2 * A V4L2 driver for OmniVision OV7670 cameras.
4 * Copyright 2006 One Laptop Per Child Association, Inc. Written
5 * by Jonathan Corbet with substantial inspiration from Mark
6 * McClelland's ovcamchip code.
8 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
10 * This file may be distributed under the terms of the GNU General
11 * Public License, version 2.
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/delay.h>
18 #include <linux/videodev2.h>
19 #include <media/v4l2-device.h>
20 #include <media/v4l2-chip-ident.h>
21 #include <media/v4l2-mediabus.h>
25 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
26 MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
27 MODULE_LICENSE("GPL");
30 module_param(debug
, bool, 0644);
31 MODULE_PARM_DESC(debug
, "Debug level (0-1)");
34 * Basic window sizes. These probably belong somewhere more globally
38 #define VGA_HEIGHT 480
39 #define QVGA_WIDTH 320
40 #define QVGA_HEIGHT 240
42 #define CIF_HEIGHT 288
43 #define QCIF_WIDTH 176
44 #define QCIF_HEIGHT 144
47 * The 7670 sits on i2c with ID 0x42
49 #define OV7670_I2C_ADDR 0x42
52 #define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
53 #define REG_BLUE 0x01 /* blue gain */
54 #define REG_RED 0x02 /* red gain */
55 #define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
56 #define REG_COM1 0x04 /* Control 1 */
57 #define COM1_CCIR656 0x40 /* CCIR656 enable */
58 #define REG_BAVE 0x05 /* U/B Average level */
59 #define REG_GbAVE 0x06 /* Y/Gb Average level */
60 #define REG_AECHH 0x07 /* AEC MS 5 bits */
61 #define REG_RAVE 0x08 /* V/R Average level */
62 #define REG_COM2 0x09 /* Control 2 */
63 #define COM2_SSLEEP 0x10 /* Soft sleep mode */
64 #define REG_PID 0x0a /* Product ID MSB */
65 #define REG_VER 0x0b /* Product ID LSB */
66 #define REG_COM3 0x0c /* Control 3 */
67 #define COM3_SWAP 0x40 /* Byte swap */
68 #define COM3_SCALEEN 0x08 /* Enable scaling */
69 #define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */
70 #define REG_COM4 0x0d /* Control 4 */
71 #define REG_COM5 0x0e /* All "reserved" */
72 #define REG_COM6 0x0f /* Control 6 */
73 #define REG_AECH 0x10 /* More bits of AEC value */
74 #define REG_CLKRC 0x11 /* Clocl control */
75 #define CLK_EXT 0x40 /* Use external clock directly */
76 #define CLK_SCALE 0x3f /* Mask for internal clock scale */
77 #define REG_COM7 0x12 /* Control 7 */
78 #define COM7_RESET 0x80 /* Register reset */
79 #define COM7_FMT_MASK 0x38
80 #define COM7_FMT_VGA 0x00
81 #define COM7_FMT_CIF 0x20 /* CIF format */
82 #define COM7_FMT_QVGA 0x10 /* QVGA format */
83 #define COM7_FMT_QCIF 0x08 /* QCIF format */
84 #define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */
85 #define COM7_YUV 0x00 /* YUV */
86 #define COM7_BAYER 0x01 /* Bayer format */
87 #define COM7_PBAYER 0x05 /* "Processed bayer" */
88 #define REG_COM8 0x13 /* Control 8 */
89 #define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
90 #define COM8_AECSTEP 0x40 /* Unlimited AEC step size */
91 #define COM8_BFILT 0x20 /* Band filter enable */
92 #define COM8_AGC 0x04 /* Auto gain enable */
93 #define COM8_AWB 0x02 /* White balance enable */
94 #define COM8_AEC 0x01 /* Auto exposure enable */
95 #define REG_COM9 0x14 /* Control 9 - gain ceiling */
96 #define REG_COM10 0x15 /* Control 10 */
97 #define COM10_HSYNC 0x40 /* HSYNC instead of HREF */
98 #define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */
99 #define COM10_HREF_REV 0x08 /* Reverse HREF */
100 #define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */
101 #define COM10_VS_NEG 0x02 /* VSYNC negative */
102 #define COM10_HS_NEG 0x01 /* HSYNC negative */
103 #define REG_HSTART 0x17 /* Horiz start high bits */
104 #define REG_HSTOP 0x18 /* Horiz stop high bits */
105 #define REG_VSTART 0x19 /* Vert start high bits */
106 #define REG_VSTOP 0x1a /* Vert stop high bits */
107 #define REG_PSHFT 0x1b /* Pixel delay after HREF */
108 #define REG_MIDH 0x1c /* Manuf. ID high */
109 #define REG_MIDL 0x1d /* Manuf. ID low */
110 #define REG_MVFP 0x1e /* Mirror / vflip */
111 #define MVFP_MIRROR 0x20 /* Mirror image */
112 #define MVFP_FLIP 0x10 /* Vertical flip */
114 #define REG_AEW 0x24 /* AGC upper limit */
115 #define REG_AEB 0x25 /* AGC lower limit */
116 #define REG_VPT 0x26 /* AGC/AEC fast mode op region */
117 #define REG_HSYST 0x30 /* HSYNC rising edge delay */
118 #define REG_HSYEN 0x31 /* HSYNC falling edge delay */
119 #define REG_HREF 0x32 /* HREF pieces */
120 #define REG_TSLB 0x3a /* lots of stuff */
121 #define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */
122 #define REG_COM11 0x3b /* Control 11 */
123 #define COM11_NIGHT 0x80 /* NIght mode enable */
124 #define COM11_NMFR 0x60 /* Two bit NM frame rate */
125 #define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
126 #define COM11_50HZ 0x08 /* Manual 50Hz select */
127 #define COM11_EXP 0x02
128 #define REG_COM12 0x3c /* Control 12 */
129 #define COM12_HREF 0x80 /* HREF always */
130 #define REG_COM13 0x3d /* Control 13 */
131 #define COM13_GAMMA 0x80 /* Gamma enable */
132 #define COM13_UVSAT 0x40 /* UV saturation auto adjustment */
133 #define COM13_UVSWAP 0x01 /* V before U - w/TSLB */
134 #define REG_COM14 0x3e /* Control 14 */
135 #define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */
136 #define REG_EDGE 0x3f /* Edge enhancement factor */
137 #define REG_COM15 0x40 /* Control 15 */
138 #define COM15_R10F0 0x00 /* Data range 10 to F0 */
139 #define COM15_R01FE 0x80 /* 01 to FE */
140 #define COM15_R00FF 0xc0 /* 00 to FF */
141 #define COM15_RGB565 0x10 /* RGB565 output */
142 #define COM15_RGB555 0x30 /* RGB555 output */
143 #define REG_COM16 0x41 /* Control 16 */
144 #define COM16_AWBGAIN 0x08 /* AWB gain enable */
145 #define REG_COM17 0x42 /* Control 17 */
146 #define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */
147 #define COM17_CBAR 0x08 /* DSP Color bar */
150 * This matrix defines how the colors are generated, must be
151 * tweaked to adjust hue and saturation.
