2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
21 #include <linux/slab.h>
24 #include <plat/gpmc.h>
25 #include <plat/nand.h>
27 #define DRIVER_NAME "omap2-nand"
28 #define OMAP_NAND_TIMEOUT_MS 5000
30 #define NAND_Ecc_P1e (1 << 0)
31 #define NAND_Ecc_P2e (1 << 1)
32 #define NAND_Ecc_P4e (1 << 2)
33 #define NAND_Ecc_P8e (1 << 3)
34 #define NAND_Ecc_P16e (1 << 4)
35 #define NAND_Ecc_P32e (1 << 5)
36 #define NAND_Ecc_P64e (1 << 6)
37 #define NAND_Ecc_P128e (1 << 7)
38 #define NAND_Ecc_P256e (1 << 8)
39 #define NAND_Ecc_P512e (1 << 9)
40 #define NAND_Ecc_P1024e (1 << 10)
41 #define NAND_Ecc_P2048e (1 << 11)
43 #define NAND_Ecc_P1o (1 << 16)
44 #define NAND_Ecc_P2o (1 << 17)
45 #define NAND_Ecc_P4o (1 << 18)
46 #define NAND_Ecc_P8o (1 << 19)
47 #define NAND_Ecc_P16o (1 << 20)
48 #define NAND_Ecc_P32o (1 << 21)
49 #define NAND_Ecc_P64o (1 << 22)
50 #define NAND_Ecc_P128o (1 << 23)
51 #define NAND_Ecc_P256o (1 << 24)
52 #define NAND_Ecc_P512o (1 << 25)
53 #define NAND_Ecc_P1024o (1 << 26)
54 #define NAND_Ecc_P2048o (1 << 27)
56 #define TF(value) (value ? 1 : 0)
58 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
59 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
60 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
61 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
62 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
63 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
64 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
65 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
67 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
68 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
69 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
70 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
71 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
72 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
73 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
74 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
76 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
77 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
78 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
79 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
80 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
81 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
82 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
83 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
85 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
86 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
87 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
88 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
89 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
90 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
91 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
92 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
94 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
95 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
97 #ifdef CONFIG_MTD_PARTITIONS
98 static const char *part_probes
[] = { "cmdlinepart", NULL
};
101 /* oob info generated runtime depending on ecc algorithm and layout selected */
102 static struct nand_ecclayout omap_oobinfo
;
103 /* Define some generic bad / good block scan pattern which are used
104 * while scanning a device for factory marked good / bad blocks
106 static uint8_t scan_ff_pattern
[] = { 0xff };
107 static struct nand_bbt_descr bb_descrip_flashbased
= {
108 .options
= NAND_BBT_SCANEMPTY
| NAND_BBT_SCANALLPAGES
,
111 .pattern
= scan_ff_pattern
,
115 struct omap_nand_info
{
116 struct nand_hw_control controller
;
117 struct omap_nand_platform_data
*pdata
;
119 struct mtd_partition
*parts
;
120 struct nand_chip nand
;
121 struct platform_device
*pdev
;
124 unsigned long phys_base
;
125 struct completion comp
;
129 OMAP_NAND_IO_READ
= 0, /* read */
130 OMAP_NAND_IO_WRITE
, /* write */
137 * omap_hwcontrol - hardware specific access to control-lines
138 * @mtd: MTD device structure
139 * @cmd: command to device
141 * NAND_NCE: bit 0 -> don't care
142 * NAND_CLE: bit 1 -> Command Latch
143 * NAND_ALE: bit 2 -> Address Latch
145 * NOTE: boards may use different bits for these!!
