sizeof(fmt->description));
1380 fmt->pixelformat = omap_formats[index].pixelformat;
1382 return 0;
1385 static int vidioc_g_fmt_vid_out(struct file *file, void *fh,
1386 struct v4l2_format *f)
1388 struct omap_vout_device *vout = fh;
1390 f->fmt.pix = vout->pix;
1391 return 0;
1395 static int vidioc_try_fmt_vid_out(struct file *file, void *fh,
1396 struct v4l2_format *f)
1398 struct omap_overlay *ovl;
1399 struct omapvideo_info *ovid;
1400 struct omap_video_timings *timing;
1401 struct omap_vout_device *vout = fh;
1403 ovid = &vout->vid_info;
1404 ovl = ovid->overlays[0];
1406 if (!ovl->manager || !ovl->manager->device)
1407 return -EINVAL;
1408 /* get the display device attached to the overlay */
1409 timing = &ovl->manager->device->panel.timings;
1411 vout->fbuf.fmt.height = timing->y_res;
1412 vout->fbuf.fmt.width = timing->x_res;
1414 omap_vout_try_format(&f->fmt.pix);
1415 return 0;
1418 static int vidioc_s_fmt_vid_out(struct file *file, void *fh,
1419 struct v4l2_format *f)
1421 int ret, bpp;
1422 struct omap_overlay *ovl;
1423 struct omapvideo_info *ovid;
1424 struct omap_video_timings *timing;
1425 struct omap_vout_device *vout = fh;
1427 if (vout->streaming)
1428 return -EBUSY;
1430 mutex_lock(&vout->lock);
1432 ovid = &vout->vid_info;
1433 ovl = ovid->overlays[0];
1435 /* get the display device attached to the overlay */
1436 if (!ovl->manager || !ovl->manager->device) {
1437 ret = -EINVAL;
1438 goto s_fmt_vid_out_exit;
1440 timing = &ovl->manager->device->panel.timings;
1442 /* We dont support RGB24-packed mode if vrfb rotation
1443 * is enabled*/
1444 if ((rotation_enabled(vout)) &&
1445 f->fmt.pix.pixelformat == V4L2_PIX_FMT_RGB24) {
1446 ret = -EINVAL;
1447 goto s_fmt_vid_out_exit;
1450 /* get the framebuffer parameters */
1452 if (rotate_90_or_270(vout)) {
1453 vout->fbuf.fmt.height = timing->x_res;
1454 vout->fbuf.fmt.width = timing->y_res;
1455 } else {
1456 vout->fbuf.fmt.height = timing->y_res;
1457 vout->fbuf.fmt.width = timing->x_res;
1460 /* change to samller size is OK */
1462 bpp = omap_vout_try_format(&f->fmt.pix);
1463 f->fmt.pix.sizeimage = f->fmt.pix.width * f->fmt.pix.height * bpp;
1465 /* try & set the new output format */
1466 vout->bpp = bpp;
1467 vout->pix = f->fmt.pix;
1468 vout->vrfb_bpp = 1;
1470 /* If YUYV then vrfb bpp is 2, for others its 1 */
1471 if (V4L2_PIX_FMT_YUYV == vout->pix.pixelformat ||
1472 V4L2_PIX_FMT_UYVY == vout->pix.pixelformat)
1473 vout->vrfb_bpp = 2;
1475 /* set default crop and win */
1476 omap_vout_new_format(&vout->pix, &vout->fbuf, &vout->crop, &vout->win);
1478 /* Save the changes in the overlay strcuture */
1479 ret = omapvid_init(vout, 0);
1480 if (ret) {
1481 v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode\n");
1482 goto s_fmt_vid_out_exit;
1485 ret = 0;
1487 s_fmt_vid_out_exit:
1488 mutex_unlock(&vout->lock);
1489 return ret;
1492 static int vidioc_try_fmt_vid_overlay(struct file *file, void *fh,
1493 struct v4l2_format *f)
1495 int ret = 0;
1496 struct omap_vout_device *vout = fh;
1497 struct v4l2_window *win = &f->fmt.win;
1499 ret = omap_vout_try_window(&vout->fbuf, win);
1501 if (!ret) {
1502 if (vout->vid == OMAP_VIDEO1)
1503 win->global_alpha = 255;
1504 else
1505 win->global_alpha = f->fmt.win.global_alpha;
1508 return ret;
1511 static int vidioc_s_fmt_vid_overlay(struct file *file, void *fh,
1512 struct v4l2_format *f)
1514 int ret = 0;
1515 struct omap_overlay *ovl;
1516 struct omapvideo_info *ovid;
1517 struct omap_vout_device *vout = fh;
1518 struct v4l2_window *win = &f->fmt.win;
1520 mutex_lock(&vout->lock);
1521 ovid = &vout->vid_info;
1522 ovl = ovid->overlays[0];
1524 ret = omap_vout_new_window(&vout->crop, &vout->win, &vout->fbuf, win);
1525 if (!ret) {
1526 /* Video1 plane does not support global alpha */
1527 if (ovl->id == OMAP_DSS_VIDEO1)
1528 vout->win.global_alpha = 255;
1529 else
1530 vout->win.global_alpha = f->fmt.win.global_alpha;
1532 vout->win.chromakey = f->fmt.win.chromakey;
1534 mutex_unlock(&vout->lock);
1535 return ret;
1538 static int vidioc_enum_fmt_vid_overlay(struct file *file, void *fh,
1539 struct v4l2_fmtdesc *fmt)
1541 int index = fmt->index;
1542 enum v4l2_buf_type type = fmt->type;
1544 fmt->index = index;
1545 fmt->type = type;
1546 if (index >= NUM_OUTPUT_FORMATS)
1547 return -EINVAL;
1549 fmt->flags = omap_formats[index].flags;