153 * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
155 * They are nine-bit signed quantities, with the sign bit
156 * stored in 0x58. Sign for v-red is bit 0, and up from there.
158 #define REG_CMATRIX_BASE 0x4f
159 #define CMATRIX_LEN 6
160 #define REG_CMATRIX_SIGN 0x58
163 #define REG_BRIGHT 0x55 /* Brightness */
164 #define REG_CONTRAS 0x56 /* Contrast control */
166 #define REG_GFIX 0x69 /* Fix gain control */
168 #define REG_REG76 0x76 /* OV's name */
169 #define R76_BLKPCOR 0x80 /* Black pixel correction enable */
170 #define R76_WHTPCOR 0x40 /* White pixel correction enable */
172 #define REG_RGB444 0x8c /* RGB 444 control */
173 #define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */
174 #define R444_RGBX 0x01 /* Empty nibble at end */
176 #define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
177 #define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
179 #define REG_BD50MAX 0xa5 /* 50hz banding step limit */
180 #define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
181 #define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
182 #define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
183 #define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
184 #define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
185 #define REG_BD60MAX 0xab /* 60hz banding step limit */
189 * Information we maintain about a known sensor.
191 struct ov7670_format_struct
; /* coming later */
193 struct v4l2_subdev sd
;
194 struct ov7670_format_struct
*fmt
; /* Current format */
195 unsigned char sat
; /* Saturation value */
196 int hue
; /* Hue value */
197 int min_width
; /* Filter out smaller sizes */
198 int min_height
; /* Filter out smaller sizes */
199 int clock_speed
; /* External clock speed (MHz) */
200 u8 clkrc
; /* Clock divider value */
201 bool use_smbus
; /* Use smbus I/O instead of I2C */
204 static inline struct ov7670_info
*to_state(struct v4l2_subdev
*sd
)
206 return container_of(sd
, struct ov7670_info
, sd
);
212 * The default register settings, as obtained from OmniVision. There
213 * is really no making sense of most of these - lots of "reserved" values
216 * These settings give VGA YUYV.
220 unsigned char reg_num
;
224 static struct regval_list ov7670_default_regs
[] = {
225 { REG_COM7
, COM7_RESET
},
227 * Clock scale: 3 = 15fps
231 { REG_CLKRC
, 0x1 }, /* OV: clock scale (30 fps) */
232 { REG_TSLB
, 0x04 }, /* OV */
233 { REG_COM7
, 0 }, /* VGA */
235 * Set the hardware window. These values from OV don't entirely
236 * make sense - hstop is less than hstart. But they work...
238 { REG_HSTART
, 0x13 }, { REG_HSTOP
, 0x01 },
239 { REG_HREF
, 0xb6 }, { REG_VSTART
, 0x02 },
240 { REG_VSTOP
, 0x7a }, { REG_VREF
, 0x0a },
242 { REG_COM3
, 0 }, { REG_COM14
, 0 },
243 /* Mystery scaling numbers */
244 { 0x70, 0x3a }, { 0x71, 0x35 },
245 { 0x72, 0x11 }, { 0x73, 0xf0 },
246 { 0xa2, 0x02 }, { REG_COM10
, 0x0 },
248 /* Gamma curve values */
249 { 0x7a, 0x20 }, { 0x7b, 0x10 },
250 { 0x7c, 0x1e }, { 0x7d, 0x35 },
251 { 0x7e, 0x5a }, { 0x7f, 0x69 },
252 { 0x80, 0x76 }, { 0x81, 0x80 },
253 { 0x82, 0x88 }, { 0x83, 0x8f },
254 { 0x84, 0x96 }, { 0x85, 0xa3 },
255 { 0x86, 0xaf }, { 0x87, 0xc4 },
256 { 0x88, 0xd7 }, { 0x89, 0xe8 },
258 /* AGC and AEC parameters. Note we start by disabling those features,
259 then turn them only after tweaking the values. */
260 { REG_COM8
, COM8_FASTAEC
| COM8_AECSTEP
| COM8_BFILT
},
261 { REG_GAIN
, 0 }, { REG_AECH
, 0 },
262 { REG_COM4
, 0x40 }, /* magic reserved bit */
263 { REG_COM9
, 0x18 }, /* 4x gain + magic rsvd bit */
264 { REG_BD50MAX
, 0x05 }, { REG_BD60MAX
, 0x07 },
265 { REG_AEW
, 0x95 }, { REG_AEB
, 0x33 },
266 { REG_VPT
, 0xe3 }, { REG_HAECC1
, 0x78 },
267 { REG_HAECC2
, 0x68 }, { 0xa1, 0x03 }, /* magic */
268 { REG_HAECC3
, 0xd8 }, { REG_HAECC4
, 0xd8 },
269 { REG_HAECC5
, 0xf0 }, { REG_HAECC6
, 0x90 },
270 { REG_HAECC7
, 0x94 },
271 { REG_COM8
, COM8_FASTAEC
|COM8_AECSTEP
|COM8_BFILT
|COM8_AGC
|COM8_AEC
},
273 /* Almost all of these are magic "reserved" values. */
274 { REG_COM5
, 0x61 }, { REG_COM6
, 0x4b },
275 { 0x16, 0x02 }, { REG_MVFP
, 0x07 },
276 { 0x21, 0x02 }, { 0x22, 0x91 },
277 { 0x29, 0x07 }, { 0x33, 0x0b },
278 { 0x35, 0x0b }, { 0x37, 0x1d },
279 { 0x38, 0x71 }, { 0x39, 0x2a },
280 { REG_COM12
, 0x78 }, { 0x4d, 0x40 },
281 { 0x4e, 0x20 }, { REG_GFIX
, 0 },
282 { 0x6b, 0x4a }, { 0x74, 0x10 },
283 { 0x8d, 0x4f }, { 0x8e, 0 },
284 { 0x8f, 0 }, { 0x90, 0 },
285 { 0x91, 0 }, { 0x96, 0 },
286 { 0x9a, 0 }, { 0xb0, 0x84 },
287 { 0xb1, 0x0c }, { 0xb2, 0x0e },
288 { 0xb3, 0x82 }, { 0xb8, 0x0a },
290 /* More reserved magic, some of which tweaks white balance */
291 { 0x43, 0x0a }, { 0x44, 0xf0 },
292 { 0x45, 0x34 }, { 0x46, 0x58 },
293 { 0x47, 0x28 }, { 0x48, 0x3a },
294 { 0x59, 0x88 }, { 0x5a, 0x88 },
295 { 0x5b, 0x44 }, { 0x5c, 0x67 },
296 { 0x5d, 0x49 }, { 0x5e, 0x0e },
297 { 0x6c, 0x0a }, { 0x6d, 0x55 },