147 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
149 struct omap_nand_info
*info
= container_of(mtd
,
150 struct omap_nand_info
, mtd
);
152 if (cmd
!= NAND_CMD_NONE
) {
154 gpmc_nand_write(info
->gpmc_cs
, GPMC_NAND_COMMAND
, cmd
);
156 else if (ctrl
& NAND_ALE
)
157 gpmc_nand_write(info
->gpmc_cs
, GPMC_NAND_ADDRESS
, cmd
);
160 gpmc_nand_write(info
->gpmc_cs
, GPMC_NAND_DATA
, cmd
);
165 * omap_read_buf8 - read data from NAND controller into buffer
166 * @mtd: MTD device structure
167 * @buf: buffer to store date
168 * @len: number of bytes to read
170 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
172 struct nand_chip
*nand
= mtd
->priv
;
174 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
178 * omap_write_buf8 - write buffer to NAND controller
179 * @mtd: MTD device structure
181 * @len: number of bytes to write
183 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
185 struct omap_nand_info
*info
= container_of(mtd
,
186 struct omap_nand_info
, mtd
);
187 u_char
*p
= (u_char
*)buf
;
191 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
192 /* wait until buffer is available for write */
194 status
= gpmc_read_status(GPMC_STATUS_BUFFER
);
200 * omap_read_buf16 - read data from NAND controller into buffer
201 * @mtd: MTD device structure
202 * @buf: buffer to store date
203 * @len: number of bytes to read
205 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
207 struct nand_chip
*nand
= mtd
->priv
;
209 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
213 * omap_write_buf16 - write buffer to NAND controller
214 * @mtd: MTD device structure
216 * @len: number of bytes to write
218 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
220 struct omap_nand_info
*info
= container_of(mtd
,
221 struct omap_nand_info
, mtd
);
222 u16
*p
= (u16
*) buf
;
224 /* FIXME try bursts of writesw() or DMA ... */
228 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
229 /* wait until buffer is available for write */
231 status
= gpmc_read_status(GPMC_STATUS_BUFFER
);
237 * omap_read_buf_pref - read data from NAND controller into buffer
238 * @mtd: MTD device structure
239 * @buf: buffer to store date
240 * @len: number of bytes to read
242 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
244 struct omap_nand_info
*info
= container_of(mtd
,
245 struct omap_nand_info
, mtd
);
246 uint32_t r_count
= 0;
250 /* take care of subpage reads */
252 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
253 omap_read_buf16(mtd
, buf
, len
% 4);
255 omap_read_buf8(mtd
, buf
, len
% 4);
256 p
= (u32
*) (buf
+ len
% 4);
260 /* configure and start prefetch transfer */
261 ret
= gpmc_prefetch_enable(info
->gpmc_cs
,
262 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0);
264 /* PFPW engine is busy, use cpu copy method */
265 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
266 omap_read_buf16(mtd
, buf
, len
);
268 omap_read_buf8(mtd
, buf
, len
);
272 r_count
= gpmc_read_status(GPMC_PREFETCH_FIFO_CNT
);
273 r_count
= r_count
>> 2;
274 ioread32_rep(info
->nand
.IO_ADDR_R
, p
, r_count
);
278 /* disable and stop the PFPW engine */
279 gpmc_prefetch_reset(info
->gpmc_cs
);
284 * omap_write_buf_pref - write buffer to NAND controller
285 * @mtd: MTD device structure
287 * @len: number of bytes to write
289 static void omap_write_buf_pref(struct mtd_info
*mtd
,
290 const u_char
*buf
, int len
)
292 struct omap_nand_info
*info
= container_of(mtd
,
293 struct omap_nand_info
, mtd
);
294 uint32_t w_count
= 0;
297 unsigned long tim
, limit
;
299 /* take care of subpage writes */
301 writeb(*buf
, info
->nand
.IO_ADDR_W
);
302 p
= (u16
*)(buf
+ 1);
306 /* configure and start prefetch transfer */
307 ret
= gpmc_prefetch_enable(info
->gpmc_cs
,
308 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1);
310 /* PFPW engine is busy, use cpu copy method */
311 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
312 omap_write_buf16(mtd
, buf
, len
);
314 omap_write_buf8(mtd
, buf
, len
);
318 w_count
= gpmc_read_status(GPMC_PREFETCH_FIFO_CNT
);
319 w_count
= w_count
>> 1;
320 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
321 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
323 /* wait for data to flushed-out before reset the prefetch */
325 limit
= (loops_per_jiffy
*
326 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
327 while (gpmc_read_status(GPMC_PREFETCH_COUNT
) && (tim
++ < limit
))
330 /* disable and stop the PFPW engine */
331 gpmc_prefetch_reset(info
->gpmc_cs
);
336 * omap_nand_dma_cb: callback on the completion of dma transfer
337 * @lch: logical channel
338 * @ch_satuts: channel status
339 * @data: pointer to completion data structure
341 static void omap_nand_dma_cb(int lch
, u16 ch_status
, void *data
)
343 complete((struct completion
*) data
);
347 * omap_nand_dma_transfer: configer and start dma transfer
348 * @mtd: MTD device structure
349 * @addr: virtual address in RAM of source/destination
350 * @len: number of data bytes to be transferred
351 * @is_write: flag for read/write operation
353 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
354 unsigned int len
, int is_write
)
356 struct omap_nand_info
*info
= container_of(mtd
,
357 struct omap_nand_info
, mtd
);
358 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
362 unsigned long tim
, limit
;
364 /* The fifo depth is 64 bytes max.