1550 strlcpy(fmt->description, omap_formats[index].description,
1551 sizeof(fmt->description));
1552 fmt->pixelformat = omap_formats[index].pixelformat;
1553 return 0;
1556 static int vidioc_g_fmt_vid_overlay(struct file *file, void *fh,
1557 struct v4l2_format *f)
1559 u32 key_value = 0;
1560 struct omap_overlay *ovl;
1561 struct omapvideo_info *ovid;
1562 struct omap_vout_device *vout = fh;
1563 struct omap_overlay_manager_info info;
1564 struct v4l2_window *win = &f->fmt.win;
1566 ovid = &vout->vid_info;
1567 ovl = ovid->overlays[0];
1569 win->w = vout->win.w;
1570 win->field = vout->win.field;
1571 win->global_alpha = vout->win.global_alpha;
1573 if (ovl->manager && ovl->manager->get_manager_info) {
1574 ovl->manager->get_manager_info(ovl->manager, &info);
1575 key_value = info.trans_key;
1577 win->chromakey = key_value;
1578 return 0;
1581 static int vidioc_cropcap(struct file *file, void *fh,
1582 struct v4l2_cropcap *cropcap)
1584 struct omap_vout_device *vout = fh;
1585 struct v4l2_pix_format *pix = &vout->pix;
1587 if (cropcap->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
1588 return -EINVAL;
1590 /* Width and height are always even */
1591 cropcap->bounds.width = pix->width & ~1;
1592 cropcap->bounds.height = pix->height & ~1;
1594 omap_vout_default_crop(&vout->pix, &vout->fbuf, &cropcap->defrect);
1595 cropcap->pixelaspect.numerator = 1;
1596 cropcap->pixelaspect.denominator = 1;
1597 return 0;
1600 static int vidioc_g_crop(struct file *file, void *fh, struct v4l2_crop *crop)
1602 struct omap_vout_device *vout = fh;
1604 if (crop->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
1605 return -EINVAL;
1606 crop->c = vout->crop;
1607 return 0;
1610 static int vidioc_s_crop(struct file *file, void *fh, struct v4l2_crop *crop)
1612 int ret = -EINVAL;
1613 struct omap_vout_device *vout = fh;
1614 struct omapvideo_info *ovid;
1615 struct omap_overlay *ovl;
1616 struct omap_video_timings *timing;
1618 if (vout->streaming)
1619 return -EBUSY;
1621 mutex_lock(&vout->lock);
1622 ovid = &vout->vid_info;
1623 ovl = ovid->overlays[0];
1625 if (!ovl->manager || !ovl->manager->device) {
1626 ret = -EINVAL;
1627 goto s_crop_err;
1629 /* get the display device attached to the overlay */
1630 timing = &ovl->manager->device->panel.timings;
1632 if (rotate_90_or_270(vout)) {
1633 vout->fbuf.fmt.height = timing->x_res;
1634 vout->fbuf.fmt.width = timing->y_res;
1635 } else {
1636 vout->fbuf.fmt.height = timing->y_res;
1637 vout->fbuf.fmt.width = timing->x_res;
1640 if (crop->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1641 ret = omap_vout_new_crop(&vout->pix, &vout->crop, &vout->win,
1642 &vout->fbuf, &crop->c);
1644 s_crop_err:
1645 mutex_unlock(&vout->lock);
1646 return ret;
1649 static int vidioc_queryctrl(struct file *file, void *fh,
1650 struct v4l2_queryctrl *ctrl)
1652 int ret = 0;
1654 switch (ctrl->id) {
1655 case V4L2_CID_ROTATE:
1656 ret = v4l2_ctrl_query_fill(ctrl, 0, 270, 90, 0);
1657 break;
1658 case V4L2_CID_BG_COLOR:
1659 ret = v4l2_ctrl_query_fill(ctrl, 0, 0xFFFFFF, 1, 0);
1660 break;
1661 case V4L2_CID_VFLIP:
1662 ret = v4l2_ctrl_query_fill(ctrl, 0, 1, 1, 0);
1663 break;
1664 default:
1665 ctrl->name[0] = '\0';
1666 ret = -EINVAL;
1668 return ret;
1671 static int vidioc_g_ctrl(struct file *file, void *fh, struct v4l2_control *ctrl)
1673 int ret = 0;
1674 struct omap_vout_device *vout = fh;
1676 switch (ctrl->id) {
1677 case V4L2_CID_ROTATE:
1678 ctrl->value = vout->control[0].value;
1679 break;
1680 case V4L2_CID_BG_COLOR:
1682 struct omap_overlay_manager_info info;
1683 struct omap_overlay *ovl;
1685 ovl = vout->vid_info.overlays[0];
1686 if (!ovl->manager || !ovl->manager->get_manager_info) {
1687 ret = -EINVAL;
1688 break;
1691 ovl->manager->get_manager_info(ovl->manager, &info);
1692 ctrl->value = info.default_color;
1693 break;
1695 case V4L2_CID_VFLIP:
1696 ctrl->value = vout->control[2].value;
1697 break;
1698 default:
1699 ret = -EINVAL;
1701 return ret;
1704 static int vidioc_s_ctrl(struct file *file, void *fh, struct v4l2_control *a)
1706 int ret = 0;
1707 struct omap_vout_device *vout = fh;
1709 switch (a->id) {
1710 case V4L2_CID_ROTATE:
1712 int rotation = a->value;
1714 mutex_lock(&vout->lock);
1716 if (rotation && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) {