298 { 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */
299 { 0x6a, 0x40 }, { REG_BLUE
, 0x40 },
301 { REG_COM8
, COM8_FASTAEC
|COM8_AECSTEP
|COM8_BFILT
|COM8_AGC
|COM8_AEC
|COM8_AWB
},
303 /* Matrix coefficients */
304 { 0x4f, 0x80 }, { 0x50, 0x80 },
305 { 0x51, 0 }, { 0x52, 0x22 },
306 { 0x53, 0x5e }, { 0x54, 0x80 },
309 { REG_COM16
, COM16_AWBGAIN
}, { REG_EDGE
, 0 },
310 { 0x75, 0x05 }, { 0x76, 0xe1 },
311 { 0x4c, 0 }, { 0x77, 0x01 },
312 { REG_COM13
, 0xc3 }, { 0x4b, 0x09 },
313 { 0xc9, 0x60 }, { REG_COM16
, 0x38 },
316 { 0x34, 0x11 }, { REG_COM11
, COM11_EXP
|COM11_HZAUTO
},
317 { 0xa4, 0x88 }, { 0x96, 0 },
318 { 0x97, 0x30 }, { 0x98, 0x20 },
319 { 0x99, 0x30 }, { 0x9a, 0x84 },
320 { 0x9b, 0x29 }, { 0x9c, 0x03 },
321 { 0x9d, 0x4c }, { 0x9e, 0x3f },
324 /* Extra-weird stuff. Some sort of multiplexor register */
325 { 0x79, 0x01 }, { 0xc8, 0xf0 },
326 { 0x79, 0x0f }, { 0xc8, 0x00 },
327 { 0x79, 0x10 }, { 0xc8, 0x7e },
328 { 0x79, 0x0a }, { 0xc8, 0x80 },
329 { 0x79, 0x0b }, { 0xc8, 0x01 },
330 { 0x79, 0x0c }, { 0xc8, 0x0f },
331 { 0x79, 0x0d }, { 0xc8, 0x20 },
332 { 0x79, 0x09 }, { 0xc8, 0x80 },
333 { 0x79, 0x02 }, { 0xc8, 0xc0 },
334 { 0x79, 0x03 }, { 0xc8, 0x40 },
335 { 0x79, 0x05 }, { 0xc8, 0x30 },
338 { 0xff, 0xff }, /* END MARKER */
343 * Here we'll try to encapsulate the changes for just the output
346 * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
348 * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
352 static struct regval_list ov7670_fmt_yuv422
[] = {
353 { REG_COM7
, 0x0 }, /* Selects YUV mode */
354 { REG_RGB444
, 0 }, /* No RGB444 please */
355 { REG_COM1
, 0 }, /* CCIR601 */
356 { REG_COM15
, COM15_R00FF
},
357 { REG_COM9
, 0x18 }, /* 4x gain ceiling; 0x8 is reserved bit */
358 { 0x4f, 0x80 }, /* "matrix coefficient 1" */
359 { 0x50, 0x80 }, /* "matrix coefficient 2" */
360 { 0x51, 0 }, /* vb */
361 { 0x52, 0x22 }, /* "matrix coefficient 4" */
362 { 0x53, 0x5e }, /* "matrix coefficient 5" */
363 { 0x54, 0x80 }, /* "matrix coefficient 6" */
364 { REG_COM13
, COM13_GAMMA
|COM13_UVSAT
},
368 static struct regval_list ov7670_fmt_rgb565
[] = {
369 { REG_COM7
, COM7_RGB
}, /* Selects RGB mode */
370 { REG_RGB444
, 0 }, /* No RGB444 please */
371 { REG_COM1
, 0x0 }, /* CCIR601 */
372 { REG_COM15
, COM15_RGB565
},
373 { REG_COM9
, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
374 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
375 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
376 { 0x51, 0 }, /* vb */
377 { 0x52, 0x3d }, /* "matrix coefficient 4" */
378 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
379 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
380 { REG_COM13
, COM13_GAMMA
|COM13_UVSAT
},
384 static struct regval_list ov7670_fmt_rgb444
[] = {
385 { REG_COM7
, COM7_RGB
}, /* Selects RGB mode */
386 { REG_RGB444
, R444_ENABLE
}, /* Enable xxxxrrrr ggggbbbb */
387 { REG_COM1
, 0x0 }, /* CCIR601 */
388 { REG_COM15
, COM15_R01FE
|COM15_RGB565
}, /* Data range needed? */
389 { REG_COM9
, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
390 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
391 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
392 { 0x51, 0 }, /* vb */
393 { 0x52, 0x3d }, /* "matrix coefficient 4" */
394 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
395 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
396 { REG_COM13
, COM13_GAMMA
|COM13_UVSAT
|0x2 }, /* Magic rsvd bit */
400 static struct regval_list ov7670_fmt_raw
[] = {
401 { REG_COM7
, COM7_BAYER
},
402 { REG_COM13
, 0x08 }, /* No gamma, magic rsvd bit */
403 { REG_COM16
, 0x3d }, /* Edge enhancement, denoise */
404 { REG_REG76
, 0xe1 }, /* Pix correction, magic rsvd */
411 * Low-level register I/O.
413 * Note that there are two versions of these. On the XO 1, the
414 * i2c controller only does SMBUS, so that's what we use. The
415 * ov7670 is not really an SMBUS device, though, so the communication
416 * is not always entirely reliable.
418 static int ov7670_read_smbus(struct v4l2_subdev
*sd
, unsigned char reg
,
419 unsigned char *value
)
421 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
424 ret
= i2c_smbus_read_byte_data(client
, reg
);
426 *value
= (unsigned char)ret
;
433 static int ov7670_write_smbus(struct v4l2_subdev
*sd
, unsigned char reg
,
436 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
437 int ret
= i2c_smbus_write_byte_data(client
, reg
, value
);
439 if (reg
== REG_COM7
&& (value
& COM7_RESET
))
440 msleep(5); /* Wait for reset to run */
445 * On most platforms, we'd rather do straight i2c I/O.
447 static int ov7670_read_i2c(struct v4l2_subdev
*sd
, unsigned char reg
,
448 unsigned char *value
)
450 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
456 * Send out the register address...
458 msg
.addr
= client
->addr
;
462 ret
= i2c_transfer(client
->adapter
, &msg
, 1);
464 printk(KERN_ERR
"Error %d on register write\n", ret
);
468 * ...then read back the result.