365 * But configure the FIFO-threahold to 32 to get a sync at each frame
366 * and frame length is 32 bytes.
368 int buf_len
= len
>> 6;
370 if (addr
>= high_memory
) {
373 if (((size_t)addr
& PAGE_MASK
) !=
374 ((size_t)(addr
+ len
- 1) & PAGE_MASK
))
376 p1
= vmalloc_to_page(addr
);
379 addr
= page_address(p1
) + ((size_t)addr
& ~PAGE_MASK
);
382 dma_addr
= dma_map_single(&info
->pdev
->dev
, addr
, len
, dir
);
383 if (dma_mapping_error(&info
->pdev
->dev
, dma_addr
)) {
384 dev_err(&info
->pdev
->dev
,
385 "Couldn't DMA map a %d byte buffer\n", len
);
390 omap_set_dma_dest_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_CONSTANT
,
391 info
->phys_base
, 0, 0);
392 omap_set_dma_src_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_POST_INC
,
394 omap_set_dma_transfer_params(info
->dma_ch
, OMAP_DMA_DATA_TYPE_S32
,
395 0x10, buf_len
, OMAP_DMA_SYNC_FRAME
,
396 OMAP24XX_DMA_GPMC
, OMAP_DMA_DST_SYNC
);
398 omap_set_dma_src_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_CONSTANT
,
399 info
->phys_base
, 0, 0);
400 omap_set_dma_dest_params(info
->dma_ch
, 0, OMAP_DMA_AMODE_POST_INC
,
402 omap_set_dma_transfer_params(info
->dma_ch
, OMAP_DMA_DATA_TYPE_S32
,
403 0x10, buf_len
, OMAP_DMA_SYNC_FRAME
,
404 OMAP24XX_DMA_GPMC
, OMAP_DMA_SRC_SYNC
);
406 /* configure and start prefetch transfer */
407 ret
= gpmc_prefetch_enable(info
->gpmc_cs
,
408 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
);
410 /* PFPW engine is busy, use cpu copy method */
413 init_completion(&info
->comp
);
415 omap_start_dma(info
->dma_ch
);
417 /* setup and start DMA using dma_addr */
418 wait_for_completion(&info
->comp
);
420 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
421 while (gpmc_read_status(GPMC_PREFETCH_COUNT
) && (tim
++ < limit
))
424 /* disable and stop the PFPW engine */
425 gpmc_prefetch_reset(info
->gpmc_cs
);
427 dma_unmap_single(&info
->pdev
->dev
, dma_addr
, len
, dir
);
431 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
432 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
433 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
435 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
436 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
441 * omap_read_buf_dma_pref - read data from NAND controller into buffer
442 * @mtd: MTD device structure
443 * @buf: buffer to store date
444 * @len: number of bytes to read
446 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
448 if (len
<= mtd
->oobsize
)
449 omap_read_buf_pref(mtd
, buf
, len
);
451 /* start transfer in DMA mode */
452 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
456 * omap_write_buf_dma_pref - write buffer to NAND controller
457 * @mtd: MTD device structure
459 * @len: number of bytes to write
461 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
462 const u_char
*buf
, int len
)
464 if (len
<= mtd
->oobsize
)
465 omap_write_buf_pref(mtd
, buf
, len
);
467 /* start transfer in DMA mode */
468 omap_nand_dma_transfer(mtd
, (u_char
*) buf
, len
, 0x1);
472 * omap_nand_irq - GMPC irq handler
473 * @this_irq: gpmc irq number
474 * @dev: omap_nand_info structure pointer is passed here
476 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
478 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
482 irq_stat
= gpmc_read_status(GPMC_GET_IRQ_STATUS
);
483 bytes
= gpmc_read_status(GPMC_PREFETCH_FIFO_CNT
);
484 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
485 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
489 if (info
->buf_len
&& (info
->buf_len
< bytes
))
490 bytes
= info
->buf_len
;
491 else if (!info
->buf_len
)
493 iowrite32_rep(info
->nand
.IO_ADDR_W
,
494 (u32
*)info
->buf
, bytes