1717 mutex_unlock(&vout->lock);
1718 ret = -EINVAL;
1719 break;
1722 if (v4l2_rot_to_dss_rot(rotation, &vout->rotation,
1723 vout->mirror)) {
1724 mutex_unlock(&vout->lock);
1725 ret = -EINVAL;
1726 break;
1729 vout->control[0].value = rotation;
1730 mutex_unlock(&vout->lock);
1731 break;
1733 case V4L2_CID_BG_COLOR:
1735 struct omap_overlay *ovl;
1736 unsigned int color = a->value;
1737 struct omap_overlay_manager_info info;
1739 ovl = vout->vid_info.overlays[0];
1741 mutex_lock(&vout->lock);
1742 if (!ovl->manager || !ovl->manager->get_manager_info) {
1743 mutex_unlock(&vout->lock);
1744 ret = -EINVAL;
1745 break;
1748 ovl->manager->get_manager_info(ovl->manager, &info);
1749 info.default_color = color;
1750 if (ovl->manager->set_manager_info(ovl->manager, &info)) {
1751 mutex_unlock(&vout->lock);
1752 ret = -EINVAL;
1753 break;
1756 vout->control[1].value = color;
1757 mutex_unlock(&vout->lock);
1758 break;
1760 case V4L2_CID_VFLIP:
1762 struct omap_overlay *ovl;
1763 struct omapvideo_info *ovid;
1764 unsigned int mirror = a->value;
1766 ovid = &vout->vid_info;
1767 ovl = ovid->overlays[0];
1769 mutex_lock(&vout->lock);
1771 if (mirror && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) {
1772 mutex_unlock(&vout->lock);
1773 ret = -EINVAL;
1774 break;
1776 vout->mirror = mirror;
1777 vout->control[2].value = mirror;
1778 mutex_unlock(&vout->lock);
1779 break;
1781 default:
1782 ret = -EINVAL;
1784 return ret;
1787 static int vidioc_reqbufs(struct file *file, void *fh,
1788 struct v4l2_requestbuffers *req)
1790 int ret = 0;
1791 unsigned int i, num_buffers = 0;
1792 struct omap_vout_device *vout = fh;
1793 struct videobuf_queue *q = &vout->vbq;
1795 if ((req->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) || (req->count < 0))
1796 return -EINVAL;
1797 /* if memory is not mmp or userptr
1798 return error */
1799 if ((V4L2_MEMORY_MMAP != req->memory) &&
1800 (V4L2_MEMORY_USERPTR != req->memory))
1801 return -EINVAL;
1803 mutex_lock(&vout->lock);
1804 /* Cannot be requested when streaming is on */
1805 if (vout->streaming) {
1806 ret = -EBUSY;
1807 goto reqbuf_err;
1810 /* If buffers are already allocated free them */
1811 if (q->bufs[0] && (V4L2_MEMORY_MMAP == q->bufs[0]->memory)) {
1812 if (vout->mmap_count) {
1813 ret = -EBUSY;
1814 goto reqbuf_err;
1816 num_buffers = (vout->vid == OMAP_VIDEO1) ?
1817 video1_numbuffers : video2_numbuffers;
1818 for (i = num_buffers; i < vout->buffer_allocated; i++) {
1819 omap_vout_free_buffer(vout->buf_virt_addr[i],
1820 vout->buffer_size);
1821 vout->buf_virt_addr[i] = 0;
1822 vout->buf_phy_addr[i] = 0;
1824 vout->buffer_allocated = num_buffers;
1825 videobuf_mmap_free(q);
1826 } else if (q->bufs[0] && (V4L2_MEMORY_USERPTR == q->bufs[0]->memory)) {
1827 if (vout->buffer_allocated) {
1828 videobuf_mmap_free(q);
1829 for (i = 0; i < vout->buffer_allocated; i++) {
1830 kfree(q->bufs[i]);
1831 q->bufs[i] = NULL;
1833 vout->buffer_allocated = 0;
1837 /*store the memory type in data structure */
1838 vout->memory = req->memory;
1840 INIT_LIST_HEAD(&vout->dma_queue);
1842 /* call videobuf_reqbufs api */
1843 ret = videobuf_reqbufs(q, req);
1844 if (ret < 0)
1845 goto reqbuf_err;
1847 vout->buffer_allocated = req->count;
1849 reqbuf_err:
1850 mutex_unlock(&vout->lock);
1851 return ret;
1854 static int vidioc_querybuf(struct file *file, void *fh,
1855 struct v4l2_buffer *b)
1857 struct omap_vout_device *vout = fh;
1859 return videobuf_querybuf(&vout->vbq, b);
1862 static int vidioc_qbuf(struct file *file, void *fh,
1863 struct v4l2_buffer *buffer)
1865 struct omap_vout_device *vout = fh;
1866 struct videobuf_queue *q = &vout->vbq;
1868 if ((V4L2_BUF_TYPE_VIDEO_OUTPUT != buffer->type) ||
1869 (buffer->index >= vout->buffer_allocated) ||
1870 (q->bufs[buffer->index]->memory != buffer->memory)) {
1871 return -EINVAL;
1873 if (V4L2_MEMORY_USERPTR == buffer->memory) {
1874 if ((buffer->length < vout->pix.sizeimage) ||
1875 (0 == buffer->m.userptr)) {
1876 return -EINVAL;
1880 if ((rotation_enabled(vout)) &&
1881 vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED) {
1882 v4l2_warn(&vout->vid_dev->v4l2_dev,
1883 "DMA Channel not allocated for Rotation\n");
1884 return -EINVAL;
1887 return videobuf_qbuf(q, buffer);
1890 static int vidioc_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b)