470 msg
.flags
= I2C_M_RD
;
471 ret
= i2c_transfer(client
->adapter
, &msg
, 1);
480 static int ov7670_write_i2c(struct v4l2_subdev
*sd
, unsigned char reg
,
483 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
485 unsigned char data
[2] = { reg
, value
};
488 msg
.addr
= client
->addr
;
492 ret
= i2c_transfer(client
->adapter
, &msg
, 1);
495 if (reg
== REG_COM7
&& (value
& COM7_RESET
))
496 msleep(5); /* Wait for reset to run */
500 static int ov7670_read(struct v4l2_subdev
*sd
, unsigned char reg
,
501 unsigned char *value
)
503 struct ov7670_info
*info
= to_state(sd
);
505 return ov7670_read_smbus(sd
, reg
, value
);
507 return ov7670_read_i2c(sd
, reg
, value
);
510 static int ov7670_write(struct v4l2_subdev
*sd
, unsigned char reg
,
513 struct ov7670_info
*info
= to_state(sd
);
515 return ov7670_write_smbus(sd
, reg
, value
);
517 return ov7670_write_i2c(sd
, reg
, value
);
521 * Write a list of register settings; ff/ff stops the process.
523 static int ov7670_write_array(struct v4l2_subdev
*sd
, struct regval_list
*vals
)
525 while (vals
->reg_num
!= 0xff || vals
->value
!= 0xff) {
526 int ret
= ov7670_write(sd
, vals
->reg_num
, vals
->value
);
536 * Stuff that knows about the sensor.
538 static int ov7670_reset(struct v4l2_subdev
*sd
, u32 val
)
540 ov7670_write(sd
, REG_COM7
, COM7_RESET
);
546 static int ov7670_init(struct v4l2_subdev
*sd
, u32 val
)
548 return ov7670_write_array(sd
, ov7670_default_regs
);
553 static int ov7670_detect(struct v4l2_subdev
*sd
)
558 ret
= ov7670_init(sd
, 0);
561 ret
= ov7670_read(sd
, REG_MIDH
, &v
);
564 if (v
!= 0x7f) /* OV manuf. id. */
566 ret
= ov7670_read(sd
, REG_MIDL
, &v
);
572 * OK, we know we have an OmniVision chip...but which one?
574 ret
= ov7670_read(sd
, REG_PID
, &v
);
577 if (v
!= 0x76) /* PID + VER = 0x76 / 0x73 */
579 ret
= ov7670_read(sd
, REG_VER
, &v
);
582 if (v
!= 0x73) /* PID + VER = 0x76 / 0x73 */
589 * Store information about the video data format. The color matrix
590 * is deeply tied into the format, so keep the relevant values here.
591 * The magic matrix numbers come from OmniVision.
593 static struct ov7670_format_struct
{
594 enum v4l2_mbus_pixelcode mbus_code
;
595 enum v4l2_colorspace colorspace
;
596 struct regval_list
*regs
;
597 int cmatrix
[CMATRIX_LEN
];
598 } ov7670_formats
[] = {
600 .mbus_code
= V4L2_MBUS_FMT_YUYV8_2X8
,
601 .colorspace
= V4L2_COLORSPACE_JPEG
,
602 .regs
= ov7670_fmt_yuv422
,
603 .cmatrix
= { 128, -128, 0, -34, -94, 128 },
606 .mbus_code
= V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE
,
607 .colorspace
= V4L2_COLORSPACE_SRGB
,
608 .regs
= ov7670_fmt_rgb444
,
609 .cmatrix
= { 179, -179, 0, -61, -176, 228 },
612 .mbus_code
= V4L2_MBUS_FMT_RGB565_2X8_LE
,
613 .colorspace
= V4L2_COLORSPACE_SRGB
,
614 .regs
= ov7670_fmt_rgb565
,
615 .cmatrix
= { 179, -179, 0, -61, -176, 228 },
618 .mbus_code
= V4L2_MBUS_FMT_SBGGR8_1X8
,
619 .colorspace
= V4L2_COLORSPACE_SRGB
,
620 .regs
= ov7670_fmt_raw
,
621 .cmatrix
= { 0, 0, 0, 0, 0, 0 },
624 #define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
628 * Then there is the issue of window sizes. Try to capture the info here.
632 * QCIF mode is done (by OV) in a very strange way - it actually looks like
633 * VGA with weird scaling options - they do *not* use the canned QCIF mode
634 * which is allegedly provided by the sensor. So here's the weird register
637 static struct regval_list ov7670_qcif_regs
[] = {
638 { REG_COM3
, COM3_SCALEEN
|COM3_DCWEN
},
639 { REG_COM3
, COM3_DCWEN
},
640 { REG_COM14
, COM14_DCWEN
| 0x01},
656 static struct ov7670_win_size
{
659 unsigned char com7_bit
;
660 int hstart
; /* Start/stop values for the camera. Note */
661 int hstop
; /* that they do not always make complete */
662 int vstart
; /* sense to humans, but evidently the sensor */
663 int vstop
; /* will do the right thing... */
664 struct regval_list
*regs
; /* Regs to tweak */
666 } ov7670_win_sizes
[] = {
670 .height
= VGA_HEIGHT
,
671 .com7_bit
= COM7_FMT_VGA
,
672 .hstart
= 158, /* These values from */
673 .hstop
= 14, /* Omnivision */
681 .height
= CIF_HEIGHT
,
682 .com7_bit
= COM7_FMT_CIF
,
683 .hstart
= 170, /* Empirically determined */
692 .height
= QVGA_HEIGHT
,
693 .com7_bit
= COM7_FMT_QVGA
,
694 .hstart
= 168, /* Empirically determined */
703 .height
= QCIF_HEIGHT
,
704 .com7_bit
= COM7_FMT_VGA
, /* see comment above */
705 .hstart
= 456, /* Empirically determined */
709 .regs
= ov7670_qcif_regs
,
713 #define N_WIN_SIZES (ARRAY_SIZE(ov7670_win_sizes))
717 * Store a set of start/stop values into the camera.
719 static int ov7670_set_hw(struct v4l2_subdev
*sd
, int hstart
, int hstop
,
720 int vstart
, int vstop
)
725 * Horizontal: 11 bits, top 8 live in hstart and hstop. Bottom 3 of
726 * hstart are in href[2:0], bottom 3 of hstop in href[5:3]. There is
727 * a mystery "edge offset" value in the top two bits of href.
729 ret
= ov7670_write(sd
, REG_HSTART
, (hstart
>> 3) & 0xff);
730 ret
+= ov7670_write(sd
, REG_HSTOP
, (hstop
>> 3) & 0xff);
731 ret
+= ov7670_read(sd
, REG_HREF
, &v
);
732 v
= (v
& 0xc0) | ((hstop
& 0x7) << 3) | (hstart
& 0x7);
734 ret
+= ov7670_write(sd
, REG_HREF
, v
);
736 * Vertical: similar arrangement, but only 10 bits.