>> 2);
495 info
->buf
= info
->buf
+ bytes
;
496 info
->buf_len
-= bytes
;
499 ioread32_rep(info
->nand
.IO_ADDR_R
,
500 (u32
*)info
->buf
, bytes
>> 2);
501 info
->buf
= info
->buf
+ bytes
;
506 gpmc_cs_configure(info
->gpmc_cs
, GPMC_SET_IRQ_STATUS
, irq_stat
);
511 complete(&info
->comp
);
513 gpmc_cs_configure(info
->gpmc_cs
, GPMC_ENABLE_IRQ
, 0);
516 gpmc_cs_configure(info
->gpmc_cs
, GPMC_SET_IRQ_STATUS
, irq_stat
);
522 * omap_read_buf_irq_pref - read data from NAND controller into buffer
523 * @mtd: MTD device structure
524 * @buf: buffer to store date
525 * @len: number of bytes to read
527 static void omap_read_buf_irq_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
529 struct omap_nand_info
*info
= container_of(mtd
,
530 struct omap_nand_info
, mtd
);
533 if (len
<= mtd
->oobsize
) {
534 omap_read_buf_pref(mtd
, buf
, len
);
538 info
->iomode
= OMAP_NAND_IO_READ
;
540 init_completion(&info
->comp
);
542 /* configure and start prefetch transfer */
543 ret
= gpmc_prefetch_enable(info
->gpmc_cs
,
544 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0);
546 /* PFPW engine is busy, use cpu copy method */
551 gpmc_cs_configure(info
->gpmc_cs
, GPMC_ENABLE_IRQ
,
552 (GPMC_IRQ_FIFOEVENTENABLE
| GPMC_IRQ_COUNT_EVENT
));
554 /* waiting for read to complete */
555 wait_for_completion(&info
->comp
);
557 /* disable and stop the PFPW engine */
558 gpmc_prefetch_reset(info
->gpmc_cs
);
562 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
563 omap_read_buf16(mtd
, buf
, len
);
565 omap_read_buf8(mtd
, buf
, len
);
569 * omap_write_buf_irq_pref - write buffer to NAND controller
570 * @mtd: MTD device structure
572 * @len: number of bytes to write
574 static void omap_write_buf_irq_pref(struct mtd_info
*mtd
,
575 const u_char
*buf
, int len
)
577 struct omap_nand_info
*info
= container_of(mtd
,
578 struct omap_nand_info
, mtd
);
580 unsigned long tim
, limit
;
582 if (len
<= mtd
->oobsize
) {
583 omap_write_buf_pref(mtd
, buf
, len
);
587 info
->iomode
= OMAP_NAND_IO_WRITE
;
588 info
->buf
= (u_char
*) buf
;
589 init_completion(&info
->comp
);
591 /* configure and start prefetch transfer : size=24 */
592 ret
= gpmc_prefetch_enable(info
->gpmc_cs
,
593 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1);
595 /* PFPW engine is busy, use cpu copy method */
600 gpmc_cs_configure(info
->gpmc_cs
, GPMC_ENABLE_IRQ
,
601 (GPMC_IRQ_FIFOEVENTENABLE
| GPMC_IRQ_COUNT_EVENT
));
603 /* waiting for write to complete */
604 wait_for_completion(&info
->comp
);
605 /* wait for data to flushed-out before reset the prefetch */
607 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
608 while (gpmc_read_status(GPMC_PREFETCH_COUNT
) && (tim
++ < limit
))
611 /* disable and stop the PFPW engine */
612 gpmc_prefetch_reset(info
->gpmc_cs
);
616 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
617 omap_write_buf16(mtd
, buf
, len
);
619 omap_write_buf8(mtd
, buf
, len
);
623 * omap_verify_buf - Verify chip data against buffer
624 * @mtd: MTD device structure
625 * @buf: buffer containing the data to compare
626 * @len: number of bytes to compare
628 static int omap_verify_buf(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
630 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
632 u16
*p
= (u16
*) buf
;
636 if (*p
++ != cpu_to_le16(readw(info
->nand
.IO_ADDR_R
)))
644 * gen_true_ecc - This function will generate true ECC value
645 * @ecc_buf: buffer to store ecc code
647 * This generated true ECC value can be used when correcting
648 * data read from NAND flash memory core
650 static void gen_true_ecc(u8
*ecc_buf
)
652 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
653 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