1892 struct omap_vout_device *vout = fh;
1893 struct videobuf_queue *q = &vout->vbq;
1895 if (!vout->streaming)
1896 return -EINVAL;
1898 if (file->f_flags & O_NONBLOCK)
1899 /* Call videobuf_dqbuf for non blocking mode */
1900 return videobuf_dqbuf(q, (struct v4l2_buffer *)b, 1);
1901 else
1902 /* Call videobuf_dqbuf for blocking mode */
1903 return videobuf_dqbuf(q, (struct v4l2_buffer *)b, 0);
1906 static int vidioc_streamon(struct file *file, void *fh, enum v4l2_buf_type i)
1908 int ret = 0, j;
1909 u32 addr = 0, mask = 0;
1910 struct omap_vout_device *vout = fh;
1911 struct videobuf_queue *q = &vout->vbq;
1912 struct omapvideo_info *ovid = &vout->vid_info;
1914 mutex_lock(&vout->lock);
1916 if (vout->streaming) {
1917 ret = -EBUSY;
1918 goto streamon_err;
1921 ret = videobuf_streamon(q);
1922 if (ret)
1923 goto streamon_err;
1925 if (list_empty(&vout->dma_queue)) {
1926 ret = -EIO;
1927 goto streamon_err1;
1930 /* Get the next frame from the buffer queue */
1931 vout->next_frm = vout->cur_frm = list_entry(vout->dma_queue.next,
1932 struct videobuf_buffer, queue);
1933 /* Remove buffer from the buffer queue */
1934 list_del(&vout->cur_frm->queue);
1935 /* Mark state of the current frame to active */
1936 vout->cur_frm->state = VIDEOBUF_ACTIVE;
1937 /* Initialize field_id and started member */
1938 vout->field_id = 0;
1940 /* set flag here. Next QBUF will start DMA */
1941 vout->streaming = 1;
1943 vout->first_int = 1;
1945 if (omap_vout_calculate_offset(vout)) {
1946 ret = -EINVAL;
1947 goto streamon_err1;
1949 addr = (unsigned long) vout->queued_buf_addr[vout->cur_frm->i]
1950 + vout->cropped_offset;
1952 mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD;
1954 omap_dispc_register_isr(omap_vout_isr, vout, mask);
1956 for (j = 0; j < ovid->num_overlays; j++) {
1957 struct omap_overlay *ovl = ovid->overlays[j];
1959 if (ovl->manager && ovl->manager->device) {
1960 struct omap_overlay_info info;
1961 ovl->get_overlay_info(ovl, &info);
1962 info.enabled = 1;
1963 info.paddr = addr;
1964 if (ovl->set_overlay_info(ovl, &info)) {
1965 ret = -EINVAL;
1966 goto streamon_err1;
1971 /* First save the configuration in ovelray structure */
1972 ret = omapvid_init(vout, addr);
1973 if (ret)
1974 v4l2_err(&vout->vid_dev->v4l2_dev,
1975 "failed to set overlay info\n");
1976 /* Enable the pipeline and set the Go bit */
1977 ret = omapvid_apply_changes(vout);
1978 if (ret)
1979 v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode\n");
1981 ret = 0;
1983 streamon_err1:
1984 if (ret)
1985 ret = videobuf_streamoff(q);
1986 streamon_err:
1987 mutex_unlock(&vout->lock);
1988 return ret;
1991 static int vidioc_streamoff(struct file *file, void *fh, enum v4l2_buf_type i)
1993 u32 mask = 0;
1994 int ret = 0, j;
1995 struct omap_vout_device *vout = fh;
1996 struct omapvideo_info *ovid = &vout->vid_info;
1998 if (!vout->streaming)
1999 return -EINVAL;
2001 vout->streaming = 0;
2002 mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD;
2004 omap_dispc_unregister_isr(omap_vout_isr, vout, mask);
2006 for (j = 0; j < ovid->num_overlays; j++) {
2007 struct omap_overlay *ovl = ovid->overlays[j];
2009 if (ovl->manager && ovl->manager->device) {
2010 struct omap_overlay_info info;
2012 ovl->get_overlay_info(ovl, &info);
2013 info.enabled = 0;
2014 ret = ovl->set_overlay_info(ovl, &info);
2015 if (ret)
2016 v4l2_err(&vout->vid_dev->v4l2_dev,
2017 "failed to update overlay info in streamoff\n");
2021 /* Turn of the pipeline */
2022 ret = omapvid_apply_changes(vout);
2023 if (ret)
2024 v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode in"
2025 " streamoff\n");
2027 INIT_LIST_HEAD(&vout->dma_queue);
2028 ret = videobuf_streamoff(&vout->vbq);
2030 return ret;
2033 static int vidioc_s_fbuf(struct file *file, void *fh,
2034 struct v4l2_framebuffer *a)
2036 int enable = 0;
2037 struct omap_overlay *ovl;
2038 struct omapvideo_info *ovid;
2039 struct omap_vout_device *vout = fh;
2040 struct omap_overlay_manager_info info;
2041 enum omap_dss_trans_key_type key_type = OMAP_DSS_COLOR_KEY_GFX_DST;
2043 ovid = &vout->vid_info;
2044 ovl = ovid->overlays[0];
2046 /* OMAP DSS doesn't support Source and Destination color
2047 key together */
2048 if ((a->flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY) &&
2049 (a->flags & V4L2_FBUF_FLAG_CHROMAKEY))
2050 return -EINVAL;