738 ret
+= ov7670_write(sd
, REG_VSTART
, (vstart
>> 2) & 0xff);
739 ret
+= ov7670_write(sd
, REG_VSTOP
, (vstop
>> 2) & 0xff);
740 ret
+= ov7670_read(sd
, REG_VREF
, &v
);
741 v
= (v
& 0xf0) | ((vstop
& 0x3) << 2) | (vstart
& 0x3);
743 ret
+= ov7670_write(sd
, REG_VREF
, v
);
748 static int ov7670_enum_mbus_fmt(struct v4l2_subdev
*sd
, unsigned index
,
749 enum v4l2_mbus_pixelcode
*code
)
751 if (index
>= N_OV7670_FMTS
)
754 *code
= ov7670_formats
[index
].mbus_code
;
758 static int ov7670_try_fmt_internal(struct v4l2_subdev
*sd
,
759 struct v4l2_mbus_framefmt
*fmt
,
760 struct ov7670_format_struct
**ret_fmt
,
761 struct ov7670_win_size
**ret_wsize
)
764 struct ov7670_win_size
*wsize
;
766 for (index
= 0; index
< N_OV7670_FMTS
; index
++)
767 if (ov7670_formats
[index
].mbus_code
== fmt
->code
)
769 if (index
>= N_OV7670_FMTS
) {
770 /* default to first format */
772 fmt
->code
= ov7670_formats
[0].mbus_code
;
775 *ret_fmt
= ov7670_formats
+ index
;
777 * Fields: the OV devices claim to be progressive.
779 fmt
->field
= V4L2_FIELD_NONE
;
781 * Round requested image size down to the nearest
782 * we support, but not below the smallest.
784 for (wsize
= ov7670_win_sizes
; wsize
< ov7670_win_sizes
+ N_WIN_SIZES
;
786 if (fmt
->width
>= wsize
->width
&& fmt
->height
>= wsize
->height
)
788 if (wsize
>= ov7670_win_sizes
+ N_WIN_SIZES
)
789 wsize
--; /* Take the smallest one */
790 if (ret_wsize
!= NULL
)
793 * Note the size we'll actually handle.
795 fmt
->width
= wsize
->width
;
796 fmt
->height
= wsize
->height
;
797 fmt
->colorspace
= ov7670_formats
[index
].colorspace
;
801 static int ov7670_try_mbus_fmt(struct v4l2_subdev
*sd
,
802 struct v4l2_mbus_framefmt
*fmt
)
804 return ov7670_try_fmt_internal(sd
, fmt
, NULL
, NULL
);
810 static int ov7670_s_mbus_fmt(struct v4l2_subdev
*sd
,
811 struct v4l2_mbus_framefmt
*fmt
)
813 struct ov7670_format_struct
*ovfmt
;
814 struct ov7670_win_size
*wsize
;
815 struct ov7670_info
*info
= to_state(sd
);
819 ret
= ov7670_try_fmt_internal(sd
, fmt
, &ovfmt
, &wsize
);
824 * COM7 is a pain in the ass, it doesn't like to be read then
825 * quickly written afterward. But we have everything we need
826 * to set it absolutely here, as long as the format-specific
827 * register sets list it first.
829 com7
= ovfmt
->regs
[0].value
;
830 com7
|= wsize
->com7_bit
;
831 ov7670_write(sd
, REG_COM7
, com7
);
833 * Now write the rest of the array. Also store start/stops
835 ov7670_write_array(sd
, ovfmt
->regs
+ 1);
836 ov7670_set_hw(sd
, wsize
->hstart
, wsize
->hstop
, wsize
->vstart
,
840 ret
= ov7670_write_array(sd
, wsize
->regs
);
844 * If we're running RGB565, we must rewrite clkrc after setting
845 * the other parameters or the image looks poor. If we're *not*
846 * doing RGB565, we must not rewrite clkrc or the image looks
849 * (Update) Now that we retain clkrc state, we should be able
850 * to write it unconditionally, and that will make the frame
851 * rate persistent too.
854 ret
= ov7670_write(sd
, REG_CLKRC
, info
->clkrc
);
859 * Implement G/S_PARM. There is a "high quality" mode we could try
860 * to do someday; for now, we just do the frame rate tweak.
862 static int ov7670_g_parm(struct v4l2_subdev
*sd
, struct v4l2_streamparm
*parms
)
864 struct v4l2_captureparm
*cp
= &parms
->parm
.capture
;
865 struct ov7670_info
*info
= to_state(sd
);
867 if (parms
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
870 memset(cp
, 0, sizeof(struct v4l2_captureparm
));
871 cp
->capability
= V4L2_CAP_TIMEPERFRAME
;
872 cp
->timeperframe
.numerator
= 1;
873 cp
->timeperframe
.denominator
= info
->clock_speed
;
874 if ((info
->clkrc
& CLK_EXT
) == 0 && (info
->clkrc
& CLK_SCALE
) > 1)
875 cp
->timeperframe
.denominator
/= (info
->clkrc
& CLK_SCALE
);
879 static int ov7670_s_parm(struct v4l2_subdev
*sd
, struct v4l2_streamparm
*parms
)
881 struct v4l2_captureparm
*cp
= &parms
->parm
.capture
;
882 struct v4l2_fract
*tpf
= &cp
->timeperframe
;
883 struct ov7670_info
*info
= to_state(sd
);
886 if (parms
->type
!= V4L2_BUF_TYPE_VIDEO_CAPTURE
)
888 if (cp
->extendedmode
!= 0)
891 if (tpf
->numerator
== 0 || tpf
->denominator
== 0)
892 div
= 1; /* Reset to full rate */
894 div
= (tpf
->numerator
* info
->clock_speed
) / tpf
->denominator
;
897 else if (div
> CLK_SCALE
)
899 info
->clkrc
= (info
->clkrc
& 0x80) | div
;
901 tpf
->denominator
= info
->clock_speed
/ div
;
902 return ov7670_write(sd
, REG_CLKRC
, info
->clkrc
);
907 * Frame intervals. Since frame rates are controlled with the clock
908 * divider, we can only do 30/n for integer n values. So no continuous
909 * or stepwise options. Here we just pick a handful of logical values.
912 static int ov7670_frame_rates
[] = { 30, 15, 10, 5, 1 };
914 static int ov7670_enum_frameintervals(struct v4l2_subdev
*sd
,
915 struct v4l2_frmivalenum
*interval
)
917 if (interval
->index
>= ARRAY_SIZE(ov7670_frame_rates
))
919 interval
->type
= V4L2_FRMIVAL_TYPE_DISCRETE
;
920 interval
->discrete
.numerator
= 1;
921 interval
->discrete
.denominator
= ov7670_frame_rates
[interval
->index
];
926 * Frame size enumeration
928 static int ov7670_enum_framesizes(struct v4l2_subdev
*sd
,
929 struct v4l2_frmsizeenum
*fsize
)
931 struct ov7670_info
*info
= to_state(sd
);
934 __u32 index
= fsize
->index
;
937 * If a minimum width/height was requested, filter out the capture
938 * windows that fall outside that.