655 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
656 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
657 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
658 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
659 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
660 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
664 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
665 * @ecc_data1: ecc code from nand spare area
666 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
667 * @page_data: page data
669 * This function compares two ECC's and indicates if there is an error.
670 * If the error can be corrected it will be corrected to the buffer.
671 * If there is no error, %0 is returned. If there is an error but it
672 * was corrected, %1 is returned. Otherwise, %-1 is returned.
674 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
675 u8
*ecc_data2
, /* read from register */
679 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
680 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
687 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
689 gen_true_ecc(ecc_data1
);
690 gen_true_ecc(ecc_data2
);
692 for (i
= 0; i
<= 2; i
++) {
693 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
694 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
697 for (i
= 0; i
< 8; i
++) {
698 tmp0_bit
[i
] = *ecc_data1
% 2;
699 *ecc_data1
= *ecc_data1
/ 2;
702 for (i
= 0; i
< 8; i
++) {
703 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
704 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
707 for (i
= 0; i
< 8; i
++) {
708 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
709 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
712 for (i
= 0; i
< 8; i
++) {
713 comp0_bit
[i
] = *ecc_data2
% 2;
714 *ecc_data2
= *ecc_data2
/ 2;
717 for (i
= 0; i
< 8; i
++) {
718 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
719 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
722 for (i
= 0; i
< 8; i
++) {
723 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
724 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
727 for (i
= 0; i
< 6; i
++)
728 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
730 for (i
= 0; i
< 8; i
++)
731 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
733 for (i
= 0; i
< 8; i
++)
734 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
736 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
737 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
739 for (i
= 0; i
< 24; i
++)
740 ecc_sum
+= ecc_bit
[i
];
744 /* Not reached because this function is not called if
745 * ECC values are equal
750 /* Uncorrectable error */
751 DEBUG(MTD_DEBUG_LEVEL0
, "ECC UNCORRECTED_ERROR 1\n");
755 /* UN-Correctable error */
756 DEBUG(MTD_DEBUG_LEVEL0
, "ECC UNCORRECTED_ERROR B\n");
760 /* Correctable error */
761 find_byte
= (ecc_bit
[23] << 8) +
771 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
773 DEBUG(MTD_DEBUG_LEVEL0
, "Correcting single bit ECC error at "
774 "offset: %d, bit: %d\n", find_byte
, find_bit
);
776 page_data
[find_byte
] ^= (1 << find_bit
);
781 if (ecc_data2
[0] == 0 &&
786 DEBUG(MTD_DEBUG_LEVEL0
, "UNCORRECTED_ERROR default\n");
792 * omap_correct_data - Compares the ECC read with HW generated ECC
793 * @mtd: MTD device structure
795 * @read_ecc: ecc read from nand flash
796 * @calc_ecc: ecc read from HW ECC registers
798 * Compares the ecc read from nand spare area with ECC registers values
799 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
800 * detection and correction. If there are no errors, %0 is returned. If
801 * there were errors and all of the errors were corrected, the number of