2051 /* OMAP DSS Doesn't support the Destination color key
2052 and alpha blending together */
2053 if ((a->flags & V4L2_FBUF_FLAG_CHROMAKEY) &&
2054 (a->flags & V4L2_FBUF_FLAG_LOCAL_ALPHA))
2055 return -EINVAL;
2057 if ((a->flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY)) {
2058 vout->fbuf.flags |= V4L2_FBUF_FLAG_SRC_CHROMAKEY;
2059 key_type = OMAP_DSS_COLOR_KEY_VID_SRC;
2060 } else
2061 vout->fbuf.flags &= ~V4L2_FBUF_FLAG_SRC_CHROMAKEY;
2063 if ((a->flags & V4L2_FBUF_FLAG_CHROMAKEY)) {
2064 vout->fbuf.flags |= V4L2_FBUF_FLAG_CHROMAKEY;
2065 key_type = OMAP_DSS_COLOR_KEY_GFX_DST;
2066 } else
2067 vout->fbuf.flags &= ~V4L2_FBUF_FLAG_CHROMAKEY;
2069 if (a->flags & (V4L2_FBUF_FLAG_CHROMAKEY |
2070 V4L2_FBUF_FLAG_SRC_CHROMAKEY))
2071 enable = 1;
2072 else
2073 enable = 0;
2074 if (ovl->manager && ovl->manager->get_manager_info &&
2075 ovl->manager->set_manager_info) {
2077 ovl->manager->get_manager_info(ovl->manager, &info);
2078 info.trans_enabled = enable;
2079 info.trans_key_type = key_type;
2080 info.trans_key = vout->win.chromakey;
2082 if (ovl->manager->set_manager_info(ovl->manager, &info))
2083 return -EINVAL;
2085 if (a->flags & V4L2_FBUF_FLAG_LOCAL_ALPHA) {
2086 vout->fbuf.flags |= V4L2_FBUF_FLAG_LOCAL_ALPHA;
2087 enable = 1;
2088 } else {
2089 vout->fbuf.flags &= ~V4L2_FBUF_FLAG_LOCAL_ALPHA;
2090 enable = 0;
2092 if (ovl->manager && ovl->manager->get_manager_info &&
2093 ovl->manager->set_manager_info) {
2094 ovl->manager->get_manager_info(ovl->manager, &info);
2095 info.alpha_enabled = enable;
2096 if (ovl->manager->set_manager_info(ovl->manager, &info))
2097 return -EINVAL;
2100 return 0;
2103 static int vidioc_g_fbuf(struct file *file, void *fh,
2104 struct v4l2_framebuffer *a)
2106 struct omap_overlay *ovl;
2107 struct omapvideo_info *ovid;
2108 struct omap_vout_device *vout = fh;
2109 struct omap_overlay_manager_info info;
2111 ovid = &vout->vid_info;
2112 ovl = ovid->overlays[0];
2114 a->flags = 0x0;
2115 a->capability = V4L2_FBUF_CAP_LOCAL_ALPHA | V4L2_FBUF_CAP_CHROMAKEY
2116 | V4L2_FBUF_CAP_SRC_CHROMAKEY;
2118 if (ovl->manager && ovl->manager->get_manager_info) {
2119 ovl->manager->get_manager_info(ovl->manager, &info);
2120 if (info.trans_key_type == OMAP_DSS_COLOR_KEY_VID_SRC)
2121 a->flags |= V4L2_FBUF_FLAG_SRC_CHROMAKEY;
2122 if (info.trans_key_type == OMAP_DSS_COLOR_KEY_GFX_DST)
2123 a->flags |= V4L2_FBUF_FLAG_CHROMAKEY;
2125 if (ovl->manager && ovl->manager->get_manager_info) {
2126 ovl->manager->get_manager_info(ovl->manager, &info);
2127 if (info.alpha_enabled)
2128 a->flags |= V4L2_FBUF_FLAG_LOCAL_ALPHA;
2131 return 0;
2134 static const struct v4l2_ioctl_ops vout_ioctl_ops = {
2135 .vidioc_querycap = vidioc_querycap,
2136 .vidioc_enum_fmt_vid_out = vidioc_enum_fmt_vid_out,
2137 .vidioc_g_fmt_vid_out = vidioc_g_fmt_vid_out,
2138 .vidioc_try_fmt_vid_out = vidioc_try_fmt_vid_out,
2139 .vidioc_s_fmt_vid_out = vidioc_s_fmt_vid_out,
2140 .vidioc_queryctrl = vidioc_queryctrl,
2141 .vidioc_g_ctrl = vidioc_g_ctrl,
2142 .vidioc_s_fbuf = vidioc_s_fbuf,
2143 .vidioc_g_fbuf = vidioc_g_fbuf,
2144 .vidioc_s_ctrl = vidioc_s_ctrl,
2145 .vidioc_try_fmt_vid_overlay = vidioc_try_fmt_vid_overlay,
2146 .vidioc_s_fmt_vid_overlay = vidioc_s_fmt_vid_overlay,
2147 .vidioc_enum_fmt_vid_overlay = vidioc_enum_fmt_vid_overlay,
2148 .vidioc_g_fmt_vid_overlay = vidioc_g_fmt_vid_overlay,
2149 .vidioc_cropcap = vidioc_cropcap,
2150 .vidioc_g_crop = vidioc_g_crop,
2151 .vidioc_s_crop = vidioc_s_crop,
2152 .vidioc_reqbufs = vidioc_reqbufs,
2153 .vidioc_querybuf = vidioc_querybuf,
2154 .vidioc_qbuf = vidioc_qbuf,
2155 .vidioc_dqbuf = vidioc_dqbuf,
2156 .vidioc_streamon = vidioc_streamon,
2157 .vidioc_streamoff = vidioc_streamoff,
2160 static const struct v4l2_file_operations omap_vout_fops = {
2161 .owner = THIS_MODULE,
2162 .unlocked_ioctl = video_ioctl2,
2163 .mmap = omap_vout_mmap,
2164 .open = omap_vout_open,
2165 .release = omap_vout_release,
2168 /* Init functions used during driver initialization */
2169 /* Initial setup of video_data */
2170 static int __init omap_vout_setup_video_data(struct omap_vout_device *vout)
2172 struct video_device *vfd;
2173 struct v4l2_pix_format *pix;
2174 struct v4l2_control *control;
2175 struct omap_dss_device *display =
2176 vout->vid_info.overlays[0]->manager->device;
2178 /* set the default pix */