940 for (i
= 0; i
< N_WIN_SIZES
; i
++) {
941 struct ov7670_win_size
*win
= &ov7670_win_sizes
[index
];
942 if (info
->min_width
&& win
->width
< info
->min_width
)
944 if (info
->min_height
&& win
->height
< info
->min_height
)
946 if (index
== ++num_valid
) {
947 fsize
->type
= V4L2_FRMSIZE_TYPE_DISCRETE
;
948 fsize
->discrete
.width
= win
->width
;
949 fsize
->discrete
.height
= win
->height
;
958 * Code for dealing with controls.
961 static int ov7670_store_cmatrix(struct v4l2_subdev
*sd
,
962 int matrix
[CMATRIX_LEN
])
965 unsigned char signbits
= 0;
968 * Weird crap seems to exist in the upper part of
969 * the sign bits register, so let's preserve it.
971 ret
= ov7670_read(sd
, REG_CMATRIX_SIGN
, &signbits
);
974 for (i
= 0; i
< CMATRIX_LEN
; i
++) {
978 signbits
|= (1 << i
);
979 if (matrix
[i
] < -255)
982 raw
= (-1 * matrix
[i
]) & 0xff;
988 raw
= matrix
[i
] & 0xff;
990 ret
+= ov7670_write(sd
, REG_CMATRIX_BASE
+ i
, raw
);
992 ret
+= ov7670_write(sd
, REG_CMATRIX_SIGN
, signbits
);
998 * Hue also requires messing with the color matrix. It also requires
999 * trig functions, which tend not to be well supported in the kernel.
1000 * So here is a simple table of sine values, 0-90 degrees, in steps
1001 * of five degrees. Values are multiplied by 1000.
1003 * The following naive approximate trig functions require an argument
1004 * carefully limited to -180 <= theta <= 180.
1007 static const int ov7670_sin_table
[] = {
1008 0, 87, 173, 258, 342, 422,
1009 499, 573, 642, 707, 766, 819,
1010 866, 906, 939, 965, 984, 996,
1014 static int ov7670_sine(int theta
)
1024 sine
= ov7670_sin_table
[theta
/SIN_STEP
];
1027 sine
= 1000 - ov7670_sin_table
[theta
/SIN_STEP
];
1032 static int ov7670_cosine(int theta
)
1037 else if (theta
< -180)
1039 return ov7670_sine(theta
);
1045 static void ov7670_calc_cmatrix(struct ov7670_info
*info
,
1046 int matrix
[CMATRIX_LEN
])
1050 * Apply the current saturation setting first.
1052 for (i
= 0; i
< CMATRIX_LEN
; i
++)
1053 matrix
[i
] = (info
->fmt
->cmatrix
[i
]*info
->sat
) >> 7;
1055 * Then, if need be, rotate the hue value.
1057 if (info
->hue
!= 0) {
1058 int sinth
, costh
, tmpmatrix
[CMATRIX_LEN
];
1060 memcpy(tmpmatrix
, matrix
, CMATRIX_LEN
*sizeof(int));
1061 sinth
= ov7670_sine(info
->hue
);
1062 costh
= ov7670_cosine(info
->hue
);
1064 matrix
[0] = (matrix
[3]*sinth
+ matrix
[0]*costh
)/1000;
1065 matrix
[1] = (matrix
[4]*sinth
+ matrix
[1]*costh
)/1000;
1066 matrix
[2] = (matrix
[5]*sinth
+ matrix
[2]*costh
)/1000;
1067 matrix
[3] = (matrix
[3]*costh
- matrix
[0]*sinth
)/1000;
1068 matrix
[4] = (matrix
[4]*costh
- matrix
[1]*sinth
)/1000;
1069 matrix
[5] = (matrix
[5]*costh
- matrix
[2]*sinth
)/1000;
1075 static int ov7670_s_sat(struct v4l2_subdev
*sd
, int value
)
1077 struct ov7670_info
*info
= to_state(sd
);
1078 int matrix
[CMATRIX_LEN
];
1082 ov7670_calc_cmatrix(info
, matrix
);
1083 ret
= ov7670_store_cmatrix(sd
, matrix
);
1087 static int ov7670_g_sat(struct v4l2_subdev
*sd
, __s32
*value
)
1089 struct ov7670_info
*info
= to_state(sd
);
1095 static int ov7670_s_hue(struct v4l2_subdev
*sd
, int value
)
1097 struct ov7670_info
*info
= to_state(sd
);
1098 int matrix
[CMATRIX_LEN
];
1101 if (value
< -180 || value
> 180)
1104 ov7670_calc_cmatrix(info
, matrix
);
1105 ret
= ov7670_store_cmatrix(sd
, matrix
);
1110 static int ov7670_g_hue(struct v4l2_subdev
*sd
, __s32
*value
)
1112 struct ov7670_info
*info
= to_state(sd
);
1120 * Some weird registers seem to store values in a sign/magnitude format!
1122 static unsigned char ov7670_sm_to_abs(unsigned char v
)
1124 if ((v
& 0x80) == 0)
1126 return 128 - (v
& 0x7f);
1130 static unsigned char ov7670_abs_to_sm(unsigned char v
)
1134 return (128 - v
) | 0x80;
1137 static int ov7670_s_brightness(struct v4l2_subdev
*sd
, int value
)
1139 unsigned char com8
= 0, v
;
1142 ov7670_read(sd
, REG_COM8
, &com8
);
1144 ov7670_write(sd
, REG_COM8
, com8
);
1145 v
= ov7670_abs_to_sm(value
);
1146 ret
= ov7670_write(sd
, REG_BRIGHT
, v
);
1150 static int ov7670_g_brightness(struct v4l2_subdev
*sd
, __s32
*value
)
1152 unsigned char v
= 0;
1153 int ret
= ov7670_read(sd
, REG_BRIGHT
, &v
);
1155 *value
= ov7670_sm_to_abs(v
);
1159 static int ov7670_s_contrast(struct v4l2_subdev
*sd
, int value
)
1161 return ov7670_write(sd
, REG_CONTRAS
, (unsigned char) value
);
1164 static int ov7670_g_contrast(struct v4l2_subdev
*sd
, __s32
*value
)
1166 unsigned char v
= 0;
1167 int ret
= ov7670_read(sd
, REG_CONTRAS
, &v
);
1173 static int ov7670_g_hflip(struct v4l2_subdev
*sd
, __s32
*value
)
1176 unsigned char v
= 0;
1178 ret
= ov7670_read(sd
, REG_MVFP
, &v
);
1179 *value
= (v
& MVFP_MIRROR
) == MVFP_MIRROR
;
1184 static int ov7670_s_hflip(struct v4l2_subdev
*sd
, int value
)
1186 unsigned char v
= 0;
1189 ret
= ov7670_read(sd
, REG_MVFP
, &v
);
1194 msleep(10); /* FIXME */
1195 ret
+= ov7670_write(sd
, REG_MVFP
, v
);
1201 static int ov7670_g_vflip(struct v4l2_subdev
*sd
, __s32
*value
)
1204 unsigned char v
= 0;
1206 ret
= ov7670_read(sd
, REG_MVFP
, &v
);
1207 *value
= (v
& MVFP_FLIP
) == MVFP_FLIP
;
1212 static int ov7670_s_vflip(struct v4l2_subdev
*sd
, int value
)
1214 unsigned char v
= 0;
1217 ret
= ov7670_read(sd
, REG_MVFP
, &v
);
1222 msleep(10); /* FIXME */
1223 ret
+= ov7670_write(sd
, REG_MVFP
, v
);
1228 * GAIN is split between REG_GAIN and REG_VREF[7:6]. If one believes
1229 * the data sheet, the VREF parts should be the most significant, but
1230 * experience shows otherwise. There seems to be little value in
1231 * messing with the VREF bits, so we leave them alone.