802 * corrected errors is returned. If uncorrectable errors exist, %-1 is
805 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
806 u_char
*read_ecc
, u_char
*calc_ecc
)
808 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
810 int blockCnt
= 0, i
= 0, ret
= 0;
813 /* Ex NAND_ECC_HW12_2048 */
814 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
815 (info
->nand
.ecc
.size
== 2048))
820 for (i
= 0; i
< blockCnt
; i
++) {
821 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
822 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
825 /* keep track of the number of corrected errors */
836 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
837 * @mtd: MTD device structure
838 * @dat: The pointer to data on which ecc is computed
839 * @ecc_code: The ecc_code buffer
841 * Using noninverted ECC can be considered ugly since writing a blank
842 * page ie. padding will clear the ECC bytes. This is no problem as long
843 * nobody is trying to write data on the seemingly unused page. Reading
844 * an erased page will produce an ECC mismatch between generated and read
845 * ECC bytes that has to be dealt with separately.
847 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
850 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
852 return gpmc_calculate_ecc(info
->gpmc_cs
, dat
, ecc_code
);
856 * omap_enable_hwecc - This function enables the hardware ecc functionality
857 * @mtd: MTD device structure
858 * @mode: Read/Write mode
860 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
862 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
864 struct nand_chip
*chip
= mtd
->priv
;
865 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
867 gpmc_enable_hwecc(info
->gpmc_cs
, mode
, dev_width
, info
->nand
.ecc
.size
);
871 * omap_wait - wait until the command is done
872 * @mtd: MTD device structure
873 * @chip: NAND Chip structure
875 * Wait function is called during Program and erase operations and
876 * the way it is called from MTD layer, we should wait till the NAND
877 * chip is ready after the programming/erase operation has completed.
879 * Erase can take up to 400ms and program up to 20ms according to
880 * general NAND and SmartMedia specs
882 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
884 struct nand_chip
*this = mtd
->priv
;
885 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
887 unsigned long timeo
= jiffies
;
888 int status
= NAND_STATUS_FAIL
, state
= this->state
;
890 if (state
== FL_ERASING
)
891 timeo
+= (HZ
* 400) / 1000;
893 timeo
+= (HZ
* 20) / 1000;
895 gpmc_nand_write(info
->gpmc_cs
,
896 GPMC_NAND_COMMAND
, (NAND_CMD_STATUS
& 0xFF));
897 while (time_before(jiffies
, timeo
)) {
898 status
= gpmc_nand_read(info
->gpmc_cs
, GPMC_NAND_DATA
);
899 if (status
& NAND_STATUS_READY
)
907 * omap_dev_ready - calls the platform specific dev_ready function
908 * @mtd: MTD device structure
910 static int omap_dev_ready(struct mtd_info
*mtd
)
912 unsigned int val
= 0;
913 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
916 val
= gpmc_read_status(GPMC_GET_IRQ_STATUS
);
917 if ((val
& 0x100) == 0x100) {
918 /* Clear IRQ Interrupt */
921 gpmc_cs_configure(info
->gpmc_cs
, GPMC_SET_IRQ_STATUS
, val
);
923 unsigned int cnt
= 0;
924 while (cnt
++ < 0x1FF) {
925 if ((val
& 0x100) == 0x100)
927 val
= gpmc_read_status(GPMC_GET_IRQ_STATUS
);
934 static int __devinit
omap_nand_probe(struct platform_device
*pdev
)
936 struct omap_nand_info
*info
;
937 struct omap_nand_platform_data
*pdata
;
941 pdata
= pdev
->dev
.platform_data
;
943 dev_err(&pdev
->dev
, "platform data missing\n");
947 info
= kzalloc(sizeof(struct omap_nand_info
), GFP_KERNEL
);