2179 pix = &vout->pix;
2181 /* Set the default picture of QVGA */
2182 pix->width = QQVGA_WIDTH;
2183 pix->height = QQVGA_HEIGHT;
2185 /* Default pixel format is RGB 5-6-5 */
2186 pix->pixelformat = V4L2_PIX_FMT_RGB565;
2187 pix->field = V4L2_FIELD_ANY;
2188 pix->bytesperline = pix->width * 2;
2189 pix->sizeimage = pix->bytesperline * pix->height;
2190 pix->priv = 0;
2191 pix->colorspace = V4L2_COLORSPACE_JPEG;
2193 vout->bpp = RGB565_BPP;
2194 vout->fbuf.fmt.width = display->panel.timings.x_res;
2195 vout->fbuf.fmt.height = display->panel.timings.y_res;
2197 /* Set the data structures for the overlay parameters*/
2198 vout->win.global_alpha = 255;
2199 vout->fbuf.flags = 0;
2200 vout->fbuf.capability = V4L2_FBUF_CAP_LOCAL_ALPHA |
2201 V4L2_FBUF_CAP_SRC_CHROMAKEY | V4L2_FBUF_CAP_CHROMAKEY;
2202 vout->win.chromakey = 0;
2204 omap_vout_new_format(pix, &vout->fbuf, &vout->crop, &vout->win);
2206 /*Initialize the control variables for
2207 rotation, flipping and background color. */
2208 control = vout->control;
2209 control[0].id = V4L2_CID_ROTATE;
2210 control[0].value = 0;
2211 vout->rotation = 0;
2212 vout->mirror = 0;
2213 vout->control[2].id = V4L2_CID_HFLIP;
2214 vout->control[2].value = 0;
2215 vout->vrfb_bpp = 2;
2217 control[1].id = V4L2_CID_BG_COLOR;
2218 control[1].value = 0;
2220 /* initialize the video_device struct */
2221 vfd = vout->vfd = video_device_alloc();
2223 if (!vfd) {
2224 printk(KERN_ERR VOUT_NAME ": could not allocate"
2225 " video device struct\n");
2226 return -ENOMEM;
2228 vfd->release = video_device_release;
2229 vfd->ioctl_ops = &vout_ioctl_ops;
2231 strlcpy(vfd->name, VOUT_NAME, sizeof(vfd->name));
2233 vfd->fops = &omap_vout_fops;
2234 vfd->v4l2_dev = &vout->vid_dev->v4l2_dev;
2235 mutex_init(&vout->lock);
2237 vfd->minor = -1;
2238 return 0;
2242 /* Setup video buffers */
2243 static int __init omap_vout_setup_video_bufs(struct platform_device *pdev,
2244 int vid_num)
2246 u32 numbuffers;
2247 int ret = 0, i, j;
2248 int image_width, image_height;
2249 struct video_device *vfd;
2250 struct omap_vout_device *vout;
2251 int static_vrfb_allocation = 0, vrfb_num_bufs = VRFB_NUM_BUFS;
2252 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
2253 struct omap2video_device *vid_dev =
2254 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
2256 vout = vid_dev->vouts[vid_num];
2257 vfd = vout->vfd;
2259 numbuffers = (vid_num == 0) ? video1_numbuffers : video2_numbuffers;
2260 vout->buffer_size = (vid_num == 0) ? video1_bufsize : video2_bufsize;
2261 dev_info(&pdev->dev, "Buffer Size = %d\n", vout->buffer_size);
2263 for (i = 0; i < numbuffers; i++) {
2264 vout->buf_virt_addr[i] =
2265 omap_vout_alloc_buffer(vout->buffer_size,
2266 (u32 *) &vout->buf_phy_addr[i]);
2267 if (!vout->buf_virt_addr[i]) {
2268 numbuffers = i;
2269 ret = -ENOMEM;
2270 goto free_buffers;
2274 for (i = 0; i < VRFB_NUM_BUFS; i++) {
2275 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
2276 dev_info(&pdev->dev, ": VRFB allocation failed\n");
2277 for (j = 0; j < i; j++)
2278 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
2279 ret = -ENOMEM;
2280 goto free_buffers;
2283 vout->cropped_offset = 0;
2285 /* Calculate VRFB memory size */
2286 /* allocate for worst case size */
2287 image_width = VID_MAX_WIDTH / TILE_SIZE;
2288 if (VID_MAX_WIDTH % TILE_SIZE)
2289 image_width++;
2291 image_width = image_width * TILE_SIZE;
2292 image_height = VID_MAX_HEIGHT / TILE_SIZE;
2294 if (VID_MAX_HEIGHT % TILE_SIZE)
2295 image_height++;
2297 image_height = image_height * TILE_SIZE;
2298 vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
2301 * Request and Initialize DMA, for DMA based VRFB transfer
2303 vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
2304 vout->vrfb_dma_tx.dma_ch = -1;
2305 vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
2306 ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
2307 omap_vout_vrfb_dma_tx_callback,
2308 (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
2309 if (ret < 0) {
2310 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
2311 dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
2312 " video%d\n", vfd->minor);
2314 init_waitqueue_head(&vout->vrfb_dma_tx.wait);
2316 /* Allocate VRFB buffers if selected through bootargs */
2317 static_vrfb_allocation = (vid_num == 0) ?