1233 static int ov7670_g_gain(struct v4l2_subdev
*sd
, __s32
*value
)
1238 ret
= ov7670_read(sd
, REG_GAIN
, &gain
);
1243 static int ov7670_s_gain(struct v4l2_subdev
*sd
, int value
)
1248 ret
= ov7670_write(sd
, REG_GAIN
, value
& 0xff);
1249 /* Have to turn off AGC as well */
1251 ret
= ov7670_read(sd
, REG_COM8
, &com8
);
1252 ret
= ov7670_write(sd
, REG_COM8
, com8
& ~COM8_AGC
);
1260 static int ov7670_g_autogain(struct v4l2_subdev
*sd
, __s32
*value
)
1265 ret
= ov7670_read(sd
, REG_COM8
, &com8
);
1266 *value
= (com8
& COM8_AGC
) != 0;
1270 static int ov7670_s_autogain(struct v4l2_subdev
*sd
, int value
)
1275 ret
= ov7670_read(sd
, REG_COM8
, &com8
);
1281 ret
= ov7670_write(sd
, REG_COM8
, com8
);
1287 * Exposure is spread all over the place: top 6 bits in AECHH, middle
1288 * 8 in AECH, and two stashed in COM1 just for the hell of it.
1290 static int ov7670_g_exp(struct v4l2_subdev
*sd
, __s32
*value
)
1293 unsigned char com1
, aech
, aechh
;
1295 ret
= ov7670_read(sd
, REG_COM1
, &com1
) +
1296 ov7670_read(sd
, REG_AECH
, &aech
) +
1297 ov7670_read(sd
, REG_AECHH
, &aechh
);
1298 *value
= ((aechh
& 0x3f) << 10) | (aech
<< 2) | (com1
& 0x03);
1302 static int ov7670_s_exp(struct v4l2_subdev
*sd
, int value
)
1305 unsigned char com1
, com8
, aech
, aechh
;
1307 ret
= ov7670_read(sd
, REG_COM1
, &com1
) +
1308 ov7670_read(sd
, REG_COM8
, &com8
);
1309 ov7670_read(sd
, REG_AECHH
, &aechh
);
1313 com1
= (com1
& 0xfc) | (value
& 0x03);
1314 aech
= (value
>> 2) & 0xff;
1315 aechh
= (aechh
& 0xc0) | ((value
>> 10) & 0x3f);
1316 ret
= ov7670_write(sd
, REG_COM1
, com1
) +
1317 ov7670_write(sd
, REG_AECH
, aech
) +
1318 ov7670_write(sd
, REG_AECHH
, aechh
);
1319 /* Have to turn off AEC as well */
1321 ret
= ov7670_write(sd
, REG_COM8
, com8
& ~COM8_AEC
);
1326 * Tweak autoexposure.
1328 static int ov7670_g_autoexp(struct v4l2_subdev
*sd
, __s32
*value
)
1332 enum v4l2_exposure_auto_type
*atype
= (enum v4l2_exposure_auto_type
*) value
;
1334 ret
= ov7670_read(sd
, REG_COM8
, &com8
);
1335 if (com8
& COM8_AEC
)
1336 *atype
= V4L2_EXPOSURE_AUTO
;
1338 *atype
= V4L2_EXPOSURE_MANUAL
;
1342 static int ov7670_s_autoexp(struct v4l2_subdev
*sd
,
1343 enum v4l2_exposure_auto_type value
)
1348 ret
= ov7670_read(sd
, REG_COM8
, &com8
);
1350 if (value
== V4L2_EXPOSURE_AUTO
)
1354 ret
= ov7670_write(sd
, REG_COM8
, com8
);
1361 static int ov7670_queryctrl(struct v4l2_subdev
*sd
,
1362 struct v4l2_queryctrl
*qc
)
1364 /* Fill in min, max, step and default value for these controls. */
1366 case V4L2_CID_BRIGHTNESS
:
1367 return v4l2_ctrl_query_fill(qc
, 0, 255, 1, 128);
1368 case V4L2_CID_CONTRAST
:
1369 return v4l2_ctrl_query_fill(qc
, 0, 127, 1, 64);
1370 case V4L2_CID_VFLIP
:
1371 case V4L2_CID_HFLIP
:
1372 return v4l2_ctrl_query_fill(qc
, 0, 1, 1, 0);
1373 case V4L2_CID_SATURATION
:
1374 return v4l2_ctrl_query_fill(qc
, 0, 256, 1, 128);
1376 return v4l2_ctrl_query_fill(qc
, -180, 180, 5, 0);
1378 return v4l2_ctrl_query_fill(qc
, 0, 255, 1, 128);
1379 case V4L2_CID_AUTOGAIN
:
1380 return v4l2_ctrl_query_fill(qc
, 0, 1, 1, 1);
1381 case V4L2_CID_EXPOSURE
:
1382 return v4l2_ctrl_query_fill(qc
, 0, 65535, 1, 500);
1383 case V4L2_CID_EXPOSURE_AUTO
:
1384 return v4l2_ctrl_query_fill(qc
, 0, 1, 1, 0);
1389 static int ov7670_g_ctrl(struct v4l2_subdev
*sd
, struct v4l2_control
*ctrl
)
1392 case V4L2_CID_BRIGHTNESS
:
1393 return ov7670_g_brightness(sd
, &ctrl
->value
);
1394 case V4L2_CID_CONTRAST
:
1395 return ov7670_g_contrast(sd
, &ctrl
->value
);
1396 case V4L2_CID_SATURATION
:
1397 return ov7670_g_sat(sd
, &ctrl
->value
);
1399 return ov7670_g_hue(sd
, &ctrl
->value
);
1400 case V4L2_CID_VFLIP
:
1401 return ov7670_g_vflip(sd
, &ctrl
->value
);
1402 case V4L2_CID_HFLIP
:
1403 return ov7670_g_hflip(sd
, &ctrl
->value
);
1405 return ov7670_g_gain(sd
, &ctrl
->value
);
1406 case V4L2_CID_AUTOGAIN
:
1407 return ov7670_g_autogain(sd
, &ctrl
->value
);
1408 case V4L2_CID_EXPOSURE
:
1409 return ov7670_g_exp(sd
, &ctrl
->value
);
1410 case V4L2_CID_EXPOSURE_AUTO
:
1411 return ov7670_g_autoexp(sd
, &ctrl
->value
);
1416 static int ov7670_s_ctrl(struct v4l2_subdev
*sd
, struct v4l2_control
*ctrl
)
1419 case V4L2_CID_BRIGHTNESS
:
1420 return ov7670_s_brightness(sd
, ctrl
->value
);
1421 case V4L2_CID_CONTRAST
:
1422 return ov7670_s_contrast(sd
, ctrl
->value
);
1423 case V4L2_CID_SATURATION
:
1424 return ov7670_s_sat(sd
, ctrl
->value
);
1426 return ov7670_s_hue(sd
, ctrl
->value
);
1427 case V4L2_CID_VFLIP
:
1428 return ov7670_s_vflip(sd
, ctrl
->value
);
1429 case V4L2_CID_HFLIP
:
1430 return ov7670_s_hflip(sd
, ctrl
->value
);
1432 return ov7670_s_gain(sd
, ctrl
->value
);
1433 case V4L2_CID_AUTOGAIN
:
1434 return ov7670_s_autogain(sd
, ctrl
->value
);
1435 case V4L2_CID_EXPOSURE
:
1436 return ov7670_s_exp(sd
, ctrl
->value
);
1437 case V4L2_CID_EXPOSURE_AUTO
:
1438 return ov7670_s_autoexp(sd
,
1439 (enum v4l2_exposure_auto_type
) ctrl
->value
);
1444 static int ov7670_g_chip_ident(struct v4l2_subdev
*sd
,
1445 struct v4l2_dbg_chip_ident
*chip
)
1447 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
1449 return v4l2_chip_ident_i2c_client(client
, chip
, V4L2_IDENT_OV7670
, 0);
1452 #ifdef CONFIG_VIDEO_ADV_DEBUG
1453 static int ov7670_g_register(struct v4l2_subdev
*sd
, struct v4l2_dbg_register
*reg
)
1455 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
1456 unsigned char val
= 0;
1459 if (!v4l2_chip_match_i2c_client(client
, ®
->match
))
1461 if (!capable(CAP_SYS_ADMIN
))
1463 ret
= ov7670_read(sd
, reg
->reg
& 0xff, &val
);
1469 static int ov7670_s_register(struct v4l2_subdev
*sd
, struct v4l2_dbg_register
*reg
)
1471 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
1473 if (!v4l2_chip_match_i2c_client(client
, ®
->match
))
1475 if (!capable(CAP_SYS_ADMIN
))
1477 ov7670_write(sd
, reg
->reg
& 0xff, reg
->val
& 0xff);
1482 /* ----------------------------------------------------------------------- */
1484 static const struct v4l2_subdev_core_ops ov7670_core_ops
= {
1485 .g_chip_ident
= ov7670_g_chip_ident
,
1486 .g_ctrl
= ov7670_g_ctrl
,
1487 .s_ctrl
= ov7670_s_ctrl
,
1488 .queryctrl
= ov7670_queryctrl
,
1489 .reset
= ov7670_reset
,
1490 .init
= ov7670_init
,
1491 #ifdef CONFIG_VIDEO_ADV_DEBUG
1492 .g_register
= ov7670_g_register
,
1493 .s_register
= ov7670_s_register
,
1497 static const struct v4l2_subdev_video_ops ov7670_video_ops
= {
1498 .enum_mbus_fmt
= ov7670_enum_mbus_fmt
,
1499 .try_mbus_fmt
= ov7670_try_mbus_fmt
,
1500 .s_mbus_fmt
= ov7670_s_mbus_fmt
,
1501 .s_parm
= ov7670_s_parm
,
1502 .g_parm
= ov7670_g_parm
,
1503 .enum_frameintervals
= ov7670_enum_frameintervals
,
1504 .enum_framesizes
= ov7670_enum_framesizes
,
1507 static const struct v4l2_subdev_ops ov7670_ops
= {
1508 .core
= &ov7670_core_ops
,
1509 .video
= &ov7670_video_ops
,
1512 /* ----------------------------------------------------------------------- */
1514 static int ov7670_probe(struct i2c_client
*client
,
1515 const struct i2c_device_id
*id
)
1517 struct v4l2_subdev
*sd
;
1518 struct ov7670_info
*info
;
1521 info
= kzalloc(sizeof(struct ov7670_info
), GFP_KERNEL
);
1525 v4l2_i2c_subdev_init(sd
, client
, &ov7670_ops
);
1527 info
->clock_speed
= 30; /* default: a guess */
1528 if (client
->dev
.platform_data
) {
1529 struct ov7670_config
*config
= client
->dev
.platform_data
;
1532 * Must apply configuration before initializing device, because it
1533 * selects I/O method.
1535 info
->min_width
= config
->min_width
;
1536 info
->min_height
= config
->min_height
;
1537 info
->use_smbus
= config
->use_smbus
;
1539 if (config
->clock_speed
)
1540 info
->clock_speed
= config
->clock_speed
;
1543 /* Make sure it's an ov7670 */
1544 ret
= ov7670_detect(sd
);
1546 v4l_dbg(1, debug
, client
,
1547 "chip found @ 0x%x (%s) is not an ov7670 chip.\n",
1548 client
->addr
<< 1, client
->adapter
->name
);
1552 v4l_info(client
, "chip found @ 0x%02x (%s)\n",
1553 client
->addr
<< 1, client
->adapter
->name
);
1555 info
->fmt
= &ov7670_formats
[0];
1556 info
->sat
= 128; /* Review this */
1557 info
->clkrc
= info
->clock_speed
/ 30;
1562 static int ov7670_remove(struct i2c_client
*client
)
1564 struct v4l2_subdev
*sd
= i2c_get_clientdata(client
);
1566 v4l2_device_unregister_subdev(sd
);
1567 kfree(to_state(sd
));
1571 static const struct i2c_device_id ov7670_id
[] = {
1575 MODULE_DEVICE_TABLE(i2c
, ov7670_id
);
1577 static struct i2c_driver ov7670_driver
= {
1579 .owner
= THIS_MODULE
,
1582 .probe
= ov7670_probe
,
1583 .remove
= ov7670_remove
,
1584 .id_table
= ov7670_id
,
1587 static __init
int init_ov7670(void)
1589 return i2c_add_driver(&ov7670_driver
);
1592 static __exit
void exit_ov7670(void)
1594 i2c_del_driver(&ov7670_driver
);
1597 module_init(init_ov7670
);
1598 module_exit(exit_ov7670
);