951 platform_set_drvdata(pdev
, info
);
953 spin_lock_init(&info
->controller
.lock
);
954 init_waitqueue_head(&info
->controller
.wq
);
958 info
->gpmc_cs
= pdata
->cs
;
959 info
->phys_base
= pdata
->phys_base
;
961 info
->mtd
.priv
= &info
->nand
;
962 info
->mtd
.name
= dev_name(&pdev
->dev
);
963 info
->mtd
.owner
= THIS_MODULE
;
965 info
->nand
.options
= pdata
->devsize
;
966 info
->nand
.options
|= NAND_SKIP_BBTSCAN
;
968 /* NAND write protect off */
969 gpmc_cs_configure(info
->gpmc_cs
, GPMC_CONFIG_WP
, 0);
971 if (!request_mem_region(info
->phys_base
, NAND_IO_SIZE
,
972 pdev
->dev
.driver
->name
)) {
977 info
->nand
.IO_ADDR_R
= ioremap(info
->phys_base
, NAND_IO_SIZE
);
978 if (!info
->nand
.IO_ADDR_R
) {
980 goto out_release_mem_region
;
983 info
->nand
.controller
= &info
->controller
;
985 info
->nand
.IO_ADDR_W
= info
->nand
.IO_ADDR_R
;
986 info
->nand
.cmd_ctrl
= omap_hwcontrol
;
989 * If RDY/BSY line is connected to OMAP then use the omap ready
990 * funcrtion and the generic nand_wait function which reads the status
991 * register after monitoring the RDY/BSY line.Otherwise use a standard
992 * chip delay which is slightly more than tR (AC Timing) of the NAND
993 * device and read status register until you get a failure or success
995 if (pdata
->dev_ready
) {
996 info
->nand
.dev_ready
= omap_dev_ready
;
997 info
->nand
.chip_delay
= 0;
999 info
->nand
.waitfunc
= omap_wait
;
1000 info
->nand
.chip_delay
= 50;
1003 switch (pdata
->xfer_type
) {
1004 case NAND_OMAP_PREFETCH_POLLED
:
1005 info
->nand
.read_buf
= omap_read_buf_pref
;
1006 info
->nand
.write_buf
= omap_write_buf_pref
;
1009 case NAND_OMAP_POLLED
:
1010 if (info
->nand
.options
& NAND_BUSWIDTH_16
) {
1011 info
->nand
.read_buf
= omap_read_buf16
;
1012 info
->nand
.write_buf
= omap_write_buf16
;
1014 info
->nand
.read_buf
= omap_read_buf8
;
1015 info
->nand
.write_buf
= omap_write_buf8
;
1019 case NAND_OMAP_PREFETCH_DMA
:
1020 err
= omap_request_dma(OMAP24XX_DMA_GPMC
, "NAND",
1021 omap_nand_dma_cb
, &info
->comp
, &info
->dma_ch
);
1024 dev_err(&pdev
->dev
, "DMA request failed!\n");
1025 goto out_release_mem_region
;
1027 omap_set_dma_dest_burst_mode(info
->dma_ch
,
1028 OMAP_DMA_DATA_BURST_16
);
1029 omap_set_dma_src_burst_mode(info
->dma_ch
,
1030 OMAP_DMA_DATA_BURST_16
);
1032 info
->nand
.read_buf
= omap_read_buf_dma_pref
;
1033 info
->nand
.write_buf
= omap_write_buf_dma_pref
;
1037 case NAND_OMAP_PREFETCH_IRQ
:
1038 err
= request_irq(pdata
->gpmc_irq
,
1039 omap_nand_irq
, IRQF_SHARED
, "gpmc-nand", info
);
1041 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1042 pdata
->gpmc_irq
, err
);
1043 goto out_release_mem_region
;
1045 info
->gpmc_irq
= pdata
->gpmc_irq
;
1046 info
->nand
.read_buf
= omap_read_buf_irq_pref
;
1047 info
->nand
.write_buf
= omap_write_buf_irq_pref
;
1053 "xfer_type(%d) not supported!\n", pdata
->xfer_type
);
1055 goto out_release_mem_region
;
1058 info
->nand
.verify_buf
= omap_verify_buf
;
1060 /* selsect the ecc type */
1061 if (pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_DEFAULT
)
1062 info
->nand
.ecc
.mode
= NAND_ECC_SOFT
;
1063 else if ((pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_HW
) ||
1064 (pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_HW_ROMCODE
)) {
1065 info
->nand
.ecc
.bytes
= 3;
1066 info
->nand
.ecc
.size
= 512;
1067 info
->nand
.ecc
.calculate
= omap_calculate_ecc
;
1068 info
->nand
.ecc
.hwctl
= omap_enable_hwecc
;
1069 info
->nand
.ecc
.correct
= omap_correct_data
;
1070 info
->nand
.ecc
.mode
= NAND_ECC_HW
;
1073 /* DIP switches on some boards change between 8 and 16 bit
1074 * bus widths for flash. Try the other width if the first try fails.