2318 vid1_static_vrfb_alloc : vid2_static_vrfb_alloc;
2320 /* statically allocated the VRFB buffer is done through
2321 commands line aruments */
2322 if (static_vrfb_allocation) {
2323 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
2324 ret = -ENOMEM;
2325 goto release_vrfb_ctx;
2327 vout->vrfb_static_allocation = 1;
2329 return 0;
2331 release_vrfb_ctx:
2332 for (j = 0; j < VRFB_NUM_BUFS; j++)
2333 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
2335 free_buffers:
2336 for (i = 0; i < numbuffers; i++) {
2337 omap_vout_free_buffer(vout->buf_virt_addr[i],
2338 vout->buffer_size);
2339 vout->buf_virt_addr[i] = 0;
2340 vout->buf_phy_addr[i] = 0;
2342 return ret;
2346 /* Create video out devices */
2347 static int __init omap_vout_create_video_devices(struct platform_device *pdev)
2349 int ret = 0, k;
2350 struct omap_vout_device *vout;
2351 struct video_device *vfd = NULL;
2352 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
2353 struct omap2video_device *vid_dev = container_of(v4l2_dev,
2354 struct omap2video_device, v4l2_dev);
2356 for (k = 0; k < pdev->num_resources; k++) {
2358 vout = kzalloc(sizeof(struct omap_vout_device), GFP_KERNEL);
2359 if (!vout) {
2360 dev_err(&pdev->dev, ": could not allocate memory\n");
2361 return -ENOMEM;
2364 vout->vid = k;
2365 vid_dev->vouts[k] = vout;
2366 vout->vid_dev = vid_dev;
2367 /* Select video2 if only 1 overlay is controlled by V4L2 */
2368 if (pdev->num_resources == 1)
2369 vout->vid_info.overlays[0] = vid_dev->overlays[k + 2];
2370 else
2371 /* Else select video1 and video2 one by one. */
2372 vout->vid_info.overlays[0] = vid_dev->overlays[k + 1];
2373 vout->vid_info.num_overlays = 1;
2374 vout->vid_info.id = k + 1;
2376 /* Setup the default configuration for the video devices
2378 if (omap_vout_setup_video_data(vout) != 0) {
2379 ret = -ENOMEM;
2380 goto error;
2383 /* Allocate default number of buffers for the video streaming
2384 * and reserve the VRFB space for rotation
2386 if (omap_vout_setup_video_bufs(pdev, k) != 0) {
2387 ret = -ENOMEM;
2388 goto error1;
2391 /* Register the Video device with V4L2
2393 vfd = vout->vfd;
2394 if (video_register_device(vfd, VFL_TYPE_GRABBER, k + 1) < 0) {
2395 dev_err(&pdev->dev, ": Could not register "
2396 "Video for Linux device\n");
2397 vfd->minor = -1;
2398 ret = -ENODEV;
2399 goto error2;
2401 video_set_drvdata(vfd, vout);
2403 /* Configure the overlay structure */
2404 ret = omapvid_init(vid_dev->vouts[k], 0);
2405 if (!ret)
2406 goto success;
2408 error2:
2409 omap_vout_release_vrfb(vout);
2410 omap_vout_free_buffers(vout);
2411 error1:
2412 video_device_release(vfd);
2413 error:
2414 kfree(vout);
2415 return ret;
2417 success:
2418 dev_info(&pdev->dev, ": registered and initialized"
2419 " video device %d\n", vfd->minor);
2420 if (k == (pdev->num_resources - 1))
2421 return 0;
2424 return -ENODEV;
2426 /* Driver functions */
2427 static void omap_vout_cleanup_device(struct omap_vout_device *vout)
2429 struct video_device *vfd;
2431 if (!vout)
2432 return;
2434 vfd = vout->vfd;
2435 if (vfd) {
2436 if (!video_is_registered(vfd)) {
2438 * The device was never registered, so release the
2439 * video_device struct directly.
2441 video_device_release(vfd);
2442 } else {
2444 * The unregister function will release the video_device
2445 * struct as well as unregistering it.
2447 video_unregister_device(vfd);
2451 omap_vout_release_vrfb(vout);
2452 omap_vout_free_buffers(vout);
2453 /* Free the VRFB buffer if allocated
2454 * init time
2456 if (vout->vrfb_static_allocation)
2457 omap_vout_free_vrfb_buffers(vout);
2459 kfree(vout);
2462 static int omap_vout_remove(struct platform_device *pdev)
2464 int k;
2465 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
2466 struct omap2video_device *vid_dev = container_of(v4l2_dev, struct
2467 omap2video_device, v4l2_dev);
2469 v4l2_device_unregister(v4l2_dev);
2470 for (k = 0; k < pdev->num_resources; k++)
2471 omap_vout_cleanup_device(vid_dev->vouts[k]);
2473 for (k = 0; k < vid_dev->num_displays; k++) {
2474 if (vid_dev->displays[k]->state != OMAP_DSS_DISPLAY_DISABLED)
2475 vid_dev->displays[k]->driver->disable(vid_dev->displays[k]);
2477 omap_dss_put_device(vid_dev->displays[k]);
2479 kfree(vid_dev);
2480 return 0;
2483 static int __init omap_vout_probe(struct platform_device *pdev)
2485 int ret = 0, i;
2486 struct omap_overlay *ovl;
2487 struct omap_dss_device *dssdev = NULL;
2488 struct omap_dss_device *def_display;
2489 struct omap2video_device *vid_dev = NULL;
2491 if (pdev->num_resources == 0) {
2492 dev_err(&pdev->dev, "probed for an unknown device\n");
2493 return -ENODEV;
2496 vid_dev = kzalloc(sizeof(struct omap2video_device), GFP_KERNEL);
2497 if (vid_dev == NULL)
2498 return -ENOMEM;
2500 vid_dev->num_displays = 0;
2501 for_each_dss_dev(dssdev) {
2502 omap_dss_get_device(dssdev);
2503 vid_dev->displays[vid_dev->num_displays++] = dssdev;
2506 if (vid_dev->num_displays == 0) {
2507 dev_err(&pdev->dev, "no displays\n");
2508 ret = -EINVAL;
2509 goto probe_err0;
2512 vid_dev->num_overlays = omap_dss_get_num_overlays();
2513 for (i = 0; i < vid_dev->num_overlays; i++)
2514 vid_dev->overlays[i] = omap_dss_get_overlay(i);
2516 vid_dev->num_managers = omap_dss_get_num_overlay_managers();
2517 for (i = 0; i < vid_dev->num_managers; i++)
2518 vid_dev->managers[i] = omap_dss_get_overlay_manager(i);
2520 /* Get the Video1 overlay and video2 overlay.
2521 * Setup the Display attached to that overlays
2523 for (i = 1; i < vid_dev->num_overlays; i++) {
2524 ovl = omap_dss_get_overlay(i);
2525 if (ovl->manager && ovl->manager->device) {
2526 def_display = ovl->manager->device;
2527 } else {
2528 dev_warn(&pdev->dev, "cannot find display\n");
2529 def_display = NULL;
2531 if (def_display) {
2532 struct omap_dss_driver *dssdrv = def_display->driver;
2534 ret = dssdrv->enable(def_display);
2535 if (ret) {
2536 /* Here we are not considering a error
2537 * as display may be enabled by frame
2538 * buffer driver
2540 dev_warn(&pdev->dev,
2541 "'%s' Display already enabled\n",
2542 def_display->name);
2544 /* set the update mode */
2545 if (def_display->caps &
2546 OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE) {
2547 if (dssdrv->enable_te)
2548 dssdrv->enable_te(def_display, 0);
2549 if (dssdrv->set_update_mode)
2550 dssdrv->set_update_mode(def_display,
2551 OMAP_DSS_UPDATE_MANUAL);
2552 } else {
2553 if (dssdrv->set_update_mode)
2554 dssdrv->set_update_mode(def_display,
2555 OMAP_DSS_UPDATE_AUTO);
2560 if (v4l2_device_register(&pdev->dev, &vid_dev->v4l2_dev) < 0) {
2561 dev_err(&pdev->dev, "v4l2_device_register failed\n");
2562 ret = -ENODEV;
2563 goto probe_err1;
2566 ret = omap_vout_create_video_devices(pdev);
2567 if (ret)
2568 goto probe_err2;
2570 for (i = 0; i < vid_dev->num_displays; i++) {
2571 struct omap_dss_device *display = vid_dev->displays[i];
2573 if (display->driver->update)
2574 display->driver->update(display, 0, 0,
2575 display->panel.timings.x_res,
2576 display->panel.timings.y_res);
2578 return 0;
2580 probe_err2:
2581 v4l2_device_unregister(&vid_dev->v4l2_dev);
2582 probe_err1:
2583 for (i = 1; i < vid_dev->num_overlays; i++) {
2584 def_display = NULL;
2585 ovl = omap_dss_get_overlay(i);
2586 if (ovl->manager && ovl->manager->device)
2587 def_display = ovl->manager->device;
2589 if (def_display && def_display->driver)
2590 def_display->driver->disable(def_display);
2592 probe_err0:
2593 kfree(vid_dev);
2594 return ret;
2597 static struct platform_driver omap_vout_driver = {
2598 .driver = {
2599 .name = VOUT_NAME,
2601 .probe = omap_vout_probe,
2602 .remove = omap_vout_remove,
2605 static int __init omap_vout_init(void)
2607 if (platform_driver_register(&omap_vout_driver) != 0) {
2608 printk(KERN_ERR VOUT_NAME ":Could not register Video driver\n");
2609 return -EINVAL;
2611 return 0;
2614 static void omap_vout_cleanup(void)
2616 platform_driver_unregister(&omap_vout_driver);
2619 late_initcall(omap_vout_init);
2620 module_exit(omap_vout_cleanup);