1076 if (nand_scan(&info
->mtd
, 1)) {
1077 info
->nand
.options
^= NAND_BUSWIDTH_16
;
1078 if (nand_scan(&info
->mtd
, 1)) {
1080 goto out_release_mem_region
;
1084 /* rom code layout */
1085 if (pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_HW_ROMCODE
) {
1087 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
1091 info
->nand
.badblock_pattern
= &bb_descrip_flashbased
;
1093 omap_oobinfo
.eccbytes
= 3 * (info
->mtd
.oobsize
/16);
1094 for (i
= 0; i
< omap_oobinfo
.eccbytes
; i
++)
1095 omap_oobinfo
.eccpos
[i
] = i
+offset
;
1097 omap_oobinfo
.oobfree
->offset
= offset
+ omap_oobinfo
.eccbytes
;
1098 omap_oobinfo
.oobfree
->length
= info
->mtd
.oobsize
-
1099 (offset
+ omap_oobinfo
.eccbytes
);
1101 info
->nand
.ecc
.layout
= &omap_oobinfo
;
1104 #ifdef CONFIG_MTD_PARTITIONS
1105 err
= parse_mtd_partitions(&info
->mtd
, part_probes
, &info
->parts
, 0);
1107 add_mtd_partitions(&info
->mtd
, info
->parts
, err
);
1108 else if (pdata
->parts
)
1109 add_mtd_partitions(&info
->mtd
, pdata
->parts
, pdata
->nr_parts
);
1112 add_mtd_device(&info
->mtd
);
1114 platform_set_drvdata(pdev
, &info
->mtd
);
1118 out_release_mem_region
:
1119 release_mem_region(info
->phys_base
, NAND_IO_SIZE
);
1126 static int omap_nand_remove(struct platform_device
*pdev
)
1128 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
1129 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1132 platform_set_drvdata(pdev
, NULL
);
1133 if (info
->dma_ch
!= -1)
1134 omap_free_dma(info
->dma_ch
);
1137 free_irq(info
->gpmc_irq
, info
);
1139 /* Release NAND device, its internal structures and partitions */
1140 nand_release(&info
->mtd
);
1141 iounmap(info
->nand
.IO_ADDR_R
);
1146 static struct platform_driver omap_nand_driver
= {
1147 .probe
= omap_nand_probe
,
1148 .remove
= omap_nand_remove
,
1150 .name
= DRIVER_NAME
,
1151 .owner
= THIS_MODULE
,
1155 static int __init
omap_nand_init(void)
1157 pr_info("%s driver initializing\n", DRIVER_NAME
);
1159 return platform_driver_register(&omap_nand_driver
);
1162 static void __exit
omap_nand_exit(void)
1164 platform_driver_unregister(&omap_nand_driver
);
1167 module_init(omap_nand_init
);
1168 module_exit(omap_nand_exit
);
1170 MODULE_ALIAS("platform:" DRIVER_NAME
);
1171 MODULE_LICENSE("GPL");
1172 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");